6faffce018696da3c4ad7cd03750c9ffa03f5737
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30 * We guarantee no failure on the returned page.
31 */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 struct address_space *mapping = META_MAPPING(sbi);
35 struct page *page = NULL;
36 repeat:
37 page = grab_cache_page(mapping, index);
38 if (!page) {
39 cond_resched();
40 goto repeat;
41 }
42 f2fs_wait_on_page_writeback(page, META);
43 SetPageUptodate(page);
44 return page;
45 }
46
47 /*
48 * We guarantee no failure on the returned page.
49 */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 struct address_space *mapping = META_MAPPING(sbi);
53 struct page *page;
54 struct f2fs_io_info fio = {
55 .type = META,
56 .rw = READ_SYNC | REQ_META | REQ_PRIO,
57 .blk_addr = index,
58 };
59 repeat:
60 page = grab_cache_page(mapping, index);
61 if (!page) {
62 cond_resched();
63 goto repeat;
64 }
65 if (PageUptodate(page))
66 goto out;
67
68 if (f2fs_submit_page_bio(sbi, page, &fio))
69 goto repeat;
70
71 lock_page(page);
72 if (unlikely(page->mapping != mapping)) {
73 f2fs_put_page(page, 1);
74 goto repeat;
75 }
76 out:
77 return page;
78 }
79
80 static inline bool is_valid_blkaddr(struct f2fs_sb_info *sbi,
81 block_t blkaddr, int type)
82 {
83 switch (type) {
84 case META_NAT:
85 break;
86 case META_SIT:
87 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
88 return false;
89 break;
90 case META_SSA:
91 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
92 blkaddr < SM_I(sbi)->ssa_blkaddr))
93 return false;
94 break;
95 case META_CP:
96 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
97 blkaddr < __start_cp_addr(sbi)))
98 return false;
99 break;
100 case META_POR:
101 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
102 blkaddr < MAIN_BLKADDR(sbi)))
103 return false;
104 break;
105 default:
106 BUG();
107 }
108
109 return true;
110 }
111
112 /*
113 * Readahead CP/NAT/SIT/SSA pages
114 */
115 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
116 {
117 block_t prev_blk_addr = 0;
118 struct page *page;
119 block_t blkno = start;
120 struct f2fs_io_info fio = {
121 .type = META,
122 .rw = READ_SYNC | REQ_META | REQ_PRIO
123 };
124
125 for (; nrpages-- > 0; blkno++) {
126
127 if (!is_valid_blkaddr(sbi, blkno, type))
128 goto out;
129
130 switch (type) {
131 case META_NAT:
132 if (unlikely(blkno >=
133 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
134 blkno = 0;
135 /* get nat block addr */
136 fio.blk_addr = current_nat_addr(sbi,
137 blkno * NAT_ENTRY_PER_BLOCK);
138 break;
139 case META_SIT:
140 /* get sit block addr */
141 fio.blk_addr = current_sit_addr(sbi,
142 blkno * SIT_ENTRY_PER_BLOCK);
143 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
144 goto out;
145 prev_blk_addr = fio.blk_addr;
146 break;
147 case META_SSA:
148 case META_CP:
149 case META_POR:
150 fio.blk_addr = blkno;
151 break;
152 default:
153 BUG();
154 }
155
156 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
157 if (!page)
158 continue;
159 if (PageUptodate(page)) {
160 f2fs_put_page(page, 1);
161 continue;
162 }
163
164 f2fs_submit_page_mbio(sbi, page, &fio);
165 f2fs_put_page(page, 0);
166 }
167 out:
168 f2fs_submit_merged_bio(sbi, META, READ);
169 return blkno - start;
170 }
171
172 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
173 {
174 struct page *page;
175 bool readahead = false;
176
177 page = find_get_page(META_MAPPING(sbi), index);
178 if (!page || (page && !PageUptodate(page)))
179 readahead = true;
180 f2fs_put_page(page, 0);
181
182 if (readahead)
183 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
184 }
185
186 static int f2fs_write_meta_page(struct page *page,
187 struct writeback_control *wbc)
188 {
189 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
190
191 trace_f2fs_writepage(page, META);
192
193 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
194 goto redirty_out;
195 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
196 goto redirty_out;
197 if (unlikely(f2fs_cp_error(sbi)))
198 goto redirty_out;
199
200 f2fs_wait_on_page_writeback(page, META);
201 write_meta_page(sbi, page);
202 dec_page_count(sbi, F2FS_DIRTY_META);
203 unlock_page(page);
204
205 if (wbc->for_reclaim)
206 f2fs_submit_merged_bio(sbi, META, WRITE);
207 return 0;
208
209 redirty_out:
210 redirty_page_for_writepage(wbc, page);
211 return AOP_WRITEPAGE_ACTIVATE;
212 }
213
214 static int f2fs_write_meta_pages(struct address_space *mapping,
215 struct writeback_control *wbc)
216 {
217 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
218 long diff, written;
219
220 trace_f2fs_writepages(mapping->host, wbc, META);
221
222 /* collect a number of dirty meta pages and write together */
223 if (wbc->for_kupdate ||
224 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
225 goto skip_write;
226
227 /* if mounting is failed, skip writing node pages */
228 mutex_lock(&sbi->cp_mutex);
229 diff = nr_pages_to_write(sbi, META, wbc);
230 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
231 mutex_unlock(&sbi->cp_mutex);
232 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
233 return 0;
234
235 skip_write:
236 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
237 return 0;
238 }
239
240 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
241 long nr_to_write)
242 {
243 struct address_space *mapping = META_MAPPING(sbi);
244 pgoff_t index = 0, end = LONG_MAX;
245 struct pagevec pvec;
246 long nwritten = 0;
247 struct writeback_control wbc = {
248 .for_reclaim = 0,
249 };
250
251 pagevec_init(&pvec, 0);
252
253 while (index <= end) {
254 int i, nr_pages;
255 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
256 PAGECACHE_TAG_DIRTY,
257 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
258 if (unlikely(nr_pages == 0))
259 break;
260
261 for (i = 0; i < nr_pages; i++) {
262 struct page *page = pvec.pages[i];
263
264 lock_page(page);
265
266 if (unlikely(page->mapping != mapping)) {
267 continue_unlock:
268 unlock_page(page);
269 continue;
270 }
271 if (!PageDirty(page)) {
272 /* someone wrote it for us */
273 goto continue_unlock;
274 }
275
276 if (!clear_page_dirty_for_io(page))
277 goto continue_unlock;
278
279 if (mapping->a_ops->writepage(page, &wbc)) {
280 unlock_page(page);
281 break;
282 }
283 nwritten++;
284 if (unlikely(nwritten >= nr_to_write))
285 break;
286 }
287 pagevec_release(&pvec);
288 cond_resched();
289 }
290
291 if (nwritten)
292 f2fs_submit_merged_bio(sbi, type, WRITE);
293
294 return nwritten;
295 }
296
297 static int f2fs_set_meta_page_dirty(struct page *page)
298 {
299 trace_f2fs_set_page_dirty(page, META);
300
301 SetPageUptodate(page);
302 if (!PageDirty(page)) {
303 __set_page_dirty_nobuffers(page);
304 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
305 SetPagePrivate(page);
306 f2fs_trace_pid(page);
307 return 1;
308 }
309 return 0;
310 }
311
312 const struct address_space_operations f2fs_meta_aops = {
313 .writepage = f2fs_write_meta_page,
314 .writepages = f2fs_write_meta_pages,
315 .set_page_dirty = f2fs_set_meta_page_dirty,
316 .invalidatepage = f2fs_invalidate_page,
317 .releasepage = f2fs_release_page,
318 };
319
320 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
321 {
322 struct inode_management *im = &sbi->im[type];
323 struct ino_entry *e;
324 retry:
325 if (radix_tree_preload(GFP_NOFS)) {
326 cond_resched();
327 goto retry;
328 }
329
330 spin_lock(&im->ino_lock);
331
332 e = radix_tree_lookup(&im->ino_root, ino);
333 if (!e) {
334 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
335 if (!e) {
336 spin_unlock(&im->ino_lock);
337 radix_tree_preload_end();
338 goto retry;
339 }
340 if (radix_tree_insert(&im->ino_root, ino, e)) {
341 spin_unlock(&im->ino_lock);
342 kmem_cache_free(ino_entry_slab, e);
343 radix_tree_preload_end();
344 goto retry;
345 }
346 memset(e, 0, sizeof(struct ino_entry));
347 e->ino = ino;
348
349 list_add_tail(&e->list, &im->ino_list);
350 if (type != ORPHAN_INO)
351 im->ino_num++;
352 }
353 spin_unlock(&im->ino_lock);
354 radix_tree_preload_end();
355 }
356
357 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
358 {
359 struct inode_management *im = &sbi->im[type];
360 struct ino_entry *e;
361
362 spin_lock(&im->ino_lock);
363 e = radix_tree_lookup(&im->ino_root, ino);
364 if (e) {
365 list_del(&e->list);
366 radix_tree_delete(&im->ino_root, ino);
367 im->ino_num--;
368 spin_unlock(&im->ino_lock);
369 kmem_cache_free(ino_entry_slab, e);
370 return;
371 }
372 spin_unlock(&im->ino_lock);
373 }
374
375 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
376 {
377 /* add new dirty ino entry into list */
378 __add_ino_entry(sbi, ino, type);
379 }
380
381 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
382 {
383 /* remove dirty ino entry from list */
384 __remove_ino_entry(sbi, ino, type);
385 }
386
387 /* mode should be APPEND_INO or UPDATE_INO */
388 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
389 {
390 struct inode_management *im = &sbi->im[mode];
391 struct ino_entry *e;
392
393 spin_lock(&im->ino_lock);
394 e = radix_tree_lookup(&im->ino_root, ino);
395 spin_unlock(&im->ino_lock);
396 return e ? true : false;
397 }
398
399 void release_dirty_inode(struct f2fs_sb_info *sbi)
400 {
401 struct ino_entry *e, *tmp;
402 int i;
403
404 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
405 struct inode_management *im = &sbi->im[i];
406
407 spin_lock(&im->ino_lock);
408 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
409 list_del(&e->list);
410 radix_tree_delete(&im->ino_root, e->ino);
411 kmem_cache_free(ino_entry_slab, e);
412 im->ino_num--;
413 }
414 spin_unlock(&im->ino_lock);
415 }
416 }
417
418 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
419 {
420 struct inode_management *im = &sbi->im[ORPHAN_INO];
421 int err = 0;
422
423 spin_lock(&im->ino_lock);
424 if (unlikely(im->ino_num >= sbi->max_orphans))
425 err = -ENOSPC;
426 else
427 im->ino_num++;
428 spin_unlock(&im->ino_lock);
429
430 return err;
431 }
432
433 void release_orphan_inode(struct f2fs_sb_info *sbi)
434 {
435 struct inode_management *im = &sbi->im[ORPHAN_INO];
436
437 spin_lock(&im->ino_lock);
438 f2fs_bug_on(sbi, im->ino_num == 0);
439 im->ino_num--;
440 spin_unlock(&im->ino_lock);
441 }
442
443 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
444 {
445 /* add new orphan ino entry into list */
446 __add_ino_entry(sbi, ino, ORPHAN_INO);
447 }
448
449 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
450 {
451 /* remove orphan entry from orphan list */
452 __remove_ino_entry(sbi, ino, ORPHAN_INO);
453 }
454
455 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
456 {
457 struct inode *inode = f2fs_iget(sbi->sb, ino);
458 f2fs_bug_on(sbi, IS_ERR(inode));
459 clear_nlink(inode);
460
461 /* truncate all the data during iput */
462 iput(inode);
463 }
464
465 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
466 {
467 block_t start_blk, orphan_blkaddr, i, j;
468
469 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
470 return;
471
472 set_sbi_flag(sbi, SBI_POR_DOING);
473
474 start_blk = __start_cp_addr(sbi) + 1 +
475 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
476 orphan_blkaddr = __start_sum_addr(sbi) - 1;
477
478 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
479
480 for (i = 0; i < orphan_blkaddr; i++) {
481 struct page *page = get_meta_page(sbi, start_blk + i);
482 struct f2fs_orphan_block *orphan_blk;
483
484 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
485 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
486 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
487 recover_orphan_inode(sbi, ino);
488 }
489 f2fs_put_page(page, 1);
490 }
491 /* clear Orphan Flag */
492 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
493 clear_sbi_flag(sbi, SBI_POR_DOING);
494 return;
495 }
496
497 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
498 {
499 struct list_head *head;
500 struct f2fs_orphan_block *orphan_blk = NULL;
501 unsigned int nentries = 0;
502 unsigned short index;
503 unsigned short orphan_blocks;
504 struct page *page = NULL;
505 struct ino_entry *orphan = NULL;
506 struct inode_management *im = &sbi->im[ORPHAN_INO];
507
508 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
509
510 for (index = 0; index < orphan_blocks; index++)
511 grab_meta_page(sbi, start_blk + index);
512
513 index = 1;
514 spin_lock(&im->ino_lock);
515 head = &im->ino_list;
516
517 /* loop for each orphan inode entry and write them in Jornal block */
518 list_for_each_entry(orphan, head, list) {
519 if (!page) {
520 page = find_get_page(META_MAPPING(sbi), start_blk++);
521 f2fs_bug_on(sbi, !page);
522 orphan_blk =
523 (struct f2fs_orphan_block *)page_address(page);
524 memset(orphan_blk, 0, sizeof(*orphan_blk));
525 f2fs_put_page(page, 0);
526 }
527
528 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
529
530 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
531 /*
532 * an orphan block is full of 1020 entries,
533 * then we need to flush current orphan blocks
534 * and bring another one in memory
535 */
536 orphan_blk->blk_addr = cpu_to_le16(index);
537 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
538 orphan_blk->entry_count = cpu_to_le32(nentries);
539 set_page_dirty(page);
540 f2fs_put_page(page, 1);
541 index++;
542 nentries = 0;
543 page = NULL;
544 }
545 }
546
547 if (page) {
548 orphan_blk->blk_addr = cpu_to_le16(index);
549 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
550 orphan_blk->entry_count = cpu_to_le32(nentries);
551 set_page_dirty(page);
552 f2fs_put_page(page, 1);
553 }
554
555 spin_unlock(&im->ino_lock);
556 }
557
558 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
559 block_t cp_addr, unsigned long long *version)
560 {
561 struct page *cp_page_1, *cp_page_2 = NULL;
562 unsigned long blk_size = sbi->blocksize;
563 struct f2fs_checkpoint *cp_block;
564 unsigned long long cur_version = 0, pre_version = 0;
565 size_t crc_offset;
566 __u32 crc = 0;
567
568 /* Read the 1st cp block in this CP pack */
569 cp_page_1 = get_meta_page(sbi, cp_addr);
570
571 /* get the version number */
572 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
573 crc_offset = le32_to_cpu(cp_block->checksum_offset);
574 if (crc_offset >= blk_size)
575 goto invalid_cp1;
576
577 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
578 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
579 goto invalid_cp1;
580
581 pre_version = cur_cp_version(cp_block);
582
583 /* Read the 2nd cp block in this CP pack */
584 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
585 cp_page_2 = get_meta_page(sbi, cp_addr);
586
587 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
588 crc_offset = le32_to_cpu(cp_block->checksum_offset);
589 if (crc_offset >= blk_size)
590 goto invalid_cp2;
591
592 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
593 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
594 goto invalid_cp2;
595
596 cur_version = cur_cp_version(cp_block);
597
598 if (cur_version == pre_version) {
599 *version = cur_version;
600 f2fs_put_page(cp_page_2, 1);
601 return cp_page_1;
602 }
603 invalid_cp2:
604 f2fs_put_page(cp_page_2, 1);
605 invalid_cp1:
606 f2fs_put_page(cp_page_1, 1);
607 return NULL;
608 }
609
610 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
611 {
612 struct f2fs_checkpoint *cp_block;
613 struct f2fs_super_block *fsb = sbi->raw_super;
614 struct page *cp1, *cp2, *cur_page;
615 unsigned long blk_size = sbi->blocksize;
616 unsigned long long cp1_version = 0, cp2_version = 0;
617 unsigned long long cp_start_blk_no;
618 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
619 block_t cp_blk_no;
620 int i;
621
622 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
623 if (!sbi->ckpt)
624 return -ENOMEM;
625 /*
626 * Finding out valid cp block involves read both
627 * sets( cp pack1 and cp pack 2)
628 */
629 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
630 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
631
632 /* The second checkpoint pack should start at the next segment */
633 cp_start_blk_no += ((unsigned long long)1) <<
634 le32_to_cpu(fsb->log_blocks_per_seg);
635 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
636
637 if (cp1 && cp2) {
638 if (ver_after(cp2_version, cp1_version))
639 cur_page = cp2;
640 else
641 cur_page = cp1;
642 } else if (cp1) {
643 cur_page = cp1;
644 } else if (cp2) {
645 cur_page = cp2;
646 } else {
647 goto fail_no_cp;
648 }
649
650 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
651 memcpy(sbi->ckpt, cp_block, blk_size);
652
653 if (cp_blks <= 1)
654 goto done;
655
656 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
657 if (cur_page == cp2)
658 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
659
660 for (i = 1; i < cp_blks; i++) {
661 void *sit_bitmap_ptr;
662 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
663
664 cur_page = get_meta_page(sbi, cp_blk_no + i);
665 sit_bitmap_ptr = page_address(cur_page);
666 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
667 f2fs_put_page(cur_page, 1);
668 }
669 done:
670 f2fs_put_page(cp1, 1);
671 f2fs_put_page(cp2, 1);
672 return 0;
673
674 fail_no_cp:
675 kfree(sbi->ckpt);
676 return -EINVAL;
677 }
678
679 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
680 {
681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
682
683 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
684 return -EEXIST;
685
686 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
687 F2FS_I(inode)->dirty_dir = new;
688 list_add_tail(&new->list, &sbi->dir_inode_list);
689 stat_inc_dirty_dir(sbi);
690 return 0;
691 }
692
693 void update_dirty_page(struct inode *inode, struct page *page)
694 {
695 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
696 struct inode_entry *new;
697 int ret = 0;
698
699 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
700 return;
701
702 if (!S_ISDIR(inode->i_mode)) {
703 inode_inc_dirty_pages(inode);
704 goto out;
705 }
706
707 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
708 new->inode = inode;
709 INIT_LIST_HEAD(&new->list);
710
711 spin_lock(&sbi->dir_inode_lock);
712 ret = __add_dirty_inode(inode, new);
713 inode_inc_dirty_pages(inode);
714 spin_unlock(&sbi->dir_inode_lock);
715
716 if (ret)
717 kmem_cache_free(inode_entry_slab, new);
718 out:
719 SetPagePrivate(page);
720 f2fs_trace_pid(page);
721 }
722
723 void add_dirty_dir_inode(struct inode *inode)
724 {
725 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
726 struct inode_entry *new =
727 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
728 int ret = 0;
729
730 new->inode = inode;
731 INIT_LIST_HEAD(&new->list);
732
733 spin_lock(&sbi->dir_inode_lock);
734 ret = __add_dirty_inode(inode, new);
735 spin_unlock(&sbi->dir_inode_lock);
736
737 if (ret)
738 kmem_cache_free(inode_entry_slab, new);
739 }
740
741 void remove_dirty_dir_inode(struct inode *inode)
742 {
743 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
744 struct inode_entry *entry;
745
746 if (!S_ISDIR(inode->i_mode))
747 return;
748
749 spin_lock(&sbi->dir_inode_lock);
750 if (get_dirty_pages(inode) ||
751 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
752 spin_unlock(&sbi->dir_inode_lock);
753 return;
754 }
755
756 entry = F2FS_I(inode)->dirty_dir;
757 list_del(&entry->list);
758 F2FS_I(inode)->dirty_dir = NULL;
759 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
760 stat_dec_dirty_dir(sbi);
761 spin_unlock(&sbi->dir_inode_lock);
762 kmem_cache_free(inode_entry_slab, entry);
763
764 /* Only from the recovery routine */
765 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
766 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
767 iput(inode);
768 }
769 }
770
771 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
772 {
773 struct list_head *head;
774 struct inode_entry *entry;
775 struct inode *inode;
776 retry:
777 if (unlikely(f2fs_cp_error(sbi)))
778 return;
779
780 spin_lock(&sbi->dir_inode_lock);
781
782 head = &sbi->dir_inode_list;
783 if (list_empty(head)) {
784 spin_unlock(&sbi->dir_inode_lock);
785 return;
786 }
787 entry = list_entry(head->next, struct inode_entry, list);
788 inode = igrab(entry->inode);
789 spin_unlock(&sbi->dir_inode_lock);
790 if (inode) {
791 filemap_fdatawrite(inode->i_mapping);
792 iput(inode);
793 } else {
794 /*
795 * We should submit bio, since it exists several
796 * wribacking dentry pages in the freeing inode.
797 */
798 f2fs_submit_merged_bio(sbi, DATA, WRITE);
799 }
800 goto retry;
801 }
802
803 /*
804 * Freeze all the FS-operations for checkpoint.
805 */
806 static int block_operations(struct f2fs_sb_info *sbi)
807 {
808 struct writeback_control wbc = {
809 .sync_mode = WB_SYNC_ALL,
810 .nr_to_write = LONG_MAX,
811 .for_reclaim = 0,
812 };
813 struct blk_plug plug;
814 int err = 0;
815
816 blk_start_plug(&plug);
817
818 retry_flush_dents:
819 f2fs_lock_all(sbi);
820 /* write all the dirty dentry pages */
821 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
822 f2fs_unlock_all(sbi);
823 sync_dirty_dir_inodes(sbi);
824 if (unlikely(f2fs_cp_error(sbi))) {
825 err = -EIO;
826 goto out;
827 }
828 goto retry_flush_dents;
829 }
830
831 /*
832 * POR: we should ensure that there are no dirty node pages
833 * until finishing nat/sit flush.
834 */
835 retry_flush_nodes:
836 down_write(&sbi->node_write);
837
838 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
839 up_write(&sbi->node_write);
840 sync_node_pages(sbi, 0, &wbc);
841 if (unlikely(f2fs_cp_error(sbi))) {
842 f2fs_unlock_all(sbi);
843 err = -EIO;
844 goto out;
845 }
846 goto retry_flush_nodes;
847 }
848 out:
849 blk_finish_plug(&plug);
850 return err;
851 }
852
853 static void unblock_operations(struct f2fs_sb_info *sbi)
854 {
855 up_write(&sbi->node_write);
856 f2fs_unlock_all(sbi);
857 }
858
859 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
860 {
861 DEFINE_WAIT(wait);
862
863 for (;;) {
864 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
865
866 if (!get_pages(sbi, F2FS_WRITEBACK))
867 break;
868
869 io_schedule();
870 }
871 finish_wait(&sbi->cp_wait, &wait);
872 }
873
874 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
875 {
876 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
877 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
878 struct f2fs_nm_info *nm_i = NM_I(sbi);
879 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
880 nid_t last_nid = nm_i->next_scan_nid;
881 block_t start_blk;
882 struct page *cp_page;
883 unsigned int data_sum_blocks, orphan_blocks;
884 __u32 crc32 = 0;
885 void *kaddr;
886 int i;
887 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
888
889 /*
890 * This avoids to conduct wrong roll-forward operations and uses
891 * metapages, so should be called prior to sync_meta_pages below.
892 */
893 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
894
895 /* Flush all the NAT/SIT pages */
896 while (get_pages(sbi, F2FS_DIRTY_META)) {
897 sync_meta_pages(sbi, META, LONG_MAX);
898 if (unlikely(f2fs_cp_error(sbi)))
899 return;
900 }
901
902 next_free_nid(sbi, &last_nid);
903
904 /*
905 * modify checkpoint
906 * version number is already updated
907 */
908 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
909 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
910 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
911 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
912 ckpt->cur_node_segno[i] =
913 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
914 ckpt->cur_node_blkoff[i] =
915 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
916 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
917 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
918 }
919 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
920 ckpt->cur_data_segno[i] =
921 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
922 ckpt->cur_data_blkoff[i] =
923 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
924 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
925 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
926 }
927
928 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
929 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
930 ckpt->next_free_nid = cpu_to_le32(last_nid);
931
932 /* 2 cp + n data seg summary + orphan inode blocks */
933 data_sum_blocks = npages_for_summary_flush(sbi, false);
934 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
935 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
936 else
937 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
938
939 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
940 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
941 orphan_blocks);
942
943 if (__remain_node_summaries(cpc->reason))
944 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
945 cp_payload_blks + data_sum_blocks +
946 orphan_blocks + NR_CURSEG_NODE_TYPE);
947 else
948 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
949 cp_payload_blks + data_sum_blocks +
950 orphan_blocks);
951
952 if (cpc->reason == CP_UMOUNT)
953 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
954 else
955 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
956
957 if (cpc->reason == CP_FASTBOOT)
958 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
959 else
960 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
961
962 if (orphan_num)
963 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
964 else
965 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
966
967 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
968 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
969
970 /* update SIT/NAT bitmap */
971 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
972 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
973
974 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
975 *((__le32 *)((unsigned char *)ckpt +
976 le32_to_cpu(ckpt->checksum_offset)))
977 = cpu_to_le32(crc32);
978
979 start_blk = __start_cp_addr(sbi);
980
981 /* write out checkpoint buffer at block 0 */
982 cp_page = grab_meta_page(sbi, start_blk++);
983 kaddr = page_address(cp_page);
984 memcpy(kaddr, ckpt, F2FS_BLKSIZE);
985 set_page_dirty(cp_page);
986 f2fs_put_page(cp_page, 1);
987
988 for (i = 1; i < 1 + cp_payload_blks; i++) {
989 cp_page = grab_meta_page(sbi, start_blk++);
990 kaddr = page_address(cp_page);
991 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE, F2FS_BLKSIZE);
992 set_page_dirty(cp_page);
993 f2fs_put_page(cp_page, 1);
994 }
995
996 if (orphan_num) {
997 write_orphan_inodes(sbi, start_blk);
998 start_blk += orphan_blocks;
999 }
1000
1001 write_data_summaries(sbi, start_blk);
1002 start_blk += data_sum_blocks;
1003 if (__remain_node_summaries(cpc->reason)) {
1004 write_node_summaries(sbi, start_blk);
1005 start_blk += NR_CURSEG_NODE_TYPE;
1006 }
1007
1008 /* writeout checkpoint block */
1009 cp_page = grab_meta_page(sbi, start_blk);
1010 kaddr = page_address(cp_page);
1011 memcpy(kaddr, ckpt, F2FS_BLKSIZE);
1012 set_page_dirty(cp_page);
1013 f2fs_put_page(cp_page, 1);
1014
1015 /* wait for previous submitted node/meta pages writeback */
1016 wait_on_all_pages_writeback(sbi);
1017
1018 if (unlikely(f2fs_cp_error(sbi)))
1019 return;
1020
1021 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1022 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1023
1024 /* update user_block_counts */
1025 sbi->last_valid_block_count = sbi->total_valid_block_count;
1026 sbi->alloc_valid_block_count = 0;
1027
1028 /* Here, we only have one bio having CP pack */
1029 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1030
1031 /* wait for previous submitted meta pages writeback */
1032 wait_on_all_pages_writeback(sbi);
1033
1034 release_dirty_inode(sbi);
1035
1036 if (unlikely(f2fs_cp_error(sbi)))
1037 return;
1038
1039 clear_prefree_segments(sbi);
1040 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1041 }
1042
1043 /*
1044 * We guarantee that this checkpoint procedure will not fail.
1045 */
1046 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1047 {
1048 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1049 unsigned long long ckpt_ver;
1050
1051 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1052
1053 mutex_lock(&sbi->cp_mutex);
1054
1055 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1056 cpc->reason != CP_DISCARD && cpc->reason != CP_UMOUNT)
1057 goto out;
1058 if (unlikely(f2fs_cp_error(sbi)))
1059 goto out;
1060 if (f2fs_readonly(sbi->sb))
1061 goto out;
1062 if (block_operations(sbi))
1063 goto out;
1064
1065 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1066
1067 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1068 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1069 f2fs_submit_merged_bio(sbi, META, WRITE);
1070
1071 /*
1072 * update checkpoint pack index
1073 * Increase the version number so that
1074 * SIT entries and seg summaries are written at correct place
1075 */
1076 ckpt_ver = cur_cp_version(ckpt);
1077 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1078
1079 /* write cached NAT/SIT entries to NAT/SIT area */
1080 flush_nat_entries(sbi);
1081 flush_sit_entries(sbi, cpc);
1082
1083 /* unlock all the fs_lock[] in do_checkpoint() */
1084 do_checkpoint(sbi, cpc);
1085
1086 unblock_operations(sbi);
1087 stat_inc_cp_count(sbi->stat_info);
1088 out:
1089 mutex_unlock(&sbi->cp_mutex);
1090 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1091 }
1092
1093 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1094 {
1095 int i;
1096
1097 for (i = 0; i < MAX_INO_ENTRY; i++) {
1098 struct inode_management *im = &sbi->im[i];
1099
1100 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1101 spin_lock_init(&im->ino_lock);
1102 INIT_LIST_HEAD(&im->ino_list);
1103 im->ino_num = 0;
1104 }
1105
1106 /*
1107 * considering 512 blocks in a segment 8 blocks are needed for cp
1108 * and log segment summaries. Remaining blocks are used to keep
1109 * orphan entries with the limitation one reserved segment
1110 * for cp pack we can have max 1020*504 orphan entries
1111 */
1112 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1113 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1114 }
1115
1116 int __init create_checkpoint_caches(void)
1117 {
1118 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1119 sizeof(struct ino_entry));
1120 if (!ino_entry_slab)
1121 return -ENOMEM;
1122 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1123 sizeof(struct inode_entry));
1124 if (!inode_entry_slab) {
1125 kmem_cache_destroy(ino_entry_slab);
1126 return -ENOMEM;
1127 }
1128 return 0;
1129 }
1130
1131 void destroy_checkpoint_caches(void)
1132 {
1133 kmem_cache_destroy(ino_entry_slab);
1134 kmem_cache_destroy(inode_entry_slab);
1135 }
This page took 0.069018 seconds and 4 git commands to generate.