f2fs: clean up f2fs_balance_fs
[deliverable/linux.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32 struct bio_vec *bvec;
33 int i;
34
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 f2fs_release_crypto_ctx(bio->bi_private);
38 } else {
39 f2fs_end_io_crypto_work(bio->bi_private, bio);
40 return;
41 }
42 }
43
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
46
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
52 }
53 unlock_page(page);
54 }
55 bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
63
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
66
67 f2fs_restore_and_release_control_page(&page);
68
69 if (unlikely(bio->bi_error)) {
70 set_page_dirty(page);
71 set_bit(AS_EIO, &page->mapping->flags);
72 f2fs_stop_checkpoint(sbi);
73 }
74 end_page_writeback(page);
75 dec_page_count(sbi, F2FS_WRITEBACK);
76 }
77
78 if (!get_pages(sbi, F2FS_WRITEBACK) &&
79 !list_empty(&sbi->cp_wait.task_list))
80 wake_up(&sbi->cp_wait);
81
82 bio_put(bio);
83 }
84
85 /*
86 * Low-level block read/write IO operations.
87 */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89 int npages, bool is_read)
90 {
91 struct bio *bio;
92
93 bio = f2fs_bio_alloc(npages);
94
95 bio->bi_bdev = sbi->sb->s_bdev;
96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98 bio->bi_private = is_read ? NULL : sbi;
99
100 return bio;
101 }
102
103 static void __submit_merged_bio(struct f2fs_bio_info *io)
104 {
105 struct f2fs_io_info *fio = &io->fio;
106
107 if (!io->bio)
108 return;
109
110 if (is_read_io(fio->rw))
111 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
112 else
113 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
114
115 submit_bio(fio->rw, io->bio);
116 io->bio = NULL;
117 }
118
119 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
120 enum page_type type, int rw)
121 {
122 enum page_type btype = PAGE_TYPE_OF_BIO(type);
123 struct f2fs_bio_info *io;
124
125 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
126
127 down_write(&io->io_rwsem);
128
129 /* change META to META_FLUSH in the checkpoint procedure */
130 if (type >= META_FLUSH) {
131 io->fio.type = META_FLUSH;
132 if (test_opt(sbi, NOBARRIER))
133 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
134 else
135 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
136 }
137 __submit_merged_bio(io);
138 up_write(&io->io_rwsem);
139 }
140
141 /*
142 * Fill the locked page with data located in the block address.
143 * Return unlocked page.
144 */
145 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
146 {
147 struct bio *bio;
148 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
149
150 trace_f2fs_submit_page_bio(page, fio);
151 f2fs_trace_ios(fio, 0);
152
153 /* Allocate a new bio */
154 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
155
156 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
157 bio_put(bio);
158 return -EFAULT;
159 }
160
161 submit_bio(fio->rw, bio);
162 return 0;
163 }
164
165 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
166 {
167 struct f2fs_sb_info *sbi = fio->sbi;
168 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
169 struct f2fs_bio_info *io;
170 bool is_read = is_read_io(fio->rw);
171 struct page *bio_page;
172
173 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
174
175 verify_block_addr(sbi, fio->blk_addr);
176
177 down_write(&io->io_rwsem);
178
179 if (!is_read)
180 inc_page_count(sbi, F2FS_WRITEBACK);
181
182 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
183 io->fio.rw != fio->rw))
184 __submit_merged_bio(io);
185 alloc_new:
186 if (io->bio == NULL) {
187 int bio_blocks = MAX_BIO_BLOCKS(sbi);
188
189 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
190 io->fio = *fio;
191 }
192
193 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
194
195 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
196 PAGE_CACHE_SIZE) {
197 __submit_merged_bio(io);
198 goto alloc_new;
199 }
200
201 io->last_block_in_bio = fio->blk_addr;
202 f2fs_trace_ios(fio, 0);
203
204 up_write(&io->io_rwsem);
205 trace_f2fs_submit_page_mbio(fio->page, fio);
206 }
207
208 /*
209 * Lock ordering for the change of data block address:
210 * ->data_page
211 * ->node_page
212 * update block addresses in the node page
213 */
214 void set_data_blkaddr(struct dnode_of_data *dn)
215 {
216 struct f2fs_node *rn;
217 __le32 *addr_array;
218 struct page *node_page = dn->node_page;
219 unsigned int ofs_in_node = dn->ofs_in_node;
220
221 f2fs_wait_on_page_writeback(node_page, NODE);
222
223 rn = F2FS_NODE(node_page);
224
225 /* Get physical address of data block */
226 addr_array = blkaddr_in_node(rn);
227 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
228 if (set_page_dirty(node_page))
229 dn->node_changed = true;
230 }
231
232 int reserve_new_block(struct dnode_of_data *dn)
233 {
234 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
235
236 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
237 return -EPERM;
238 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
239 return -ENOSPC;
240
241 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
242
243 dn->data_blkaddr = NEW_ADDR;
244 set_data_blkaddr(dn);
245 mark_inode_dirty(dn->inode);
246 sync_inode_page(dn);
247 return 0;
248 }
249
250 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
251 {
252 bool need_put = dn->inode_page ? false : true;
253 int err;
254
255 err = get_dnode_of_data(dn, index, ALLOC_NODE);
256 if (err)
257 return err;
258
259 if (dn->data_blkaddr == NULL_ADDR)
260 err = reserve_new_block(dn);
261 if (err || need_put)
262 f2fs_put_dnode(dn);
263 return err;
264 }
265
266 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
267 {
268 struct extent_info ei;
269 struct inode *inode = dn->inode;
270
271 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
272 dn->data_blkaddr = ei.blk + index - ei.fofs;
273 return 0;
274 }
275
276 return f2fs_reserve_block(dn, index);
277 }
278
279 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
280 int rw, bool for_write)
281 {
282 struct address_space *mapping = inode->i_mapping;
283 struct dnode_of_data dn;
284 struct page *page;
285 struct extent_info ei;
286 int err;
287 struct f2fs_io_info fio = {
288 .sbi = F2FS_I_SB(inode),
289 .type = DATA,
290 .rw = rw,
291 .encrypted_page = NULL,
292 };
293
294 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
295 return read_mapping_page(mapping, index, NULL);
296
297 page = f2fs_grab_cache_page(mapping, index, for_write);
298 if (!page)
299 return ERR_PTR(-ENOMEM);
300
301 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
302 dn.data_blkaddr = ei.blk + index - ei.fofs;
303 goto got_it;
304 }
305
306 set_new_dnode(&dn, inode, NULL, NULL, 0);
307 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
308 if (err)
309 goto put_err;
310 f2fs_put_dnode(&dn);
311
312 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
313 err = -ENOENT;
314 goto put_err;
315 }
316 got_it:
317 if (PageUptodate(page)) {
318 unlock_page(page);
319 return page;
320 }
321
322 /*
323 * A new dentry page is allocated but not able to be written, since its
324 * new inode page couldn't be allocated due to -ENOSPC.
325 * In such the case, its blkaddr can be remained as NEW_ADDR.
326 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
327 */
328 if (dn.data_blkaddr == NEW_ADDR) {
329 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
330 SetPageUptodate(page);
331 unlock_page(page);
332 return page;
333 }
334
335 fio.blk_addr = dn.data_blkaddr;
336 fio.page = page;
337 err = f2fs_submit_page_bio(&fio);
338 if (err)
339 goto put_err;
340 return page;
341
342 put_err:
343 f2fs_put_page(page, 1);
344 return ERR_PTR(err);
345 }
346
347 struct page *find_data_page(struct inode *inode, pgoff_t index)
348 {
349 struct address_space *mapping = inode->i_mapping;
350 struct page *page;
351
352 page = find_get_page(mapping, index);
353 if (page && PageUptodate(page))
354 return page;
355 f2fs_put_page(page, 0);
356
357 page = get_read_data_page(inode, index, READ_SYNC, false);
358 if (IS_ERR(page))
359 return page;
360
361 if (PageUptodate(page))
362 return page;
363
364 wait_on_page_locked(page);
365 if (unlikely(!PageUptodate(page))) {
366 f2fs_put_page(page, 0);
367 return ERR_PTR(-EIO);
368 }
369 return page;
370 }
371
372 /*
373 * If it tries to access a hole, return an error.
374 * Because, the callers, functions in dir.c and GC, should be able to know
375 * whether this page exists or not.
376 */
377 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
378 bool for_write)
379 {
380 struct address_space *mapping = inode->i_mapping;
381 struct page *page;
382 repeat:
383 page = get_read_data_page(inode, index, READ_SYNC, for_write);
384 if (IS_ERR(page))
385 return page;
386
387 /* wait for read completion */
388 lock_page(page);
389 if (unlikely(!PageUptodate(page))) {
390 f2fs_put_page(page, 1);
391 return ERR_PTR(-EIO);
392 }
393 if (unlikely(page->mapping != mapping)) {
394 f2fs_put_page(page, 1);
395 goto repeat;
396 }
397 return page;
398 }
399
400 /*
401 * Caller ensures that this data page is never allocated.
402 * A new zero-filled data page is allocated in the page cache.
403 *
404 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
405 * f2fs_unlock_op().
406 * Note that, ipage is set only by make_empty_dir, and if any error occur,
407 * ipage should be released by this function.
408 */
409 struct page *get_new_data_page(struct inode *inode,
410 struct page *ipage, pgoff_t index, bool new_i_size)
411 {
412 struct address_space *mapping = inode->i_mapping;
413 struct page *page;
414 struct dnode_of_data dn;
415 int err;
416
417 page = f2fs_grab_cache_page(mapping, index, true);
418 if (!page) {
419 /*
420 * before exiting, we should make sure ipage will be released
421 * if any error occur.
422 */
423 f2fs_put_page(ipage, 1);
424 return ERR_PTR(-ENOMEM);
425 }
426
427 set_new_dnode(&dn, inode, ipage, NULL, 0);
428 err = f2fs_reserve_block(&dn, index);
429 if (err) {
430 f2fs_put_page(page, 1);
431 return ERR_PTR(err);
432 }
433 if (!ipage)
434 f2fs_put_dnode(&dn);
435
436 if (PageUptodate(page))
437 goto got_it;
438
439 if (dn.data_blkaddr == NEW_ADDR) {
440 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
441 SetPageUptodate(page);
442 } else {
443 f2fs_put_page(page, 1);
444
445 /* if ipage exists, blkaddr should be NEW_ADDR */
446 f2fs_bug_on(F2FS_I_SB(inode), ipage);
447 page = get_lock_data_page(inode, index, true);
448 if (IS_ERR(page))
449 return page;
450 }
451 got_it:
452 if (new_i_size && i_size_read(inode) <
453 ((loff_t)(index + 1) << PAGE_CACHE_SHIFT)) {
454 i_size_write(inode, ((loff_t)(index + 1) << PAGE_CACHE_SHIFT));
455 /* Only the directory inode sets new_i_size */
456 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
457 }
458 return page;
459 }
460
461 static int __allocate_data_block(struct dnode_of_data *dn)
462 {
463 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
464 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
465 struct f2fs_summary sum;
466 struct node_info ni;
467 int seg = CURSEG_WARM_DATA;
468 pgoff_t fofs;
469
470 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
471 return -EPERM;
472
473 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
474 if (dn->data_blkaddr == NEW_ADDR)
475 goto alloc;
476
477 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
478 return -ENOSPC;
479
480 alloc:
481 get_node_info(sbi, dn->nid, &ni);
482 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
483
484 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
485 seg = CURSEG_DIRECT_IO;
486
487 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
488 &sum, seg);
489 set_data_blkaddr(dn);
490
491 /* update i_size */
492 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
493 dn->ofs_in_node;
494 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT))
495 i_size_write(dn->inode,
496 ((loff_t)(fofs + 1) << PAGE_CACHE_SHIFT));
497 return 0;
498 }
499
500 static int __allocate_data_blocks(struct inode *inode, loff_t offset,
501 size_t count)
502 {
503 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
504 struct dnode_of_data dn;
505 u64 start = F2FS_BYTES_TO_BLK(offset);
506 u64 len = F2FS_BYTES_TO_BLK(count);
507 bool allocated;
508 u64 end_offset;
509 int err = 0;
510
511 while (len) {
512 f2fs_lock_op(sbi);
513
514 /* When reading holes, we need its node page */
515 set_new_dnode(&dn, inode, NULL, NULL, 0);
516 err = get_dnode_of_data(&dn, start, ALLOC_NODE);
517 if (err)
518 goto out;
519
520 allocated = false;
521 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
522
523 while (dn.ofs_in_node < end_offset && len) {
524 block_t blkaddr;
525
526 if (unlikely(f2fs_cp_error(sbi))) {
527 err = -EIO;
528 goto sync_out;
529 }
530
531 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
532 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
533 err = __allocate_data_block(&dn);
534 if (err)
535 goto sync_out;
536 allocated = true;
537 }
538 len--;
539 start++;
540 dn.ofs_in_node++;
541 }
542
543 if (allocated)
544 sync_inode_page(&dn);
545
546 f2fs_put_dnode(&dn);
547 f2fs_unlock_op(sbi);
548
549 f2fs_balance_fs(sbi, dn.node_changed);
550 }
551 return err;
552
553 sync_out:
554 if (allocated)
555 sync_inode_page(&dn);
556 f2fs_put_dnode(&dn);
557 out:
558 f2fs_unlock_op(sbi);
559 f2fs_balance_fs(sbi, dn.node_changed);
560 return err;
561 }
562
563 /*
564 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
565 * f2fs_map_blocks structure.
566 * If original data blocks are allocated, then give them to blockdev.
567 * Otherwise,
568 * a. preallocate requested block addresses
569 * b. do not use extent cache for better performance
570 * c. give the block addresses to blockdev
571 */
572 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
573 int create, int flag)
574 {
575 unsigned int maxblocks = map->m_len;
576 struct dnode_of_data dn;
577 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
578 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
579 pgoff_t pgofs, end_offset;
580 int err = 0, ofs = 1;
581 struct extent_info ei;
582 bool allocated = false;
583 block_t blkaddr;
584
585 map->m_len = 0;
586 map->m_flags = 0;
587
588 /* it only supports block size == page size */
589 pgofs = (pgoff_t)map->m_lblk;
590
591 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
592 map->m_pblk = ei.blk + pgofs - ei.fofs;
593 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
594 map->m_flags = F2FS_MAP_MAPPED;
595 goto out;
596 }
597
598 if (create)
599 f2fs_lock_op(sbi);
600
601 /* When reading holes, we need its node page */
602 set_new_dnode(&dn, inode, NULL, NULL, 0);
603 err = get_dnode_of_data(&dn, pgofs, mode);
604 if (err) {
605 if (err == -ENOENT)
606 err = 0;
607 goto unlock_out;
608 }
609
610 if (dn.data_blkaddr == NEW_ADDR || dn.data_blkaddr == NULL_ADDR) {
611 if (create) {
612 if (unlikely(f2fs_cp_error(sbi))) {
613 err = -EIO;
614 goto put_out;
615 }
616 err = __allocate_data_block(&dn);
617 if (err)
618 goto put_out;
619 allocated = true;
620 map->m_flags = F2FS_MAP_NEW;
621 } else {
622 if (flag != F2FS_GET_BLOCK_FIEMAP ||
623 dn.data_blkaddr != NEW_ADDR) {
624 if (flag == F2FS_GET_BLOCK_BMAP)
625 err = -ENOENT;
626 goto put_out;
627 }
628
629 /*
630 * preallocated unwritten block should be mapped
631 * for fiemap.
632 */
633 if (dn.data_blkaddr == NEW_ADDR)
634 map->m_flags = F2FS_MAP_UNWRITTEN;
635 }
636 }
637
638 map->m_flags |= F2FS_MAP_MAPPED;
639 map->m_pblk = dn.data_blkaddr;
640 map->m_len = 1;
641
642 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
643 dn.ofs_in_node++;
644 pgofs++;
645
646 get_next:
647 if (map->m_len >= maxblocks)
648 goto sync_out;
649
650 if (dn.ofs_in_node >= end_offset) {
651 if (allocated)
652 sync_inode_page(&dn);
653 allocated = false;
654 f2fs_put_dnode(&dn);
655
656 if (create) {
657 f2fs_unlock_op(sbi);
658 f2fs_balance_fs(sbi, dn.node_changed);
659 f2fs_lock_op(sbi);
660 }
661
662 set_new_dnode(&dn, inode, NULL, NULL, 0);
663 err = get_dnode_of_data(&dn, pgofs, mode);
664 if (err) {
665 if (err == -ENOENT)
666 err = 0;
667 goto unlock_out;
668 }
669
670 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
671 }
672
673 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
674
675 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
676 if (create) {
677 if (unlikely(f2fs_cp_error(sbi))) {
678 err = -EIO;
679 goto sync_out;
680 }
681 err = __allocate_data_block(&dn);
682 if (err)
683 goto sync_out;
684 allocated = true;
685 map->m_flags |= F2FS_MAP_NEW;
686 blkaddr = dn.data_blkaddr;
687 } else {
688 /*
689 * we only merge preallocated unwritten blocks
690 * for fiemap.
691 */
692 if (flag != F2FS_GET_BLOCK_FIEMAP ||
693 blkaddr != NEW_ADDR)
694 goto sync_out;
695 }
696 }
697
698 /* Give more consecutive addresses for the readahead */
699 if ((map->m_pblk != NEW_ADDR &&
700 blkaddr == (map->m_pblk + ofs)) ||
701 (map->m_pblk == NEW_ADDR &&
702 blkaddr == NEW_ADDR)) {
703 ofs++;
704 dn.ofs_in_node++;
705 pgofs++;
706 map->m_len++;
707 goto get_next;
708 }
709
710 sync_out:
711 if (allocated)
712 sync_inode_page(&dn);
713 put_out:
714 f2fs_put_dnode(&dn);
715 unlock_out:
716 if (create) {
717 f2fs_unlock_op(sbi);
718 f2fs_balance_fs(sbi, dn.node_changed);
719 }
720 out:
721 trace_f2fs_map_blocks(inode, map, err);
722 return err;
723 }
724
725 static int __get_data_block(struct inode *inode, sector_t iblock,
726 struct buffer_head *bh, int create, int flag)
727 {
728 struct f2fs_map_blocks map;
729 int ret;
730
731 map.m_lblk = iblock;
732 map.m_len = bh->b_size >> inode->i_blkbits;
733
734 ret = f2fs_map_blocks(inode, &map, create, flag);
735 if (!ret) {
736 map_bh(bh, inode->i_sb, map.m_pblk);
737 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
738 bh->b_size = map.m_len << inode->i_blkbits;
739 }
740 return ret;
741 }
742
743 static int get_data_block(struct inode *inode, sector_t iblock,
744 struct buffer_head *bh_result, int create, int flag)
745 {
746 return __get_data_block(inode, iblock, bh_result, create, flag);
747 }
748
749 static int get_data_block_dio(struct inode *inode, sector_t iblock,
750 struct buffer_head *bh_result, int create)
751 {
752 return __get_data_block(inode, iblock, bh_result, create,
753 F2FS_GET_BLOCK_DIO);
754 }
755
756 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
757 struct buffer_head *bh_result, int create)
758 {
759 /* Block number less than F2FS MAX BLOCKS */
760 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
761 return -EFBIG;
762
763 return __get_data_block(inode, iblock, bh_result, create,
764 F2FS_GET_BLOCK_BMAP);
765 }
766
767 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
768 {
769 return (offset >> inode->i_blkbits);
770 }
771
772 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
773 {
774 return (blk << inode->i_blkbits);
775 }
776
777 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
778 u64 start, u64 len)
779 {
780 struct buffer_head map_bh;
781 sector_t start_blk, last_blk;
782 loff_t isize;
783 u64 logical = 0, phys = 0, size = 0;
784 u32 flags = 0;
785 int ret = 0;
786
787 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
788 if (ret)
789 return ret;
790
791 if (f2fs_has_inline_data(inode)) {
792 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
793 if (ret != -EAGAIN)
794 return ret;
795 }
796
797 mutex_lock(&inode->i_mutex);
798
799 isize = i_size_read(inode);
800 if (start >= isize)
801 goto out;
802
803 if (start + len > isize)
804 len = isize - start;
805
806 if (logical_to_blk(inode, len) == 0)
807 len = blk_to_logical(inode, 1);
808
809 start_blk = logical_to_blk(inode, start);
810 last_blk = logical_to_blk(inode, start + len - 1);
811
812 next:
813 memset(&map_bh, 0, sizeof(struct buffer_head));
814 map_bh.b_size = len;
815
816 ret = get_data_block(inode, start_blk, &map_bh, 0,
817 F2FS_GET_BLOCK_FIEMAP);
818 if (ret)
819 goto out;
820
821 /* HOLE */
822 if (!buffer_mapped(&map_bh)) {
823 /* Go through holes util pass the EOF */
824 if (blk_to_logical(inode, start_blk++) < isize)
825 goto prep_next;
826 /* Found a hole beyond isize means no more extents.
827 * Note that the premise is that filesystems don't
828 * punch holes beyond isize and keep size unchanged.
829 */
830 flags |= FIEMAP_EXTENT_LAST;
831 }
832
833 if (size)
834 ret = fiemap_fill_next_extent(fieinfo, logical,
835 phys, size, flags);
836
837 if (start_blk > last_blk || ret)
838 goto out;
839
840 logical = blk_to_logical(inode, start_blk);
841 phys = blk_to_logical(inode, map_bh.b_blocknr);
842 size = map_bh.b_size;
843 flags = 0;
844 if (buffer_unwritten(&map_bh))
845 flags = FIEMAP_EXTENT_UNWRITTEN;
846
847 start_blk += logical_to_blk(inode, size);
848
849 prep_next:
850 cond_resched();
851 if (fatal_signal_pending(current))
852 ret = -EINTR;
853 else
854 goto next;
855 out:
856 if (ret == 1)
857 ret = 0;
858
859 mutex_unlock(&inode->i_mutex);
860 return ret;
861 }
862
863 /*
864 * This function was originally taken from fs/mpage.c, and customized for f2fs.
865 * Major change was from block_size == page_size in f2fs by default.
866 */
867 static int f2fs_mpage_readpages(struct address_space *mapping,
868 struct list_head *pages, struct page *page,
869 unsigned nr_pages)
870 {
871 struct bio *bio = NULL;
872 unsigned page_idx;
873 sector_t last_block_in_bio = 0;
874 struct inode *inode = mapping->host;
875 const unsigned blkbits = inode->i_blkbits;
876 const unsigned blocksize = 1 << blkbits;
877 sector_t block_in_file;
878 sector_t last_block;
879 sector_t last_block_in_file;
880 sector_t block_nr;
881 struct block_device *bdev = inode->i_sb->s_bdev;
882 struct f2fs_map_blocks map;
883
884 map.m_pblk = 0;
885 map.m_lblk = 0;
886 map.m_len = 0;
887 map.m_flags = 0;
888
889 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
890
891 prefetchw(&page->flags);
892 if (pages) {
893 page = list_entry(pages->prev, struct page, lru);
894 list_del(&page->lru);
895 if (add_to_page_cache_lru(page, mapping,
896 page->index, GFP_KERNEL))
897 goto next_page;
898 }
899
900 block_in_file = (sector_t)page->index;
901 last_block = block_in_file + nr_pages;
902 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
903 blkbits;
904 if (last_block > last_block_in_file)
905 last_block = last_block_in_file;
906
907 /*
908 * Map blocks using the previous result first.
909 */
910 if ((map.m_flags & F2FS_MAP_MAPPED) &&
911 block_in_file > map.m_lblk &&
912 block_in_file < (map.m_lblk + map.m_len))
913 goto got_it;
914
915 /*
916 * Then do more f2fs_map_blocks() calls until we are
917 * done with this page.
918 */
919 map.m_flags = 0;
920
921 if (block_in_file < last_block) {
922 map.m_lblk = block_in_file;
923 map.m_len = last_block - block_in_file;
924
925 if (f2fs_map_blocks(inode, &map, 0,
926 F2FS_GET_BLOCK_READ))
927 goto set_error_page;
928 }
929 got_it:
930 if ((map.m_flags & F2FS_MAP_MAPPED)) {
931 block_nr = map.m_pblk + block_in_file - map.m_lblk;
932 SetPageMappedToDisk(page);
933
934 if (!PageUptodate(page) && !cleancache_get_page(page)) {
935 SetPageUptodate(page);
936 goto confused;
937 }
938 } else {
939 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
940 SetPageUptodate(page);
941 unlock_page(page);
942 goto next_page;
943 }
944
945 /*
946 * This page will go to BIO. Do we need to send this
947 * BIO off first?
948 */
949 if (bio && (last_block_in_bio != block_nr - 1)) {
950 submit_and_realloc:
951 submit_bio(READ, bio);
952 bio = NULL;
953 }
954 if (bio == NULL) {
955 struct f2fs_crypto_ctx *ctx = NULL;
956
957 if (f2fs_encrypted_inode(inode) &&
958 S_ISREG(inode->i_mode)) {
959
960 ctx = f2fs_get_crypto_ctx(inode);
961 if (IS_ERR(ctx))
962 goto set_error_page;
963
964 /* wait the page to be moved by cleaning */
965 f2fs_wait_on_encrypted_page_writeback(
966 F2FS_I_SB(inode), block_nr);
967 }
968
969 bio = bio_alloc(GFP_KERNEL,
970 min_t(int, nr_pages, BIO_MAX_PAGES));
971 if (!bio) {
972 if (ctx)
973 f2fs_release_crypto_ctx(ctx);
974 goto set_error_page;
975 }
976 bio->bi_bdev = bdev;
977 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
978 bio->bi_end_io = f2fs_read_end_io;
979 bio->bi_private = ctx;
980 }
981
982 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
983 goto submit_and_realloc;
984
985 last_block_in_bio = block_nr;
986 goto next_page;
987 set_error_page:
988 SetPageError(page);
989 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
990 unlock_page(page);
991 goto next_page;
992 confused:
993 if (bio) {
994 submit_bio(READ, bio);
995 bio = NULL;
996 }
997 unlock_page(page);
998 next_page:
999 if (pages)
1000 page_cache_release(page);
1001 }
1002 BUG_ON(pages && !list_empty(pages));
1003 if (bio)
1004 submit_bio(READ, bio);
1005 return 0;
1006 }
1007
1008 static int f2fs_read_data_page(struct file *file, struct page *page)
1009 {
1010 struct inode *inode = page->mapping->host;
1011 int ret = -EAGAIN;
1012
1013 trace_f2fs_readpage(page, DATA);
1014
1015 /* If the file has inline data, try to read it directly */
1016 if (f2fs_has_inline_data(inode))
1017 ret = f2fs_read_inline_data(inode, page);
1018 if (ret == -EAGAIN)
1019 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1020 return ret;
1021 }
1022
1023 static int f2fs_read_data_pages(struct file *file,
1024 struct address_space *mapping,
1025 struct list_head *pages, unsigned nr_pages)
1026 {
1027 struct inode *inode = file->f_mapping->host;
1028 struct page *page = list_entry(pages->prev, struct page, lru);
1029
1030 trace_f2fs_readpages(inode, page, nr_pages);
1031
1032 /* If the file has inline data, skip readpages */
1033 if (f2fs_has_inline_data(inode))
1034 return 0;
1035
1036 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1037 }
1038
1039 int do_write_data_page(struct f2fs_io_info *fio)
1040 {
1041 struct page *page = fio->page;
1042 struct inode *inode = page->mapping->host;
1043 struct dnode_of_data dn;
1044 int err = 0;
1045
1046 set_new_dnode(&dn, inode, NULL, NULL, 0);
1047 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1048 if (err)
1049 return err;
1050
1051 fio->blk_addr = dn.data_blkaddr;
1052
1053 /* This page is already truncated */
1054 if (fio->blk_addr == NULL_ADDR) {
1055 ClearPageUptodate(page);
1056 goto out_writepage;
1057 }
1058
1059 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1060
1061 /* wait for GCed encrypted page writeback */
1062 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1063 fio->blk_addr);
1064
1065 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1066 if (IS_ERR(fio->encrypted_page)) {
1067 err = PTR_ERR(fio->encrypted_page);
1068 goto out_writepage;
1069 }
1070 }
1071
1072 set_page_writeback(page);
1073
1074 /*
1075 * If current allocation needs SSR,
1076 * it had better in-place writes for updated data.
1077 */
1078 if (unlikely(fio->blk_addr != NEW_ADDR &&
1079 !is_cold_data(page) &&
1080 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1081 need_inplace_update(inode))) {
1082 rewrite_data_page(fio);
1083 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1084 trace_f2fs_do_write_data_page(page, IPU);
1085 } else {
1086 write_data_page(&dn, fio);
1087 set_data_blkaddr(&dn);
1088 f2fs_update_extent_cache(&dn);
1089 trace_f2fs_do_write_data_page(page, OPU);
1090 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1091 if (page->index == 0)
1092 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1093 }
1094 out_writepage:
1095 f2fs_put_dnode(&dn);
1096 return err;
1097 }
1098
1099 static int f2fs_write_data_page(struct page *page,
1100 struct writeback_control *wbc)
1101 {
1102 struct inode *inode = page->mapping->host;
1103 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1104 loff_t i_size = i_size_read(inode);
1105 const pgoff_t end_index = ((unsigned long long) i_size)
1106 >> PAGE_CACHE_SHIFT;
1107 unsigned offset = 0;
1108 bool need_balance_fs = false;
1109 int err = 0;
1110 struct f2fs_io_info fio = {
1111 .sbi = sbi,
1112 .type = DATA,
1113 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1114 .page = page,
1115 .encrypted_page = NULL,
1116 };
1117
1118 trace_f2fs_writepage(page, DATA);
1119
1120 if (page->index < end_index)
1121 goto write;
1122
1123 /*
1124 * If the offset is out-of-range of file size,
1125 * this page does not have to be written to disk.
1126 */
1127 offset = i_size & (PAGE_CACHE_SIZE - 1);
1128 if ((page->index >= end_index + 1) || !offset)
1129 goto out;
1130
1131 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1132 write:
1133 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1134 goto redirty_out;
1135 if (f2fs_is_drop_cache(inode))
1136 goto out;
1137 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1138 available_free_memory(sbi, BASE_CHECK))
1139 goto redirty_out;
1140
1141 /* Dentry blocks are controlled by checkpoint */
1142 if (S_ISDIR(inode->i_mode)) {
1143 if (unlikely(f2fs_cp_error(sbi)))
1144 goto redirty_out;
1145 err = do_write_data_page(&fio);
1146 goto done;
1147 }
1148
1149 /* we should bypass data pages to proceed the kworkder jobs */
1150 if (unlikely(f2fs_cp_error(sbi))) {
1151 SetPageError(page);
1152 goto out;
1153 }
1154
1155 if (!wbc->for_reclaim)
1156 need_balance_fs = true;
1157 else if (has_not_enough_free_secs(sbi, 0))
1158 goto redirty_out;
1159
1160 err = -EAGAIN;
1161 f2fs_lock_op(sbi);
1162 if (f2fs_has_inline_data(inode))
1163 err = f2fs_write_inline_data(inode, page);
1164 if (err == -EAGAIN)
1165 err = do_write_data_page(&fio);
1166 f2fs_unlock_op(sbi);
1167 done:
1168 if (err && err != -ENOENT)
1169 goto redirty_out;
1170
1171 clear_cold_data(page);
1172 out:
1173 inode_dec_dirty_pages(inode);
1174 if (err)
1175 ClearPageUptodate(page);
1176 unlock_page(page);
1177 f2fs_balance_fs(sbi, need_balance_fs);
1178 if (wbc->for_reclaim || unlikely(f2fs_cp_error(sbi))) {
1179 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1180 remove_dirty_inode(inode);
1181 }
1182 return 0;
1183
1184 redirty_out:
1185 redirty_page_for_writepage(wbc, page);
1186 return AOP_WRITEPAGE_ACTIVATE;
1187 }
1188
1189 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1190 void *data)
1191 {
1192 struct address_space *mapping = data;
1193 int ret = mapping->a_ops->writepage(page, wbc);
1194 mapping_set_error(mapping, ret);
1195 return ret;
1196 }
1197
1198 /*
1199 * This function was copied from write_cche_pages from mm/page-writeback.c.
1200 * The major change is making write step of cold data page separately from
1201 * warm/hot data page.
1202 */
1203 static int f2fs_write_cache_pages(struct address_space *mapping,
1204 struct writeback_control *wbc, writepage_t writepage,
1205 void *data)
1206 {
1207 int ret = 0;
1208 int done = 0;
1209 struct pagevec pvec;
1210 int nr_pages;
1211 pgoff_t uninitialized_var(writeback_index);
1212 pgoff_t index;
1213 pgoff_t end; /* Inclusive */
1214 pgoff_t done_index;
1215 int cycled;
1216 int range_whole = 0;
1217 int tag;
1218 int step = 0;
1219
1220 pagevec_init(&pvec, 0);
1221 next:
1222 if (wbc->range_cyclic) {
1223 writeback_index = mapping->writeback_index; /* prev offset */
1224 index = writeback_index;
1225 if (index == 0)
1226 cycled = 1;
1227 else
1228 cycled = 0;
1229 end = -1;
1230 } else {
1231 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1232 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1233 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1234 range_whole = 1;
1235 cycled = 1; /* ignore range_cyclic tests */
1236 }
1237 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1238 tag = PAGECACHE_TAG_TOWRITE;
1239 else
1240 tag = PAGECACHE_TAG_DIRTY;
1241 retry:
1242 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1243 tag_pages_for_writeback(mapping, index, end);
1244 done_index = index;
1245 while (!done && (index <= end)) {
1246 int i;
1247
1248 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1249 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1250 if (nr_pages == 0)
1251 break;
1252
1253 for (i = 0; i < nr_pages; i++) {
1254 struct page *page = pvec.pages[i];
1255
1256 if (page->index > end) {
1257 done = 1;
1258 break;
1259 }
1260
1261 done_index = page->index;
1262
1263 lock_page(page);
1264
1265 if (unlikely(page->mapping != mapping)) {
1266 continue_unlock:
1267 unlock_page(page);
1268 continue;
1269 }
1270
1271 if (!PageDirty(page)) {
1272 /* someone wrote it for us */
1273 goto continue_unlock;
1274 }
1275
1276 if (step == is_cold_data(page))
1277 goto continue_unlock;
1278
1279 if (PageWriteback(page)) {
1280 if (wbc->sync_mode != WB_SYNC_NONE)
1281 f2fs_wait_on_page_writeback(page, DATA);
1282 else
1283 goto continue_unlock;
1284 }
1285
1286 BUG_ON(PageWriteback(page));
1287 if (!clear_page_dirty_for_io(page))
1288 goto continue_unlock;
1289
1290 ret = (*writepage)(page, wbc, data);
1291 if (unlikely(ret)) {
1292 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1293 unlock_page(page);
1294 ret = 0;
1295 } else {
1296 done_index = page->index + 1;
1297 done = 1;
1298 break;
1299 }
1300 }
1301
1302 if (--wbc->nr_to_write <= 0 &&
1303 wbc->sync_mode == WB_SYNC_NONE) {
1304 done = 1;
1305 break;
1306 }
1307 }
1308 pagevec_release(&pvec);
1309 cond_resched();
1310 }
1311
1312 if (step < 1) {
1313 step++;
1314 goto next;
1315 }
1316
1317 if (!cycled && !done) {
1318 cycled = 1;
1319 index = 0;
1320 end = writeback_index - 1;
1321 goto retry;
1322 }
1323 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1324 mapping->writeback_index = done_index;
1325
1326 return ret;
1327 }
1328
1329 static int f2fs_write_data_pages(struct address_space *mapping,
1330 struct writeback_control *wbc)
1331 {
1332 struct inode *inode = mapping->host;
1333 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1334 bool locked = false;
1335 int ret;
1336 long diff;
1337
1338 trace_f2fs_writepages(mapping->host, wbc, DATA);
1339
1340 /* deal with chardevs and other special file */
1341 if (!mapping->a_ops->writepage)
1342 return 0;
1343
1344 /* skip writing if there is no dirty page in this inode */
1345 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1346 return 0;
1347
1348 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1349 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1350 available_free_memory(sbi, DIRTY_DENTS))
1351 goto skip_write;
1352
1353 /* skip writing during file defragment */
1354 if (is_inode_flag_set(F2FS_I(inode), FI_DO_DEFRAG))
1355 goto skip_write;
1356
1357 /* during POR, we don't need to trigger writepage at all. */
1358 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1359 goto skip_write;
1360
1361 diff = nr_pages_to_write(sbi, DATA, wbc);
1362
1363 if (!S_ISDIR(inode->i_mode)) {
1364 mutex_lock(&sbi->writepages);
1365 locked = true;
1366 }
1367 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1368 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1369 if (locked)
1370 mutex_unlock(&sbi->writepages);
1371
1372 remove_dirty_inode(inode);
1373
1374 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1375 return ret;
1376
1377 skip_write:
1378 wbc->pages_skipped += get_dirty_pages(inode);
1379 return 0;
1380 }
1381
1382 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1383 {
1384 struct inode *inode = mapping->host;
1385 loff_t i_size = i_size_read(inode);
1386
1387 if (to > i_size) {
1388 truncate_pagecache(inode, i_size);
1389 truncate_blocks(inode, i_size, true);
1390 }
1391 }
1392
1393 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1394 struct page *page, loff_t pos, unsigned len,
1395 block_t *blk_addr, bool *node_changed)
1396 {
1397 struct inode *inode = page->mapping->host;
1398 pgoff_t index = page->index;
1399 struct dnode_of_data dn;
1400 struct page *ipage;
1401 bool locked = false;
1402 struct extent_info ei;
1403 int err = 0;
1404
1405 if (f2fs_has_inline_data(inode) ||
1406 (pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1407 f2fs_lock_op(sbi);
1408 locked = true;
1409 }
1410 restart:
1411 /* check inline_data */
1412 ipage = get_node_page(sbi, inode->i_ino);
1413 if (IS_ERR(ipage)) {
1414 err = PTR_ERR(ipage);
1415 goto unlock_out;
1416 }
1417
1418 set_new_dnode(&dn, inode, ipage, ipage, 0);
1419
1420 if (f2fs_has_inline_data(inode)) {
1421 if (pos + len <= MAX_INLINE_DATA) {
1422 read_inline_data(page, ipage);
1423 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1424 sync_inode_page(&dn);
1425 } else {
1426 err = f2fs_convert_inline_page(&dn, page);
1427 if (err)
1428 goto out;
1429 if (dn.data_blkaddr == NULL_ADDR)
1430 err = f2fs_get_block(&dn, index);
1431 }
1432 } else if (locked) {
1433 err = f2fs_get_block(&dn, index);
1434 } else {
1435 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1436 dn.data_blkaddr = ei.blk + index - ei.fofs;
1437 } else {
1438 bool restart = false;
1439
1440 /* hole case */
1441 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1442 if (err || (!err && dn.data_blkaddr == NULL_ADDR))
1443 restart = true;
1444 if (restart) {
1445 f2fs_put_dnode(&dn);
1446 f2fs_lock_op(sbi);
1447 locked = true;
1448 goto restart;
1449 }
1450 }
1451 }
1452
1453 /* convert_inline_page can make node_changed */
1454 *blk_addr = dn.data_blkaddr;
1455 *node_changed = dn.node_changed;
1456 out:
1457 f2fs_put_dnode(&dn);
1458 unlock_out:
1459 if (locked)
1460 f2fs_unlock_op(sbi);
1461 return err;
1462 }
1463
1464 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1465 loff_t pos, unsigned len, unsigned flags,
1466 struct page **pagep, void **fsdata)
1467 {
1468 struct inode *inode = mapping->host;
1469 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1470 struct page *page = NULL;
1471 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1472 bool need_balance = false;
1473 block_t blkaddr = NULL_ADDR;
1474 int err = 0;
1475
1476 trace_f2fs_write_begin(inode, pos, len, flags);
1477
1478 /*
1479 * We should check this at this moment to avoid deadlock on inode page
1480 * and #0 page. The locking rule for inline_data conversion should be:
1481 * lock_page(page #0) -> lock_page(inode_page)
1482 */
1483 if (index != 0) {
1484 err = f2fs_convert_inline_inode(inode);
1485 if (err)
1486 goto fail;
1487 }
1488 repeat:
1489 page = grab_cache_page_write_begin(mapping, index, flags);
1490 if (!page) {
1491 err = -ENOMEM;
1492 goto fail;
1493 }
1494
1495 *pagep = page;
1496
1497 err = prepare_write_begin(sbi, page, pos, len,
1498 &blkaddr, &need_balance);
1499 if (err)
1500 goto fail;
1501
1502 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1503 unlock_page(page);
1504 f2fs_balance_fs(sbi, true);
1505 lock_page(page);
1506 if (page->mapping != mapping) {
1507 /* The page got truncated from under us */
1508 f2fs_put_page(page, 1);
1509 goto repeat;
1510 }
1511 }
1512
1513 f2fs_wait_on_page_writeback(page, DATA);
1514
1515 /* wait for GCed encrypted page writeback */
1516 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1517 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1518
1519 if (len == PAGE_CACHE_SIZE)
1520 goto out_update;
1521 if (PageUptodate(page))
1522 goto out_clear;
1523
1524 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1525 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1526 unsigned end = start + len;
1527
1528 /* Reading beyond i_size is simple: memset to zero */
1529 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1530 goto out_update;
1531 }
1532
1533 if (blkaddr == NEW_ADDR) {
1534 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1535 } else {
1536 struct f2fs_io_info fio = {
1537 .sbi = sbi,
1538 .type = DATA,
1539 .rw = READ_SYNC,
1540 .blk_addr = blkaddr,
1541 .page = page,
1542 .encrypted_page = NULL,
1543 };
1544 err = f2fs_submit_page_bio(&fio);
1545 if (err)
1546 goto fail;
1547
1548 lock_page(page);
1549 if (unlikely(!PageUptodate(page))) {
1550 err = -EIO;
1551 goto fail;
1552 }
1553 if (unlikely(page->mapping != mapping)) {
1554 f2fs_put_page(page, 1);
1555 goto repeat;
1556 }
1557
1558 /* avoid symlink page */
1559 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1560 err = f2fs_decrypt_one(inode, page);
1561 if (err)
1562 goto fail;
1563 }
1564 }
1565 out_update:
1566 SetPageUptodate(page);
1567 out_clear:
1568 clear_cold_data(page);
1569 return 0;
1570
1571 fail:
1572 f2fs_put_page(page, 1);
1573 f2fs_write_failed(mapping, pos + len);
1574 return err;
1575 }
1576
1577 static int f2fs_write_end(struct file *file,
1578 struct address_space *mapping,
1579 loff_t pos, unsigned len, unsigned copied,
1580 struct page *page, void *fsdata)
1581 {
1582 struct inode *inode = page->mapping->host;
1583
1584 trace_f2fs_write_end(inode, pos, len, copied);
1585
1586 set_page_dirty(page);
1587
1588 if (pos + copied > i_size_read(inode)) {
1589 i_size_write(inode, pos + copied);
1590 mark_inode_dirty(inode);
1591 update_inode_page(inode);
1592 }
1593
1594 f2fs_put_page(page, 1);
1595 return copied;
1596 }
1597
1598 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1599 loff_t offset)
1600 {
1601 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1602
1603 if (offset & blocksize_mask)
1604 return -EINVAL;
1605
1606 if (iov_iter_alignment(iter) & blocksize_mask)
1607 return -EINVAL;
1608
1609 return 0;
1610 }
1611
1612 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1613 loff_t offset)
1614 {
1615 struct file *file = iocb->ki_filp;
1616 struct address_space *mapping = file->f_mapping;
1617 struct inode *inode = mapping->host;
1618 size_t count = iov_iter_count(iter);
1619 int err;
1620
1621 /* we don't need to use inline_data strictly */
1622 err = f2fs_convert_inline_inode(inode);
1623 if (err)
1624 return err;
1625
1626 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1627 return 0;
1628
1629 err = check_direct_IO(inode, iter, offset);
1630 if (err)
1631 return err;
1632
1633 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1634
1635 if (iov_iter_rw(iter) == WRITE) {
1636 err = __allocate_data_blocks(inode, offset, count);
1637 if (err)
1638 goto out;
1639 }
1640
1641 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1642 out:
1643 if (err < 0 && iov_iter_rw(iter) == WRITE)
1644 f2fs_write_failed(mapping, offset + count);
1645
1646 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1647
1648 return err;
1649 }
1650
1651 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1652 unsigned int length)
1653 {
1654 struct inode *inode = page->mapping->host;
1655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1656
1657 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1658 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1659 return;
1660
1661 if (PageDirty(page)) {
1662 if (inode->i_ino == F2FS_META_INO(sbi))
1663 dec_page_count(sbi, F2FS_DIRTY_META);
1664 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1665 dec_page_count(sbi, F2FS_DIRTY_NODES);
1666 else
1667 inode_dec_dirty_pages(inode);
1668 }
1669
1670 /* This is atomic written page, keep Private */
1671 if (IS_ATOMIC_WRITTEN_PAGE(page))
1672 return;
1673
1674 ClearPagePrivate(page);
1675 }
1676
1677 int f2fs_release_page(struct page *page, gfp_t wait)
1678 {
1679 /* If this is dirty page, keep PagePrivate */
1680 if (PageDirty(page))
1681 return 0;
1682
1683 /* This is atomic written page, keep Private */
1684 if (IS_ATOMIC_WRITTEN_PAGE(page))
1685 return 0;
1686
1687 ClearPagePrivate(page);
1688 return 1;
1689 }
1690
1691 static int f2fs_set_data_page_dirty(struct page *page)
1692 {
1693 struct address_space *mapping = page->mapping;
1694 struct inode *inode = mapping->host;
1695
1696 trace_f2fs_set_page_dirty(page, DATA);
1697
1698 SetPageUptodate(page);
1699
1700 if (f2fs_is_atomic_file(inode)) {
1701 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1702 register_inmem_page(inode, page);
1703 return 1;
1704 }
1705 /*
1706 * Previously, this page has been registered, we just
1707 * return here.
1708 */
1709 return 0;
1710 }
1711
1712 if (!PageDirty(page)) {
1713 __set_page_dirty_nobuffers(page);
1714 update_dirty_page(inode, page);
1715 return 1;
1716 }
1717 return 0;
1718 }
1719
1720 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1721 {
1722 struct inode *inode = mapping->host;
1723
1724 if (f2fs_has_inline_data(inode))
1725 return 0;
1726
1727 /* make sure allocating whole blocks */
1728 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1729 filemap_write_and_wait(mapping);
1730
1731 return generic_block_bmap(mapping, block, get_data_block_bmap);
1732 }
1733
1734 const struct address_space_operations f2fs_dblock_aops = {
1735 .readpage = f2fs_read_data_page,
1736 .readpages = f2fs_read_data_pages,
1737 .writepage = f2fs_write_data_page,
1738 .writepages = f2fs_write_data_pages,
1739 .write_begin = f2fs_write_begin,
1740 .write_end = f2fs_write_end,
1741 .set_page_dirty = f2fs_set_data_page_dirty,
1742 .invalidatepage = f2fs_invalidate_page,
1743 .releasepage = f2fs_release_page,
1744 .direct_IO = f2fs_direct_IO,
1745 .bmap = f2fs_bmap,
1746 };
This page took 0.0961379999999999 seconds and 5 git commands to generate.