f2fs: recover fallocated space
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *orphan_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71 out:
72 mark_page_accessed(page);
73 return page;
74 }
75
76 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
77 {
78 switch (type) {
79 case META_NAT:
80 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
81 case META_SIT:
82 return SIT_BLK_CNT(sbi);
83 case META_SSA:
84 case META_CP:
85 return 0;
86 default:
87 BUG();
88 }
89 }
90
91 /*
92 * Readahead CP/NAT/SIT/SSA pages
93 */
94 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
95 {
96 block_t prev_blk_addr = 0;
97 struct page *page;
98 int blkno = start;
99 int max_blks = get_max_meta_blks(sbi, type);
100
101 struct f2fs_io_info fio = {
102 .type = META,
103 .rw = READ_SYNC | REQ_META | REQ_PRIO
104 };
105
106 for (; nrpages-- > 0; blkno++) {
107 block_t blk_addr;
108
109 switch (type) {
110 case META_NAT:
111 /* get nat block addr */
112 if (unlikely(blkno >= max_blks))
113 blkno = 0;
114 blk_addr = current_nat_addr(sbi,
115 blkno * NAT_ENTRY_PER_BLOCK);
116 break;
117 case META_SIT:
118 /* get sit block addr */
119 if (unlikely(blkno >= max_blks))
120 goto out;
121 blk_addr = current_sit_addr(sbi,
122 blkno * SIT_ENTRY_PER_BLOCK);
123 if (blkno != start && prev_blk_addr + 1 != blk_addr)
124 goto out;
125 prev_blk_addr = blk_addr;
126 break;
127 case META_SSA:
128 case META_CP:
129 /* get ssa/cp block addr */
130 blk_addr = blkno;
131 break;
132 default:
133 BUG();
134 }
135
136 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
137 if (!page)
138 continue;
139 if (PageUptodate(page)) {
140 mark_page_accessed(page);
141 f2fs_put_page(page, 1);
142 continue;
143 }
144
145 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
146 mark_page_accessed(page);
147 f2fs_put_page(page, 0);
148 }
149 out:
150 f2fs_submit_merged_bio(sbi, META, READ);
151 return blkno - start;
152 }
153
154 static int f2fs_write_meta_page(struct page *page,
155 struct writeback_control *wbc)
156 {
157 struct inode *inode = page->mapping->host;
158 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
159
160 trace_f2fs_writepage(page, META);
161
162 if (unlikely(sbi->por_doing))
163 goto redirty_out;
164 if (wbc->for_reclaim)
165 goto redirty_out;
166
167 /* Should not write any meta pages, if any IO error was occurred */
168 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
169 goto no_write;
170
171 f2fs_wait_on_page_writeback(page, META);
172 write_meta_page(sbi, page);
173 no_write:
174 dec_page_count(sbi, F2FS_DIRTY_META);
175 unlock_page(page);
176 return 0;
177
178 redirty_out:
179 redirty_page_for_writepage(wbc, page);
180 return AOP_WRITEPAGE_ACTIVATE;
181 }
182
183 static int f2fs_write_meta_pages(struct address_space *mapping,
184 struct writeback_control *wbc)
185 {
186 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
187 long diff, written;
188
189 trace_f2fs_writepages(mapping->host, wbc, META);
190
191 /* collect a number of dirty meta pages and write together */
192 if (wbc->for_kupdate ||
193 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
194 goto skip_write;
195
196 /* if mounting is failed, skip writing node pages */
197 mutex_lock(&sbi->cp_mutex);
198 diff = nr_pages_to_write(sbi, META, wbc);
199 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
200 mutex_unlock(&sbi->cp_mutex);
201 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
202 return 0;
203
204 skip_write:
205 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
206 return 0;
207 }
208
209 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
210 long nr_to_write)
211 {
212 struct address_space *mapping = META_MAPPING(sbi);
213 pgoff_t index = 0, end = LONG_MAX;
214 struct pagevec pvec;
215 long nwritten = 0;
216 struct writeback_control wbc = {
217 .for_reclaim = 0,
218 };
219
220 pagevec_init(&pvec, 0);
221
222 while (index <= end) {
223 int i, nr_pages;
224 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
225 PAGECACHE_TAG_DIRTY,
226 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
227 if (unlikely(nr_pages == 0))
228 break;
229
230 for (i = 0; i < nr_pages; i++) {
231 struct page *page = pvec.pages[i];
232
233 lock_page(page);
234
235 if (unlikely(page->mapping != mapping)) {
236 continue_unlock:
237 unlock_page(page);
238 continue;
239 }
240 if (!PageDirty(page)) {
241 /* someone wrote it for us */
242 goto continue_unlock;
243 }
244
245 if (!clear_page_dirty_for_io(page))
246 goto continue_unlock;
247
248 if (f2fs_write_meta_page(page, &wbc)) {
249 unlock_page(page);
250 break;
251 }
252 nwritten++;
253 if (unlikely(nwritten >= nr_to_write))
254 break;
255 }
256 pagevec_release(&pvec);
257 cond_resched();
258 }
259
260 if (nwritten)
261 f2fs_submit_merged_bio(sbi, type, WRITE);
262
263 return nwritten;
264 }
265
266 static int f2fs_set_meta_page_dirty(struct page *page)
267 {
268 struct address_space *mapping = page->mapping;
269 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
270
271 trace_f2fs_set_page_dirty(page, META);
272
273 SetPageUptodate(page);
274 if (!PageDirty(page)) {
275 __set_page_dirty_nobuffers(page);
276 inc_page_count(sbi, F2FS_DIRTY_META);
277 return 1;
278 }
279 return 0;
280 }
281
282 const struct address_space_operations f2fs_meta_aops = {
283 .writepage = f2fs_write_meta_page,
284 .writepages = f2fs_write_meta_pages,
285 .set_page_dirty = f2fs_set_meta_page_dirty,
286 };
287
288 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
289 {
290 int err = 0;
291
292 spin_lock(&sbi->orphan_inode_lock);
293 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
294 err = -ENOSPC;
295 else
296 sbi->n_orphans++;
297 spin_unlock(&sbi->orphan_inode_lock);
298
299 return err;
300 }
301
302 void release_orphan_inode(struct f2fs_sb_info *sbi)
303 {
304 spin_lock(&sbi->orphan_inode_lock);
305 f2fs_bug_on(sbi->n_orphans == 0);
306 sbi->n_orphans--;
307 spin_unlock(&sbi->orphan_inode_lock);
308 }
309
310 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
311 {
312 struct list_head *head;
313 struct orphan_inode_entry *new, *orphan;
314
315 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
316 new->ino = ino;
317
318 spin_lock(&sbi->orphan_inode_lock);
319 head = &sbi->orphan_inode_list;
320 list_for_each_entry(orphan, head, list) {
321 if (orphan->ino == ino) {
322 spin_unlock(&sbi->orphan_inode_lock);
323 kmem_cache_free(orphan_entry_slab, new);
324 return;
325 }
326
327 if (orphan->ino > ino)
328 break;
329 }
330
331 /* add new orphan entry into list which is sorted by inode number */
332 list_add_tail(&new->list, &orphan->list);
333 spin_unlock(&sbi->orphan_inode_lock);
334 }
335
336 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
337 {
338 struct list_head *head;
339 struct orphan_inode_entry *orphan;
340
341 spin_lock(&sbi->orphan_inode_lock);
342 head = &sbi->orphan_inode_list;
343 list_for_each_entry(orphan, head, list) {
344 if (orphan->ino == ino) {
345 list_del(&orphan->list);
346 f2fs_bug_on(sbi->n_orphans == 0);
347 sbi->n_orphans--;
348 spin_unlock(&sbi->orphan_inode_lock);
349 kmem_cache_free(orphan_entry_slab, orphan);
350 return;
351 }
352 }
353 spin_unlock(&sbi->orphan_inode_lock);
354 }
355
356 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
357 {
358 struct inode *inode = f2fs_iget(sbi->sb, ino);
359 f2fs_bug_on(IS_ERR(inode));
360 clear_nlink(inode);
361
362 /* truncate all the data during iput */
363 iput(inode);
364 }
365
366 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
367 {
368 block_t start_blk, orphan_blkaddr, i, j;
369
370 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
371 return;
372
373 sbi->por_doing = true;
374
375 start_blk = __start_cp_addr(sbi) + 1 +
376 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
377 orphan_blkaddr = __start_sum_addr(sbi) - 1;
378
379 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
380
381 for (i = 0; i < orphan_blkaddr; i++) {
382 struct page *page = get_meta_page(sbi, start_blk + i);
383 struct f2fs_orphan_block *orphan_blk;
384
385 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
386 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
387 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
388 recover_orphan_inode(sbi, ino);
389 }
390 f2fs_put_page(page, 1);
391 }
392 /* clear Orphan Flag */
393 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
394 sbi->por_doing = false;
395 return;
396 }
397
398 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
399 {
400 struct list_head *head;
401 struct f2fs_orphan_block *orphan_blk = NULL;
402 unsigned int nentries = 0;
403 unsigned short index;
404 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
405 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
406 struct page *page = NULL;
407 struct orphan_inode_entry *orphan = NULL;
408
409 for (index = 0; index < orphan_blocks; index++)
410 grab_meta_page(sbi, start_blk + index);
411
412 index = 1;
413 spin_lock(&sbi->orphan_inode_lock);
414 head = &sbi->orphan_inode_list;
415
416 /* loop for each orphan inode entry and write them in Jornal block */
417 list_for_each_entry(orphan, head, list) {
418 if (!page) {
419 page = find_get_page(META_MAPPING(sbi), start_blk++);
420 f2fs_bug_on(!page);
421 orphan_blk =
422 (struct f2fs_orphan_block *)page_address(page);
423 memset(orphan_blk, 0, sizeof(*orphan_blk));
424 f2fs_put_page(page, 0);
425 }
426
427 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
428
429 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
430 /*
431 * an orphan block is full of 1020 entries,
432 * then we need to flush current orphan blocks
433 * and bring another one in memory
434 */
435 orphan_blk->blk_addr = cpu_to_le16(index);
436 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
437 orphan_blk->entry_count = cpu_to_le32(nentries);
438 set_page_dirty(page);
439 f2fs_put_page(page, 1);
440 index++;
441 nentries = 0;
442 page = NULL;
443 }
444 }
445
446 if (page) {
447 orphan_blk->blk_addr = cpu_to_le16(index);
448 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
449 orphan_blk->entry_count = cpu_to_le32(nentries);
450 set_page_dirty(page);
451 f2fs_put_page(page, 1);
452 }
453
454 spin_unlock(&sbi->orphan_inode_lock);
455 }
456
457 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
458 block_t cp_addr, unsigned long long *version)
459 {
460 struct page *cp_page_1, *cp_page_2 = NULL;
461 unsigned long blk_size = sbi->blocksize;
462 struct f2fs_checkpoint *cp_block;
463 unsigned long long cur_version = 0, pre_version = 0;
464 size_t crc_offset;
465 __u32 crc = 0;
466
467 /* Read the 1st cp block in this CP pack */
468 cp_page_1 = get_meta_page(sbi, cp_addr);
469
470 /* get the version number */
471 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
472 crc_offset = le32_to_cpu(cp_block->checksum_offset);
473 if (crc_offset >= blk_size)
474 goto invalid_cp1;
475
476 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
477 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
478 goto invalid_cp1;
479
480 pre_version = cur_cp_version(cp_block);
481
482 /* Read the 2nd cp block in this CP pack */
483 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
484 cp_page_2 = get_meta_page(sbi, cp_addr);
485
486 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
487 crc_offset = le32_to_cpu(cp_block->checksum_offset);
488 if (crc_offset >= blk_size)
489 goto invalid_cp2;
490
491 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
492 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
493 goto invalid_cp2;
494
495 cur_version = cur_cp_version(cp_block);
496
497 if (cur_version == pre_version) {
498 *version = cur_version;
499 f2fs_put_page(cp_page_2, 1);
500 return cp_page_1;
501 }
502 invalid_cp2:
503 f2fs_put_page(cp_page_2, 1);
504 invalid_cp1:
505 f2fs_put_page(cp_page_1, 1);
506 return NULL;
507 }
508
509 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
510 {
511 struct f2fs_checkpoint *cp_block;
512 struct f2fs_super_block *fsb = sbi->raw_super;
513 struct page *cp1, *cp2, *cur_page;
514 unsigned long blk_size = sbi->blocksize;
515 unsigned long long cp1_version = 0, cp2_version = 0;
516 unsigned long long cp_start_blk_no;
517 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
518 block_t cp_blk_no;
519 int i;
520
521 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
522 if (!sbi->ckpt)
523 return -ENOMEM;
524 /*
525 * Finding out valid cp block involves read both
526 * sets( cp pack1 and cp pack 2)
527 */
528 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
529 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
530
531 /* The second checkpoint pack should start at the next segment */
532 cp_start_blk_no += ((unsigned long long)1) <<
533 le32_to_cpu(fsb->log_blocks_per_seg);
534 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
535
536 if (cp1 && cp2) {
537 if (ver_after(cp2_version, cp1_version))
538 cur_page = cp2;
539 else
540 cur_page = cp1;
541 } else if (cp1) {
542 cur_page = cp1;
543 } else if (cp2) {
544 cur_page = cp2;
545 } else {
546 goto fail_no_cp;
547 }
548
549 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
550 memcpy(sbi->ckpt, cp_block, blk_size);
551
552 if (cp_blks <= 1)
553 goto done;
554
555 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
556 if (cur_page == cp2)
557 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
558
559 for (i = 1; i < cp_blks; i++) {
560 void *sit_bitmap_ptr;
561 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
562
563 cur_page = get_meta_page(sbi, cp_blk_no + i);
564 sit_bitmap_ptr = page_address(cur_page);
565 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
566 f2fs_put_page(cur_page, 1);
567 }
568 done:
569 f2fs_put_page(cp1, 1);
570 f2fs_put_page(cp2, 1);
571 return 0;
572
573 fail_no_cp:
574 kfree(sbi->ckpt);
575 return -EINVAL;
576 }
577
578 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
579 {
580 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
581
582 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
583 return -EEXIST;
584
585 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
586 F2FS_I(inode)->dirty_dir = new;
587 list_add_tail(&new->list, &sbi->dir_inode_list);
588 stat_inc_dirty_dir(sbi);
589 return 0;
590 }
591
592 void set_dirty_dir_page(struct inode *inode, struct page *page)
593 {
594 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
595 struct dir_inode_entry *new;
596 int ret = 0;
597
598 if (!S_ISDIR(inode->i_mode))
599 return;
600
601 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
602 new->inode = inode;
603 INIT_LIST_HEAD(&new->list);
604
605 spin_lock(&sbi->dir_inode_lock);
606 ret = __add_dirty_inode(inode, new);
607 inode_inc_dirty_dents(inode);
608 SetPagePrivate(page);
609 spin_unlock(&sbi->dir_inode_lock);
610
611 if (ret)
612 kmem_cache_free(inode_entry_slab, new);
613 }
614
615 void add_dirty_dir_inode(struct inode *inode)
616 {
617 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
618 struct dir_inode_entry *new =
619 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
620 int ret = 0;
621
622 new->inode = inode;
623 INIT_LIST_HEAD(&new->list);
624
625 spin_lock(&sbi->dir_inode_lock);
626 ret = __add_dirty_inode(inode, new);
627 spin_unlock(&sbi->dir_inode_lock);
628
629 if (ret)
630 kmem_cache_free(inode_entry_slab, new);
631 }
632
633 void remove_dirty_dir_inode(struct inode *inode)
634 {
635 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
636 struct dir_inode_entry *entry;
637
638 if (!S_ISDIR(inode->i_mode))
639 return;
640
641 spin_lock(&sbi->dir_inode_lock);
642 if (get_dirty_dents(inode) ||
643 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
644 spin_unlock(&sbi->dir_inode_lock);
645 return;
646 }
647
648 entry = F2FS_I(inode)->dirty_dir;
649 list_del(&entry->list);
650 F2FS_I(inode)->dirty_dir = NULL;
651 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
652 stat_dec_dirty_dir(sbi);
653 spin_unlock(&sbi->dir_inode_lock);
654 kmem_cache_free(inode_entry_slab, entry);
655
656 /* Only from the recovery routine */
657 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
658 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
659 iput(inode);
660 }
661 }
662
663 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
664 {
665 struct list_head *head;
666 struct dir_inode_entry *entry;
667 struct inode *inode;
668 retry:
669 spin_lock(&sbi->dir_inode_lock);
670
671 head = &sbi->dir_inode_list;
672 if (list_empty(head)) {
673 spin_unlock(&sbi->dir_inode_lock);
674 return;
675 }
676 entry = list_entry(head->next, struct dir_inode_entry, list);
677 inode = igrab(entry->inode);
678 spin_unlock(&sbi->dir_inode_lock);
679 if (inode) {
680 filemap_fdatawrite(inode->i_mapping);
681 iput(inode);
682 } else {
683 /*
684 * We should submit bio, since it exists several
685 * wribacking dentry pages in the freeing inode.
686 */
687 f2fs_submit_merged_bio(sbi, DATA, WRITE);
688 }
689 goto retry;
690 }
691
692 /*
693 * Freeze all the FS-operations for checkpoint.
694 */
695 static void block_operations(struct f2fs_sb_info *sbi)
696 {
697 struct writeback_control wbc = {
698 .sync_mode = WB_SYNC_ALL,
699 .nr_to_write = LONG_MAX,
700 .for_reclaim = 0,
701 };
702 struct blk_plug plug;
703
704 blk_start_plug(&plug);
705
706 retry_flush_dents:
707 f2fs_lock_all(sbi);
708 /* write all the dirty dentry pages */
709 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
710 f2fs_unlock_all(sbi);
711 sync_dirty_dir_inodes(sbi);
712 goto retry_flush_dents;
713 }
714
715 /*
716 * POR: we should ensure that there is no dirty node pages
717 * until finishing nat/sit flush.
718 */
719 retry_flush_nodes:
720 mutex_lock(&sbi->node_write);
721
722 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
723 mutex_unlock(&sbi->node_write);
724 sync_node_pages(sbi, 0, &wbc);
725 goto retry_flush_nodes;
726 }
727 blk_finish_plug(&plug);
728 }
729
730 static void unblock_operations(struct f2fs_sb_info *sbi)
731 {
732 mutex_unlock(&sbi->node_write);
733 f2fs_unlock_all(sbi);
734 }
735
736 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
737 {
738 DEFINE_WAIT(wait);
739
740 for (;;) {
741 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
742
743 if (!get_pages(sbi, F2FS_WRITEBACK))
744 break;
745
746 io_schedule();
747 }
748 finish_wait(&sbi->cp_wait, &wait);
749 }
750
751 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
752 {
753 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
754 nid_t last_nid = 0;
755 block_t start_blk;
756 struct page *cp_page;
757 unsigned int data_sum_blocks, orphan_blocks;
758 __u32 crc32 = 0;
759 void *kaddr;
760 int i;
761 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
762
763 /*
764 * This avoids to conduct wrong roll-forward operations and uses
765 * metapages, so should be called prior to sync_meta_pages below.
766 */
767 discard_next_dnode(sbi);
768
769 /* Flush all the NAT/SIT pages */
770 while (get_pages(sbi, F2FS_DIRTY_META))
771 sync_meta_pages(sbi, META, LONG_MAX);
772
773 next_free_nid(sbi, &last_nid);
774
775 /*
776 * modify checkpoint
777 * version number is already updated
778 */
779 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
780 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
781 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
782 for (i = 0; i < 3; i++) {
783 ckpt->cur_node_segno[i] =
784 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
785 ckpt->cur_node_blkoff[i] =
786 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
787 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
788 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
789 }
790 for (i = 0; i < 3; i++) {
791 ckpt->cur_data_segno[i] =
792 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
793 ckpt->cur_data_blkoff[i] =
794 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
795 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
796 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
797 }
798
799 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
800 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
801 ckpt->next_free_nid = cpu_to_le32(last_nid);
802
803 /* 2 cp + n data seg summary + orphan inode blocks */
804 data_sum_blocks = npages_for_summary_flush(sbi);
805 if (data_sum_blocks < 3)
806 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
807 else
808 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
809
810 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
811 / F2FS_ORPHANS_PER_BLOCK;
812 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
813 orphan_blocks);
814
815 if (is_umount) {
816 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
817 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
818 cp_payload_blks + data_sum_blocks +
819 orphan_blocks + NR_CURSEG_NODE_TYPE);
820 } else {
821 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
822 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
823 cp_payload_blks + data_sum_blocks +
824 orphan_blocks);
825 }
826
827 if (sbi->n_orphans)
828 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
829 else
830 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
831
832 /* update SIT/NAT bitmap */
833 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
834 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
835
836 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
837 *((__le32 *)((unsigned char *)ckpt +
838 le32_to_cpu(ckpt->checksum_offset)))
839 = cpu_to_le32(crc32);
840
841 start_blk = __start_cp_addr(sbi);
842
843 /* write out checkpoint buffer at block 0 */
844 cp_page = grab_meta_page(sbi, start_blk++);
845 kaddr = page_address(cp_page);
846 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
847 set_page_dirty(cp_page);
848 f2fs_put_page(cp_page, 1);
849
850 for (i = 1; i < 1 + cp_payload_blks; i++) {
851 cp_page = grab_meta_page(sbi, start_blk++);
852 kaddr = page_address(cp_page);
853 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
854 (1 << sbi->log_blocksize));
855 set_page_dirty(cp_page);
856 f2fs_put_page(cp_page, 1);
857 }
858
859 if (sbi->n_orphans) {
860 write_orphan_inodes(sbi, start_blk);
861 start_blk += orphan_blocks;
862 }
863
864 write_data_summaries(sbi, start_blk);
865 start_blk += data_sum_blocks;
866 if (is_umount) {
867 write_node_summaries(sbi, start_blk);
868 start_blk += NR_CURSEG_NODE_TYPE;
869 }
870
871 /* writeout checkpoint block */
872 cp_page = grab_meta_page(sbi, start_blk);
873 kaddr = page_address(cp_page);
874 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
875 set_page_dirty(cp_page);
876 f2fs_put_page(cp_page, 1);
877
878 /* wait for previous submitted node/meta pages writeback */
879 wait_on_all_pages_writeback(sbi);
880
881 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
882 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
883
884 /* update user_block_counts */
885 sbi->last_valid_block_count = sbi->total_valid_block_count;
886 sbi->alloc_valid_block_count = 0;
887
888 /* Here, we only have one bio having CP pack */
889 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
890
891 if (unlikely(!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
892 clear_prefree_segments(sbi);
893 F2FS_RESET_SB_DIRT(sbi);
894 }
895 }
896
897 /*
898 * We guarantee that this checkpoint procedure should not fail.
899 */
900 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
901 {
902 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
903 unsigned long long ckpt_ver;
904
905 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
906
907 mutex_lock(&sbi->cp_mutex);
908 block_operations(sbi);
909
910 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
911
912 f2fs_submit_merged_bio(sbi, DATA, WRITE);
913 f2fs_submit_merged_bio(sbi, NODE, WRITE);
914 f2fs_submit_merged_bio(sbi, META, WRITE);
915
916 /*
917 * update checkpoint pack index
918 * Increase the version number so that
919 * SIT entries and seg summaries are written at correct place
920 */
921 ckpt_ver = cur_cp_version(ckpt);
922 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
923
924 /* write cached NAT/SIT entries to NAT/SIT area */
925 flush_nat_entries(sbi);
926 flush_sit_entries(sbi);
927
928 /* unlock all the fs_lock[] in do_checkpoint() */
929 do_checkpoint(sbi, is_umount);
930
931 unblock_operations(sbi);
932 mutex_unlock(&sbi->cp_mutex);
933
934 stat_inc_cp_count(sbi->stat_info);
935 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
936 }
937
938 void init_orphan_info(struct f2fs_sb_info *sbi)
939 {
940 spin_lock_init(&sbi->orphan_inode_lock);
941 INIT_LIST_HEAD(&sbi->orphan_inode_list);
942 sbi->n_orphans = 0;
943 /*
944 * considering 512 blocks in a segment 8 blocks are needed for cp
945 * and log segment summaries. Remaining blocks are used to keep
946 * orphan entries with the limitation one reserved segment
947 * for cp pack we can have max 1020*504 orphan entries
948 */
949 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
950 * F2FS_ORPHANS_PER_BLOCK;
951 }
952
953 int __init create_checkpoint_caches(void)
954 {
955 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
956 sizeof(struct orphan_inode_entry));
957 if (!orphan_entry_slab)
958 return -ENOMEM;
959 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
960 sizeof(struct dir_inode_entry));
961 if (!inode_entry_slab) {
962 kmem_cache_destroy(orphan_entry_slab);
963 return -ENOMEM;
964 }
965 return 0;
966 }
967
968 void destroy_checkpoint_caches(void)
969 {
970 kmem_cache_destroy(orphan_entry_slab);
971 kmem_cache_destroy(inode_entry_slab);
972 }
This page took 0.052978 seconds and 5 git commands to generate.