Merge branch 'upstream' of git://git.infradead.org/users/pcmoore/selinux into for...
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30 * We guarantee no failure on the returned page.
31 */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34 struct address_space *mapping = META_MAPPING(sbi);
35 struct page *page = NULL;
36 repeat:
37 page = grab_cache_page(mapping, index);
38 if (!page) {
39 cond_resched();
40 goto repeat;
41 }
42 f2fs_wait_on_page_writeback(page, META);
43 SetPageUptodate(page);
44 return page;
45 }
46
47 /*
48 * We guarantee no failure on the returned page.
49 */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 struct address_space *mapping = META_MAPPING(sbi);
53 struct page *page;
54 struct f2fs_io_info fio = {
55 .sbi = sbi,
56 .type = META,
57 .rw = READ_SYNC | REQ_META | REQ_PRIO,
58 .blk_addr = index,
59 .encrypted_page = NULL,
60 };
61 repeat:
62 page = grab_cache_page(mapping, index);
63 if (!page) {
64 cond_resched();
65 goto repeat;
66 }
67 if (PageUptodate(page))
68 goto out;
69
70 fio.page = page;
71
72 if (f2fs_submit_page_bio(&fio))
73 goto repeat;
74
75 lock_page(page);
76 if (unlikely(page->mapping != mapping)) {
77 f2fs_put_page(page, 1);
78 goto repeat;
79 }
80 out:
81 return page;
82 }
83
84 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
85 {
86 switch (type) {
87 case META_NAT:
88 break;
89 case META_SIT:
90 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
91 return false;
92 break;
93 case META_SSA:
94 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
95 blkaddr < SM_I(sbi)->ssa_blkaddr))
96 return false;
97 break;
98 case META_CP:
99 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
100 blkaddr < __start_cp_addr(sbi)))
101 return false;
102 break;
103 case META_POR:
104 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
105 blkaddr < MAIN_BLKADDR(sbi)))
106 return false;
107 break;
108 default:
109 BUG();
110 }
111
112 return true;
113 }
114
115 /*
116 * Readahead CP/NAT/SIT/SSA pages
117 */
118 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages, int type)
119 {
120 block_t prev_blk_addr = 0;
121 struct page *page;
122 block_t blkno = start;
123 struct f2fs_io_info fio = {
124 .sbi = sbi,
125 .type = META,
126 .rw = READ_SYNC | REQ_META | REQ_PRIO,
127 .encrypted_page = NULL,
128 };
129
130 for (; nrpages-- > 0; blkno++) {
131
132 if (!is_valid_blkaddr(sbi, blkno, type))
133 goto out;
134
135 switch (type) {
136 case META_NAT:
137 if (unlikely(blkno >=
138 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
139 blkno = 0;
140 /* get nat block addr */
141 fio.blk_addr = current_nat_addr(sbi,
142 blkno * NAT_ENTRY_PER_BLOCK);
143 break;
144 case META_SIT:
145 /* get sit block addr */
146 fio.blk_addr = current_sit_addr(sbi,
147 blkno * SIT_ENTRY_PER_BLOCK);
148 if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
149 goto out;
150 prev_blk_addr = fio.blk_addr;
151 break;
152 case META_SSA:
153 case META_CP:
154 case META_POR:
155 fio.blk_addr = blkno;
156 break;
157 default:
158 BUG();
159 }
160
161 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
162 if (!page)
163 continue;
164 if (PageUptodate(page)) {
165 f2fs_put_page(page, 1);
166 continue;
167 }
168
169 fio.page = page;
170 f2fs_submit_page_mbio(&fio);
171 f2fs_put_page(page, 0);
172 }
173 out:
174 f2fs_submit_merged_bio(sbi, META, READ);
175 return blkno - start;
176 }
177
178 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
179 {
180 struct page *page;
181 bool readahead = false;
182
183 page = find_get_page(META_MAPPING(sbi), index);
184 if (!page || (page && !PageUptodate(page)))
185 readahead = true;
186 f2fs_put_page(page, 0);
187
188 if (readahead)
189 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR);
190 }
191
192 static int f2fs_write_meta_page(struct page *page,
193 struct writeback_control *wbc)
194 {
195 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
196
197 trace_f2fs_writepage(page, META);
198
199 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
200 goto redirty_out;
201 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
202 goto redirty_out;
203 if (unlikely(f2fs_cp_error(sbi)))
204 goto redirty_out;
205
206 f2fs_wait_on_page_writeback(page, META);
207 write_meta_page(sbi, page);
208 dec_page_count(sbi, F2FS_DIRTY_META);
209 unlock_page(page);
210
211 if (wbc->for_reclaim)
212 f2fs_submit_merged_bio(sbi, META, WRITE);
213 return 0;
214
215 redirty_out:
216 redirty_page_for_writepage(wbc, page);
217 return AOP_WRITEPAGE_ACTIVATE;
218 }
219
220 static int f2fs_write_meta_pages(struct address_space *mapping,
221 struct writeback_control *wbc)
222 {
223 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
224 long diff, written;
225
226 trace_f2fs_writepages(mapping->host, wbc, META);
227
228 /* collect a number of dirty meta pages and write together */
229 if (wbc->for_kupdate ||
230 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
231 goto skip_write;
232
233 /* if mounting is failed, skip writing node pages */
234 mutex_lock(&sbi->cp_mutex);
235 diff = nr_pages_to_write(sbi, META, wbc);
236 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
237 mutex_unlock(&sbi->cp_mutex);
238 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
239 return 0;
240
241 skip_write:
242 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
243 return 0;
244 }
245
246 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
247 long nr_to_write)
248 {
249 struct address_space *mapping = META_MAPPING(sbi);
250 pgoff_t index = 0, end = LONG_MAX;
251 struct pagevec pvec;
252 long nwritten = 0;
253 struct writeback_control wbc = {
254 .for_reclaim = 0,
255 };
256
257 pagevec_init(&pvec, 0);
258
259 while (index <= end) {
260 int i, nr_pages;
261 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
262 PAGECACHE_TAG_DIRTY,
263 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
264 if (unlikely(nr_pages == 0))
265 break;
266
267 for (i = 0; i < nr_pages; i++) {
268 struct page *page = pvec.pages[i];
269
270 lock_page(page);
271
272 if (unlikely(page->mapping != mapping)) {
273 continue_unlock:
274 unlock_page(page);
275 continue;
276 }
277 if (!PageDirty(page)) {
278 /* someone wrote it for us */
279 goto continue_unlock;
280 }
281
282 if (!clear_page_dirty_for_io(page))
283 goto continue_unlock;
284
285 if (mapping->a_ops->writepage(page, &wbc)) {
286 unlock_page(page);
287 break;
288 }
289 nwritten++;
290 if (unlikely(nwritten >= nr_to_write))
291 break;
292 }
293 pagevec_release(&pvec);
294 cond_resched();
295 }
296
297 if (nwritten)
298 f2fs_submit_merged_bio(sbi, type, WRITE);
299
300 return nwritten;
301 }
302
303 static int f2fs_set_meta_page_dirty(struct page *page)
304 {
305 trace_f2fs_set_page_dirty(page, META);
306
307 SetPageUptodate(page);
308 if (!PageDirty(page)) {
309 __set_page_dirty_nobuffers(page);
310 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
311 SetPagePrivate(page);
312 f2fs_trace_pid(page);
313 return 1;
314 }
315 return 0;
316 }
317
318 const struct address_space_operations f2fs_meta_aops = {
319 .writepage = f2fs_write_meta_page,
320 .writepages = f2fs_write_meta_pages,
321 .set_page_dirty = f2fs_set_meta_page_dirty,
322 .invalidatepage = f2fs_invalidate_page,
323 .releasepage = f2fs_release_page,
324 };
325
326 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
327 {
328 struct inode_management *im = &sbi->im[type];
329 struct ino_entry *e;
330 retry:
331 if (radix_tree_preload(GFP_NOFS)) {
332 cond_resched();
333 goto retry;
334 }
335
336 spin_lock(&im->ino_lock);
337
338 e = radix_tree_lookup(&im->ino_root, ino);
339 if (!e) {
340 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
341 if (!e) {
342 spin_unlock(&im->ino_lock);
343 radix_tree_preload_end();
344 goto retry;
345 }
346 if (radix_tree_insert(&im->ino_root, ino, e)) {
347 spin_unlock(&im->ino_lock);
348 kmem_cache_free(ino_entry_slab, e);
349 radix_tree_preload_end();
350 goto retry;
351 }
352 memset(e, 0, sizeof(struct ino_entry));
353 e->ino = ino;
354
355 list_add_tail(&e->list, &im->ino_list);
356 if (type != ORPHAN_INO)
357 im->ino_num++;
358 }
359 spin_unlock(&im->ino_lock);
360 radix_tree_preload_end();
361 }
362
363 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
364 {
365 struct inode_management *im = &sbi->im[type];
366 struct ino_entry *e;
367
368 spin_lock(&im->ino_lock);
369 e = radix_tree_lookup(&im->ino_root, ino);
370 if (e) {
371 list_del(&e->list);
372 radix_tree_delete(&im->ino_root, ino);
373 im->ino_num--;
374 spin_unlock(&im->ino_lock);
375 kmem_cache_free(ino_entry_slab, e);
376 return;
377 }
378 spin_unlock(&im->ino_lock);
379 }
380
381 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
382 {
383 /* add new dirty ino entry into list */
384 __add_ino_entry(sbi, ino, type);
385 }
386
387 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
388 {
389 /* remove dirty ino entry from list */
390 __remove_ino_entry(sbi, ino, type);
391 }
392
393 /* mode should be APPEND_INO or UPDATE_INO */
394 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
395 {
396 struct inode_management *im = &sbi->im[mode];
397 struct ino_entry *e;
398
399 spin_lock(&im->ino_lock);
400 e = radix_tree_lookup(&im->ino_root, ino);
401 spin_unlock(&im->ino_lock);
402 return e ? true : false;
403 }
404
405 void release_dirty_inode(struct f2fs_sb_info *sbi)
406 {
407 struct ino_entry *e, *tmp;
408 int i;
409
410 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
411 struct inode_management *im = &sbi->im[i];
412
413 spin_lock(&im->ino_lock);
414 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
415 list_del(&e->list);
416 radix_tree_delete(&im->ino_root, e->ino);
417 kmem_cache_free(ino_entry_slab, e);
418 im->ino_num--;
419 }
420 spin_unlock(&im->ino_lock);
421 }
422 }
423
424 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
425 {
426 struct inode_management *im = &sbi->im[ORPHAN_INO];
427 int err = 0;
428
429 spin_lock(&im->ino_lock);
430 if (unlikely(im->ino_num >= sbi->max_orphans))
431 err = -ENOSPC;
432 else
433 im->ino_num++;
434 spin_unlock(&im->ino_lock);
435
436 return err;
437 }
438
439 void release_orphan_inode(struct f2fs_sb_info *sbi)
440 {
441 struct inode_management *im = &sbi->im[ORPHAN_INO];
442
443 spin_lock(&im->ino_lock);
444 f2fs_bug_on(sbi, im->ino_num == 0);
445 im->ino_num--;
446 spin_unlock(&im->ino_lock);
447 }
448
449 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
450 {
451 /* add new orphan ino entry into list */
452 __add_ino_entry(sbi, ino, ORPHAN_INO);
453 }
454
455 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
456 {
457 /* remove orphan entry from orphan list */
458 __remove_ino_entry(sbi, ino, ORPHAN_INO);
459 }
460
461 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
462 {
463 struct inode *inode = f2fs_iget(sbi->sb, ino);
464 f2fs_bug_on(sbi, IS_ERR(inode));
465 clear_nlink(inode);
466
467 /* truncate all the data during iput */
468 iput(inode);
469 }
470
471 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
472 {
473 block_t start_blk, orphan_blocks, i, j;
474
475 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
476 return;
477
478 set_sbi_flag(sbi, SBI_POR_DOING);
479
480 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
481 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
482
483 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP);
484
485 for (i = 0; i < orphan_blocks; i++) {
486 struct page *page = get_meta_page(sbi, start_blk + i);
487 struct f2fs_orphan_block *orphan_blk;
488
489 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
490 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
491 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
492 recover_orphan_inode(sbi, ino);
493 }
494 f2fs_put_page(page, 1);
495 }
496 /* clear Orphan Flag */
497 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
498 clear_sbi_flag(sbi, SBI_POR_DOING);
499 return;
500 }
501
502 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
503 {
504 struct list_head *head;
505 struct f2fs_orphan_block *orphan_blk = NULL;
506 unsigned int nentries = 0;
507 unsigned short index;
508 unsigned short orphan_blocks;
509 struct page *page = NULL;
510 struct ino_entry *orphan = NULL;
511 struct inode_management *im = &sbi->im[ORPHAN_INO];
512
513 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
514
515 for (index = 0; index < orphan_blocks; index++)
516 grab_meta_page(sbi, start_blk + index);
517
518 index = 1;
519
520 /*
521 * we don't need to do spin_lock(&im->ino_lock) here, since all the
522 * orphan inode operations are covered under f2fs_lock_op().
523 * And, spin_lock should be avoided due to page operations below.
524 */
525 head = &im->ino_list;
526
527 /* loop for each orphan inode entry and write them in Jornal block */
528 list_for_each_entry(orphan, head, list) {
529 if (!page) {
530 page = find_get_page(META_MAPPING(sbi), start_blk++);
531 f2fs_bug_on(sbi, !page);
532 orphan_blk =
533 (struct f2fs_orphan_block *)page_address(page);
534 memset(orphan_blk, 0, sizeof(*orphan_blk));
535 f2fs_put_page(page, 0);
536 }
537
538 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
539
540 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
541 /*
542 * an orphan block is full of 1020 entries,
543 * then we need to flush current orphan blocks
544 * and bring another one in memory
545 */
546 orphan_blk->blk_addr = cpu_to_le16(index);
547 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
548 orphan_blk->entry_count = cpu_to_le32(nentries);
549 set_page_dirty(page);
550 f2fs_put_page(page, 1);
551 index++;
552 nentries = 0;
553 page = NULL;
554 }
555 }
556
557 if (page) {
558 orphan_blk->blk_addr = cpu_to_le16(index);
559 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
560 orphan_blk->entry_count = cpu_to_le32(nentries);
561 set_page_dirty(page);
562 f2fs_put_page(page, 1);
563 }
564 }
565
566 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
567 block_t cp_addr, unsigned long long *version)
568 {
569 struct page *cp_page_1, *cp_page_2 = NULL;
570 unsigned long blk_size = sbi->blocksize;
571 struct f2fs_checkpoint *cp_block;
572 unsigned long long cur_version = 0, pre_version = 0;
573 size_t crc_offset;
574 __u32 crc = 0;
575
576 /* Read the 1st cp block in this CP pack */
577 cp_page_1 = get_meta_page(sbi, cp_addr);
578
579 /* get the version number */
580 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
581 crc_offset = le32_to_cpu(cp_block->checksum_offset);
582 if (crc_offset >= blk_size)
583 goto invalid_cp1;
584
585 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
586 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
587 goto invalid_cp1;
588
589 pre_version = cur_cp_version(cp_block);
590
591 /* Read the 2nd cp block in this CP pack */
592 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
593 cp_page_2 = get_meta_page(sbi, cp_addr);
594
595 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
596 crc_offset = le32_to_cpu(cp_block->checksum_offset);
597 if (crc_offset >= blk_size)
598 goto invalid_cp2;
599
600 crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
601 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
602 goto invalid_cp2;
603
604 cur_version = cur_cp_version(cp_block);
605
606 if (cur_version == pre_version) {
607 *version = cur_version;
608 f2fs_put_page(cp_page_2, 1);
609 return cp_page_1;
610 }
611 invalid_cp2:
612 f2fs_put_page(cp_page_2, 1);
613 invalid_cp1:
614 f2fs_put_page(cp_page_1, 1);
615 return NULL;
616 }
617
618 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
619 {
620 struct f2fs_checkpoint *cp_block;
621 struct f2fs_super_block *fsb = sbi->raw_super;
622 struct page *cp1, *cp2, *cur_page;
623 unsigned long blk_size = sbi->blocksize;
624 unsigned long long cp1_version = 0, cp2_version = 0;
625 unsigned long long cp_start_blk_no;
626 unsigned int cp_blks = 1 + __cp_payload(sbi);
627 block_t cp_blk_no;
628 int i;
629
630 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
631 if (!sbi->ckpt)
632 return -ENOMEM;
633 /*
634 * Finding out valid cp block involves read both
635 * sets( cp pack1 and cp pack 2)
636 */
637 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
638 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
639
640 /* The second checkpoint pack should start at the next segment */
641 cp_start_blk_no += ((unsigned long long)1) <<
642 le32_to_cpu(fsb->log_blocks_per_seg);
643 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
644
645 if (cp1 && cp2) {
646 if (ver_after(cp2_version, cp1_version))
647 cur_page = cp2;
648 else
649 cur_page = cp1;
650 } else if (cp1) {
651 cur_page = cp1;
652 } else if (cp2) {
653 cur_page = cp2;
654 } else {
655 goto fail_no_cp;
656 }
657
658 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
659 memcpy(sbi->ckpt, cp_block, blk_size);
660
661 if (cp_blks <= 1)
662 goto done;
663
664 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
665 if (cur_page == cp2)
666 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
667
668 for (i = 1; i < cp_blks; i++) {
669 void *sit_bitmap_ptr;
670 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
671
672 cur_page = get_meta_page(sbi, cp_blk_no + i);
673 sit_bitmap_ptr = page_address(cur_page);
674 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
675 f2fs_put_page(cur_page, 1);
676 }
677 done:
678 f2fs_put_page(cp1, 1);
679 f2fs_put_page(cp2, 1);
680 return 0;
681
682 fail_no_cp:
683 kfree(sbi->ckpt);
684 return -EINVAL;
685 }
686
687 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
688 {
689 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
690
691 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
692 return -EEXIST;
693
694 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
695 F2FS_I(inode)->dirty_dir = new;
696 list_add_tail(&new->list, &sbi->dir_inode_list);
697 stat_inc_dirty_dir(sbi);
698 return 0;
699 }
700
701 void update_dirty_page(struct inode *inode, struct page *page)
702 {
703 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
704 struct inode_entry *new;
705 int ret = 0;
706
707 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
708 return;
709
710 if (!S_ISDIR(inode->i_mode)) {
711 inode_inc_dirty_pages(inode);
712 goto out;
713 }
714
715 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
716 new->inode = inode;
717 INIT_LIST_HEAD(&new->list);
718
719 spin_lock(&sbi->dir_inode_lock);
720 ret = __add_dirty_inode(inode, new);
721 inode_inc_dirty_pages(inode);
722 spin_unlock(&sbi->dir_inode_lock);
723
724 if (ret)
725 kmem_cache_free(inode_entry_slab, new);
726 out:
727 SetPagePrivate(page);
728 f2fs_trace_pid(page);
729 }
730
731 void add_dirty_dir_inode(struct inode *inode)
732 {
733 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
734 struct inode_entry *new =
735 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
736 int ret = 0;
737
738 new->inode = inode;
739 INIT_LIST_HEAD(&new->list);
740
741 spin_lock(&sbi->dir_inode_lock);
742 ret = __add_dirty_inode(inode, new);
743 spin_unlock(&sbi->dir_inode_lock);
744
745 if (ret)
746 kmem_cache_free(inode_entry_slab, new);
747 }
748
749 void remove_dirty_dir_inode(struct inode *inode)
750 {
751 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
752 struct inode_entry *entry;
753
754 if (!S_ISDIR(inode->i_mode))
755 return;
756
757 spin_lock(&sbi->dir_inode_lock);
758 if (get_dirty_pages(inode) ||
759 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
760 spin_unlock(&sbi->dir_inode_lock);
761 return;
762 }
763
764 entry = F2FS_I(inode)->dirty_dir;
765 list_del(&entry->list);
766 F2FS_I(inode)->dirty_dir = NULL;
767 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
768 stat_dec_dirty_dir(sbi);
769 spin_unlock(&sbi->dir_inode_lock);
770 kmem_cache_free(inode_entry_slab, entry);
771
772 /* Only from the recovery routine */
773 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
774 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
775 iput(inode);
776 }
777 }
778
779 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
780 {
781 struct list_head *head;
782 struct inode_entry *entry;
783 struct inode *inode;
784 retry:
785 if (unlikely(f2fs_cp_error(sbi)))
786 return;
787
788 spin_lock(&sbi->dir_inode_lock);
789
790 head = &sbi->dir_inode_list;
791 if (list_empty(head)) {
792 spin_unlock(&sbi->dir_inode_lock);
793 return;
794 }
795 entry = list_entry(head->next, struct inode_entry, list);
796 inode = igrab(entry->inode);
797 spin_unlock(&sbi->dir_inode_lock);
798 if (inode) {
799 filemap_fdatawrite(inode->i_mapping);
800 iput(inode);
801 } else {
802 /*
803 * We should submit bio, since it exists several
804 * wribacking dentry pages in the freeing inode.
805 */
806 f2fs_submit_merged_bio(sbi, DATA, WRITE);
807 cond_resched();
808 }
809 goto retry;
810 }
811
812 /*
813 * Freeze all the FS-operations for checkpoint.
814 */
815 static int block_operations(struct f2fs_sb_info *sbi)
816 {
817 struct writeback_control wbc = {
818 .sync_mode = WB_SYNC_ALL,
819 .nr_to_write = LONG_MAX,
820 .for_reclaim = 0,
821 };
822 struct blk_plug plug;
823 int err = 0;
824
825 blk_start_plug(&plug);
826
827 retry_flush_dents:
828 f2fs_lock_all(sbi);
829 /* write all the dirty dentry pages */
830 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
831 f2fs_unlock_all(sbi);
832 sync_dirty_dir_inodes(sbi);
833 if (unlikely(f2fs_cp_error(sbi))) {
834 err = -EIO;
835 goto out;
836 }
837 goto retry_flush_dents;
838 }
839
840 /*
841 * POR: we should ensure that there are no dirty node pages
842 * until finishing nat/sit flush.
843 */
844 retry_flush_nodes:
845 down_write(&sbi->node_write);
846
847 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
848 up_write(&sbi->node_write);
849 sync_node_pages(sbi, 0, &wbc);
850 if (unlikely(f2fs_cp_error(sbi))) {
851 f2fs_unlock_all(sbi);
852 err = -EIO;
853 goto out;
854 }
855 goto retry_flush_nodes;
856 }
857 out:
858 blk_finish_plug(&plug);
859 return err;
860 }
861
862 static void unblock_operations(struct f2fs_sb_info *sbi)
863 {
864 up_write(&sbi->node_write);
865 f2fs_unlock_all(sbi);
866 }
867
868 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
869 {
870 DEFINE_WAIT(wait);
871
872 for (;;) {
873 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
874
875 if (!get_pages(sbi, F2FS_WRITEBACK))
876 break;
877
878 io_schedule();
879 }
880 finish_wait(&sbi->cp_wait, &wait);
881 }
882
883 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
884 {
885 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
887 struct f2fs_nm_info *nm_i = NM_I(sbi);
888 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
889 nid_t last_nid = nm_i->next_scan_nid;
890 block_t start_blk;
891 unsigned int data_sum_blocks, orphan_blocks;
892 __u32 crc32 = 0;
893 int i;
894 int cp_payload_blks = __cp_payload(sbi);
895
896 /*
897 * This avoids to conduct wrong roll-forward operations and uses
898 * metapages, so should be called prior to sync_meta_pages below.
899 */
900 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
901
902 /* Flush all the NAT/SIT pages */
903 while (get_pages(sbi, F2FS_DIRTY_META)) {
904 sync_meta_pages(sbi, META, LONG_MAX);
905 if (unlikely(f2fs_cp_error(sbi)))
906 return;
907 }
908
909 next_free_nid(sbi, &last_nid);
910
911 /*
912 * modify checkpoint
913 * version number is already updated
914 */
915 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
916 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
917 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
918 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
919 ckpt->cur_node_segno[i] =
920 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
921 ckpt->cur_node_blkoff[i] =
922 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
923 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
924 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
925 }
926 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
927 ckpt->cur_data_segno[i] =
928 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
929 ckpt->cur_data_blkoff[i] =
930 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
931 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
932 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
933 }
934
935 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
936 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
937 ckpt->next_free_nid = cpu_to_le32(last_nid);
938
939 /* 2 cp + n data seg summary + orphan inode blocks */
940 data_sum_blocks = npages_for_summary_flush(sbi, false);
941 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
942 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
943 else
944 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
945
946 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
947 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
948 orphan_blocks);
949
950 if (__remain_node_summaries(cpc->reason))
951 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
952 cp_payload_blks + data_sum_blocks +
953 orphan_blocks + NR_CURSEG_NODE_TYPE);
954 else
955 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
956 cp_payload_blks + data_sum_blocks +
957 orphan_blocks);
958
959 if (cpc->reason == CP_UMOUNT)
960 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
961 else
962 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
963
964 if (cpc->reason == CP_FASTBOOT)
965 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
966 else
967 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
968
969 if (orphan_num)
970 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
971 else
972 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
973
974 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
975 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
976
977 /* update SIT/NAT bitmap */
978 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
979 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
980
981 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
982 *((__le32 *)((unsigned char *)ckpt +
983 le32_to_cpu(ckpt->checksum_offset)))
984 = cpu_to_le32(crc32);
985
986 start_blk = __start_cp_addr(sbi);
987
988 /* write out checkpoint buffer at block 0 */
989 update_meta_page(sbi, ckpt, start_blk++);
990
991 for (i = 1; i < 1 + cp_payload_blks; i++)
992 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
993 start_blk++);
994
995 if (orphan_num) {
996 write_orphan_inodes(sbi, start_blk);
997 start_blk += orphan_blocks;
998 }
999
1000 write_data_summaries(sbi, start_blk);
1001 start_blk += data_sum_blocks;
1002 if (__remain_node_summaries(cpc->reason)) {
1003 write_node_summaries(sbi, start_blk);
1004 start_blk += NR_CURSEG_NODE_TYPE;
1005 }
1006
1007 /* writeout checkpoint block */
1008 update_meta_page(sbi, ckpt, start_blk);
1009
1010 /* wait for previous submitted node/meta pages writeback */
1011 wait_on_all_pages_writeback(sbi);
1012
1013 if (unlikely(f2fs_cp_error(sbi)))
1014 return;
1015
1016 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1017 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1018
1019 /* update user_block_counts */
1020 sbi->last_valid_block_count = sbi->total_valid_block_count;
1021 sbi->alloc_valid_block_count = 0;
1022
1023 /* Here, we only have one bio having CP pack */
1024 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1025
1026 /* wait for previous submitted meta pages writeback */
1027 wait_on_all_pages_writeback(sbi);
1028
1029 release_dirty_inode(sbi);
1030
1031 if (unlikely(f2fs_cp_error(sbi)))
1032 return;
1033
1034 clear_prefree_segments(sbi, cpc);
1035 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1036 }
1037
1038 /*
1039 * We guarantee that this checkpoint procedure will not fail.
1040 */
1041 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1042 {
1043 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1044 unsigned long long ckpt_ver;
1045
1046 mutex_lock(&sbi->cp_mutex);
1047
1048 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1049 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1050 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1051 goto out;
1052 if (unlikely(f2fs_cp_error(sbi)))
1053 goto out;
1054 if (f2fs_readonly(sbi->sb))
1055 goto out;
1056
1057 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1058
1059 if (block_operations(sbi))
1060 goto out;
1061
1062 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1063
1064 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1065 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1066 f2fs_submit_merged_bio(sbi, META, WRITE);
1067
1068 /*
1069 * update checkpoint pack index
1070 * Increase the version number so that
1071 * SIT entries and seg summaries are written at correct place
1072 */
1073 ckpt_ver = cur_cp_version(ckpt);
1074 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1075
1076 /* write cached NAT/SIT entries to NAT/SIT area */
1077 flush_nat_entries(sbi);
1078 flush_sit_entries(sbi, cpc);
1079
1080 /* unlock all the fs_lock[] in do_checkpoint() */
1081 do_checkpoint(sbi, cpc);
1082
1083 unblock_operations(sbi);
1084 stat_inc_cp_count(sbi->stat_info);
1085
1086 if (cpc->reason == CP_RECOVERY)
1087 f2fs_msg(sbi->sb, KERN_NOTICE,
1088 "checkpoint: version = %llx", ckpt_ver);
1089 out:
1090 mutex_unlock(&sbi->cp_mutex);
1091 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1092 }
1093
1094 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1095 {
1096 int i;
1097
1098 for (i = 0; i < MAX_INO_ENTRY; i++) {
1099 struct inode_management *im = &sbi->im[i];
1100
1101 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1102 spin_lock_init(&im->ino_lock);
1103 INIT_LIST_HEAD(&im->ino_list);
1104 im->ino_num = 0;
1105 }
1106
1107 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1108 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1109 F2FS_ORPHANS_PER_BLOCK;
1110 }
1111
1112 int __init create_checkpoint_caches(void)
1113 {
1114 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1115 sizeof(struct ino_entry));
1116 if (!ino_entry_slab)
1117 return -ENOMEM;
1118 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1119 sizeof(struct inode_entry));
1120 if (!inode_entry_slab) {
1121 kmem_cache_destroy(ino_entry_slab);
1122 return -ENOMEM;
1123 }
1124 return 0;
1125 }
1126
1127 void destroy_checkpoint_caches(void)
1128 {
1129 kmem_cache_destroy(ino_entry_slab);
1130 kmem_cache_destroy(inode_entry_slab);
1131 }
This page took 0.063369 seconds and 5 git commands to generate.