f2fs: trigger release_dirty_inode in f2fs_put_super
[deliverable/linux.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include <trace/events/f2fs.h>
24
25 static struct kmem_cache *ino_entry_slab;
26 static struct kmem_cache *inode_entry_slab;
27
28 /*
29 * We guarantee no failure on the returned page.
30 */
31 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32 {
33 struct address_space *mapping = META_MAPPING(sbi);
34 struct page *page = NULL;
35 repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41 f2fs_wait_on_page_writeback(page, META);
42 SetPageUptodate(page);
43 return page;
44 }
45
46 /*
47 * We guarantee no failure on the returned page.
48 */
49 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
50 {
51 struct address_space *mapping = META_MAPPING(sbi);
52 struct page *page;
53 repeat:
54 page = grab_cache_page(mapping, index);
55 if (!page) {
56 cond_resched();
57 goto repeat;
58 }
59 if (PageUptodate(page))
60 goto out;
61
62 if (f2fs_submit_page_bio(sbi, page, index,
63 READ_SYNC | REQ_META | REQ_PRIO))
64 goto repeat;
65
66 lock_page(page);
67 if (unlikely(page->mapping != mapping)) {
68 f2fs_put_page(page, 1);
69 goto repeat;
70 }
71 out:
72 return page;
73 }
74
75 static inline int get_max_meta_blks(struct f2fs_sb_info *sbi, int type)
76 {
77 switch (type) {
78 case META_NAT:
79 return NM_I(sbi)->max_nid / NAT_ENTRY_PER_BLOCK;
80 case META_SIT:
81 return SIT_BLK_CNT(sbi);
82 case META_SSA:
83 case META_CP:
84 return 0;
85 default:
86 BUG();
87 }
88 }
89
90 /*
91 * Readahead CP/NAT/SIT/SSA pages
92 */
93 int ra_meta_pages(struct f2fs_sb_info *sbi, int start, int nrpages, int type)
94 {
95 block_t prev_blk_addr = 0;
96 struct page *page;
97 int blkno = start;
98 int max_blks = get_max_meta_blks(sbi, type);
99
100 struct f2fs_io_info fio = {
101 .type = META,
102 .rw = READ_SYNC | REQ_META | REQ_PRIO
103 };
104
105 for (; nrpages-- > 0; blkno++) {
106 block_t blk_addr;
107
108 switch (type) {
109 case META_NAT:
110 /* get nat block addr */
111 if (unlikely(blkno >= max_blks))
112 blkno = 0;
113 blk_addr = current_nat_addr(sbi,
114 blkno * NAT_ENTRY_PER_BLOCK);
115 break;
116 case META_SIT:
117 /* get sit block addr */
118 if (unlikely(blkno >= max_blks))
119 goto out;
120 blk_addr = current_sit_addr(sbi,
121 blkno * SIT_ENTRY_PER_BLOCK);
122 if (blkno != start && prev_blk_addr + 1 != blk_addr)
123 goto out;
124 prev_blk_addr = blk_addr;
125 break;
126 case META_SSA:
127 case META_CP:
128 /* get ssa/cp block addr */
129 blk_addr = blkno;
130 break;
131 default:
132 BUG();
133 }
134
135 page = grab_cache_page(META_MAPPING(sbi), blk_addr);
136 if (!page)
137 continue;
138 if (PageUptodate(page)) {
139 f2fs_put_page(page, 1);
140 continue;
141 }
142
143 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
144 f2fs_put_page(page, 0);
145 }
146 out:
147 f2fs_submit_merged_bio(sbi, META, READ);
148 return blkno - start;
149 }
150
151 static int f2fs_write_meta_page(struct page *page,
152 struct writeback_control *wbc)
153 {
154 struct inode *inode = page->mapping->host;
155 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
156
157 trace_f2fs_writepage(page, META);
158
159 if (unlikely(sbi->por_doing))
160 goto redirty_out;
161 if (wbc->for_reclaim)
162 goto redirty_out;
163
164 /* Should not write any meta pages, if any IO error was occurred */
165 if (unlikely(is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)))
166 goto no_write;
167
168 f2fs_wait_on_page_writeback(page, META);
169 write_meta_page(sbi, page);
170 no_write:
171 dec_page_count(sbi, F2FS_DIRTY_META);
172 unlock_page(page);
173 return 0;
174
175 redirty_out:
176 redirty_page_for_writepage(wbc, page);
177 return AOP_WRITEPAGE_ACTIVATE;
178 }
179
180 static int f2fs_write_meta_pages(struct address_space *mapping,
181 struct writeback_control *wbc)
182 {
183 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
184 long diff, written;
185
186 trace_f2fs_writepages(mapping->host, wbc, META);
187
188 /* collect a number of dirty meta pages and write together */
189 if (wbc->for_kupdate ||
190 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
191 goto skip_write;
192
193 /* if mounting is failed, skip writing node pages */
194 mutex_lock(&sbi->cp_mutex);
195 diff = nr_pages_to_write(sbi, META, wbc);
196 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
197 mutex_unlock(&sbi->cp_mutex);
198 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
199 return 0;
200
201 skip_write:
202 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
203 return 0;
204 }
205
206 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
207 long nr_to_write)
208 {
209 struct address_space *mapping = META_MAPPING(sbi);
210 pgoff_t index = 0, end = LONG_MAX;
211 struct pagevec pvec;
212 long nwritten = 0;
213 struct writeback_control wbc = {
214 .for_reclaim = 0,
215 };
216
217 pagevec_init(&pvec, 0);
218
219 while (index <= end) {
220 int i, nr_pages;
221 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
222 PAGECACHE_TAG_DIRTY,
223 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
224 if (unlikely(nr_pages == 0))
225 break;
226
227 for (i = 0; i < nr_pages; i++) {
228 struct page *page = pvec.pages[i];
229
230 lock_page(page);
231
232 if (unlikely(page->mapping != mapping)) {
233 continue_unlock:
234 unlock_page(page);
235 continue;
236 }
237 if (!PageDirty(page)) {
238 /* someone wrote it for us */
239 goto continue_unlock;
240 }
241
242 if (!clear_page_dirty_for_io(page))
243 goto continue_unlock;
244
245 if (f2fs_write_meta_page(page, &wbc)) {
246 unlock_page(page);
247 break;
248 }
249 nwritten++;
250 if (unlikely(nwritten >= nr_to_write))
251 break;
252 }
253 pagevec_release(&pvec);
254 cond_resched();
255 }
256
257 if (nwritten)
258 f2fs_submit_merged_bio(sbi, type, WRITE);
259
260 return nwritten;
261 }
262
263 static int f2fs_set_meta_page_dirty(struct page *page)
264 {
265 struct address_space *mapping = page->mapping;
266 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
267
268 trace_f2fs_set_page_dirty(page, META);
269
270 SetPageUptodate(page);
271 if (!PageDirty(page)) {
272 __set_page_dirty_nobuffers(page);
273 inc_page_count(sbi, F2FS_DIRTY_META);
274 return 1;
275 }
276 return 0;
277 }
278
279 const struct address_space_operations f2fs_meta_aops = {
280 .writepage = f2fs_write_meta_page,
281 .writepages = f2fs_write_meta_pages,
282 .set_page_dirty = f2fs_set_meta_page_dirty,
283 };
284
285 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
286 {
287 struct ino_entry *e;
288 retry:
289 spin_lock(&sbi->ino_lock[type]);
290
291 e = radix_tree_lookup(&sbi->ino_root[type], ino);
292 if (!e) {
293 e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
294 if (!e) {
295 spin_unlock(&sbi->ino_lock[type]);
296 goto retry;
297 }
298 if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
299 spin_unlock(&sbi->ino_lock[type]);
300 kmem_cache_free(ino_entry_slab, e);
301 goto retry;
302 }
303 memset(e, 0, sizeof(struct ino_entry));
304 e->ino = ino;
305
306 list_add_tail(&e->list, &sbi->ino_list[type]);
307 }
308 spin_unlock(&sbi->ino_lock[type]);
309 }
310
311 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
312 {
313 struct ino_entry *e;
314
315 spin_lock(&sbi->ino_lock[type]);
316 e = radix_tree_lookup(&sbi->ino_root[type], ino);
317 if (e) {
318 list_del(&e->list);
319 radix_tree_delete(&sbi->ino_root[type], ino);
320 if (type == ORPHAN_INO)
321 sbi->n_orphans--;
322 spin_unlock(&sbi->ino_lock[type]);
323 kmem_cache_free(ino_entry_slab, e);
324 return;
325 }
326 spin_unlock(&sbi->ino_lock[type]);
327 }
328
329 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
330 {
331 /* add new dirty ino entry into list */
332 __add_ino_entry(sbi, ino, type);
333 }
334
335 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
336 {
337 /* remove dirty ino entry from list */
338 __remove_ino_entry(sbi, ino, type);
339 }
340
341 /* mode should be APPEND_INO or UPDATE_INO */
342 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
343 {
344 struct ino_entry *e;
345 spin_lock(&sbi->ino_lock[mode]);
346 e = radix_tree_lookup(&sbi->ino_root[mode], ino);
347 spin_unlock(&sbi->ino_lock[mode]);
348 return e ? true : false;
349 }
350
351 void release_dirty_inode(struct f2fs_sb_info *sbi)
352 {
353 struct ino_entry *e, *tmp;
354 int i;
355
356 for (i = APPEND_INO; i <= UPDATE_INO; i++) {
357 spin_lock(&sbi->ino_lock[i]);
358 list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
359 list_del(&e->list);
360 radix_tree_delete(&sbi->ino_root[i], e->ino);
361 kmem_cache_free(ino_entry_slab, e);
362 }
363 spin_unlock(&sbi->ino_lock[i]);
364 }
365 }
366
367 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
368 {
369 int err = 0;
370
371 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
372 if (unlikely(sbi->n_orphans >= sbi->max_orphans))
373 err = -ENOSPC;
374 else
375 sbi->n_orphans++;
376 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
377
378 return err;
379 }
380
381 void release_orphan_inode(struct f2fs_sb_info *sbi)
382 {
383 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
384 f2fs_bug_on(sbi->n_orphans == 0);
385 sbi->n_orphans--;
386 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
387 }
388
389 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
390 {
391 /* add new orphan ino entry into list */
392 __add_ino_entry(sbi, ino, ORPHAN_INO);
393 }
394
395 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
396 {
397 /* remove orphan entry from orphan list */
398 __remove_ino_entry(sbi, ino, ORPHAN_INO);
399 }
400
401 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
402 {
403 struct inode *inode = f2fs_iget(sbi->sb, ino);
404 f2fs_bug_on(IS_ERR(inode));
405 clear_nlink(inode);
406
407 /* truncate all the data during iput */
408 iput(inode);
409 }
410
411 void recover_orphan_inodes(struct f2fs_sb_info *sbi)
412 {
413 block_t start_blk, orphan_blkaddr, i, j;
414
415 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
416 return;
417
418 sbi->por_doing = true;
419
420 start_blk = __start_cp_addr(sbi) + 1 +
421 le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
422 orphan_blkaddr = __start_sum_addr(sbi) - 1;
423
424 ra_meta_pages(sbi, start_blk, orphan_blkaddr, META_CP);
425
426 for (i = 0; i < orphan_blkaddr; i++) {
427 struct page *page = get_meta_page(sbi, start_blk + i);
428 struct f2fs_orphan_block *orphan_blk;
429
430 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
431 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
432 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
433 recover_orphan_inode(sbi, ino);
434 }
435 f2fs_put_page(page, 1);
436 }
437 /* clear Orphan Flag */
438 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
439 sbi->por_doing = false;
440 return;
441 }
442
443 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
444 {
445 struct list_head *head;
446 struct f2fs_orphan_block *orphan_blk = NULL;
447 unsigned int nentries = 0;
448 unsigned short index;
449 unsigned short orphan_blocks = (unsigned short)((sbi->n_orphans +
450 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
451 struct page *page = NULL;
452 struct ino_entry *orphan = NULL;
453
454 for (index = 0; index < orphan_blocks; index++)
455 grab_meta_page(sbi, start_blk + index);
456
457 index = 1;
458 spin_lock(&sbi->ino_lock[ORPHAN_INO]);
459 head = &sbi->ino_list[ORPHAN_INO];
460
461 /* loop for each orphan inode entry and write them in Jornal block */
462 list_for_each_entry(orphan, head, list) {
463 if (!page) {
464 page = find_get_page(META_MAPPING(sbi), start_blk++);
465 f2fs_bug_on(!page);
466 orphan_blk =
467 (struct f2fs_orphan_block *)page_address(page);
468 memset(orphan_blk, 0, sizeof(*orphan_blk));
469 f2fs_put_page(page, 0);
470 }
471
472 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
473
474 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
475 /*
476 * an orphan block is full of 1020 entries,
477 * then we need to flush current orphan blocks
478 * and bring another one in memory
479 */
480 orphan_blk->blk_addr = cpu_to_le16(index);
481 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
482 orphan_blk->entry_count = cpu_to_le32(nentries);
483 set_page_dirty(page);
484 f2fs_put_page(page, 1);
485 index++;
486 nentries = 0;
487 page = NULL;
488 }
489 }
490
491 if (page) {
492 orphan_blk->blk_addr = cpu_to_le16(index);
493 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
494 orphan_blk->entry_count = cpu_to_le32(nentries);
495 set_page_dirty(page);
496 f2fs_put_page(page, 1);
497 }
498
499 spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
500 }
501
502 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
503 block_t cp_addr, unsigned long long *version)
504 {
505 struct page *cp_page_1, *cp_page_2 = NULL;
506 unsigned long blk_size = sbi->blocksize;
507 struct f2fs_checkpoint *cp_block;
508 unsigned long long cur_version = 0, pre_version = 0;
509 size_t crc_offset;
510 __u32 crc = 0;
511
512 /* Read the 1st cp block in this CP pack */
513 cp_page_1 = get_meta_page(sbi, cp_addr);
514
515 /* get the version number */
516 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
517 crc_offset = le32_to_cpu(cp_block->checksum_offset);
518 if (crc_offset >= blk_size)
519 goto invalid_cp1;
520
521 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
522 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
523 goto invalid_cp1;
524
525 pre_version = cur_cp_version(cp_block);
526
527 /* Read the 2nd cp block in this CP pack */
528 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
529 cp_page_2 = get_meta_page(sbi, cp_addr);
530
531 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
532 crc_offset = le32_to_cpu(cp_block->checksum_offset);
533 if (crc_offset >= blk_size)
534 goto invalid_cp2;
535
536 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
537 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
538 goto invalid_cp2;
539
540 cur_version = cur_cp_version(cp_block);
541
542 if (cur_version == pre_version) {
543 *version = cur_version;
544 f2fs_put_page(cp_page_2, 1);
545 return cp_page_1;
546 }
547 invalid_cp2:
548 f2fs_put_page(cp_page_2, 1);
549 invalid_cp1:
550 f2fs_put_page(cp_page_1, 1);
551 return NULL;
552 }
553
554 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
555 {
556 struct f2fs_checkpoint *cp_block;
557 struct f2fs_super_block *fsb = sbi->raw_super;
558 struct page *cp1, *cp2, *cur_page;
559 unsigned long blk_size = sbi->blocksize;
560 unsigned long long cp1_version = 0, cp2_version = 0;
561 unsigned long long cp_start_blk_no;
562 unsigned int cp_blks = 1 + le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
563 block_t cp_blk_no;
564 int i;
565
566 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
567 if (!sbi->ckpt)
568 return -ENOMEM;
569 /*
570 * Finding out valid cp block involves read both
571 * sets( cp pack1 and cp pack 2)
572 */
573 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
574 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
575
576 /* The second checkpoint pack should start at the next segment */
577 cp_start_blk_no += ((unsigned long long)1) <<
578 le32_to_cpu(fsb->log_blocks_per_seg);
579 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
580
581 if (cp1 && cp2) {
582 if (ver_after(cp2_version, cp1_version))
583 cur_page = cp2;
584 else
585 cur_page = cp1;
586 } else if (cp1) {
587 cur_page = cp1;
588 } else if (cp2) {
589 cur_page = cp2;
590 } else {
591 goto fail_no_cp;
592 }
593
594 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
595 memcpy(sbi->ckpt, cp_block, blk_size);
596
597 if (cp_blks <= 1)
598 goto done;
599
600 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
601 if (cur_page == cp2)
602 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
603
604 for (i = 1; i < cp_blks; i++) {
605 void *sit_bitmap_ptr;
606 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
607
608 cur_page = get_meta_page(sbi, cp_blk_no + i);
609 sit_bitmap_ptr = page_address(cur_page);
610 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
611 f2fs_put_page(cur_page, 1);
612 }
613 done:
614 f2fs_put_page(cp1, 1);
615 f2fs_put_page(cp2, 1);
616 return 0;
617
618 fail_no_cp:
619 kfree(sbi->ckpt);
620 return -EINVAL;
621 }
622
623 static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
624 {
625 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
626
627 if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
628 return -EEXIST;
629
630 set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
631 F2FS_I(inode)->dirty_dir = new;
632 list_add_tail(&new->list, &sbi->dir_inode_list);
633 stat_inc_dirty_dir(sbi);
634 return 0;
635 }
636
637 void set_dirty_dir_page(struct inode *inode, struct page *page)
638 {
639 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
640 struct dir_inode_entry *new;
641 int ret = 0;
642
643 if (!S_ISDIR(inode->i_mode))
644 return;
645
646 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
647 new->inode = inode;
648 INIT_LIST_HEAD(&new->list);
649
650 spin_lock(&sbi->dir_inode_lock);
651 ret = __add_dirty_inode(inode, new);
652 inode_inc_dirty_dents(inode);
653 SetPagePrivate(page);
654 spin_unlock(&sbi->dir_inode_lock);
655
656 if (ret)
657 kmem_cache_free(inode_entry_slab, new);
658 }
659
660 void add_dirty_dir_inode(struct inode *inode)
661 {
662 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
663 struct dir_inode_entry *new =
664 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
665 int ret = 0;
666
667 new->inode = inode;
668 INIT_LIST_HEAD(&new->list);
669
670 spin_lock(&sbi->dir_inode_lock);
671 ret = __add_dirty_inode(inode, new);
672 spin_unlock(&sbi->dir_inode_lock);
673
674 if (ret)
675 kmem_cache_free(inode_entry_slab, new);
676 }
677
678 void remove_dirty_dir_inode(struct inode *inode)
679 {
680 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
681 struct dir_inode_entry *entry;
682
683 if (!S_ISDIR(inode->i_mode))
684 return;
685
686 spin_lock(&sbi->dir_inode_lock);
687 if (get_dirty_dents(inode) ||
688 !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
689 spin_unlock(&sbi->dir_inode_lock);
690 return;
691 }
692
693 entry = F2FS_I(inode)->dirty_dir;
694 list_del(&entry->list);
695 F2FS_I(inode)->dirty_dir = NULL;
696 clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
697 stat_dec_dirty_dir(sbi);
698 spin_unlock(&sbi->dir_inode_lock);
699 kmem_cache_free(inode_entry_slab, entry);
700
701 /* Only from the recovery routine */
702 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
703 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
704 iput(inode);
705 }
706 }
707
708 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
709 {
710 struct list_head *head;
711 struct dir_inode_entry *entry;
712 struct inode *inode;
713 retry:
714 spin_lock(&sbi->dir_inode_lock);
715
716 head = &sbi->dir_inode_list;
717 if (list_empty(head)) {
718 spin_unlock(&sbi->dir_inode_lock);
719 return;
720 }
721 entry = list_entry(head->next, struct dir_inode_entry, list);
722 inode = igrab(entry->inode);
723 spin_unlock(&sbi->dir_inode_lock);
724 if (inode) {
725 filemap_fdatawrite(inode->i_mapping);
726 iput(inode);
727 } else {
728 /*
729 * We should submit bio, since it exists several
730 * wribacking dentry pages in the freeing inode.
731 */
732 f2fs_submit_merged_bio(sbi, DATA, WRITE);
733 }
734 goto retry;
735 }
736
737 /*
738 * Freeze all the FS-operations for checkpoint.
739 */
740 static void block_operations(struct f2fs_sb_info *sbi)
741 {
742 struct writeback_control wbc = {
743 .sync_mode = WB_SYNC_ALL,
744 .nr_to_write = LONG_MAX,
745 .for_reclaim = 0,
746 };
747 struct blk_plug plug;
748
749 blk_start_plug(&plug);
750
751 retry_flush_dents:
752 f2fs_lock_all(sbi);
753 /* write all the dirty dentry pages */
754 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
755 f2fs_unlock_all(sbi);
756 sync_dirty_dir_inodes(sbi);
757 goto retry_flush_dents;
758 }
759
760 /*
761 * POR: we should ensure that there are no dirty node pages
762 * until finishing nat/sit flush.
763 */
764 retry_flush_nodes:
765 down_write(&sbi->node_write);
766
767 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
768 up_write(&sbi->node_write);
769 sync_node_pages(sbi, 0, &wbc);
770 goto retry_flush_nodes;
771 }
772 blk_finish_plug(&plug);
773 }
774
775 static void unblock_operations(struct f2fs_sb_info *sbi)
776 {
777 up_write(&sbi->node_write);
778 f2fs_unlock_all(sbi);
779 }
780
781 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
782 {
783 DEFINE_WAIT(wait);
784
785 for (;;) {
786 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
787
788 if (!get_pages(sbi, F2FS_WRITEBACK))
789 break;
790
791 io_schedule();
792 }
793 finish_wait(&sbi->cp_wait, &wait);
794 }
795
796 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
797 {
798 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
799 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
800 nid_t last_nid = 0;
801 block_t start_blk;
802 struct page *cp_page;
803 unsigned int data_sum_blocks, orphan_blocks;
804 __u32 crc32 = 0;
805 void *kaddr;
806 int i;
807 int cp_payload_blks = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
808
809 /*
810 * This avoids to conduct wrong roll-forward operations and uses
811 * metapages, so should be called prior to sync_meta_pages below.
812 */
813 discard_next_dnode(sbi, NEXT_FREE_BLKADDR(sbi, curseg));
814
815 /* Flush all the NAT/SIT pages */
816 while (get_pages(sbi, F2FS_DIRTY_META))
817 sync_meta_pages(sbi, META, LONG_MAX);
818
819 next_free_nid(sbi, &last_nid);
820
821 /*
822 * modify checkpoint
823 * version number is already updated
824 */
825 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
826 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
827 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
828 for (i = 0; i < 3; i++) {
829 ckpt->cur_node_segno[i] =
830 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
831 ckpt->cur_node_blkoff[i] =
832 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
833 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
834 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
835 }
836 for (i = 0; i < 3; i++) {
837 ckpt->cur_data_segno[i] =
838 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
839 ckpt->cur_data_blkoff[i] =
840 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
841 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
842 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
843 }
844
845 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
846 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
847 ckpt->next_free_nid = cpu_to_le32(last_nid);
848
849 /* 2 cp + n data seg summary + orphan inode blocks */
850 data_sum_blocks = npages_for_summary_flush(sbi);
851 if (data_sum_blocks < 3)
852 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
853 else
854 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
855
856 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
857 / F2FS_ORPHANS_PER_BLOCK;
858 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
859 orphan_blocks);
860
861 if (is_umount) {
862 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
863 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
864 cp_payload_blks + data_sum_blocks +
865 orphan_blocks + NR_CURSEG_NODE_TYPE);
866 } else {
867 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
868 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
869 cp_payload_blks + data_sum_blocks +
870 orphan_blocks);
871 }
872
873 if (sbi->n_orphans)
874 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
875 else
876 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
877
878 /* update SIT/NAT bitmap */
879 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
880 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
881
882 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
883 *((__le32 *)((unsigned char *)ckpt +
884 le32_to_cpu(ckpt->checksum_offset)))
885 = cpu_to_le32(crc32);
886
887 start_blk = __start_cp_addr(sbi);
888
889 /* write out checkpoint buffer at block 0 */
890 cp_page = grab_meta_page(sbi, start_blk++);
891 kaddr = page_address(cp_page);
892 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
893 set_page_dirty(cp_page);
894 f2fs_put_page(cp_page, 1);
895
896 for (i = 1; i < 1 + cp_payload_blks; i++) {
897 cp_page = grab_meta_page(sbi, start_blk++);
898 kaddr = page_address(cp_page);
899 memcpy(kaddr, (char *)ckpt + i * F2FS_BLKSIZE,
900 (1 << sbi->log_blocksize));
901 set_page_dirty(cp_page);
902 f2fs_put_page(cp_page, 1);
903 }
904
905 if (sbi->n_orphans) {
906 write_orphan_inodes(sbi, start_blk);
907 start_blk += orphan_blocks;
908 }
909
910 write_data_summaries(sbi, start_blk);
911 start_blk += data_sum_blocks;
912 if (is_umount) {
913 write_node_summaries(sbi, start_blk);
914 start_blk += NR_CURSEG_NODE_TYPE;
915 }
916
917 /* writeout checkpoint block */
918 cp_page = grab_meta_page(sbi, start_blk);
919 kaddr = page_address(cp_page);
920 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
921 set_page_dirty(cp_page);
922 f2fs_put_page(cp_page, 1);
923
924 /* wait for previous submitted node/meta pages writeback */
925 wait_on_all_pages_writeback(sbi);
926
927 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
928 filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
929
930 /* update user_block_counts */
931 sbi->last_valid_block_count = sbi->total_valid_block_count;
932 sbi->alloc_valid_block_count = 0;
933
934 /* Here, we only have one bio having CP pack */
935 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
936
937 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
938 clear_prefree_segments(sbi);
939 release_dirty_inode(sbi);
940 F2FS_RESET_SB_DIRT(sbi);
941 }
942 }
943
944 /*
945 * We guarantee that this checkpoint procedure will not fail.
946 */
947 void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
948 {
949 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
950 unsigned long long ckpt_ver;
951
952 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
953
954 mutex_lock(&sbi->cp_mutex);
955 block_operations(sbi);
956
957 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
958
959 f2fs_submit_merged_bio(sbi, DATA, WRITE);
960 f2fs_submit_merged_bio(sbi, NODE, WRITE);
961 f2fs_submit_merged_bio(sbi, META, WRITE);
962
963 /*
964 * update checkpoint pack index
965 * Increase the version number so that
966 * SIT entries and seg summaries are written at correct place
967 */
968 ckpt_ver = cur_cp_version(ckpt);
969 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
970
971 /* write cached NAT/SIT entries to NAT/SIT area */
972 flush_nat_entries(sbi);
973 flush_sit_entries(sbi);
974
975 /* unlock all the fs_lock[] in do_checkpoint() */
976 do_checkpoint(sbi, is_umount);
977
978 unblock_operations(sbi);
979 mutex_unlock(&sbi->cp_mutex);
980
981 stat_inc_cp_count(sbi->stat_info);
982 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
983 }
984
985 void init_ino_entry_info(struct f2fs_sb_info *sbi)
986 {
987 int i;
988
989 for (i = 0; i < MAX_INO_ENTRY; i++) {
990 INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
991 spin_lock_init(&sbi->ino_lock[i]);
992 INIT_LIST_HEAD(&sbi->ino_list[i]);
993 }
994
995 /*
996 * considering 512 blocks in a segment 8 blocks are needed for cp
997 * and log segment summaries. Remaining blocks are used to keep
998 * orphan entries with the limitation one reserved segment
999 * for cp pack we can have max 1020*504 orphan entries
1000 */
1001 sbi->n_orphans = 0;
1002 sbi->max_orphans = (sbi->blocks_per_seg - 2 - NR_CURSEG_TYPE)
1003 * F2FS_ORPHANS_PER_BLOCK;
1004 }
1005
1006 int __init create_checkpoint_caches(void)
1007 {
1008 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1009 sizeof(struct ino_entry));
1010 if (!ino_entry_slab)
1011 return -ENOMEM;
1012 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
1013 sizeof(struct dir_inode_entry));
1014 if (!inode_entry_slab) {
1015 kmem_cache_destroy(ino_entry_slab);
1016 return -ENOMEM;
1017 }
1018 return 0;
1019 }
1020
1021 void destroy_checkpoint_caches(void)
1022 {
1023 kmem_cache_destroy(ino_entry_slab);
1024 kmem_cache_destroy(inode_entry_slab);
1025 }
This page took 0.052164 seconds and 5 git commands to generate.