f2fs: introduce mode=lfs mount option
[deliverable/linux.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32 struct bio_vec *bvec;
33 int i;
34
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 fscrypt_release_ctx(bio->bi_private);
38 } else {
39 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40 return;
41 }
42 }
43
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
46
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
52 }
53 unlock_page(page);
54 }
55 bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
63
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
66
67 fscrypt_pullback_bio_page(&page, true);
68
69 if (unlikely(bio->bi_error)) {
70 set_bit(AS_EIO, &page->mapping->flags);
71 f2fs_stop_checkpoint(sbi, true);
72 }
73 end_page_writeback(page);
74 }
75 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
76 wq_has_sleeper(&sbi->cp_wait))
77 wake_up(&sbi->cp_wait);
78
79 bio_put(bio);
80 }
81
82 /*
83 * Low-level block read/write IO operations.
84 */
85 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
86 int npages, bool is_read)
87 {
88 struct bio *bio;
89
90 bio = f2fs_bio_alloc(npages);
91
92 bio->bi_bdev = sbi->sb->s_bdev;
93 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
94 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
95 bio->bi_private = is_read ? NULL : sbi;
96
97 return bio;
98 }
99
100 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw,
101 struct bio *bio, enum page_type type)
102 {
103 if (!is_read_io(rw)) {
104 atomic_inc(&sbi->nr_wb_bios);
105 if (current->plug && (type == DATA || type == NODE))
106 blk_finish_plug(current->plug);
107 }
108 submit_bio(rw, bio);
109 }
110
111 static void __submit_merged_bio(struct f2fs_bio_info *io)
112 {
113 struct f2fs_io_info *fio = &io->fio;
114
115 if (!io->bio)
116 return;
117
118 if (is_read_io(fio->rw))
119 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
120 else
121 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
122
123 __submit_bio(io->sbi, fio->rw, io->bio, fio->type);
124 io->bio = NULL;
125 }
126
127 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
128 struct page *page, nid_t ino)
129 {
130 struct bio_vec *bvec;
131 struct page *target;
132 int i;
133
134 if (!io->bio)
135 return false;
136
137 if (!inode && !page && !ino)
138 return true;
139
140 bio_for_each_segment_all(bvec, io->bio, i) {
141
142 if (bvec->bv_page->mapping)
143 target = bvec->bv_page;
144 else
145 target = fscrypt_control_page(bvec->bv_page);
146
147 if (inode && inode == target->mapping->host)
148 return true;
149 if (page && page == target)
150 return true;
151 if (ino && ino == ino_of_node(target))
152 return true;
153 }
154
155 return false;
156 }
157
158 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
159 struct page *page, nid_t ino,
160 enum page_type type)
161 {
162 enum page_type btype = PAGE_TYPE_OF_BIO(type);
163 struct f2fs_bio_info *io = &sbi->write_io[btype];
164 bool ret;
165
166 down_read(&io->io_rwsem);
167 ret = __has_merged_page(io, inode, page, ino);
168 up_read(&io->io_rwsem);
169 return ret;
170 }
171
172 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
173 struct inode *inode, struct page *page,
174 nid_t ino, enum page_type type, int rw)
175 {
176 enum page_type btype = PAGE_TYPE_OF_BIO(type);
177 struct f2fs_bio_info *io;
178
179 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
180
181 down_write(&io->io_rwsem);
182
183 if (!__has_merged_page(io, inode, page, ino))
184 goto out;
185
186 /* change META to META_FLUSH in the checkpoint procedure */
187 if (type >= META_FLUSH) {
188 io->fio.type = META_FLUSH;
189 if (test_opt(sbi, NOBARRIER))
190 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
191 else
192 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
193 }
194 __submit_merged_bio(io);
195 out:
196 up_write(&io->io_rwsem);
197 }
198
199 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
200 int rw)
201 {
202 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
203 }
204
205 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
206 struct inode *inode, struct page *page,
207 nid_t ino, enum page_type type, int rw)
208 {
209 if (has_merged_page(sbi, inode, page, ino, type))
210 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
211 }
212
213 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
214 {
215 f2fs_submit_merged_bio(sbi, DATA, WRITE);
216 f2fs_submit_merged_bio(sbi, NODE, WRITE);
217 f2fs_submit_merged_bio(sbi, META, WRITE);
218 }
219
220 /*
221 * Fill the locked page with data located in the block address.
222 * Return unlocked page.
223 */
224 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
225 {
226 struct bio *bio;
227 struct page *page = fio->encrypted_page ?
228 fio->encrypted_page : fio->page;
229
230 trace_f2fs_submit_page_bio(page, fio);
231 f2fs_trace_ios(fio, 0);
232
233 /* Allocate a new bio */
234 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
235
236 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
237 bio_put(bio);
238 return -EFAULT;
239 }
240
241 __submit_bio(fio->sbi, fio->rw, bio, fio->type);
242 return 0;
243 }
244
245 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
246 {
247 struct f2fs_sb_info *sbi = fio->sbi;
248 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
249 struct f2fs_bio_info *io;
250 bool is_read = is_read_io(fio->rw);
251 struct page *bio_page;
252
253 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
254
255 if (fio->old_blkaddr != NEW_ADDR)
256 verify_block_addr(sbi, fio->old_blkaddr);
257 verify_block_addr(sbi, fio->new_blkaddr);
258
259 down_write(&io->io_rwsem);
260
261 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
262 io->fio.rw != fio->rw))
263 __submit_merged_bio(io);
264 alloc_new:
265 if (io->bio == NULL) {
266 int bio_blocks = MAX_BIO_BLOCKS(sbi);
267
268 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
269 bio_blocks, is_read);
270 io->fio = *fio;
271 }
272
273 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
274
275 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
276 PAGE_SIZE) {
277 __submit_merged_bio(io);
278 goto alloc_new;
279 }
280
281 io->last_block_in_bio = fio->new_blkaddr;
282 f2fs_trace_ios(fio, 0);
283
284 up_write(&io->io_rwsem);
285 trace_f2fs_submit_page_mbio(fio->page, fio);
286 }
287
288 static void __set_data_blkaddr(struct dnode_of_data *dn)
289 {
290 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
291 __le32 *addr_array;
292
293 /* Get physical address of data block */
294 addr_array = blkaddr_in_node(rn);
295 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
296 }
297
298 /*
299 * Lock ordering for the change of data block address:
300 * ->data_page
301 * ->node_page
302 * update block addresses in the node page
303 */
304 void set_data_blkaddr(struct dnode_of_data *dn)
305 {
306 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
307 __set_data_blkaddr(dn);
308 if (set_page_dirty(dn->node_page))
309 dn->node_changed = true;
310 }
311
312 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
313 {
314 dn->data_blkaddr = blkaddr;
315 set_data_blkaddr(dn);
316 f2fs_update_extent_cache(dn);
317 }
318
319 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
320 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
321 {
322 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
323
324 if (!count)
325 return 0;
326
327 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
328 return -EPERM;
329 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
330 return -ENOSPC;
331
332 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
333 dn->ofs_in_node, count);
334
335 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
336
337 for (; count > 0; dn->ofs_in_node++) {
338 block_t blkaddr =
339 datablock_addr(dn->node_page, dn->ofs_in_node);
340 if (blkaddr == NULL_ADDR) {
341 dn->data_blkaddr = NEW_ADDR;
342 __set_data_blkaddr(dn);
343 count--;
344 }
345 }
346
347 if (set_page_dirty(dn->node_page))
348 dn->node_changed = true;
349 return 0;
350 }
351
352 /* Should keep dn->ofs_in_node unchanged */
353 int reserve_new_block(struct dnode_of_data *dn)
354 {
355 unsigned int ofs_in_node = dn->ofs_in_node;
356 int ret;
357
358 ret = reserve_new_blocks(dn, 1);
359 dn->ofs_in_node = ofs_in_node;
360 return ret;
361 }
362
363 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
364 {
365 bool need_put = dn->inode_page ? false : true;
366 int err;
367
368 err = get_dnode_of_data(dn, index, ALLOC_NODE);
369 if (err)
370 return err;
371
372 if (dn->data_blkaddr == NULL_ADDR)
373 err = reserve_new_block(dn);
374 if (err || need_put)
375 f2fs_put_dnode(dn);
376 return err;
377 }
378
379 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
380 {
381 struct extent_info ei;
382 struct inode *inode = dn->inode;
383
384 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
385 dn->data_blkaddr = ei.blk + index - ei.fofs;
386 return 0;
387 }
388
389 return f2fs_reserve_block(dn, index);
390 }
391
392 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
393 int rw, bool for_write)
394 {
395 struct address_space *mapping = inode->i_mapping;
396 struct dnode_of_data dn;
397 struct page *page;
398 struct extent_info ei;
399 int err;
400 struct f2fs_io_info fio = {
401 .sbi = F2FS_I_SB(inode),
402 .type = DATA,
403 .rw = rw,
404 .encrypted_page = NULL,
405 };
406
407 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
408 return read_mapping_page(mapping, index, NULL);
409
410 page = f2fs_grab_cache_page(mapping, index, for_write);
411 if (!page)
412 return ERR_PTR(-ENOMEM);
413
414 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
415 dn.data_blkaddr = ei.blk + index - ei.fofs;
416 goto got_it;
417 }
418
419 set_new_dnode(&dn, inode, NULL, NULL, 0);
420 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
421 if (err)
422 goto put_err;
423 f2fs_put_dnode(&dn);
424
425 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
426 err = -ENOENT;
427 goto put_err;
428 }
429 got_it:
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 return page;
433 }
434
435 /*
436 * A new dentry page is allocated but not able to be written, since its
437 * new inode page couldn't be allocated due to -ENOSPC.
438 * In such the case, its blkaddr can be remained as NEW_ADDR.
439 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
440 */
441 if (dn.data_blkaddr == NEW_ADDR) {
442 zero_user_segment(page, 0, PAGE_SIZE);
443 SetPageUptodate(page);
444 unlock_page(page);
445 return page;
446 }
447
448 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
449 fio.page = page;
450 err = f2fs_submit_page_bio(&fio);
451 if (err)
452 goto put_err;
453 return page;
454
455 put_err:
456 f2fs_put_page(page, 1);
457 return ERR_PTR(err);
458 }
459
460 struct page *find_data_page(struct inode *inode, pgoff_t index)
461 {
462 struct address_space *mapping = inode->i_mapping;
463 struct page *page;
464
465 page = find_get_page(mapping, index);
466 if (page && PageUptodate(page))
467 return page;
468 f2fs_put_page(page, 0);
469
470 page = get_read_data_page(inode, index, READ_SYNC, false);
471 if (IS_ERR(page))
472 return page;
473
474 if (PageUptodate(page))
475 return page;
476
477 wait_on_page_locked(page);
478 if (unlikely(!PageUptodate(page))) {
479 f2fs_put_page(page, 0);
480 return ERR_PTR(-EIO);
481 }
482 return page;
483 }
484
485 /*
486 * If it tries to access a hole, return an error.
487 * Because, the callers, functions in dir.c and GC, should be able to know
488 * whether this page exists or not.
489 */
490 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
491 bool for_write)
492 {
493 struct address_space *mapping = inode->i_mapping;
494 struct page *page;
495 repeat:
496 page = get_read_data_page(inode, index, READ_SYNC, for_write);
497 if (IS_ERR(page))
498 return page;
499
500 /* wait for read completion */
501 lock_page(page);
502 if (unlikely(!PageUptodate(page))) {
503 f2fs_put_page(page, 1);
504 return ERR_PTR(-EIO);
505 }
506 if (unlikely(page->mapping != mapping)) {
507 f2fs_put_page(page, 1);
508 goto repeat;
509 }
510 return page;
511 }
512
513 /*
514 * Caller ensures that this data page is never allocated.
515 * A new zero-filled data page is allocated in the page cache.
516 *
517 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
518 * f2fs_unlock_op().
519 * Note that, ipage is set only by make_empty_dir, and if any error occur,
520 * ipage should be released by this function.
521 */
522 struct page *get_new_data_page(struct inode *inode,
523 struct page *ipage, pgoff_t index, bool new_i_size)
524 {
525 struct address_space *mapping = inode->i_mapping;
526 struct page *page;
527 struct dnode_of_data dn;
528 int err;
529
530 page = f2fs_grab_cache_page(mapping, index, true);
531 if (!page) {
532 /*
533 * before exiting, we should make sure ipage will be released
534 * if any error occur.
535 */
536 f2fs_put_page(ipage, 1);
537 return ERR_PTR(-ENOMEM);
538 }
539
540 set_new_dnode(&dn, inode, ipage, NULL, 0);
541 err = f2fs_reserve_block(&dn, index);
542 if (err) {
543 f2fs_put_page(page, 1);
544 return ERR_PTR(err);
545 }
546 if (!ipage)
547 f2fs_put_dnode(&dn);
548
549 if (PageUptodate(page))
550 goto got_it;
551
552 if (dn.data_blkaddr == NEW_ADDR) {
553 zero_user_segment(page, 0, PAGE_SIZE);
554 SetPageUptodate(page);
555 } else {
556 f2fs_put_page(page, 1);
557
558 /* if ipage exists, blkaddr should be NEW_ADDR */
559 f2fs_bug_on(F2FS_I_SB(inode), ipage);
560 page = get_lock_data_page(inode, index, true);
561 if (IS_ERR(page))
562 return page;
563 }
564 got_it:
565 if (new_i_size && i_size_read(inode) <
566 ((loff_t)(index + 1) << PAGE_SHIFT))
567 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
568 return page;
569 }
570
571 static int __allocate_data_block(struct dnode_of_data *dn)
572 {
573 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
574 struct f2fs_summary sum;
575 struct node_info ni;
576 int seg = CURSEG_WARM_DATA;
577 pgoff_t fofs;
578 blkcnt_t count = 1;
579
580 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
581 return -EPERM;
582
583 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
584 if (dn->data_blkaddr == NEW_ADDR)
585 goto alloc;
586
587 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
588 return -ENOSPC;
589
590 alloc:
591 get_node_info(sbi, dn->nid, &ni);
592 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
593
594 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
595 seg = CURSEG_DIRECT_IO;
596
597 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
598 &sum, seg);
599 set_data_blkaddr(dn);
600
601 /* update i_size */
602 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
603 dn->ofs_in_node;
604 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
605 f2fs_i_size_write(dn->inode,
606 ((loff_t)(fofs + 1) << PAGE_SHIFT));
607 return 0;
608 }
609
610 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
611 {
612 struct inode *inode = file_inode(iocb->ki_filp);
613 struct f2fs_map_blocks map;
614 ssize_t ret = 0;
615
616 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
617 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
618 map.m_next_pgofs = NULL;
619
620 if (f2fs_encrypted_inode(inode))
621 return 0;
622
623 if (iocb->ki_flags & IOCB_DIRECT) {
624 ret = f2fs_convert_inline_inode(inode);
625 if (ret)
626 return ret;
627 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
628 }
629 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
630 ret = f2fs_convert_inline_inode(inode);
631 if (ret)
632 return ret;
633 }
634 if (!f2fs_has_inline_data(inode))
635 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
636 return ret;
637 }
638
639 /*
640 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
641 * f2fs_map_blocks structure.
642 * If original data blocks are allocated, then give them to blockdev.
643 * Otherwise,
644 * a. preallocate requested block addresses
645 * b. do not use extent cache for better performance
646 * c. give the block addresses to blockdev
647 */
648 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
649 int create, int flag)
650 {
651 unsigned int maxblocks = map->m_len;
652 struct dnode_of_data dn;
653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
655 pgoff_t pgofs, end_offset, end;
656 int err = 0, ofs = 1;
657 unsigned int ofs_in_node, last_ofs_in_node;
658 blkcnt_t prealloc;
659 struct extent_info ei;
660 bool allocated = false;
661 block_t blkaddr;
662
663 map->m_len = 0;
664 map->m_flags = 0;
665
666 /* it only supports block size == page size */
667 pgofs = (pgoff_t)map->m_lblk;
668 end = pgofs + maxblocks;
669
670 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
671 map->m_pblk = ei.blk + pgofs - ei.fofs;
672 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
673 map->m_flags = F2FS_MAP_MAPPED;
674 goto out;
675 }
676
677 next_dnode:
678 if (create)
679 f2fs_lock_op(sbi);
680
681 /* When reading holes, we need its node page */
682 set_new_dnode(&dn, inode, NULL, NULL, 0);
683 err = get_dnode_of_data(&dn, pgofs, mode);
684 if (err) {
685 if (flag == F2FS_GET_BLOCK_BMAP)
686 map->m_pblk = 0;
687 if (err == -ENOENT) {
688 err = 0;
689 if (map->m_next_pgofs)
690 *map->m_next_pgofs =
691 get_next_page_offset(&dn, pgofs);
692 }
693 goto unlock_out;
694 }
695
696 prealloc = 0;
697 ofs_in_node = dn.ofs_in_node;
698 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
699
700 next_block:
701 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
702
703 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
704 if (create) {
705 if (unlikely(f2fs_cp_error(sbi))) {
706 err = -EIO;
707 goto sync_out;
708 }
709 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
710 if (blkaddr == NULL_ADDR) {
711 prealloc++;
712 last_ofs_in_node = dn.ofs_in_node;
713 }
714 } else {
715 err = __allocate_data_block(&dn);
716 if (!err) {
717 set_inode_flag(inode, FI_APPEND_WRITE);
718 allocated = true;
719 }
720 }
721 if (err)
722 goto sync_out;
723 map->m_flags = F2FS_MAP_NEW;
724 blkaddr = dn.data_blkaddr;
725 } else {
726 if (flag == F2FS_GET_BLOCK_BMAP) {
727 map->m_pblk = 0;
728 goto sync_out;
729 }
730 if (flag == F2FS_GET_BLOCK_FIEMAP &&
731 blkaddr == NULL_ADDR) {
732 if (map->m_next_pgofs)
733 *map->m_next_pgofs = pgofs + 1;
734 }
735 if (flag != F2FS_GET_BLOCK_FIEMAP ||
736 blkaddr != NEW_ADDR)
737 goto sync_out;
738 }
739 }
740
741 if (flag == F2FS_GET_BLOCK_PRE_AIO)
742 goto skip;
743
744 if (map->m_len == 0) {
745 /* preallocated unwritten block should be mapped for fiemap. */
746 if (blkaddr == NEW_ADDR)
747 map->m_flags |= F2FS_MAP_UNWRITTEN;
748 map->m_flags |= F2FS_MAP_MAPPED;
749
750 map->m_pblk = blkaddr;
751 map->m_len = 1;
752 } else if ((map->m_pblk != NEW_ADDR &&
753 blkaddr == (map->m_pblk + ofs)) ||
754 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
755 flag == F2FS_GET_BLOCK_PRE_DIO) {
756 ofs++;
757 map->m_len++;
758 } else {
759 goto sync_out;
760 }
761
762 skip:
763 dn.ofs_in_node++;
764 pgofs++;
765
766 /* preallocate blocks in batch for one dnode page */
767 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
768 (pgofs == end || dn.ofs_in_node == end_offset)) {
769
770 dn.ofs_in_node = ofs_in_node;
771 err = reserve_new_blocks(&dn, prealloc);
772 if (err)
773 goto sync_out;
774
775 map->m_len += dn.ofs_in_node - ofs_in_node;
776 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
777 err = -ENOSPC;
778 goto sync_out;
779 }
780 dn.ofs_in_node = end_offset;
781 }
782
783 if (pgofs >= end)
784 goto sync_out;
785 else if (dn.ofs_in_node < end_offset)
786 goto next_block;
787
788 f2fs_put_dnode(&dn);
789
790 if (create) {
791 f2fs_unlock_op(sbi);
792 f2fs_balance_fs(sbi, allocated);
793 }
794 allocated = false;
795 goto next_dnode;
796
797 sync_out:
798 f2fs_put_dnode(&dn);
799 unlock_out:
800 if (create) {
801 f2fs_unlock_op(sbi);
802 f2fs_balance_fs(sbi, allocated);
803 }
804 out:
805 trace_f2fs_map_blocks(inode, map, err);
806 return err;
807 }
808
809 static int __get_data_block(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh, int create, int flag,
811 pgoff_t *next_pgofs)
812 {
813 struct f2fs_map_blocks map;
814 int ret;
815
816 map.m_lblk = iblock;
817 map.m_len = bh->b_size >> inode->i_blkbits;
818 map.m_next_pgofs = next_pgofs;
819
820 ret = f2fs_map_blocks(inode, &map, create, flag);
821 if (!ret) {
822 map_bh(bh, inode->i_sb, map.m_pblk);
823 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
824 bh->b_size = map.m_len << inode->i_blkbits;
825 }
826 return ret;
827 }
828
829 static int get_data_block(struct inode *inode, sector_t iblock,
830 struct buffer_head *bh_result, int create, int flag,
831 pgoff_t *next_pgofs)
832 {
833 return __get_data_block(inode, iblock, bh_result, create,
834 flag, next_pgofs);
835 }
836
837 static int get_data_block_dio(struct inode *inode, sector_t iblock,
838 struct buffer_head *bh_result, int create)
839 {
840 return __get_data_block(inode, iblock, bh_result, create,
841 F2FS_GET_BLOCK_DIO, NULL);
842 }
843
844 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
845 struct buffer_head *bh_result, int create)
846 {
847 /* Block number less than F2FS MAX BLOCKS */
848 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
849 return -EFBIG;
850
851 return __get_data_block(inode, iblock, bh_result, create,
852 F2FS_GET_BLOCK_BMAP, NULL);
853 }
854
855 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
856 {
857 return (offset >> inode->i_blkbits);
858 }
859
860 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
861 {
862 return (blk << inode->i_blkbits);
863 }
864
865 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
866 u64 start, u64 len)
867 {
868 struct buffer_head map_bh;
869 sector_t start_blk, last_blk;
870 pgoff_t next_pgofs;
871 loff_t isize;
872 u64 logical = 0, phys = 0, size = 0;
873 u32 flags = 0;
874 int ret = 0;
875
876 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
877 if (ret)
878 return ret;
879
880 if (f2fs_has_inline_data(inode)) {
881 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
882 if (ret != -EAGAIN)
883 return ret;
884 }
885
886 inode_lock(inode);
887
888 isize = i_size_read(inode);
889 if (start >= isize)
890 goto out;
891
892 if (start + len > isize)
893 len = isize - start;
894
895 if (logical_to_blk(inode, len) == 0)
896 len = blk_to_logical(inode, 1);
897
898 start_blk = logical_to_blk(inode, start);
899 last_blk = logical_to_blk(inode, start + len - 1);
900
901 next:
902 memset(&map_bh, 0, sizeof(struct buffer_head));
903 map_bh.b_size = len;
904
905 ret = get_data_block(inode, start_blk, &map_bh, 0,
906 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
907 if (ret)
908 goto out;
909
910 /* HOLE */
911 if (!buffer_mapped(&map_bh)) {
912 start_blk = next_pgofs;
913 /* Go through holes util pass the EOF */
914 if (blk_to_logical(inode, start_blk) < isize)
915 goto prep_next;
916 /* Found a hole beyond isize means no more extents.
917 * Note that the premise is that filesystems don't
918 * punch holes beyond isize and keep size unchanged.
919 */
920 flags |= FIEMAP_EXTENT_LAST;
921 }
922
923 if (size) {
924 if (f2fs_encrypted_inode(inode))
925 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
926
927 ret = fiemap_fill_next_extent(fieinfo, logical,
928 phys, size, flags);
929 }
930
931 if (start_blk > last_blk || ret)
932 goto out;
933
934 logical = blk_to_logical(inode, start_blk);
935 phys = blk_to_logical(inode, map_bh.b_blocknr);
936 size = map_bh.b_size;
937 flags = 0;
938 if (buffer_unwritten(&map_bh))
939 flags = FIEMAP_EXTENT_UNWRITTEN;
940
941 start_blk += logical_to_blk(inode, size);
942
943 prep_next:
944 cond_resched();
945 if (fatal_signal_pending(current))
946 ret = -EINTR;
947 else
948 goto next;
949 out:
950 if (ret == 1)
951 ret = 0;
952
953 inode_unlock(inode);
954 return ret;
955 }
956
957 /*
958 * This function was originally taken from fs/mpage.c, and customized for f2fs.
959 * Major change was from block_size == page_size in f2fs by default.
960 */
961 static int f2fs_mpage_readpages(struct address_space *mapping,
962 struct list_head *pages, struct page *page,
963 unsigned nr_pages)
964 {
965 struct bio *bio = NULL;
966 unsigned page_idx;
967 sector_t last_block_in_bio = 0;
968 struct inode *inode = mapping->host;
969 const unsigned blkbits = inode->i_blkbits;
970 const unsigned blocksize = 1 << blkbits;
971 sector_t block_in_file;
972 sector_t last_block;
973 sector_t last_block_in_file;
974 sector_t block_nr;
975 struct block_device *bdev = inode->i_sb->s_bdev;
976 struct f2fs_map_blocks map;
977
978 map.m_pblk = 0;
979 map.m_lblk = 0;
980 map.m_len = 0;
981 map.m_flags = 0;
982 map.m_next_pgofs = NULL;
983
984 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
985
986 prefetchw(&page->flags);
987 if (pages) {
988 page = list_entry(pages->prev, struct page, lru);
989 list_del(&page->lru);
990 if (add_to_page_cache_lru(page, mapping,
991 page->index, GFP_KERNEL))
992 goto next_page;
993 }
994
995 block_in_file = (sector_t)page->index;
996 last_block = block_in_file + nr_pages;
997 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
998 blkbits;
999 if (last_block > last_block_in_file)
1000 last_block = last_block_in_file;
1001
1002 /*
1003 * Map blocks using the previous result first.
1004 */
1005 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1006 block_in_file > map.m_lblk &&
1007 block_in_file < (map.m_lblk + map.m_len))
1008 goto got_it;
1009
1010 /*
1011 * Then do more f2fs_map_blocks() calls until we are
1012 * done with this page.
1013 */
1014 map.m_flags = 0;
1015
1016 if (block_in_file < last_block) {
1017 map.m_lblk = block_in_file;
1018 map.m_len = last_block - block_in_file;
1019
1020 if (f2fs_map_blocks(inode, &map, 0,
1021 F2FS_GET_BLOCK_READ))
1022 goto set_error_page;
1023 }
1024 got_it:
1025 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1026 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1027 SetPageMappedToDisk(page);
1028
1029 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1030 SetPageUptodate(page);
1031 goto confused;
1032 }
1033 } else {
1034 zero_user_segment(page, 0, PAGE_SIZE);
1035 SetPageUptodate(page);
1036 unlock_page(page);
1037 goto next_page;
1038 }
1039
1040 /*
1041 * This page will go to BIO. Do we need to send this
1042 * BIO off first?
1043 */
1044 if (bio && (last_block_in_bio != block_nr - 1)) {
1045 submit_and_realloc:
1046 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1047 bio = NULL;
1048 }
1049 if (bio == NULL) {
1050 struct fscrypt_ctx *ctx = NULL;
1051
1052 if (f2fs_encrypted_inode(inode) &&
1053 S_ISREG(inode->i_mode)) {
1054
1055 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1056 if (IS_ERR(ctx))
1057 goto set_error_page;
1058
1059 /* wait the page to be moved by cleaning */
1060 f2fs_wait_on_encrypted_page_writeback(
1061 F2FS_I_SB(inode), block_nr);
1062 }
1063
1064 bio = bio_alloc(GFP_KERNEL,
1065 min_t(int, nr_pages, BIO_MAX_PAGES));
1066 if (!bio) {
1067 if (ctx)
1068 fscrypt_release_ctx(ctx);
1069 goto set_error_page;
1070 }
1071 bio->bi_bdev = bdev;
1072 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1073 bio->bi_end_io = f2fs_read_end_io;
1074 bio->bi_private = ctx;
1075 }
1076
1077 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1078 goto submit_and_realloc;
1079
1080 last_block_in_bio = block_nr;
1081 goto next_page;
1082 set_error_page:
1083 SetPageError(page);
1084 zero_user_segment(page, 0, PAGE_SIZE);
1085 unlock_page(page);
1086 goto next_page;
1087 confused:
1088 if (bio) {
1089 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1090 bio = NULL;
1091 }
1092 unlock_page(page);
1093 next_page:
1094 if (pages)
1095 put_page(page);
1096 }
1097 BUG_ON(pages && !list_empty(pages));
1098 if (bio)
1099 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1100 return 0;
1101 }
1102
1103 static int f2fs_read_data_page(struct file *file, struct page *page)
1104 {
1105 struct inode *inode = page->mapping->host;
1106 int ret = -EAGAIN;
1107
1108 trace_f2fs_readpage(page, DATA);
1109
1110 /* If the file has inline data, try to read it directly */
1111 if (f2fs_has_inline_data(inode))
1112 ret = f2fs_read_inline_data(inode, page);
1113 if (ret == -EAGAIN)
1114 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1115 return ret;
1116 }
1117
1118 static int f2fs_read_data_pages(struct file *file,
1119 struct address_space *mapping,
1120 struct list_head *pages, unsigned nr_pages)
1121 {
1122 struct inode *inode = file->f_mapping->host;
1123 struct page *page = list_entry(pages->prev, struct page, lru);
1124
1125 trace_f2fs_readpages(inode, page, nr_pages);
1126
1127 /* If the file has inline data, skip readpages */
1128 if (f2fs_has_inline_data(inode))
1129 return 0;
1130
1131 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1132 }
1133
1134 int do_write_data_page(struct f2fs_io_info *fio)
1135 {
1136 struct page *page = fio->page;
1137 struct inode *inode = page->mapping->host;
1138 struct dnode_of_data dn;
1139 int err = 0;
1140
1141 set_new_dnode(&dn, inode, NULL, NULL, 0);
1142 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1143 if (err)
1144 return err;
1145
1146 fio->old_blkaddr = dn.data_blkaddr;
1147
1148 /* This page is already truncated */
1149 if (fio->old_blkaddr == NULL_ADDR) {
1150 ClearPageUptodate(page);
1151 goto out_writepage;
1152 }
1153
1154 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1155 gfp_t gfp_flags = GFP_NOFS;
1156
1157 /* wait for GCed encrypted page writeback */
1158 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1159 fio->old_blkaddr);
1160 retry_encrypt:
1161 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1162 gfp_flags);
1163 if (IS_ERR(fio->encrypted_page)) {
1164 err = PTR_ERR(fio->encrypted_page);
1165 if (err == -ENOMEM) {
1166 /* flush pending ios and wait for a while */
1167 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1168 congestion_wait(BLK_RW_ASYNC, HZ/50);
1169 gfp_flags |= __GFP_NOFAIL;
1170 err = 0;
1171 goto retry_encrypt;
1172 }
1173 goto out_writepage;
1174 }
1175 }
1176
1177 set_page_writeback(page);
1178
1179 /*
1180 * If current allocation needs SSR,
1181 * it had better in-place writes for updated data.
1182 */
1183 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1184 !is_cold_data(page) &&
1185 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1186 need_inplace_update(inode))) {
1187 rewrite_data_page(fio);
1188 set_inode_flag(inode, FI_UPDATE_WRITE);
1189 trace_f2fs_do_write_data_page(page, IPU);
1190 } else {
1191 write_data_page(&dn, fio);
1192 trace_f2fs_do_write_data_page(page, OPU);
1193 set_inode_flag(inode, FI_APPEND_WRITE);
1194 if (page->index == 0)
1195 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1196 }
1197 out_writepage:
1198 f2fs_put_dnode(&dn);
1199 return err;
1200 }
1201
1202 static int f2fs_write_data_page(struct page *page,
1203 struct writeback_control *wbc)
1204 {
1205 struct inode *inode = page->mapping->host;
1206 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1207 loff_t i_size = i_size_read(inode);
1208 const pgoff_t end_index = ((unsigned long long) i_size)
1209 >> PAGE_SHIFT;
1210 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1211 unsigned offset = 0;
1212 bool need_balance_fs = false;
1213 int err = 0;
1214 struct f2fs_io_info fio = {
1215 .sbi = sbi,
1216 .type = DATA,
1217 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1218 .page = page,
1219 .encrypted_page = NULL,
1220 };
1221
1222 trace_f2fs_writepage(page, DATA);
1223
1224 if (page->index < end_index)
1225 goto write;
1226
1227 /*
1228 * If the offset is out-of-range of file size,
1229 * this page does not have to be written to disk.
1230 */
1231 offset = i_size & (PAGE_SIZE - 1);
1232 if ((page->index >= end_index + 1) || !offset)
1233 goto out;
1234
1235 zero_user_segment(page, offset, PAGE_SIZE);
1236 write:
1237 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1238 goto redirty_out;
1239 if (f2fs_is_drop_cache(inode))
1240 goto out;
1241 /* we should not write 0'th page having journal header */
1242 if (f2fs_is_volatile_file(inode) && (!page->index ||
1243 (!wbc->for_reclaim &&
1244 available_free_memory(sbi, BASE_CHECK))))
1245 goto redirty_out;
1246
1247 /* we should bypass data pages to proceed the kworkder jobs */
1248 if (unlikely(f2fs_cp_error(sbi))) {
1249 mapping_set_error(page->mapping, -EIO);
1250 goto out;
1251 }
1252
1253 /* Dentry blocks are controlled by checkpoint */
1254 if (S_ISDIR(inode->i_mode)) {
1255 err = do_write_data_page(&fio);
1256 goto done;
1257 }
1258
1259 if (!wbc->for_reclaim)
1260 need_balance_fs = true;
1261 else if (has_not_enough_free_secs(sbi, 0))
1262 goto redirty_out;
1263
1264 err = -EAGAIN;
1265 f2fs_lock_op(sbi);
1266 if (f2fs_has_inline_data(inode))
1267 err = f2fs_write_inline_data(inode, page);
1268 if (err == -EAGAIN)
1269 err = do_write_data_page(&fio);
1270 if (F2FS_I(inode)->last_disk_size < psize)
1271 F2FS_I(inode)->last_disk_size = psize;
1272 f2fs_unlock_op(sbi);
1273 done:
1274 if (err && err != -ENOENT)
1275 goto redirty_out;
1276
1277 clear_cold_data(page);
1278 out:
1279 inode_dec_dirty_pages(inode);
1280 if (err)
1281 ClearPageUptodate(page);
1282
1283 if (wbc->for_reclaim) {
1284 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1285 remove_dirty_inode(inode);
1286 }
1287
1288 unlock_page(page);
1289 f2fs_balance_fs(sbi, need_balance_fs);
1290
1291 if (unlikely(f2fs_cp_error(sbi)))
1292 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1293
1294 return 0;
1295
1296 redirty_out:
1297 redirty_page_for_writepage(wbc, page);
1298 unlock_page(page);
1299 return err;
1300 }
1301
1302 /*
1303 * This function was copied from write_cche_pages from mm/page-writeback.c.
1304 * The major change is making write step of cold data page separately from
1305 * warm/hot data page.
1306 */
1307 static int f2fs_write_cache_pages(struct address_space *mapping,
1308 struct writeback_control *wbc)
1309 {
1310 int ret = 0;
1311 int done = 0;
1312 struct pagevec pvec;
1313 int nr_pages;
1314 pgoff_t uninitialized_var(writeback_index);
1315 pgoff_t index;
1316 pgoff_t end; /* Inclusive */
1317 pgoff_t done_index;
1318 int cycled;
1319 int range_whole = 0;
1320 int tag;
1321
1322 pagevec_init(&pvec, 0);
1323
1324 if (wbc->range_cyclic) {
1325 writeback_index = mapping->writeback_index; /* prev offset */
1326 index = writeback_index;
1327 if (index == 0)
1328 cycled = 1;
1329 else
1330 cycled = 0;
1331 end = -1;
1332 } else {
1333 index = wbc->range_start >> PAGE_SHIFT;
1334 end = wbc->range_end >> PAGE_SHIFT;
1335 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1336 range_whole = 1;
1337 cycled = 1; /* ignore range_cyclic tests */
1338 }
1339 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1340 tag = PAGECACHE_TAG_TOWRITE;
1341 else
1342 tag = PAGECACHE_TAG_DIRTY;
1343 retry:
1344 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1345 tag_pages_for_writeback(mapping, index, end);
1346 done_index = index;
1347 while (!done && (index <= end)) {
1348 int i;
1349
1350 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1351 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1352 if (nr_pages == 0)
1353 break;
1354
1355 for (i = 0; i < nr_pages; i++) {
1356 struct page *page = pvec.pages[i];
1357
1358 if (page->index > end) {
1359 done = 1;
1360 break;
1361 }
1362
1363 done_index = page->index;
1364
1365 lock_page(page);
1366
1367 if (unlikely(page->mapping != mapping)) {
1368 continue_unlock:
1369 unlock_page(page);
1370 continue;
1371 }
1372
1373 if (!PageDirty(page)) {
1374 /* someone wrote it for us */
1375 goto continue_unlock;
1376 }
1377
1378 if (PageWriteback(page)) {
1379 if (wbc->sync_mode != WB_SYNC_NONE)
1380 f2fs_wait_on_page_writeback(page,
1381 DATA, true);
1382 else
1383 goto continue_unlock;
1384 }
1385
1386 BUG_ON(PageWriteback(page));
1387 if (!clear_page_dirty_for_io(page))
1388 goto continue_unlock;
1389
1390 ret = mapping->a_ops->writepage(page, wbc);
1391 if (unlikely(ret)) {
1392 done_index = page->index + 1;
1393 done = 1;
1394 break;
1395 }
1396
1397 if (--wbc->nr_to_write <= 0 &&
1398 wbc->sync_mode == WB_SYNC_NONE) {
1399 done = 1;
1400 break;
1401 }
1402 }
1403 pagevec_release(&pvec);
1404 cond_resched();
1405 }
1406
1407 if (!cycled && !done) {
1408 cycled = 1;
1409 index = 0;
1410 end = writeback_index - 1;
1411 goto retry;
1412 }
1413 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1414 mapping->writeback_index = done_index;
1415
1416 return ret;
1417 }
1418
1419 static int f2fs_write_data_pages(struct address_space *mapping,
1420 struct writeback_control *wbc)
1421 {
1422 struct inode *inode = mapping->host;
1423 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1424 int ret;
1425
1426 /* deal with chardevs and other special file */
1427 if (!mapping->a_ops->writepage)
1428 return 0;
1429
1430 /* skip writing if there is no dirty page in this inode */
1431 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1432 return 0;
1433
1434 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1435 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1436 available_free_memory(sbi, DIRTY_DENTS))
1437 goto skip_write;
1438
1439 /* skip writing during file defragment */
1440 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1441 goto skip_write;
1442
1443 /* during POR, we don't need to trigger writepage at all. */
1444 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1445 goto skip_write;
1446
1447 trace_f2fs_writepages(mapping->host, wbc, DATA);
1448
1449 ret = f2fs_write_cache_pages(mapping, wbc);
1450 /*
1451 * if some pages were truncated, we cannot guarantee its mapping->host
1452 * to detect pending bios.
1453 */
1454 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1455
1456 remove_dirty_inode(inode);
1457 return ret;
1458
1459 skip_write:
1460 wbc->pages_skipped += get_dirty_pages(inode);
1461 trace_f2fs_writepages(mapping->host, wbc, DATA);
1462 return 0;
1463 }
1464
1465 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1466 {
1467 struct inode *inode = mapping->host;
1468 loff_t i_size = i_size_read(inode);
1469
1470 if (to > i_size) {
1471 truncate_pagecache(inode, i_size);
1472 truncate_blocks(inode, i_size, true);
1473 }
1474 }
1475
1476 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1477 struct page *page, loff_t pos, unsigned len,
1478 block_t *blk_addr, bool *node_changed)
1479 {
1480 struct inode *inode = page->mapping->host;
1481 pgoff_t index = page->index;
1482 struct dnode_of_data dn;
1483 struct page *ipage;
1484 bool locked = false;
1485 struct extent_info ei;
1486 int err = 0;
1487
1488 /*
1489 * we already allocated all the blocks, so we don't need to get
1490 * the block addresses when there is no need to fill the page.
1491 */
1492 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1493 len == PAGE_SIZE)
1494 return 0;
1495
1496 if (f2fs_has_inline_data(inode) ||
1497 (pos & PAGE_MASK) >= i_size_read(inode)) {
1498 f2fs_lock_op(sbi);
1499 locked = true;
1500 }
1501 restart:
1502 /* check inline_data */
1503 ipage = get_node_page(sbi, inode->i_ino);
1504 if (IS_ERR(ipage)) {
1505 err = PTR_ERR(ipage);
1506 goto unlock_out;
1507 }
1508
1509 set_new_dnode(&dn, inode, ipage, ipage, 0);
1510
1511 if (f2fs_has_inline_data(inode)) {
1512 if (pos + len <= MAX_INLINE_DATA) {
1513 read_inline_data(page, ipage);
1514 set_inode_flag(inode, FI_DATA_EXIST);
1515 if (inode->i_nlink)
1516 set_inline_node(ipage);
1517 } else {
1518 err = f2fs_convert_inline_page(&dn, page);
1519 if (err)
1520 goto out;
1521 if (dn.data_blkaddr == NULL_ADDR)
1522 err = f2fs_get_block(&dn, index);
1523 }
1524 } else if (locked) {
1525 err = f2fs_get_block(&dn, index);
1526 } else {
1527 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1528 dn.data_blkaddr = ei.blk + index - ei.fofs;
1529 } else {
1530 /* hole case */
1531 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1532 if (err || dn.data_blkaddr == NULL_ADDR) {
1533 f2fs_put_dnode(&dn);
1534 f2fs_lock_op(sbi);
1535 locked = true;
1536 goto restart;
1537 }
1538 }
1539 }
1540
1541 /* convert_inline_page can make node_changed */
1542 *blk_addr = dn.data_blkaddr;
1543 *node_changed = dn.node_changed;
1544 out:
1545 f2fs_put_dnode(&dn);
1546 unlock_out:
1547 if (locked)
1548 f2fs_unlock_op(sbi);
1549 return err;
1550 }
1551
1552 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1553 loff_t pos, unsigned len, unsigned flags,
1554 struct page **pagep, void **fsdata)
1555 {
1556 struct inode *inode = mapping->host;
1557 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1558 struct page *page = NULL;
1559 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1560 bool need_balance = false;
1561 block_t blkaddr = NULL_ADDR;
1562 int err = 0;
1563
1564 trace_f2fs_write_begin(inode, pos, len, flags);
1565
1566 /*
1567 * We should check this at this moment to avoid deadlock on inode page
1568 * and #0 page. The locking rule for inline_data conversion should be:
1569 * lock_page(page #0) -> lock_page(inode_page)
1570 */
1571 if (index != 0) {
1572 err = f2fs_convert_inline_inode(inode);
1573 if (err)
1574 goto fail;
1575 }
1576 repeat:
1577 page = grab_cache_page_write_begin(mapping, index, flags);
1578 if (!page) {
1579 err = -ENOMEM;
1580 goto fail;
1581 }
1582
1583 *pagep = page;
1584
1585 err = prepare_write_begin(sbi, page, pos, len,
1586 &blkaddr, &need_balance);
1587 if (err)
1588 goto fail;
1589
1590 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1591 unlock_page(page);
1592 f2fs_balance_fs(sbi, true);
1593 lock_page(page);
1594 if (page->mapping != mapping) {
1595 /* The page got truncated from under us */
1596 f2fs_put_page(page, 1);
1597 goto repeat;
1598 }
1599 }
1600
1601 f2fs_wait_on_page_writeback(page, DATA, false);
1602
1603 /* wait for GCed encrypted page writeback */
1604 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1605 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1606
1607 if (len == PAGE_SIZE)
1608 goto out_update;
1609 if (PageUptodate(page))
1610 goto out_clear;
1611
1612 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1613 unsigned start = pos & (PAGE_SIZE - 1);
1614 unsigned end = start + len;
1615
1616 /* Reading beyond i_size is simple: memset to zero */
1617 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1618 goto out_update;
1619 }
1620
1621 if (blkaddr == NEW_ADDR) {
1622 zero_user_segment(page, 0, PAGE_SIZE);
1623 } else {
1624 struct f2fs_io_info fio = {
1625 .sbi = sbi,
1626 .type = DATA,
1627 .rw = READ_SYNC,
1628 .old_blkaddr = blkaddr,
1629 .new_blkaddr = blkaddr,
1630 .page = page,
1631 .encrypted_page = NULL,
1632 };
1633 err = f2fs_submit_page_bio(&fio);
1634 if (err)
1635 goto fail;
1636
1637 lock_page(page);
1638 if (unlikely(!PageUptodate(page))) {
1639 err = -EIO;
1640 goto fail;
1641 }
1642 if (unlikely(page->mapping != mapping)) {
1643 f2fs_put_page(page, 1);
1644 goto repeat;
1645 }
1646
1647 /* avoid symlink page */
1648 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1649 err = fscrypt_decrypt_page(page);
1650 if (err)
1651 goto fail;
1652 }
1653 }
1654 out_update:
1655 SetPageUptodate(page);
1656 out_clear:
1657 clear_cold_data(page);
1658 return 0;
1659
1660 fail:
1661 f2fs_put_page(page, 1);
1662 f2fs_write_failed(mapping, pos + len);
1663 return err;
1664 }
1665
1666 static int f2fs_write_end(struct file *file,
1667 struct address_space *mapping,
1668 loff_t pos, unsigned len, unsigned copied,
1669 struct page *page, void *fsdata)
1670 {
1671 struct inode *inode = page->mapping->host;
1672
1673 trace_f2fs_write_end(inode, pos, len, copied);
1674
1675 set_page_dirty(page);
1676
1677 if (pos + copied > i_size_read(inode))
1678 f2fs_i_size_write(inode, pos + copied);
1679
1680 f2fs_put_page(page, 1);
1681 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1682 return copied;
1683 }
1684
1685 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1686 loff_t offset)
1687 {
1688 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1689
1690 if (offset & blocksize_mask)
1691 return -EINVAL;
1692
1693 if (iov_iter_alignment(iter) & blocksize_mask)
1694 return -EINVAL;
1695
1696 return 0;
1697 }
1698
1699 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1700 {
1701 struct address_space *mapping = iocb->ki_filp->f_mapping;
1702 struct inode *inode = mapping->host;
1703 size_t count = iov_iter_count(iter);
1704 loff_t offset = iocb->ki_pos;
1705 int err;
1706
1707 err = check_direct_IO(inode, iter, offset);
1708 if (err)
1709 return err;
1710
1711 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1712 return 0;
1713 if (test_opt(F2FS_I_SB(inode), LFS))
1714 return 0;
1715
1716 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1717
1718 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1719 if (iov_iter_rw(iter) == WRITE) {
1720 if (err > 0)
1721 set_inode_flag(inode, FI_UPDATE_WRITE);
1722 else if (err < 0)
1723 f2fs_write_failed(mapping, offset + count);
1724 }
1725
1726 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1727
1728 return err;
1729 }
1730
1731 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1732 unsigned int length)
1733 {
1734 struct inode *inode = page->mapping->host;
1735 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1736
1737 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1738 (offset % PAGE_SIZE || length != PAGE_SIZE))
1739 return;
1740
1741 if (PageDirty(page)) {
1742 if (inode->i_ino == F2FS_META_INO(sbi))
1743 dec_page_count(sbi, F2FS_DIRTY_META);
1744 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1745 dec_page_count(sbi, F2FS_DIRTY_NODES);
1746 else
1747 inode_dec_dirty_pages(inode);
1748 }
1749
1750 /* This is atomic written page, keep Private */
1751 if (IS_ATOMIC_WRITTEN_PAGE(page))
1752 return;
1753
1754 set_page_private(page, 0);
1755 ClearPagePrivate(page);
1756 }
1757
1758 int f2fs_release_page(struct page *page, gfp_t wait)
1759 {
1760 /* If this is dirty page, keep PagePrivate */
1761 if (PageDirty(page))
1762 return 0;
1763
1764 /* This is atomic written page, keep Private */
1765 if (IS_ATOMIC_WRITTEN_PAGE(page))
1766 return 0;
1767
1768 set_page_private(page, 0);
1769 ClearPagePrivate(page);
1770 return 1;
1771 }
1772
1773 static int f2fs_set_data_page_dirty(struct page *page)
1774 {
1775 struct address_space *mapping = page->mapping;
1776 struct inode *inode = mapping->host;
1777
1778 trace_f2fs_set_page_dirty(page, DATA);
1779
1780 SetPageUptodate(page);
1781
1782 if (f2fs_is_atomic_file(inode)) {
1783 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1784 register_inmem_page(inode, page);
1785 return 1;
1786 }
1787 /*
1788 * Previously, this page has been registered, we just
1789 * return here.
1790 */
1791 return 0;
1792 }
1793
1794 if (!PageDirty(page)) {
1795 __set_page_dirty_nobuffers(page);
1796 update_dirty_page(inode, page);
1797 return 1;
1798 }
1799 return 0;
1800 }
1801
1802 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1803 {
1804 struct inode *inode = mapping->host;
1805
1806 if (f2fs_has_inline_data(inode))
1807 return 0;
1808
1809 /* make sure allocating whole blocks */
1810 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1811 filemap_write_and_wait(mapping);
1812
1813 return generic_block_bmap(mapping, block, get_data_block_bmap);
1814 }
1815
1816 const struct address_space_operations f2fs_dblock_aops = {
1817 .readpage = f2fs_read_data_page,
1818 .readpages = f2fs_read_data_pages,
1819 .writepage = f2fs_write_data_page,
1820 .writepages = f2fs_write_data_pages,
1821 .write_begin = f2fs_write_begin,
1822 .write_end = f2fs_write_end,
1823 .set_page_dirty = f2fs_set_data_page_dirty,
1824 .invalidatepage = f2fs_invalidate_page,
1825 .releasepage = f2fs_release_page,
1826 .direct_IO = f2fs_direct_IO,
1827 .bmap = f2fs_bmap,
1828 };
This page took 0.093791 seconds and 5 git commands to generate.