f2fs: use meta_inode cache to improve roll-forward speed
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71 out:
72 return page;
73 }
74
75 struct page *get_meta_page_ra(struct f2fs_sb_info *sbi, pgoff_t index)
76 {
77 bool readahead = false;
78 struct page *page;
79
80 page = find_get_page(META_MAPPING(sbi), index);
81 if (!page || (page && !PageUptodate(page)))
82 readahead = true;
83 f2fs_put_page(page, 0);
84
85 if (readahead)
86 ra_meta_pages(sbi, index,
87 MAX_BIO_BLOCKS(max_hw_blocks(sbi)), META_POR);
88 return get_meta_page(sbi, index);
89 }
90
91 static inline block_t get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
92 {
93 switch (type) {
94 case META_NAT:
95 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
96 case META_SIT:
97 return SIT_BLK_CNT(sbi);
98 case META_SSA:
99 case META_CP:
100 return 0;
101 case META_POR:
102 return SM_I(sbi)->seg0_blkaddr + TOTAL_BLKS(sbi);
103 default:
104 BUG();
105 }
106 }
107
108 /*
109 * Readahead CP/NAT/SIT/SSA pages
110 */
111 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
112 {
113 block_t prev_blk_addr = 0;
114 struct page *page;
115 block_t blkno = start;
116 block_t max_blks = get_max_meta_blks(sbi, type);
117 block_t min_blks = SM_I(sbi)->seg0_blkaddr;
118
119 struct f2fs_io_info fio = {
120 .type = META,
121 .rw = READ_SYNC | REQ_META | REQ_PRIO
122 };
123
124 for (; nrpages-- > 0; blkno++) {
125 block_t blk_addr;
126
127 switch (type) {
128 case META_NAT:
129 /* get nat block addr */
130 if (unlikely(blkno >= max_blks))
131 blkno = 0;
132 blk_addr = current_nat_addr(sbi,
133 blkno * NAT_ENTRY_PER_BLOCK);
134 break;
135 case META_SIT:
136 /* get sit block addr */
137 if (unlikely(blkno >= max_blks))
138 goto out;
139 blk_addr = current_sit_addr(sbi,
140 blkno * SIT_ENTRY_PER_BLOCK);
141 if (blkno != start && prev_blk_addr + 1 != blk_addr)
142 goto out;
143 prev_blk_addr = blk_addr;
144 break;
145 case META_SSA:
146 case META_CP:
147 case META_POR:
148 if (unlikely(blkno >= max_blks))
149 goto out;
150 if (unlikely(blkno < min_blks))
151 goto out;
152 blk_addr = blkno;
153 break;
154 default:
155 BUG();
156 }
157
158 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
159 if (!page)
160 continue;
161 if (PageUptodate(page)) {
162 f2fs_put_page(page, 1);
163 continue;
164 }
165
166 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
167 f2fs_put_page(page, 0);
168 }
169 out:
170 f2fs_submit_merged_bio(sbi, META, READ);
171 return blkno - start;
172 }
173
174 static int f2fs_write_meta_page(struct page *page,
175 struct writeback_control *wbc)
176 {
177 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
178
179 trace_f2fs_writepage(page, META);
180
181 if (unlikely(sbi->por_doing))
182 goto redirty_out;
183 if (wbc->for_reclaim)
184 goto redirty_out;
185 if (unlikely(f2fs_cp_error(sbi)))
186 goto redirty_out;
187
188 f2fs_wait_on_page_writeback(page, META);
189 write_meta_page(sbi, page);
190 dec_page_count(sbi, F2FS_DIRTY_META);
191 unlock_page(page);
192 return 0;
193
194 redirty_out:
195 redirty_page_for_writepage(wbc, page);
196 return AOP_WRITEPAGE_ACTIVATE;
197 }
198
199 static int f2fs_write_meta_pages(struct address_space *mapping,
200 struct writeback_control *wbc)
201 {
202 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
203 long diff, written;
204
205 trace_f2fs_writepages(mapping->host, wbc, META);
206
207 /* collect a number of dirty meta pages and write together */
208 if (wbc->for_kupdate ||
209 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
210 goto skip_write;
211
212 /* if mounting is failed, skip writing node pages */
213 mutex_lock(&sbi->cp_mutex);
214 diff = nr_pages_to_write(sbi, META, wbc);
215 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
216 mutex_unlock(&sbi->cp_mutex);
217 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
218 return 0;
219
220 skip_write:
221 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
222 return 0;
223 }
224
225 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
226 long nr_to_write)
227 {
228 struct address_space *mapping = META_MAPPING(sbi);
229 pgoff_t index = 0, end = LONG_MAX;
230 struct pagevec pvec;
231 long nwritten = 0;
232 struct writeback_control wbc = {
233 .for_reclaim = 0,
234 };
235
236 pagevec_init(&pvec, 0);
237
238 while (index <= end) {
239 int i, nr_pages;
240 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
241 PAGECACHE_TAG_DIRTY,
242 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
243 if (unlikely(nr_pages == 0))
244 break;
245
246 for (i = 0; i < nr_pages; i++) {
247 struct page *page = pvec.pages[i];
248
249 lock_page(page);
250
251 if (unlikely(page->mapping != mapping)) {
252 continue_unlock:
253 unlock_page(page);
254 continue;
255 }
256 if (!PageDirty(page)) {
257 /* someone wrote it for us */
258 goto continue_unlock;
259 }
260
261 if (!clear_page_dirty_for_io(page))
262 goto continue_unlock;
263
264 if (f2fs_write_meta_page(page, &wbc)) {
265 unlock_page(page);
266 break;
267 }
268 nwritten++;
269 if (unlikely(nwritten >= nr_to_write))
270 break;
271 }
272 pagevec_release(&pvec);
273 cond_resched();
274 }
275
276 if (nwritten)
277 f2fs_submit_merged_bio(sbi, type, WRITE);
278
279 return nwritten;
280 }
281
282 static int f2fs_set_meta_page_dirty(struct page *page)
283 {
284 trace_f2fs_set_page_dirty(page, META);
285
286 SetPageUptodate(page);
287 if (!PageDirty(page)) {
288 __set_page_dirty_nobuffers(page);
289 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
290 return 1;
291 }
292 return 0;
293 }
294
295 const struct address_space_operations f2fs_meta_aops = {
296 .writepage = f2fs_write_meta_page,
297 .writepages = f2fs_write_meta_pages,
298 .set_page_dirty = f2fs_set_meta_page_dirty,
299 };
300
301 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
302 {
303 struct ino_entry *e;
304 retry:
305 spin_lock(&sbi->ino_lock[type]);
306
307 e = radix_tree_lookup(&sbi->ino_root[type], ino);
308 if (!e) {
309 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
310 if (!e) {
311 spin_unlock(&sbi->ino_lock[type]);
312 goto retry;
313 }
314 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
315 spin_unlock(&sbi->ino_lock[type]);
316 kmem_cache_free(ino_entry_slab, e);
317 goto retry;
318 }
319 memset(e, 0, sizeof(struct ino_entry));
320 e->ino = ino;
321
322 list_add_tail(&e->list, &sbi->ino_list[type]);
323 }
324 spin_unlock(&sbi->ino_lock[type]);
325 }
326
327 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
328 {
329 struct ino_entry *e;
330
331 spin_lock(&sbi->ino_lock[type]);
332 e = radix_tree_lookup(&sbi->ino_root[type], ino);
333 if (e) {
334 list_del(&e->list);
335 radix_tree_delete(&sbi->ino_root[type], ino);
336 if (type == ORPHAN_INO)
337 sbi->n_orphans--;
338 spin_unlock(&sbi->ino_lock[type]);
339 kmem_cache_free(ino_entry_slab, e);
340 return;
341 }
342 spin_unlock(&sbi->ino_lock[type]);
343 }
344
345 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
346 {
347 /* add new dirty ino entry into list */
348 __add_ino_entry(sbi, ino, type);
349 }
350
351 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
352 {
353 /* remove dirty ino entry from list */
354 __remove_ino_entry(sbi, ino, type);
355 }
356
357 /* mode should be APPEND_INO or UPDATE_INO */
358 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
359 {
360 struct ino_entry *e;
361 spin_lock(&sbi->ino_lock[mode]);
362 e = radix_tree_lookup(&sbi->ino_root[mode], ino);
363 spin_unlock(&sbi->ino_lock[mode]);
364 return e ? true : false;
365 }
366
367 void release_dirty_inode(struct f2fs_sb_info *sbi)
368 {
369 struct ino_entry *e, *tmp;
370 int i;
371
372 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
373 spin_lock(&sbi->ino_lock[i]);
374 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
375 list_del(&e->list);
376 radix_tree_delete(&sbi->ino_root[i], e->ino);
377 kmem_cache_free(ino_entry_slab, e);
378 }
379 spin_unlock(&sbi->ino_lock[i]);
380 }
381 }
382
383 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
384 {
385 int err = 0;
386
387 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
388 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
389 err = -ENOSPC;
390 else
391 sbi->n_orphans++;
392 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
393
394 return err;
395 }
396
397 void release_orphan_inode(struct f2fs_sb_info *sbi)
398 {
399 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
400 f2fs_bug_on(sbi, sbi->n_orphans == 0);
401 sbi->n_orphans--;
402 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
403 }
404
405 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
406 {
407 /* add new orphan ino entry into list */
408 __add_ino_entry(sbi, ino, ORPHAN_INO);
409 }
410
411 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
412 {
413 /* remove orphan entry from orphan list */
414 __remove_ino_entry(sbi, ino, ORPHAN_INO);
415 }
416
417 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
418 {
419 struct inode *inode = f2fs_iget(sbi->sb, ino);
420 f2fs_bug_on(sbi, IS_ERR(inode));
421 clear_nlink(inode);
422
423 /* truncate all the data during iput */
424 iput(inode);
425 }
426
427 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
428 {
429 block_t start_blk, orphan_blkaddr, i, j;
430
431 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
432 return;
433
434 sbi->por_doing = true;
435
436 start_blk = __start_cp_addr(sbi) + 1 +
437 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
438 orphan_blkaddr = __start_sum_addr(sbi) - 1;
439
440 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
441
442 for (i = 0; i < orphan_blkaddr; i++) {
443 struct page *page = get_meta_page(sbi, start_blk + i);
444 struct f2fs_orphan_block *orphan_blk;
445
446 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
447 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
448 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
449 recover_orphan_inode(sbi, ino);
450 }
451 f2fs_put_page(page, 1);
452 }
453 /* clear Orphan Flag */
454 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
455 sbi->por_doing = false;
456 return;
457 }
458
459 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
460 {
461 struct list_head *head;
462 struct f2fs_orphan_block *orphan_blk = NULL;
463 unsigned int nentries = 0;
464 unsigned short index;
465 unsigned short orphan_blocks =
466 (unsigned short)GET_ORPHAN_BLOCKS(sbi->n_orphans);
467 struct page *page = NULL;
468 struct ino_entry *orphan = NULL;
469
470 for (index = 0; index < orphan_blocks; index++)
471 grab_meta_page(sbi, start_blk + index);
472
473 index = 1;
474 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
475 head = &sbi->ino_list[ORPHAN_INO];
476
477 /* loop for each orphan inode entry and write them in Jornal block */
478 list_for_each_entry(orphan, head, list) {
479 if (!page) {
480 page = find_get_page(META_MAPPING(sbi), start_blk++);
481 f2fs_bug_on(sbi, !page);
482 orphan_blk =
483 (struct f2fs_orphan_block *)page_address(page);
484 memset(orphan_blk, 0, sizeof(*orphan_blk));
485 f2fs_put_page(page, 0);
486 }
487
488 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
489
490 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
491 /*
492 * an orphan block is full of 1020 entries,
493 * then we need to flush current orphan blocks
494 * and bring another one in memory
495 */
496 orphan_blk->blk_addr = cpu_to_le16(index);
497 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
498 orphan_blk->entry_count = cpu_to_le32(nentries);
499 set_page_dirty(page);
500 f2fs_put_page(page, 1);
501 index++;
502 nentries = 0;
503 page = NULL;
504 }
505 }
506
507 if (page) {
508 orphan_blk->blk_addr = cpu_to_le16(index);
509 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
510 orphan_blk->entry_count = cpu_to_le32(nentries);
511 set_page_dirty(page);
512 f2fs_put_page(page, 1);
513 }
514
515 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
516 }
517
518 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
519 block_t cp_addr, unsigned long long *version)
520 {
521 struct page *cp_page_1, *cp_page_2 = NULL;
522 unsigned long blk_size = sbi->blocksize;
523 struct f2fs_checkpoint *cp_block;
524 unsigned long long cur_version = 0, pre_version = 0;
525 size_t crc_offset;
526 __u32 crc = 0;
527
528 /* Read the 1st cp block in this CP pack */
529 cp_page_1 = get_meta_page(sbi, cp_addr);
530
531 /* get the version number */
532 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
533 crc_offset = le32_to_cpu(cp_block->checksum_offset);
534 if (crc_offset >= blk_size)
535 goto invalid_cp1;
536
537 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
538 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
539 goto invalid_cp1;
540
541 pre_version = cur_cp_version(cp_block);
542
543 /* Read the 2nd cp block in this CP pack */
544 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
545 cp_page_2 = get_meta_page(sbi, cp_addr);
546
547 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
548 crc_offset = le32_to_cpu(cp_block->checksum_offset);
549 if (crc_offset >= blk_size)
550 goto invalid_cp2;
551
552 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
553 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
554 goto invalid_cp2;
555
556 cur_version = cur_cp_version(cp_block);
557
558 if (cur_version == pre_version) {
559 *version = cur_version;
560 f2fs_put_page(cp_page_2, 1);
561 return cp_page_1;
562 }
563 invalid_cp2:
564 f2fs_put_page(cp_page_2, 1);
565 invalid_cp1:
566 f2fs_put_page(cp_page_1, 1);
567 return NULL;
568 }
569
570 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
571 {
572 struct f2fs_checkpoint *cp_block;
573 struct f2fs_super_block *fsb = sbi->raw_super;
574 struct page *cp1, *cp2, *cur_page;
575 unsigned long blk_size = sbi->blocksize;
576 unsigned long long cp1_version = 0, cp2_version = 0;
577 unsigned long long cp_start_blk_no;
578 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
579 block_t cp_blk_no;
580 int i;
581
582 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
583 if (!sbi->ckpt)
584 return -ENOMEM;
585 /*
586 * Finding out valid cp block involves read both
587 * sets( cp pack1 and cp pack 2)
588 */
589 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
590 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
591
592 /* The second checkpoint pack should start at the next segment */
593 cp_start_blk_no += ((unsigned long long)1) <<
594 le32_to_cpu(fsb->log_blocks_per_seg);
595 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
596
597 if (cp1 && cp2) {
598 if (ver_after(cp2_version, cp1_version))
599 cur_page = cp2;
600 else
601 cur_page = cp1;
602 } else if (cp1) {
603 cur_page = cp1;
604 } else if (cp2) {
605 cur_page = cp2;
606 } else {
607 goto fail_no_cp;
608 }
609
610 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
611 memcpy(sbi->ckpt, cp_block, blk_size);
612
613 if (cp_blks <= 1)
614 goto done;
615
616 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
617 if (cur_page == cp2)
618 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
619
620 for (i = 1; i < cp_blks; i++) {
621 void *sit_bitmap_ptr;
622 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
623
624 cur_page = get_meta_page(sbi, cp_blk_no + i);
625 sit_bitmap_ptr = page_address(cur_page);
626 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
627 f2fs_put_page(cur_page, 1);
628 }
629 done:
630 f2fs_put_page(cp1, 1);
631 f2fs_put_page(cp2, 1);
632 return 0;
633
634 fail_no_cp:
635 kfree(sbi->ckpt);
636 return -EINVAL;
637 }
638
639 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
640 {
641 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
642
643 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
644 return -EEXIST;
645
646 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
647 F2FS_I(inode)->dirty_dir = new;
648 list_add_tail(&new->list, &sbi->dir_inode_list);
649 stat_inc_dirty_dir(sbi);
650 return 0;
651 }
652
653 void update_dirty_page(struct inode *inode, struct page *page)
654 {
655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
656 struct dir_inode_entry *new;
657 int ret = 0;
658
659 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
660 return;
661
662 if (!S_ISDIR(inode->i_mode)) {
663 inode_inc_dirty_pages(inode);
664 goto out;
665 }
666
667 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
668 new->inode = inode;
669 INIT_LIST_HEAD(&new->list);
670
671 spin_lock(&sbi->dir_inode_lock);
672 ret = __add_dirty_inode(inode, new);
673 inode_inc_dirty_pages(inode);
674 spin_unlock(&sbi->dir_inode_lock);
675
676 if (ret)
677 kmem_cache_free(inode_entry_slab, new);
678 out:
679 SetPagePrivate(page);
680 }
681
682 void add_dirty_dir_inode(struct inode *inode)
683 {
684 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
685 struct dir_inode_entry *new =
686 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
687 int ret = 0;
688
689 new->inode = inode;
690 INIT_LIST_HEAD(&new->list);
691
692 spin_lock(&sbi->dir_inode_lock);
693 ret = __add_dirty_inode(inode, new);
694 spin_unlock(&sbi->dir_inode_lock);
695
696 if (ret)
697 kmem_cache_free(inode_entry_slab, new);
698 }
699
700 void remove_dirty_dir_inode(struct inode *inode)
701 {
702 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
703 struct dir_inode_entry *entry;
704
705 if (!S_ISDIR(inode->i_mode))
706 return;
707
708 spin_lock(&sbi->dir_inode_lock);
709 if (get_dirty_pages(inode) ||
710 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
711 spin_unlock(&sbi->dir_inode_lock);
712 return;
713 }
714
715 entry = F2FS_I(inode)->dirty_dir;
716 list_del(&entry->list);
717 F2FS_I(inode)->dirty_dir = NULL;
718 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
719 stat_dec_dirty_dir(sbi);
720 spin_unlock(&sbi->dir_inode_lock);
721 kmem_cache_free(inode_entry_slab, entry);
722
723 /* Only from the recovery routine */
724 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
725 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
726 iput(inode);
727 }
728 }
729
730 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
731 {
732 struct list_head *head;
733 struct dir_inode_entry *entry;
734 struct inode *inode;
735 retry:
736 spin_lock(&sbi->dir_inode_lock);
737
738 head = &sbi->dir_inode_list;
739 if (list_empty(head)) {
740 spin_unlock(&sbi->dir_inode_lock);
741 return;
742 }
743 entry = list_entry(head->next, struct dir_inode_entry, list);
744 inode = igrab(entry->inode);
745 spin_unlock(&sbi->dir_inode_lock);
746 if (inode) {
747 filemap_fdatawrite(inode->i_mapping);
748 iput(inode);
749 } else {
750 /*
751 * We should submit bio, since it exists several
752 * wribacking dentry pages in the freeing inode.
753 */
754 f2fs_submit_merged_bio(sbi, DATA, WRITE);
755 }
756 goto retry;
757 }
758
759 /*
760 * Freeze all the FS-operations for checkpoint.
761 */
762 static int block_operations(struct f2fs_sb_info *sbi)
763 {
764 struct writeback_control wbc = {
765 .sync_mode = WB_SYNC_ALL,
766 .nr_to_write = LONG_MAX,
767 .for_reclaim = 0,
768 };
769 struct blk_plug plug;
770 int err = 0;
771
772 blk_start_plug(&plug);
773
774 retry_flush_dents:
775 f2fs_lock_all(sbi);
776 /* write all the dirty dentry pages */
777 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
778 f2fs_unlock_all(sbi);
779 sync_dirty_dir_inodes(sbi);
780 if (unlikely(f2fs_cp_error(sbi))) {
781 err = -EIO;
782 goto out;
783 }
784 goto retry_flush_dents;
785 }
786
787 /*
788 * POR: we should ensure that there are no dirty node pages
789 * until finishing nat/sit flush.
790 */
791 retry_flush_nodes:
792 down_write(&sbi->node_write);
793
794 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
795 up_write(&sbi->node_write);
796 sync_node_pages(sbi, 0, &wbc);
797 if (unlikely(f2fs_cp_error(sbi))) {
798 f2fs_unlock_all(sbi);
799 err = -EIO;
800 goto out;
801 }
802 goto retry_flush_nodes;
803 }
804 out:
805 blk_finish_plug(&plug);
806 return err;
807 }
808
809 static void unblock_operations(struct f2fs_sb_info *sbi)
810 {
811 up_write(&sbi->node_write);
812 f2fs_unlock_all(sbi);
813 }
814
815 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
816 {
817 DEFINE_WAIT(wait);
818
819 for (;;) {
820 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
821
822 if (!get_pages(sbi, F2FS_WRITEBACK))
823 break;
824
825 io_schedule();
826 }
827 finish_wait(&sbi->cp_wait, &wait);
828 }
829
830 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
831 {
832 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
833 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
834 struct f2fs_nm_info *nm_i = NM_I(sbi);
835 nid_t last_nid = nm_i->next_scan_nid;
836 block_t start_blk;
837 struct page *cp_page;
838 unsigned int data_sum_blocks, orphan_blocks;
839 __u32 crc32 = 0;
840 void *kaddr;
841 int i;
842 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
843
844 /*
845 * This avoids to conduct wrong roll-forward operations and uses
846 * metapages, so should be called prior to sync_meta_pages below.
847 */
848 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
849
850 /* Flush all the NAT/SIT pages */
851 while (get_pages(sbi, F2FS_DIRTY_META)) {
852 sync_meta_pages(sbi, META, LONG_MAX);
853 if (unlikely(f2fs_cp_error(sbi)))
854 return;
855 }
856
857 next_free_nid(sbi, &last_nid);
858
859 /*
860 * modify checkpoint
861 * version number is already updated
862 */
863 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
864 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
865 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
866 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
867 ckpt->cur_node_segno[i] =
868 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
869 ckpt->cur_node_blkoff[i] =
870 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
871 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
872 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
873 }
874 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
875 ckpt->cur_data_segno[i] =
876 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
877 ckpt->cur_data_blkoff[i] =
878 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
879 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
880 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
881 }
882
883 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
884 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
885 ckpt->next_free_nid = cpu_to_le32(last_nid);
886
887 /* 2 cp + n data seg summary + orphan inode blocks */
888 data_sum_blocks = npages_for_summary_flush(sbi);
889 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
890 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
891 else
892 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
893
894 orphan_blocks = GET_ORPHAN_BLOCKS(sbi->n_orphans);
895 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
896 orphan_blocks);
897
898 if (is_umount) {
899 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
900 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
901 cp_payload_blks + data_sum_blocks +
902 orphan_blocks + NR_CURSEG_NODE_TYPE);
903 } else {
904 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
905 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
906 cp_payload_blks + data_sum_blocks +
907 orphan_blocks);
908 }
909
910 if (sbi->n_orphans)
911 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
912 else
913 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
914
915 if (sbi->need_fsck)
916 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
917
918 /* update SIT/NAT bitmap */
919 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
920 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
921
922 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
923 *((__le32 *)((unsigned char *)ckpt +
924 le32_to_cpu(ckpt->checksum_offset)))
925 = cpu_to_le32(crc32);
926
927 start_blk = __start_cp_addr(sbi);
928
929 /* write out checkpoint buffer at block 0 */
930 cp_page = grab_meta_page(sbi, start_blk++);
931 kaddr = page_address(cp_page);
932 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
933 set_page_dirty(cp_page);
934 f2fs_put_page(cp_page, 1);
935
936 for (i = 1; i < 1 + cp_payload_blks; i++) {
937 cp_page = grab_meta_page(sbi, start_blk++);
938 kaddr = page_address(cp_page);
939 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
940 (1 << sbi->log_blocksize));
941 set_page_dirty(cp_page);
942 f2fs_put_page(cp_page, 1);
943 }
944
945 if (sbi->n_orphans) {
946 write_orphan_inodes(sbi, start_blk);
947 start_blk += orphan_blocks;
948 }
949
950 write_data_summaries(sbi, start_blk);
951 start_blk += data_sum_blocks;
952 if (is_umount) {
953 write_node_summaries(sbi, start_blk);
954 start_blk += NR_CURSEG_NODE_TYPE;
955 }
956
957 /* writeout checkpoint block */
958 cp_page = grab_meta_page(sbi, start_blk);
959 kaddr = page_address(cp_page);
960 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
961 set_page_dirty(cp_page);
962 f2fs_put_page(cp_page, 1);
963
964 /* wait for previous submitted node/meta pages writeback */
965 wait_on_all_pages_writeback(sbi);
966
967 if (unlikely(f2fs_cp_error(sbi)))
968 return;
969
970 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
971 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
972
973 /* update user_block_counts */
974 sbi->last_valid_block_count = sbi->total_valid_block_count;
975 sbi->alloc_valid_block_count = 0;
976
977 /* Here, we only have one bio having CP pack */
978 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
979
980 release_dirty_inode(sbi);
981
982 if (unlikely(f2fs_cp_error(sbi)))
983 return;
984
985 clear_prefree_segments(sbi);
986 F2FS_RESET_SB_DIRT(sbi);
987 }
988
989 /*
990 * We guarantee that this checkpoint procedure will not fail.
991 */
992 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
993 {
994 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
995 unsigned long long ckpt_ver;
996
997 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
998
999 mutex_lock(&sbi->cp_mutex);
1000
1001 if (!sbi->s_dirty)
1002 goto out;
1003 if (unlikely(f2fs_cp_error(sbi)))
1004 goto out;
1005 if (block_operations(sbi))
1006 goto out;
1007
1008 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
1009
1010 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1011 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1012 f2fs_submit_merged_bio(sbi, META, WRITE);
1013
1014 /*
1015 * update checkpoint pack index
1016 * Increase the version number so that
1017 * SIT entries and seg summaries are written at correct place
1018 */
1019 ckpt_ver = cur_cp_version(ckpt);
1020 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1021
1022 /* write cached NAT/SIT entries to NAT/SIT area */
1023 flush_nat_entries(sbi);
1024 flush_sit_entries(sbi);
1025
1026 /* unlock all the fs_lock[] in do_checkpoint() */
1027 do_checkpoint(sbi, is_umount);
1028
1029 unblock_operations(sbi);
1030 stat_inc_cp_count(sbi->stat_info);
1031 out:
1032 mutex_unlock(&sbi->cp_mutex);
1033 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
1034 }
1035
1036 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1037 {
1038 int i;
1039
1040 for (i = 0; i < MAX_INO_ENTRY; i++) {
1041 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
1042 spin_lock_init(&sbi->ino_lock[i]);
1043 INIT_LIST_HEAD(&sbi->ino_list[i]);
1044 }
1045
1046 /*
1047 * considering 512 blocks in a segment 8 blocks are needed for cp
1048 * and log segment summaries. Remaining blocks are used to keep
1049 * orphan entries with the limitation one reserved segment
1050 * for cp pack we can have max 1020*504 orphan entries
1051 */
1052 sbi->n_orphans = 0;
1053 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1054 NR_CURSEG_TYPE) * F2FS_ORPHANS_PER_BLOCK;
1055 }
1056
1057 int __init create_checkpoint_caches(void)
1058 {
1059 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1060 sizeof(struct ino_entry));
1061 if (!ino_entry_slab)
1062 return -ENOMEM;
1063 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1064 sizeof(struct dir_inode_entry));
1065 if (!inode_entry_slab) {
1066 kmem_cache_destroy(ino_entry_slab);
1067 return -ENOMEM;
1068 }
1069 return 0;
1070 }
1071
1072 void destroy_checkpoint_caches(void)
1073 {
1074 kmem_cache_destroy(ino_entry_slab);
1075 kmem_cache_destroy(inode_entry_slab);
1076 }
This page took 0.087541 seconds and 5 git commands to generate.