Merge branch 'next' (accumulated 3.16 merge window patches) into master
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71 out:
72 return page;
73 }
74
75 inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
76 {
77 switch (type) {
78 case META_NAT:
79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
80 case META_SIT:
81 return SIT_BLK_CNT(sbi);
82 case META_SSA:
83 case META_CP:
84 return 0;
85 default:
86 BUG();
87 }
88 }
89
90 /*
91 * Readahead CP/NAT/SIT/SSA pages
92 */
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
94 {
95 block_t prev_blk_addr = 0;
96 struct page *page;
97 int blkno = start;
98 int max_blks = get_max_meta_blks(sbi, type);
99
100 struct f2fs_io_info fio = {
101 .type = META,
102 .rw = READ_SYNC | REQ_META | REQ_PRIO
103 };
104
105 for (; nrpages-- > 0; blkno++) {
106 block_t blk_addr;
107
108 switch (type) {
109 case META_NAT:
110 /* get nat block addr */
111 if (unlikely(blkno >= max_blks))
112 blkno = 0;
113 blk_addr = current_nat_addr(sbi,
114 blkno * NAT_ENTRY_PER_BLOCK);
115 break;
116 case META_SIT:
117 /* get sit block addr */
118 if (unlikely(blkno >= max_blks))
119 goto out;
120 blk_addr = current_sit_addr(sbi,
121 blkno * SIT_ENTRY_PER_BLOCK);
122 if (blkno != start && prev_blk_addr + 1 != blk_addr)
123 goto out;
124 prev_blk_addr = blk_addr;
125 break;
126 case META_SSA:
127 case META_CP:
128 /* get ssa/cp block addr */
129 blk_addr = blkno;
130 break;
131 default:
132 BUG();
133 }
134
135 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
136 if (!page)
137 continue;
138 if (PageUptodate(page)) {
139 f2fs_put_page(page, 1);
140 continue;
141 }
142
143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144 f2fs_put_page(page, 0);
145 }
146 out:
147 f2fs_submit_merged_bio(sbi, META, READ);
148 return blkno - start;
149 }
150
151 static int f2fs_write_meta_page(struct page *page,
152 struct writeback_control *wbc)
153 {
154 struct inode *inode = page->mapping->host;
155 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
156
157 if (unlikely(sbi->por_doing))
158 goto redirty_out;
159 if (wbc->for_reclaim)
160 goto redirty_out;
161
162 /* Should not write any meta pages, if any IO error was occurred */
163 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
164 goto no_write;
165
166 f2fs_wait_on_page_writeback(page, META);
167 write_meta_page(sbi, page);
168 no_write:
169 dec_page_count(sbi, F2FS_DIRTY_META);
170 unlock_page(page);
171 return 0;
172
173 redirty_out:
174 dec_page_count(sbi, F2FS_DIRTY_META);
175 wbc->pages_skipped++;
176 account_page_redirty(page);
177 set_page_dirty(page);
178 return AOP_WRITEPAGE_ACTIVATE;
179 }
180
181 static int f2fs_write_meta_pages(struct address_space *mapping,
182 struct writeback_control *wbc)
183 {
184 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
185 long diff, written;
186
187 /* collect a number of dirty meta pages and write together */
188 if (wbc->for_kupdate ||
189 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
190 goto skip_write;
191
192 /* if mounting is failed, skip writing node pages */
193 mutex_lock(&sbi->cp_mutex);
194 diff = nr_pages_to_write(sbi, META, wbc);
195 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
196 mutex_unlock(&sbi->cp_mutex);
197 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
198 return 0;
199
200 skip_write:
201 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
202 return 0;
203 }
204
205 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
206 long nr_to_write)
207 {
208 struct address_space *mapping = META_MAPPING(sbi);
209 pgoff_t index = 0, end = LONG_MAX;
210 struct pagevec pvec;
211 long nwritten = 0;
212 struct writeback_control wbc = {
213 .for_reclaim = 0,
214 };
215
216 pagevec_init(&pvec, 0);
217
218 while (index <= end) {
219 int i, nr_pages;
220 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
221 PAGECACHE_TAG_DIRTY,
222 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
223 if (unlikely(nr_pages == 0))
224 break;
225
226 for (i = 0; i < nr_pages; i++) {
227 struct page *page = pvec.pages[i];
228
229 lock_page(page);
230
231 if (unlikely(page->mapping != mapping)) {
232 continue_unlock:
233 unlock_page(page);
234 continue;
235 }
236 if (!PageDirty(page)) {
237 /* someone wrote it for us */
238 goto continue_unlock;
239 }
240
241 if (!clear_page_dirty_for_io(page))
242 goto continue_unlock;
243
244 if (f2fs_write_meta_page(page, &wbc)) {
245 unlock_page(page);
246 break;
247 }
248 nwritten++;
249 if (unlikely(nwritten >= nr_to_write))
250 break;
251 }
252 pagevec_release(&pvec);
253 cond_resched();
254 }
255
256 if (nwritten)
257 f2fs_submit_merged_bio(sbi, type, WRITE);
258
259 return nwritten;
260 }
261
262 static int f2fs_set_meta_page_dirty(struct page *page)
263 {
264 struct address_space *mapping = page->mapping;
265 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
266
267 trace_f2fs_set_page_dirty(page, META);
268
269 SetPageUptodate(page);
270 if (!PageDirty(page)) {
271 __set_page_dirty_nobuffers(page);
272 inc_page_count(sbi, F2FS_DIRTY_META);
273 return 1;
274 }
275 return 0;
276 }
277
278 const struct address_space_operations f2fs_meta_aops = {
279 .writepage = f2fs_write_meta_page,
280 .writepages = f2fs_write_meta_pages,
281 .set_page_dirty = f2fs_set_meta_page_dirty,
282 };
283
284 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
285 {
286 int err = 0;
287
288 spin_lock(&sbi->orphan_inode_lock);
289 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
290 err = -ENOSPC;
291 else
292 sbi->n_orphans++;
293 spin_unlock(&sbi->orphan_inode_lock);
294
295 return err;
296 }
297
298 void release_orphan_inode(struct f2fs_sb_info *sbi)
299 {
300 spin_lock(&sbi->orphan_inode_lock);
301 f2fs_bug_on(sbi->n_orphans == 0);
302 sbi->n_orphans--;
303 spin_unlock(&sbi->orphan_inode_lock);
304 }
305
306 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
307 {
308 struct list_head *head;
309 struct orphan_inode_entry *new, *orphan;
310
311 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
312 new->ino = ino;
313
314 spin_lock(&sbi->orphan_inode_lock);
315 head = &sbi->orphan_inode_list;
316 list_for_each_entry(orphan, head, list) {
317 if (orphan->ino == ino) {
318 spin_unlock(&sbi->orphan_inode_lock);
319 kmem_cache_free(orphan_entry_slab, new);
320 return;
321 }
322
323 if (orphan->ino > ino)
324 break;
325 }
326
327 /* add new orphan entry into list which is sorted by inode number */
328 list_add_tail(&new->list, &orphan->list);
329 spin_unlock(&sbi->orphan_inode_lock);
330 }
331
332 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
333 {
334 struct list_head *head;
335 struct orphan_inode_entry *orphan;
336
337 spin_lock(&sbi->orphan_inode_lock);
338 head = &sbi->orphan_inode_list;
339 list_for_each_entry(orphan, head, list) {
340 if (orphan->ino == ino) {
341 list_del(&orphan->list);
342 f2fs_bug_on(sbi->n_orphans == 0);
343 sbi->n_orphans--;
344 spin_unlock(&sbi->orphan_inode_lock);
345 kmem_cache_free(orphan_entry_slab, orphan);
346 return;
347 }
348 }
349 spin_unlock(&sbi->orphan_inode_lock);
350 }
351
352 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
353 {
354 struct inode *inode = f2fs_iget(sbi->sb, ino);
355 f2fs_bug_on(IS_ERR(inode));
356 clear_nlink(inode);
357
358 /* truncate all the data during iput */
359 iput(inode);
360 }
361
362 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
363 {
364 block_t start_blk, orphan_blkaddr, i, j;
365
366 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
367 return;
368
369 sbi->por_doing = true;
370 start_blk = __start_cp_addr(sbi) + 1;
371 orphan_blkaddr = __start_sum_addr(sbi) - 1;
372
373 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
374
375 for (i = 0; i < orphan_blkaddr; i++) {
376 struct page *page = get_meta_page(sbi, start_blk + i);
377 struct f2fs_orphan_block *orphan_blk;
378
379 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
380 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
381 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
382 recover_orphan_inode(sbi, ino);
383 }
384 f2fs_put_page(page, 1);
385 }
386 /* clear Orphan Flag */
387 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
388 sbi->por_doing = false;
389 return;
390 }
391
392 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
393 {
394 struct list_head *head;
395 struct f2fs_orphan_block *orphan_blk = NULL;
396 unsigned int nentries = 0;
397 unsigned short index;
398 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
399 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
400 struct page *page = NULL;
401 struct orphan_inode_entry *orphan = NULL;
402
403 for (index = 0; index < orphan_blocks; index++)
404 grab_meta_page(sbi, start_blk + index);
405
406 index = 1;
407 spin_lock(&sbi->orphan_inode_lock);
408 head = &sbi->orphan_inode_list;
409
410 /* loop for each orphan inode entry and write them in Jornal block */
411 list_for_each_entry(orphan, head, list) {
412 if (!page) {
413 page = find_get_page(META_MAPPING(sbi), start_blk++);
414 f2fs_bug_on(!page);
415 orphan_blk =
416 (struct f2fs_orphan_block *)page_address(page);
417 memset(orphan_blk, 0, sizeof(*orphan_blk));
418 f2fs_put_page(page, 0);
419 }
420
421 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
422
423 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
424 /*
425 * an orphan block is full of 1020 entries,
426 * then we need to flush current orphan blocks
427 * and bring another one in memory
428 */
429 orphan_blk->blk_addr = cpu_to_le16(index);
430 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
431 orphan_blk->entry_count = cpu_to_le32(nentries);
432 set_page_dirty(page);
433 f2fs_put_page(page, 1);
434 index++;
435 nentries = 0;
436 page = NULL;
437 }
438 }
439
440 if (page) {
441 orphan_blk->blk_addr = cpu_to_le16(index);
442 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
443 orphan_blk->entry_count = cpu_to_le32(nentries);
444 set_page_dirty(page);
445 f2fs_put_page(page, 1);
446 }
447
448 spin_unlock(&sbi->orphan_inode_lock);
449 }
450
451 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
452 block_t cp_addr, unsigned long long *version)
453 {
454 struct page *cp_page_1, *cp_page_2 = NULL;
455 unsigned long blk_size = sbi->blocksize;
456 struct f2fs_checkpoint *cp_block;
457 unsigned long long cur_version = 0, pre_version = 0;
458 size_t crc_offset;
459 __u32 crc = 0;
460
461 /* Read the 1st cp block in this CP pack */
462 cp_page_1 = get_meta_page(sbi, cp_addr);
463
464 /* get the version number */
465 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
466 crc_offset = le32_to_cpu(cp_block->checksum_offset);
467 if (crc_offset >= blk_size)
468 goto invalid_cp1;
469
470 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
471 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
472 goto invalid_cp1;
473
474 pre_version = cur_cp_version(cp_block);
475
476 /* Read the 2nd cp block in this CP pack */
477 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
478 cp_page_2 = get_meta_page(sbi, cp_addr);
479
480 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
481 crc_offset = le32_to_cpu(cp_block->checksum_offset);
482 if (crc_offset >= blk_size)
483 goto invalid_cp2;
484
485 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
486 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
487 goto invalid_cp2;
488
489 cur_version = cur_cp_version(cp_block);
490
491 if (cur_version == pre_version) {
492 *version = cur_version;
493 f2fs_put_page(cp_page_2, 1);
494 return cp_page_1;
495 }
496 invalid_cp2:
497 f2fs_put_page(cp_page_2, 1);
498 invalid_cp1:
499 f2fs_put_page(cp_page_1, 1);
500 return NULL;
501 }
502
503 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
504 {
505 struct f2fs_checkpoint *cp_block;
506 struct f2fs_super_block *fsb = sbi->raw_super;
507 struct page *cp1, *cp2, *cur_page;
508 unsigned long blk_size = sbi->blocksize;
509 unsigned long long cp1_version = 0, cp2_version = 0;
510 unsigned long long cp_start_blk_no;
511
512 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
513 if (!sbi->ckpt)
514 return -ENOMEM;
515 /*
516 * Finding out valid cp block involves read both
517 * sets( cp pack1 and cp pack 2)
518 */
519 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
520 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
521
522 /* The second checkpoint pack should start at the next segment */
523 cp_start_blk_no += ((unsigned long long)1) <<
524 le32_to_cpu(fsb->log_blocks_per_seg);
525 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
526
527 if (cp1 && cp2) {
528 if (ver_after(cp2_version, cp1_version))
529 cur_page = cp2;
530 else
531 cur_page = cp1;
532 } else if (cp1) {
533 cur_page = cp1;
534 } else if (cp2) {
535 cur_page = cp2;
536 } else {
537 goto fail_no_cp;
538 }
539
540 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
541 memcpy(sbi->ckpt, cp_block, blk_size);
542
543 f2fs_put_page(cp1, 1);
544 f2fs_put_page(cp2, 1);
545 return 0;
546
547 fail_no_cp:
548 kfree(sbi->ckpt);
549 return -EINVAL;
550 }
551
552 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
553 {
554 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
555 struct list_head *head = &sbi->dir_inode_list;
556 struct dir_inode_entry *entry;
557
558 list_for_each_entry(entry, head, list)
559 if (unlikely(entry->inode == inode))
560 return -EEXIST;
561
562 list_add_tail(&new->list, head);
563 stat_inc_dirty_dir(sbi);
564 return 0;
565 }
566
567 void set_dirty_dir_page(struct inode *inode, struct page *page)
568 {
569 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
570 struct dir_inode_entry *new;
571 int ret = 0;
572
573 if (!S_ISDIR(inode->i_mode))
574 return;
575
576 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
577 new->inode = inode;
578 INIT_LIST_HEAD(&new->list);
579
580 spin_lock(&sbi->dir_inode_lock);
581 ret = __add_dirty_inode(inode, new);
582 inode_inc_dirty_dents(inode);
583 SetPagePrivate(page);
584 spin_unlock(&sbi->dir_inode_lock);
585
586 if (ret)
587 kmem_cache_free(inode_entry_slab, new);
588 }
589
590 void add_dirty_dir_inode(struct inode *inode)
591 {
592 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
593 struct dir_inode_entry *new =
594 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
595 int ret = 0;
596
597 new->inode = inode;
598 INIT_LIST_HEAD(&new->list);
599
600 spin_lock(&sbi->dir_inode_lock);
601 ret = __add_dirty_inode(inode, new);
602 spin_unlock(&sbi->dir_inode_lock);
603
604 if (ret)
605 kmem_cache_free(inode_entry_slab, new);
606 }
607
608 void remove_dirty_dir_inode(struct inode *inode)
609 {
610 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
611 struct list_head *head;
612 struct dir_inode_entry *entry;
613
614 if (!S_ISDIR(inode->i_mode))
615 return;
616
617 spin_lock(&sbi->dir_inode_lock);
618 if (get_dirty_dents(inode)) {
619 spin_unlock(&sbi->dir_inode_lock);
620 return;
621 }
622
623 head = &sbi->dir_inode_list;
624 list_for_each_entry(entry, head, list) {
625 if (entry->inode == inode) {
626 list_del(&entry->list);
627 stat_dec_dirty_dir(sbi);
628 spin_unlock(&sbi->dir_inode_lock);
629 kmem_cache_free(inode_entry_slab, entry);
630 goto done;
631 }
632 }
633 spin_unlock(&sbi->dir_inode_lock);
634
635 done:
636 /* Only from the recovery routine */
637 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
638 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
639 iput(inode);
640 }
641 }
642
643 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
644 {
645
646 struct list_head *head;
647 struct inode *inode = NULL;
648 struct dir_inode_entry *entry;
649
650 spin_lock(&sbi->dir_inode_lock);
651
652 head = &sbi->dir_inode_list;
653 list_for_each_entry(entry, head, list) {
654 if (entry->inode->i_ino == ino) {
655 inode = entry->inode;
656 break;
657 }
658 }
659 spin_unlock(&sbi->dir_inode_lock);
660 return inode;
661 }
662
663 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
664 {
665 struct list_head *head;
666 struct dir_inode_entry *entry;
667 struct inode *inode;
668 retry:
669 spin_lock(&sbi->dir_inode_lock);
670
671 head = &sbi->dir_inode_list;
672 if (list_empty(head)) {
673 spin_unlock(&sbi->dir_inode_lock);
674 return;
675 }
676 entry = list_entry(head->next, struct dir_inode_entry, list);
677 inode = igrab(entry->inode);
678 spin_unlock(&sbi->dir_inode_lock);
679 if (inode) {
680 filemap_fdatawrite(inode->i_mapping);
681 iput(inode);
682 } else {
683 /*
684 * We should submit bio, since it exists several
685 * wribacking dentry pages in the freeing inode.
686 */
687 f2fs_submit_merged_bio(sbi, DATA, WRITE);
688 }
689 goto retry;
690 }
691
692 /*
693 * Freeze all the FS-operations for checkpoint.
694 */
695 static void block_operations(struct f2fs_sb_info *sbi)
696 {
697 struct writeback_control wbc = {
698 .sync_mode = WB_SYNC_ALL,
699 .nr_to_write = LONG_MAX,
700 .for_reclaim = 0,
701 };
702 struct blk_plug plug;
703
704 blk_start_plug(&plug);
705
706 retry_flush_dents:
707 f2fs_lock_all(sbi);
708 /* write all the dirty dentry pages */
709 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
710 f2fs_unlock_all(sbi);
711 sync_dirty_dir_inodes(sbi);
712 goto retry_flush_dents;
713 }
714
715 /*
716 * POR: we should ensure that there is no dirty node pages
717 * until finishing nat/sit flush.
718 */
719 retry_flush_nodes:
720 mutex_lock(&sbi->node_write);
721
722 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
723 mutex_unlock(&sbi->node_write);
724 sync_node_pages(sbi, 0, &wbc);
725 goto retry_flush_nodes;
726 }
727 blk_finish_plug(&plug);
728 }
729
730 static void unblock_operations(struct f2fs_sb_info *sbi)
731 {
732 mutex_unlock(&sbi->node_write);
733 f2fs_unlock_all(sbi);
734 }
735
736 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
737 {
738 DEFINE_WAIT(wait);
739
740 for (;;) {
741 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
742
743 if (!get_pages(sbi, F2FS_WRITEBACK))
744 break;
745
746 io_schedule();
747 }
748 finish_wait(&sbi->cp_wait, &wait);
749 }
750
751 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
752 {
753 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
754 nid_t last_nid = 0;
755 block_t start_blk;
756 struct page *cp_page;
757 unsigned int data_sum_blocks, orphan_blocks;
758 __u32 crc32 = 0;
759 void *kaddr;
760 int i;
761
762 /* Flush all the NAT/SIT pages */
763 while (get_pages(sbi, F2FS_DIRTY_META))
764 sync_meta_pages(sbi, META, LONG_MAX);
765
766 next_free_nid(sbi, &last_nid);
767
768 /*
769 * modify checkpoint
770 * version number is already updated
771 */
772 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
773 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
774 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
775 for (i = 0; i < 3; i++) {
776 ckpt->cur_node_segno[i] =
777 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
778 ckpt->cur_node_blkoff[i] =
779 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
780 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
781 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
782 }
783 for (i = 0; i < 3; i++) {
784 ckpt->cur_data_segno[i] =
785 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
786 ckpt->cur_data_blkoff[i] =
787 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
788 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
789 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
790 }
791
792 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
793 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
794 ckpt->next_free_nid = cpu_to_le32(last_nid);
795
796 /* 2 cp + n data seg summary + orphan inode blocks */
797 data_sum_blocks = npages_for_summary_flush(sbi);
798 if (data_sum_blocks < 3)
799 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
800 else
801 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
802
803 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
804 / F2FS_ORPHANS_PER_BLOCK;
805 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
806
807 if (is_umount) {
808 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
809 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
810 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
811 } else {
812 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
813 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
814 data_sum_blocks + orphan_blocks);
815 }
816
817 if (sbi->n_orphans)
818 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
819 else
820 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
821
822 /* update SIT/NAT bitmap */
823 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
824 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
825
826 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
827 *((__le32 *)((unsigned char *)ckpt +
828 le32_to_cpu(ckpt->checksum_offset)))
829 = cpu_to_le32(crc32);
830
831 start_blk = __start_cp_addr(sbi);
832
833 /* write out checkpoint buffer at block 0 */
834 cp_page = grab_meta_page(sbi, start_blk++);
835 kaddr = page_address(cp_page);
836 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
837 set_page_dirty(cp_page);
838 f2fs_put_page(cp_page, 1);
839
840 if (sbi->n_orphans) {
841 write_orphan_inodes(sbi, start_blk);
842 start_blk += orphan_blocks;
843 }
844
845 write_data_summaries(sbi, start_blk);
846 start_blk += data_sum_blocks;
847 if (is_umount) {
848 write_node_summaries(sbi, start_blk);
849 start_blk += NR_CURSEG_NODE_TYPE;
850 }
851
852 /* writeout checkpoint block */
853 cp_page = grab_meta_page(sbi, start_blk);
854 kaddr = page_address(cp_page);
855 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
856 set_page_dirty(cp_page);
857 f2fs_put_page(cp_page, 1);
858
859 /* wait for previous submitted node/meta pages writeback */
860 wait_on_all_pages_writeback(sbi);
861
862 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
863 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
864
865 /* update user_block_counts */
866 sbi->last_valid_block_count = sbi->total_valid_block_count;
867 sbi->alloc_valid_block_count = 0;
868
869 /* Here, we only have one bio having CP pack */
870 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
871
872 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
873 clear_prefree_segments(sbi);
874 F2FS_RESET_SB_DIRT(sbi);
875 }
876 }
877
878 /*
879 * We guarantee that this checkpoint procedure should not fail.
880 */
881 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
882 {
883 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
884 unsigned long long ckpt_ver;
885
886 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
887
888 mutex_lock(&sbi->cp_mutex);
889 block_operations(sbi);
890
891 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
892
893 f2fs_submit_merged_bio(sbi, DATA, WRITE);
894 f2fs_submit_merged_bio(sbi, NODE, WRITE);
895 f2fs_submit_merged_bio(sbi, META, WRITE);
896
897 /*
898 * update checkpoint pack index
899 * Increase the version number so that
900 * SIT entries and seg summaries are written at correct place
901 */
902 ckpt_ver = cur_cp_version(ckpt);
903 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
904
905 /* write cached NAT/SIT entries to NAT/SIT area */
906 flush_nat_entries(sbi);
907 flush_sit_entries(sbi);
908
909 /* unlock all the fs_lock[] in do_checkpoint() */
910 do_checkpoint(sbi, is_umount);
911
912 unblock_operations(sbi);
913 mutex_unlock(&sbi->cp_mutex);
914
915 stat_inc_cp_count(sbi->stat_info);
916 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
917 }
918
919 void init_orphan_info(struct f2fs_sb_info *sbi)
920 {
921 spin_lock_init(&sbi->orphan_inode_lock);
922 INIT_LIST_HEAD(&sbi->orphan_inode_list);
923 sbi->n_orphans = 0;
924 /*
925 * considering 512 blocks in a segment 8 blocks are needed for cp
926 * and log segment summaries. Remaining blocks are used to keep
927 * orphan entries with the limitation one reserved segment
928 * for cp pack we can have max 1020*504 orphan entries
929 */
930 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
931 * F2FS_ORPHANS_PER_BLOCK;
932 }
933
934 int __init create_checkpoint_caches(void)
935 {
936 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
937 sizeof(struct orphan_inode_entry));
938 if (!orphan_entry_slab)
939 return -ENOMEM;
940 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
941 sizeof(struct dir_inode_entry));
942 if (!inode_entry_slab) {
943 kmem_cache_destroy(orphan_entry_slab);
944 return -ENOMEM;
945 }
946 return 0;
947 }
948
949 void destroy_checkpoint_caches(void)
950 {
951 kmem_cache_destroy(orphan_entry_slab);
952 kmem_cache_destroy(inode_entry_slab);
953 }
This page took 0.066936 seconds and 5 git commands to generate.