f2fs: fix ERR_PTR returned by bio
[deliverable/linux.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31
32 static void f2fs_read_end_io(struct bio *bio)
33 {
34 struct bio_vec *bvec;
35 int i;
36
37 if (f2fs_bio_encrypted(bio)) {
38 if (bio->bi_error) {
39 fscrypt_release_ctx(bio->bi_private);
40 } else {
41 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
42 return;
43 }
44 }
45
46 bio_for_each_segment_all(bvec, bio, i) {
47 struct page *page = bvec->bv_page;
48
49 if (!bio->bi_error) {
50 if (!PageUptodate(page))
51 SetPageUptodate(page);
52 } else {
53 ClearPageUptodate(page);
54 SetPageError(page);
55 }
56 unlock_page(page);
57 }
58 bio_put(bio);
59 }
60
61 static void f2fs_write_end_io(struct bio *bio)
62 {
63 struct f2fs_sb_info *sbi = bio->bi_private;
64 struct bio_vec *bvec;
65 int i;
66
67 bio_for_each_segment_all(bvec, bio, i) {
68 struct page *page = bvec->bv_page;
69
70 fscrypt_pullback_bio_page(&page, true);
71
72 if (unlikely(bio->bi_error)) {
73 set_bit(AS_EIO, &page->mapping->flags);
74 f2fs_stop_checkpoint(sbi, true);
75 }
76 end_page_writeback(page);
77 }
78 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
79 wq_has_sleeper(&sbi->cp_wait))
80 wake_up(&sbi->cp_wait);
81
82 bio_put(bio);
83 }
84
85 /*
86 * Low-level block read/write IO operations.
87 */
88 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
89 int npages, bool is_read)
90 {
91 struct bio *bio;
92
93 bio = f2fs_bio_alloc(npages);
94
95 bio->bi_bdev = sbi->sb->s_bdev;
96 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
97 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
98 bio->bi_private = is_read ? NULL : sbi;
99
100 return bio;
101 }
102
103 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw,
104 struct bio *bio, enum page_type type)
105 {
106 if (!is_read_io(rw)) {
107 atomic_inc(&sbi->nr_wb_bios);
108 if (f2fs_sb_mounted_hmsmr(sbi->sb) &&
109 current->plug && (type == DATA || type == NODE))
110 blk_finish_plug(current->plug);
111 }
112 submit_bio(rw, bio);
113 }
114
115 static void __submit_merged_bio(struct f2fs_bio_info *io)
116 {
117 struct f2fs_io_info *fio = &io->fio;
118
119 if (!io->bio)
120 return;
121
122 if (is_read_io(fio->rw))
123 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
124 else
125 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
126
127 __submit_bio(io->sbi, fio->rw, io->bio, fio->type);
128 io->bio = NULL;
129 }
130
131 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
132 struct page *page, nid_t ino)
133 {
134 struct bio_vec *bvec;
135 struct page *target;
136 int i;
137
138 if (!io->bio)
139 return false;
140
141 if (!inode && !page && !ino)
142 return true;
143
144 bio_for_each_segment_all(bvec, io->bio, i) {
145
146 if (bvec->bv_page->mapping)
147 target = bvec->bv_page;
148 else
149 target = fscrypt_control_page(bvec->bv_page);
150
151 if (inode && inode == target->mapping->host)
152 return true;
153 if (page && page == target)
154 return true;
155 if (ino && ino == ino_of_node(target))
156 return true;
157 }
158
159 return false;
160 }
161
162 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
163 struct page *page, nid_t ino,
164 enum page_type type)
165 {
166 enum page_type btype = PAGE_TYPE_OF_BIO(type);
167 struct f2fs_bio_info *io = &sbi->write_io[btype];
168 bool ret;
169
170 down_read(&io->io_rwsem);
171 ret = __has_merged_page(io, inode, page, ino);
172 up_read(&io->io_rwsem);
173 return ret;
174 }
175
176 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
177 struct inode *inode, struct page *page,
178 nid_t ino, enum page_type type, int rw)
179 {
180 enum page_type btype = PAGE_TYPE_OF_BIO(type);
181 struct f2fs_bio_info *io;
182
183 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
184
185 down_write(&io->io_rwsem);
186
187 if (!__has_merged_page(io, inode, page, ino))
188 goto out;
189
190 /* change META to META_FLUSH in the checkpoint procedure */
191 if (type >= META_FLUSH) {
192 io->fio.type = META_FLUSH;
193 if (test_opt(sbi, NOBARRIER))
194 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
195 else
196 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
197 }
198 __submit_merged_bio(io);
199 out:
200 up_write(&io->io_rwsem);
201 }
202
203 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
204 int rw)
205 {
206 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
207 }
208
209 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
210 struct inode *inode, struct page *page,
211 nid_t ino, enum page_type type, int rw)
212 {
213 if (has_merged_page(sbi, inode, page, ino, type))
214 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
215 }
216
217 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
218 {
219 f2fs_submit_merged_bio(sbi, DATA, WRITE);
220 f2fs_submit_merged_bio(sbi, NODE, WRITE);
221 f2fs_submit_merged_bio(sbi, META, WRITE);
222 }
223
224 /*
225 * Fill the locked page with data located in the block address.
226 * Return unlocked page.
227 */
228 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
229 {
230 struct bio *bio;
231 struct page *page = fio->encrypted_page ?
232 fio->encrypted_page : fio->page;
233
234 trace_f2fs_submit_page_bio(page, fio);
235 f2fs_trace_ios(fio, 0);
236
237 /* Allocate a new bio */
238 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
239
240 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
241 bio_put(bio);
242 return -EFAULT;
243 }
244
245 __submit_bio(fio->sbi, fio->rw, bio, fio->type);
246 return 0;
247 }
248
249 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
250 {
251 struct f2fs_sb_info *sbi = fio->sbi;
252 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
253 struct f2fs_bio_info *io;
254 bool is_read = is_read_io(fio->rw);
255 struct page *bio_page;
256
257 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
258
259 if (fio->old_blkaddr != NEW_ADDR)
260 verify_block_addr(sbi, fio->old_blkaddr);
261 verify_block_addr(sbi, fio->new_blkaddr);
262
263 down_write(&io->io_rwsem);
264
265 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
266 io->fio.rw != fio->rw))
267 __submit_merged_bio(io);
268 alloc_new:
269 if (io->bio == NULL) {
270 int bio_blocks = MAX_BIO_BLOCKS(sbi);
271
272 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
273 bio_blocks, is_read);
274 io->fio = *fio;
275 }
276
277 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
278
279 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
280 PAGE_SIZE) {
281 __submit_merged_bio(io);
282 goto alloc_new;
283 }
284
285 io->last_block_in_bio = fio->new_blkaddr;
286 f2fs_trace_ios(fio, 0);
287
288 up_write(&io->io_rwsem);
289 trace_f2fs_submit_page_mbio(fio->page, fio);
290 }
291
292 static void __set_data_blkaddr(struct dnode_of_data *dn)
293 {
294 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
295 __le32 *addr_array;
296
297 /* Get physical address of data block */
298 addr_array = blkaddr_in_node(rn);
299 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
300 }
301
302 /*
303 * Lock ordering for the change of data block address:
304 * ->data_page
305 * ->node_page
306 * update block addresses in the node page
307 */
308 void set_data_blkaddr(struct dnode_of_data *dn)
309 {
310 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
311 __set_data_blkaddr(dn);
312 if (set_page_dirty(dn->node_page))
313 dn->node_changed = true;
314 }
315
316 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
317 {
318 dn->data_blkaddr = blkaddr;
319 set_data_blkaddr(dn);
320 f2fs_update_extent_cache(dn);
321 }
322
323 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
324 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
325 {
326 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
327
328 if (!count)
329 return 0;
330
331 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
332 return -EPERM;
333 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
334 return -ENOSPC;
335
336 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
337 dn->ofs_in_node, count);
338
339 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
340
341 for (; count > 0; dn->ofs_in_node++) {
342 block_t blkaddr =
343 datablock_addr(dn->node_page, dn->ofs_in_node);
344 if (blkaddr == NULL_ADDR) {
345 dn->data_blkaddr = NEW_ADDR;
346 __set_data_blkaddr(dn);
347 count--;
348 }
349 }
350
351 if (set_page_dirty(dn->node_page))
352 dn->node_changed = true;
353 return 0;
354 }
355
356 /* Should keep dn->ofs_in_node unchanged */
357 int reserve_new_block(struct dnode_of_data *dn)
358 {
359 unsigned int ofs_in_node = dn->ofs_in_node;
360 int ret;
361
362 ret = reserve_new_blocks(dn, 1);
363 dn->ofs_in_node = ofs_in_node;
364 return ret;
365 }
366
367 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
368 {
369 bool need_put = dn->inode_page ? false : true;
370 int err;
371
372 err = get_dnode_of_data(dn, index, ALLOC_NODE);
373 if (err)
374 return err;
375
376 if (dn->data_blkaddr == NULL_ADDR)
377 err = reserve_new_block(dn);
378 if (err || need_put)
379 f2fs_put_dnode(dn);
380 return err;
381 }
382
383 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
384 {
385 struct extent_info ei;
386 struct inode *inode = dn->inode;
387
388 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
389 dn->data_blkaddr = ei.blk + index - ei.fofs;
390 return 0;
391 }
392
393 return f2fs_reserve_block(dn, index);
394 }
395
396 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
397 int rw, bool for_write)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 struct dnode_of_data dn;
401 struct page *page;
402 struct extent_info ei;
403 int err;
404 struct f2fs_io_info fio = {
405 .sbi = F2FS_I_SB(inode),
406 .type = DATA,
407 .rw = rw,
408 .encrypted_page = NULL,
409 };
410
411 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
412 return read_mapping_page(mapping, index, NULL);
413
414 page = f2fs_grab_cache_page(mapping, index, for_write);
415 if (!page)
416 return ERR_PTR(-ENOMEM);
417
418 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
419 dn.data_blkaddr = ei.blk + index - ei.fofs;
420 goto got_it;
421 }
422
423 set_new_dnode(&dn, inode, NULL, NULL, 0);
424 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
425 if (err)
426 goto put_err;
427 f2fs_put_dnode(&dn);
428
429 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
430 err = -ENOENT;
431 goto put_err;
432 }
433 got_it:
434 if (PageUptodate(page)) {
435 unlock_page(page);
436 return page;
437 }
438
439 /*
440 * A new dentry page is allocated but not able to be written, since its
441 * new inode page couldn't be allocated due to -ENOSPC.
442 * In such the case, its blkaddr can be remained as NEW_ADDR.
443 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
444 */
445 if (dn.data_blkaddr == NEW_ADDR) {
446 zero_user_segment(page, 0, PAGE_SIZE);
447 if (!PageUptodate(page))
448 SetPageUptodate(page);
449 unlock_page(page);
450 return page;
451 }
452
453 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
454 fio.page = page;
455 err = f2fs_submit_page_bio(&fio);
456 if (err)
457 goto put_err;
458 return page;
459
460 put_err:
461 f2fs_put_page(page, 1);
462 return ERR_PTR(err);
463 }
464
465 struct page *find_data_page(struct inode *inode, pgoff_t index)
466 {
467 struct address_space *mapping = inode->i_mapping;
468 struct page *page;
469
470 page = find_get_page(mapping, index);
471 if (page && PageUptodate(page))
472 return page;
473 f2fs_put_page(page, 0);
474
475 page = get_read_data_page(inode, index, READ_SYNC, false);
476 if (IS_ERR(page))
477 return page;
478
479 if (PageUptodate(page))
480 return page;
481
482 wait_on_page_locked(page);
483 if (unlikely(!PageUptodate(page))) {
484 f2fs_put_page(page, 0);
485 return ERR_PTR(-EIO);
486 }
487 return page;
488 }
489
490 /*
491 * If it tries to access a hole, return an error.
492 * Because, the callers, functions in dir.c and GC, should be able to know
493 * whether this page exists or not.
494 */
495 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
496 bool for_write)
497 {
498 struct address_space *mapping = inode->i_mapping;
499 struct page *page;
500 repeat:
501 page = get_read_data_page(inode, index, READ_SYNC, for_write);
502 if (IS_ERR(page))
503 return page;
504
505 /* wait for read completion */
506 lock_page(page);
507 if (unlikely(page->mapping != mapping)) {
508 f2fs_put_page(page, 1);
509 goto repeat;
510 }
511 if (unlikely(!PageUptodate(page))) {
512 f2fs_put_page(page, 1);
513 return ERR_PTR(-EIO);
514 }
515 return page;
516 }
517
518 /*
519 * Caller ensures that this data page is never allocated.
520 * A new zero-filled data page is allocated in the page cache.
521 *
522 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
523 * f2fs_unlock_op().
524 * Note that, ipage is set only by make_empty_dir, and if any error occur,
525 * ipage should be released by this function.
526 */
527 struct page *get_new_data_page(struct inode *inode,
528 struct page *ipage, pgoff_t index, bool new_i_size)
529 {
530 struct address_space *mapping = inode->i_mapping;
531 struct page *page;
532 struct dnode_of_data dn;
533 int err;
534
535 page = f2fs_grab_cache_page(mapping, index, true);
536 if (!page) {
537 /*
538 * before exiting, we should make sure ipage will be released
539 * if any error occur.
540 */
541 f2fs_put_page(ipage, 1);
542 return ERR_PTR(-ENOMEM);
543 }
544
545 set_new_dnode(&dn, inode, ipage, NULL, 0);
546 err = f2fs_reserve_block(&dn, index);
547 if (err) {
548 f2fs_put_page(page, 1);
549 return ERR_PTR(err);
550 }
551 if (!ipage)
552 f2fs_put_dnode(&dn);
553
554 if (PageUptodate(page))
555 goto got_it;
556
557 if (dn.data_blkaddr == NEW_ADDR) {
558 zero_user_segment(page, 0, PAGE_SIZE);
559 if (!PageUptodate(page))
560 SetPageUptodate(page);
561 } else {
562 f2fs_put_page(page, 1);
563
564 /* if ipage exists, blkaddr should be NEW_ADDR */
565 f2fs_bug_on(F2FS_I_SB(inode), ipage);
566 page = get_lock_data_page(inode, index, true);
567 if (IS_ERR(page))
568 return page;
569 }
570 got_it:
571 if (new_i_size && i_size_read(inode) <
572 ((loff_t)(index + 1) << PAGE_SHIFT))
573 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
574 return page;
575 }
576
577 static int __allocate_data_block(struct dnode_of_data *dn)
578 {
579 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
580 struct f2fs_summary sum;
581 struct node_info ni;
582 int seg = CURSEG_WARM_DATA;
583 pgoff_t fofs;
584 blkcnt_t count = 1;
585
586 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
587 return -EPERM;
588
589 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
590 if (dn->data_blkaddr == NEW_ADDR)
591 goto alloc;
592
593 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
594 return -ENOSPC;
595
596 alloc:
597 get_node_info(sbi, dn->nid, &ni);
598 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
599
600 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
601 seg = CURSEG_DIRECT_IO;
602
603 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
604 &sum, seg);
605 set_data_blkaddr(dn);
606
607 /* update i_size */
608 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
609 dn->ofs_in_node;
610 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
611 f2fs_i_size_write(dn->inode,
612 ((loff_t)(fofs + 1) << PAGE_SHIFT));
613 return 0;
614 }
615
616 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
617 {
618 struct inode *inode = file_inode(iocb->ki_filp);
619 struct f2fs_map_blocks map;
620 ssize_t ret = 0;
621
622 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
623 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
624 map.m_next_pgofs = NULL;
625
626 if (f2fs_encrypted_inode(inode))
627 return 0;
628
629 if (iocb->ki_flags & IOCB_DIRECT) {
630 ret = f2fs_convert_inline_inode(inode);
631 if (ret)
632 return ret;
633 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
634 }
635 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
636 ret = f2fs_convert_inline_inode(inode);
637 if (ret)
638 return ret;
639 }
640 if (!f2fs_has_inline_data(inode))
641 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
642 return ret;
643 }
644
645 /*
646 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
647 * f2fs_map_blocks structure.
648 * If original data blocks are allocated, then give them to blockdev.
649 * Otherwise,
650 * a. preallocate requested block addresses
651 * b. do not use extent cache for better performance
652 * c. give the block addresses to blockdev
653 */
654 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
655 int create, int flag)
656 {
657 unsigned int maxblocks = map->m_len;
658 struct dnode_of_data dn;
659 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
660 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
661 pgoff_t pgofs, end_offset, end;
662 int err = 0, ofs = 1;
663 unsigned int ofs_in_node, last_ofs_in_node;
664 blkcnt_t prealloc;
665 struct extent_info ei;
666 bool allocated = false;
667 block_t blkaddr;
668
669 map->m_len = 0;
670 map->m_flags = 0;
671
672 /* it only supports block size == page size */
673 pgofs = (pgoff_t)map->m_lblk;
674 end = pgofs + maxblocks;
675
676 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
677 map->m_pblk = ei.blk + pgofs - ei.fofs;
678 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
679 map->m_flags = F2FS_MAP_MAPPED;
680 goto out;
681 }
682
683 next_dnode:
684 if (create)
685 f2fs_lock_op(sbi);
686
687 /* When reading holes, we need its node page */
688 set_new_dnode(&dn, inode, NULL, NULL, 0);
689 err = get_dnode_of_data(&dn, pgofs, mode);
690 if (err) {
691 if (flag == F2FS_GET_BLOCK_BMAP)
692 map->m_pblk = 0;
693 if (err == -ENOENT) {
694 err = 0;
695 if (map->m_next_pgofs)
696 *map->m_next_pgofs =
697 get_next_page_offset(&dn, pgofs);
698 }
699 goto unlock_out;
700 }
701
702 prealloc = 0;
703 ofs_in_node = dn.ofs_in_node;
704 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
705
706 next_block:
707 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
708
709 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
710 if (create) {
711 if (unlikely(f2fs_cp_error(sbi))) {
712 err = -EIO;
713 goto sync_out;
714 }
715 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
716 if (blkaddr == NULL_ADDR) {
717 prealloc++;
718 last_ofs_in_node = dn.ofs_in_node;
719 }
720 } else {
721 err = __allocate_data_block(&dn);
722 if (!err) {
723 set_inode_flag(inode, FI_APPEND_WRITE);
724 allocated = true;
725 }
726 }
727 if (err)
728 goto sync_out;
729 map->m_flags = F2FS_MAP_NEW;
730 blkaddr = dn.data_blkaddr;
731 } else {
732 if (flag == F2FS_GET_BLOCK_BMAP) {
733 map->m_pblk = 0;
734 goto sync_out;
735 }
736 if (flag == F2FS_GET_BLOCK_FIEMAP &&
737 blkaddr == NULL_ADDR) {
738 if (map->m_next_pgofs)
739 *map->m_next_pgofs = pgofs + 1;
740 }
741 if (flag != F2FS_GET_BLOCK_FIEMAP ||
742 blkaddr != NEW_ADDR)
743 goto sync_out;
744 }
745 }
746
747 if (flag == F2FS_GET_BLOCK_PRE_AIO)
748 goto skip;
749
750 if (map->m_len == 0) {
751 /* preallocated unwritten block should be mapped for fiemap. */
752 if (blkaddr == NEW_ADDR)
753 map->m_flags |= F2FS_MAP_UNWRITTEN;
754 map->m_flags |= F2FS_MAP_MAPPED;
755
756 map->m_pblk = blkaddr;
757 map->m_len = 1;
758 } else if ((map->m_pblk != NEW_ADDR &&
759 blkaddr == (map->m_pblk + ofs)) ||
760 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
761 flag == F2FS_GET_BLOCK_PRE_DIO) {
762 ofs++;
763 map->m_len++;
764 } else {
765 goto sync_out;
766 }
767
768 skip:
769 dn.ofs_in_node++;
770 pgofs++;
771
772 /* preallocate blocks in batch for one dnode page */
773 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
774 (pgofs == end || dn.ofs_in_node == end_offset)) {
775
776 dn.ofs_in_node = ofs_in_node;
777 err = reserve_new_blocks(&dn, prealloc);
778 if (err)
779 goto sync_out;
780
781 map->m_len += dn.ofs_in_node - ofs_in_node;
782 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
783 err = -ENOSPC;
784 goto sync_out;
785 }
786 dn.ofs_in_node = end_offset;
787 }
788
789 if (pgofs >= end)
790 goto sync_out;
791 else if (dn.ofs_in_node < end_offset)
792 goto next_block;
793
794 f2fs_put_dnode(&dn);
795
796 if (create) {
797 f2fs_unlock_op(sbi);
798 f2fs_balance_fs(sbi, allocated);
799 }
800 allocated = false;
801 goto next_dnode;
802
803 sync_out:
804 f2fs_put_dnode(&dn);
805 unlock_out:
806 if (create) {
807 f2fs_unlock_op(sbi);
808 f2fs_balance_fs(sbi, allocated);
809 }
810 out:
811 trace_f2fs_map_blocks(inode, map, err);
812 return err;
813 }
814
815 static int __get_data_block(struct inode *inode, sector_t iblock,
816 struct buffer_head *bh, int create, int flag,
817 pgoff_t *next_pgofs)
818 {
819 struct f2fs_map_blocks map;
820 int ret;
821
822 map.m_lblk = iblock;
823 map.m_len = bh->b_size >> inode->i_blkbits;
824 map.m_next_pgofs = next_pgofs;
825
826 ret = f2fs_map_blocks(inode, &map, create, flag);
827 if (!ret) {
828 map_bh(bh, inode->i_sb, map.m_pblk);
829 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
830 bh->b_size = map.m_len << inode->i_blkbits;
831 }
832 return ret;
833 }
834
835 static int get_data_block(struct inode *inode, sector_t iblock,
836 struct buffer_head *bh_result, int create, int flag,
837 pgoff_t *next_pgofs)
838 {
839 return __get_data_block(inode, iblock, bh_result, create,
840 flag, next_pgofs);
841 }
842
843 static int get_data_block_dio(struct inode *inode, sector_t iblock,
844 struct buffer_head *bh_result, int create)
845 {
846 return __get_data_block(inode, iblock, bh_result, create,
847 F2FS_GET_BLOCK_DIO, NULL);
848 }
849
850 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
851 struct buffer_head *bh_result, int create)
852 {
853 /* Block number less than F2FS MAX BLOCKS */
854 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
855 return -EFBIG;
856
857 return __get_data_block(inode, iblock, bh_result, create,
858 F2FS_GET_BLOCK_BMAP, NULL);
859 }
860
861 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
862 {
863 return (offset >> inode->i_blkbits);
864 }
865
866 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
867 {
868 return (blk << inode->i_blkbits);
869 }
870
871 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
872 u64 start, u64 len)
873 {
874 struct buffer_head map_bh;
875 sector_t start_blk, last_blk;
876 pgoff_t next_pgofs;
877 loff_t isize;
878 u64 logical = 0, phys = 0, size = 0;
879 u32 flags = 0;
880 int ret = 0;
881
882 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
883 if (ret)
884 return ret;
885
886 if (f2fs_has_inline_data(inode)) {
887 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
888 if (ret != -EAGAIN)
889 return ret;
890 }
891
892 inode_lock(inode);
893
894 isize = i_size_read(inode);
895 if (start >= isize)
896 goto out;
897
898 if (start + len > isize)
899 len = isize - start;
900
901 if (logical_to_blk(inode, len) == 0)
902 len = blk_to_logical(inode, 1);
903
904 start_blk = logical_to_blk(inode, start);
905 last_blk = logical_to_blk(inode, start + len - 1);
906
907 next:
908 memset(&map_bh, 0, sizeof(struct buffer_head));
909 map_bh.b_size = len;
910
911 ret = get_data_block(inode, start_blk, &map_bh, 0,
912 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
913 if (ret)
914 goto out;
915
916 /* HOLE */
917 if (!buffer_mapped(&map_bh)) {
918 start_blk = next_pgofs;
919 /* Go through holes util pass the EOF */
920 if (blk_to_logical(inode, start_blk) < isize)
921 goto prep_next;
922 /* Found a hole beyond isize means no more extents.
923 * Note that the premise is that filesystems don't
924 * punch holes beyond isize and keep size unchanged.
925 */
926 flags |= FIEMAP_EXTENT_LAST;
927 }
928
929 if (size) {
930 if (f2fs_encrypted_inode(inode))
931 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
932
933 ret = fiemap_fill_next_extent(fieinfo, logical,
934 phys, size, flags);
935 }
936
937 if (start_blk > last_blk || ret)
938 goto out;
939
940 logical = blk_to_logical(inode, start_blk);
941 phys = blk_to_logical(inode, map_bh.b_blocknr);
942 size = map_bh.b_size;
943 flags = 0;
944 if (buffer_unwritten(&map_bh))
945 flags = FIEMAP_EXTENT_UNWRITTEN;
946
947 start_blk += logical_to_blk(inode, size);
948
949 prep_next:
950 cond_resched();
951 if (fatal_signal_pending(current))
952 ret = -EINTR;
953 else
954 goto next;
955 out:
956 if (ret == 1)
957 ret = 0;
958
959 inode_unlock(inode);
960 return ret;
961 }
962
963 struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
964 unsigned nr_pages)
965 {
966 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
967 struct fscrypt_ctx *ctx = NULL;
968 struct block_device *bdev = sbi->sb->s_bdev;
969 struct bio *bio;
970
971 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
972 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
973 if (IS_ERR(ctx))
974 return ERR_CAST(ctx);
975
976 /* wait the page to be moved by cleaning */
977 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
978 }
979
980 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
981 if (!bio) {
982 if (ctx)
983 fscrypt_release_ctx(ctx);
984 return ERR_PTR(-ENOMEM);
985 }
986 bio->bi_bdev = bdev;
987 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blkaddr);
988 bio->bi_end_io = f2fs_read_end_io;
989 bio->bi_private = ctx;
990
991 return bio;
992 }
993
994 /*
995 * This function was originally taken from fs/mpage.c, and customized for f2fs.
996 * Major change was from block_size == page_size in f2fs by default.
997 */
998 static int f2fs_mpage_readpages(struct address_space *mapping,
999 struct list_head *pages, struct page *page,
1000 unsigned nr_pages)
1001 {
1002 struct bio *bio = NULL;
1003 unsigned page_idx;
1004 sector_t last_block_in_bio = 0;
1005 struct inode *inode = mapping->host;
1006 const unsigned blkbits = inode->i_blkbits;
1007 const unsigned blocksize = 1 << blkbits;
1008 sector_t block_in_file;
1009 sector_t last_block;
1010 sector_t last_block_in_file;
1011 sector_t block_nr;
1012 struct f2fs_map_blocks map;
1013
1014 map.m_pblk = 0;
1015 map.m_lblk = 0;
1016 map.m_len = 0;
1017 map.m_flags = 0;
1018 map.m_next_pgofs = NULL;
1019
1020 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1021
1022 prefetchw(&page->flags);
1023 if (pages) {
1024 page = list_entry(pages->prev, struct page, lru);
1025 list_del(&page->lru);
1026 if (add_to_page_cache_lru(page, mapping,
1027 page->index, GFP_KERNEL))
1028 goto next_page;
1029 }
1030
1031 block_in_file = (sector_t)page->index;
1032 last_block = block_in_file + nr_pages;
1033 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1034 blkbits;
1035 if (last_block > last_block_in_file)
1036 last_block = last_block_in_file;
1037
1038 /*
1039 * Map blocks using the previous result first.
1040 */
1041 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1042 block_in_file > map.m_lblk &&
1043 block_in_file < (map.m_lblk + map.m_len))
1044 goto got_it;
1045
1046 /*
1047 * Then do more f2fs_map_blocks() calls until we are
1048 * done with this page.
1049 */
1050 map.m_flags = 0;
1051
1052 if (block_in_file < last_block) {
1053 map.m_lblk = block_in_file;
1054 map.m_len = last_block - block_in_file;
1055
1056 if (f2fs_map_blocks(inode, &map, 0,
1057 F2FS_GET_BLOCK_READ))
1058 goto set_error_page;
1059 }
1060 got_it:
1061 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1062 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1063 SetPageMappedToDisk(page);
1064
1065 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1066 SetPageUptodate(page);
1067 goto confused;
1068 }
1069 } else {
1070 zero_user_segment(page, 0, PAGE_SIZE);
1071 if (!PageUptodate(page))
1072 SetPageUptodate(page);
1073 unlock_page(page);
1074 goto next_page;
1075 }
1076
1077 /*
1078 * This page will go to BIO. Do we need to send this
1079 * BIO off first?
1080 */
1081 if (bio && (last_block_in_bio != block_nr - 1)) {
1082 submit_and_realloc:
1083 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1084 bio = NULL;
1085 }
1086 if (bio == NULL) {
1087 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1088 if (IS_ERR(bio)) {
1089 bio = NULL;
1090 goto set_error_page;
1091 }
1092 }
1093
1094 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1095 goto submit_and_realloc;
1096
1097 last_block_in_bio = block_nr;
1098 goto next_page;
1099 set_error_page:
1100 SetPageError(page);
1101 zero_user_segment(page, 0, PAGE_SIZE);
1102 unlock_page(page);
1103 goto next_page;
1104 confused:
1105 if (bio) {
1106 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1107 bio = NULL;
1108 }
1109 unlock_page(page);
1110 next_page:
1111 if (pages)
1112 put_page(page);
1113 }
1114 BUG_ON(pages && !list_empty(pages));
1115 if (bio)
1116 __submit_bio(F2FS_I_SB(inode), READ, bio, DATA);
1117 return 0;
1118 }
1119
1120 static int f2fs_read_data_page(struct file *file, struct page *page)
1121 {
1122 struct inode *inode = page->mapping->host;
1123 int ret = -EAGAIN;
1124
1125 trace_f2fs_readpage(page, DATA);
1126
1127 /* If the file has inline data, try to read it directly */
1128 if (f2fs_has_inline_data(inode))
1129 ret = f2fs_read_inline_data(inode, page);
1130 if (ret == -EAGAIN)
1131 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1132 return ret;
1133 }
1134
1135 static int f2fs_read_data_pages(struct file *file,
1136 struct address_space *mapping,
1137 struct list_head *pages, unsigned nr_pages)
1138 {
1139 struct inode *inode = file->f_mapping->host;
1140 struct page *page = list_entry(pages->prev, struct page, lru);
1141
1142 trace_f2fs_readpages(inode, page, nr_pages);
1143
1144 /* If the file has inline data, skip readpages */
1145 if (f2fs_has_inline_data(inode))
1146 return 0;
1147
1148 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1149 }
1150
1151 int do_write_data_page(struct f2fs_io_info *fio)
1152 {
1153 struct page *page = fio->page;
1154 struct inode *inode = page->mapping->host;
1155 struct dnode_of_data dn;
1156 int err = 0;
1157
1158 set_new_dnode(&dn, inode, NULL, NULL, 0);
1159 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1160 if (err)
1161 return err;
1162
1163 fio->old_blkaddr = dn.data_blkaddr;
1164
1165 /* This page is already truncated */
1166 if (fio->old_blkaddr == NULL_ADDR) {
1167 ClearPageUptodate(page);
1168 goto out_writepage;
1169 }
1170
1171 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1172 gfp_t gfp_flags = GFP_NOFS;
1173
1174 /* wait for GCed encrypted page writeback */
1175 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1176 fio->old_blkaddr);
1177 retry_encrypt:
1178 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1179 gfp_flags);
1180 if (IS_ERR(fio->encrypted_page)) {
1181 err = PTR_ERR(fio->encrypted_page);
1182 if (err == -ENOMEM) {
1183 /* flush pending ios and wait for a while */
1184 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1185 congestion_wait(BLK_RW_ASYNC, HZ/50);
1186 gfp_flags |= __GFP_NOFAIL;
1187 err = 0;
1188 goto retry_encrypt;
1189 }
1190 goto out_writepage;
1191 }
1192 }
1193
1194 set_page_writeback(page);
1195
1196 /*
1197 * If current allocation needs SSR,
1198 * it had better in-place writes for updated data.
1199 */
1200 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1201 !is_cold_data(page) &&
1202 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1203 need_inplace_update(inode))) {
1204 rewrite_data_page(fio);
1205 set_inode_flag(inode, FI_UPDATE_WRITE);
1206 trace_f2fs_do_write_data_page(page, IPU);
1207 } else {
1208 write_data_page(&dn, fio);
1209 trace_f2fs_do_write_data_page(page, OPU);
1210 set_inode_flag(inode, FI_APPEND_WRITE);
1211 if (page->index == 0)
1212 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1213 }
1214 out_writepage:
1215 f2fs_put_dnode(&dn);
1216 return err;
1217 }
1218
1219 static int f2fs_write_data_page(struct page *page,
1220 struct writeback_control *wbc)
1221 {
1222 struct inode *inode = page->mapping->host;
1223 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1224 loff_t i_size = i_size_read(inode);
1225 const pgoff_t end_index = ((unsigned long long) i_size)
1226 >> PAGE_SHIFT;
1227 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1228 unsigned offset = 0;
1229 bool need_balance_fs = false;
1230 int err = 0;
1231 struct f2fs_io_info fio = {
1232 .sbi = sbi,
1233 .type = DATA,
1234 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1235 .page = page,
1236 .encrypted_page = NULL,
1237 };
1238
1239 trace_f2fs_writepage(page, DATA);
1240
1241 if (page->index < end_index)
1242 goto write;
1243
1244 /*
1245 * If the offset is out-of-range of file size,
1246 * this page does not have to be written to disk.
1247 */
1248 offset = i_size & (PAGE_SIZE - 1);
1249 if ((page->index >= end_index + 1) || !offset)
1250 goto out;
1251
1252 zero_user_segment(page, offset, PAGE_SIZE);
1253 write:
1254 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1255 goto redirty_out;
1256 if (f2fs_is_drop_cache(inode))
1257 goto out;
1258 /* we should not write 0'th page having journal header */
1259 if (f2fs_is_volatile_file(inode) && (!page->index ||
1260 (!wbc->for_reclaim &&
1261 available_free_memory(sbi, BASE_CHECK))))
1262 goto redirty_out;
1263
1264 /* we should bypass data pages to proceed the kworkder jobs */
1265 if (unlikely(f2fs_cp_error(sbi))) {
1266 mapping_set_error(page->mapping, -EIO);
1267 goto out;
1268 }
1269
1270 /* Dentry blocks are controlled by checkpoint */
1271 if (S_ISDIR(inode->i_mode)) {
1272 err = do_write_data_page(&fio);
1273 goto done;
1274 }
1275
1276 if (!wbc->for_reclaim)
1277 need_balance_fs = true;
1278 else if (has_not_enough_free_secs(sbi, 0))
1279 goto redirty_out;
1280
1281 err = -EAGAIN;
1282 f2fs_lock_op(sbi);
1283 if (f2fs_has_inline_data(inode))
1284 err = f2fs_write_inline_data(inode, page);
1285 if (err == -EAGAIN)
1286 err = do_write_data_page(&fio);
1287 if (F2FS_I(inode)->last_disk_size < psize)
1288 F2FS_I(inode)->last_disk_size = psize;
1289 f2fs_unlock_op(sbi);
1290 done:
1291 if (err && err != -ENOENT)
1292 goto redirty_out;
1293
1294 clear_cold_data(page);
1295 out:
1296 inode_dec_dirty_pages(inode);
1297 if (err)
1298 ClearPageUptodate(page);
1299
1300 if (wbc->for_reclaim) {
1301 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1302 remove_dirty_inode(inode);
1303 }
1304
1305 unlock_page(page);
1306 f2fs_balance_fs(sbi, need_balance_fs);
1307
1308 if (unlikely(f2fs_cp_error(sbi)))
1309 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1310
1311 return 0;
1312
1313 redirty_out:
1314 redirty_page_for_writepage(wbc, page);
1315 unlock_page(page);
1316 return err;
1317 }
1318
1319 /*
1320 * This function was copied from write_cche_pages from mm/page-writeback.c.
1321 * The major change is making write step of cold data page separately from
1322 * warm/hot data page.
1323 */
1324 static int f2fs_write_cache_pages(struct address_space *mapping,
1325 struct writeback_control *wbc)
1326 {
1327 int ret = 0;
1328 int done = 0;
1329 struct pagevec pvec;
1330 int nr_pages;
1331 pgoff_t uninitialized_var(writeback_index);
1332 pgoff_t index;
1333 pgoff_t end; /* Inclusive */
1334 pgoff_t done_index;
1335 int cycled;
1336 int range_whole = 0;
1337 int tag;
1338
1339 pagevec_init(&pvec, 0);
1340
1341 if (wbc->range_cyclic) {
1342 writeback_index = mapping->writeback_index; /* prev offset */
1343 index = writeback_index;
1344 if (index == 0)
1345 cycled = 1;
1346 else
1347 cycled = 0;
1348 end = -1;
1349 } else {
1350 index = wbc->range_start >> PAGE_SHIFT;
1351 end = wbc->range_end >> PAGE_SHIFT;
1352 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1353 range_whole = 1;
1354 cycled = 1; /* ignore range_cyclic tests */
1355 }
1356 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1357 tag = PAGECACHE_TAG_TOWRITE;
1358 else
1359 tag = PAGECACHE_TAG_DIRTY;
1360 retry:
1361 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1362 tag_pages_for_writeback(mapping, index, end);
1363 done_index = index;
1364 while (!done && (index <= end)) {
1365 int i;
1366
1367 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1368 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1369 if (nr_pages == 0)
1370 break;
1371
1372 for (i = 0; i < nr_pages; i++) {
1373 struct page *page = pvec.pages[i];
1374
1375 if (page->index > end) {
1376 done = 1;
1377 break;
1378 }
1379
1380 done_index = page->index;
1381
1382 lock_page(page);
1383
1384 if (unlikely(page->mapping != mapping)) {
1385 continue_unlock:
1386 unlock_page(page);
1387 continue;
1388 }
1389
1390 if (!PageDirty(page)) {
1391 /* someone wrote it for us */
1392 goto continue_unlock;
1393 }
1394
1395 if (PageWriteback(page)) {
1396 if (wbc->sync_mode != WB_SYNC_NONE)
1397 f2fs_wait_on_page_writeback(page,
1398 DATA, true);
1399 else
1400 goto continue_unlock;
1401 }
1402
1403 BUG_ON(PageWriteback(page));
1404 if (!clear_page_dirty_for_io(page))
1405 goto continue_unlock;
1406
1407 ret = mapping->a_ops->writepage(page, wbc);
1408 if (unlikely(ret)) {
1409 done_index = page->index + 1;
1410 done = 1;
1411 break;
1412 }
1413
1414 if (--wbc->nr_to_write <= 0 &&
1415 wbc->sync_mode == WB_SYNC_NONE) {
1416 done = 1;
1417 break;
1418 }
1419 }
1420 pagevec_release(&pvec);
1421 cond_resched();
1422 }
1423
1424 if (!cycled && !done) {
1425 cycled = 1;
1426 index = 0;
1427 end = writeback_index - 1;
1428 goto retry;
1429 }
1430 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1431 mapping->writeback_index = done_index;
1432
1433 return ret;
1434 }
1435
1436 static int f2fs_write_data_pages(struct address_space *mapping,
1437 struct writeback_control *wbc)
1438 {
1439 struct inode *inode = mapping->host;
1440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1441 int ret;
1442
1443 /* deal with chardevs and other special file */
1444 if (!mapping->a_ops->writepage)
1445 return 0;
1446
1447 /* skip writing if there is no dirty page in this inode */
1448 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1449 return 0;
1450
1451 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1452 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1453 available_free_memory(sbi, DIRTY_DENTS))
1454 goto skip_write;
1455
1456 /* skip writing during file defragment */
1457 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1458 goto skip_write;
1459
1460 /* during POR, we don't need to trigger writepage at all. */
1461 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1462 goto skip_write;
1463
1464 trace_f2fs_writepages(mapping->host, wbc, DATA);
1465
1466 ret = f2fs_write_cache_pages(mapping, wbc);
1467 /*
1468 * if some pages were truncated, we cannot guarantee its mapping->host
1469 * to detect pending bios.
1470 */
1471 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1472
1473 remove_dirty_inode(inode);
1474 return ret;
1475
1476 skip_write:
1477 wbc->pages_skipped += get_dirty_pages(inode);
1478 trace_f2fs_writepages(mapping->host, wbc, DATA);
1479 return 0;
1480 }
1481
1482 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1483 {
1484 struct inode *inode = mapping->host;
1485 loff_t i_size = i_size_read(inode);
1486
1487 if (to > i_size) {
1488 truncate_pagecache(inode, i_size);
1489 truncate_blocks(inode, i_size, true);
1490 }
1491 }
1492
1493 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1494 struct page *page, loff_t pos, unsigned len,
1495 block_t *blk_addr, bool *node_changed)
1496 {
1497 struct inode *inode = page->mapping->host;
1498 pgoff_t index = page->index;
1499 struct dnode_of_data dn;
1500 struct page *ipage;
1501 bool locked = false;
1502 struct extent_info ei;
1503 int err = 0;
1504
1505 /*
1506 * we already allocated all the blocks, so we don't need to get
1507 * the block addresses when there is no need to fill the page.
1508 */
1509 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1510 len == PAGE_SIZE)
1511 return 0;
1512
1513 if (f2fs_has_inline_data(inode) ||
1514 (pos & PAGE_MASK) >= i_size_read(inode)) {
1515 f2fs_lock_op(sbi);
1516 locked = true;
1517 }
1518 restart:
1519 /* check inline_data */
1520 ipage = get_node_page(sbi, inode->i_ino);
1521 if (IS_ERR(ipage)) {
1522 err = PTR_ERR(ipage);
1523 goto unlock_out;
1524 }
1525
1526 set_new_dnode(&dn, inode, ipage, ipage, 0);
1527
1528 if (f2fs_has_inline_data(inode)) {
1529 if (pos + len <= MAX_INLINE_DATA) {
1530 read_inline_data(page, ipage);
1531 set_inode_flag(inode, FI_DATA_EXIST);
1532 if (inode->i_nlink)
1533 set_inline_node(ipage);
1534 } else {
1535 err = f2fs_convert_inline_page(&dn, page);
1536 if (err)
1537 goto out;
1538 if (dn.data_blkaddr == NULL_ADDR)
1539 err = f2fs_get_block(&dn, index);
1540 }
1541 } else if (locked) {
1542 err = f2fs_get_block(&dn, index);
1543 } else {
1544 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1545 dn.data_blkaddr = ei.blk + index - ei.fofs;
1546 } else {
1547 /* hole case */
1548 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1549 if (err || dn.data_blkaddr == NULL_ADDR) {
1550 f2fs_put_dnode(&dn);
1551 f2fs_lock_op(sbi);
1552 locked = true;
1553 goto restart;
1554 }
1555 }
1556 }
1557
1558 /* convert_inline_page can make node_changed */
1559 *blk_addr = dn.data_blkaddr;
1560 *node_changed = dn.node_changed;
1561 out:
1562 f2fs_put_dnode(&dn);
1563 unlock_out:
1564 if (locked)
1565 f2fs_unlock_op(sbi);
1566 return err;
1567 }
1568
1569 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1570 loff_t pos, unsigned len, unsigned flags,
1571 struct page **pagep, void **fsdata)
1572 {
1573 struct inode *inode = mapping->host;
1574 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1575 struct page *page = NULL;
1576 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1577 bool need_balance = false;
1578 block_t blkaddr = NULL_ADDR;
1579 int err = 0;
1580
1581 trace_f2fs_write_begin(inode, pos, len, flags);
1582
1583 /*
1584 * We should check this at this moment to avoid deadlock on inode page
1585 * and #0 page. The locking rule for inline_data conversion should be:
1586 * lock_page(page #0) -> lock_page(inode_page)
1587 */
1588 if (index != 0) {
1589 err = f2fs_convert_inline_inode(inode);
1590 if (err)
1591 goto fail;
1592 }
1593 repeat:
1594 page = grab_cache_page_write_begin(mapping, index, flags);
1595 if (!page) {
1596 err = -ENOMEM;
1597 goto fail;
1598 }
1599
1600 *pagep = page;
1601
1602 err = prepare_write_begin(sbi, page, pos, len,
1603 &blkaddr, &need_balance);
1604 if (err)
1605 goto fail;
1606
1607 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1608 unlock_page(page);
1609 f2fs_balance_fs(sbi, true);
1610 lock_page(page);
1611 if (page->mapping != mapping) {
1612 /* The page got truncated from under us */
1613 f2fs_put_page(page, 1);
1614 goto repeat;
1615 }
1616 }
1617
1618 f2fs_wait_on_page_writeback(page, DATA, false);
1619
1620 /* wait for GCed encrypted page writeback */
1621 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1622 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1623
1624 if (len == PAGE_SIZE)
1625 goto out_update;
1626 if (PageUptodate(page))
1627 goto out_clear;
1628
1629 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1630 unsigned start = pos & (PAGE_SIZE - 1);
1631 unsigned end = start + len;
1632
1633 /* Reading beyond i_size is simple: memset to zero */
1634 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1635 goto out_update;
1636 }
1637
1638 if (blkaddr == NEW_ADDR) {
1639 zero_user_segment(page, 0, PAGE_SIZE);
1640 } else {
1641 struct bio *bio;
1642
1643 bio = f2fs_grab_bio(inode, blkaddr, 1);
1644 if (IS_ERR(bio)) {
1645 err = PTR_ERR(bio);
1646 goto fail;
1647 }
1648
1649 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1650 bio_put(bio);
1651 err = -EFAULT;
1652 goto fail;
1653 }
1654
1655 __submit_bio(sbi, READ_SYNC, bio, DATA);
1656
1657 lock_page(page);
1658 if (unlikely(page->mapping != mapping)) {
1659 f2fs_put_page(page, 1);
1660 goto repeat;
1661 }
1662 if (unlikely(!PageUptodate(page))) {
1663 err = -EIO;
1664 goto fail;
1665 }
1666 }
1667 out_update:
1668 if (!PageUptodate(page))
1669 SetPageUptodate(page);
1670 out_clear:
1671 clear_cold_data(page);
1672 return 0;
1673
1674 fail:
1675 f2fs_put_page(page, 1);
1676 f2fs_write_failed(mapping, pos + len);
1677 return err;
1678 }
1679
1680 static int f2fs_write_end(struct file *file,
1681 struct address_space *mapping,
1682 loff_t pos, unsigned len, unsigned copied,
1683 struct page *page, void *fsdata)
1684 {
1685 struct inode *inode = page->mapping->host;
1686
1687 trace_f2fs_write_end(inode, pos, len, copied);
1688
1689 set_page_dirty(page);
1690 f2fs_put_page(page, 1);
1691
1692 if (pos + copied > i_size_read(inode))
1693 f2fs_i_size_write(inode, pos + copied);
1694
1695 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1696 return copied;
1697 }
1698
1699 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1700 loff_t offset)
1701 {
1702 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1703
1704 if (offset & blocksize_mask)
1705 return -EINVAL;
1706
1707 if (iov_iter_alignment(iter) & blocksize_mask)
1708 return -EINVAL;
1709
1710 return 0;
1711 }
1712
1713 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1714 {
1715 struct address_space *mapping = iocb->ki_filp->f_mapping;
1716 struct inode *inode = mapping->host;
1717 size_t count = iov_iter_count(iter);
1718 loff_t offset = iocb->ki_pos;
1719 int err;
1720
1721 err = check_direct_IO(inode, iter, offset);
1722 if (err)
1723 return err;
1724
1725 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1726 return 0;
1727 if (test_opt(F2FS_I_SB(inode), LFS))
1728 return 0;
1729
1730 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1731
1732 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1733 if (iov_iter_rw(iter) == WRITE) {
1734 if (err > 0)
1735 set_inode_flag(inode, FI_UPDATE_WRITE);
1736 else if (err < 0)
1737 f2fs_write_failed(mapping, offset + count);
1738 }
1739
1740 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1741
1742 return err;
1743 }
1744
1745 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1746 unsigned int length)
1747 {
1748 struct inode *inode = page->mapping->host;
1749 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1750
1751 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1752 (offset % PAGE_SIZE || length != PAGE_SIZE))
1753 return;
1754
1755 if (PageDirty(page)) {
1756 if (inode->i_ino == F2FS_META_INO(sbi))
1757 dec_page_count(sbi, F2FS_DIRTY_META);
1758 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1759 dec_page_count(sbi, F2FS_DIRTY_NODES);
1760 else
1761 inode_dec_dirty_pages(inode);
1762 }
1763
1764 /* This is atomic written page, keep Private */
1765 if (IS_ATOMIC_WRITTEN_PAGE(page))
1766 return;
1767
1768 set_page_private(page, 0);
1769 ClearPagePrivate(page);
1770 }
1771
1772 int f2fs_release_page(struct page *page, gfp_t wait)
1773 {
1774 /* If this is dirty page, keep PagePrivate */
1775 if (PageDirty(page))
1776 return 0;
1777
1778 /* This is atomic written page, keep Private */
1779 if (IS_ATOMIC_WRITTEN_PAGE(page))
1780 return 0;
1781
1782 set_page_private(page, 0);
1783 ClearPagePrivate(page);
1784 return 1;
1785 }
1786
1787 /*
1788 * This was copied from __set_page_dirty_buffers which gives higher performance
1789 * in very high speed storages. (e.g., pmem)
1790 */
1791 void f2fs_set_page_dirty_nobuffers(struct page *page)
1792 {
1793 struct address_space *mapping = page->mapping;
1794 unsigned long flags;
1795
1796 if (unlikely(!mapping))
1797 return;
1798
1799 spin_lock(&mapping->private_lock);
1800 lock_page_memcg(page);
1801 SetPageDirty(page);
1802 spin_unlock(&mapping->private_lock);
1803
1804 spin_lock_irqsave(&mapping->tree_lock, flags);
1805 WARN_ON_ONCE(!PageUptodate(page));
1806 account_page_dirtied(page, mapping);
1807 radix_tree_tag_set(&mapping->page_tree,
1808 page_index(page), PAGECACHE_TAG_DIRTY);
1809 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1810 unlock_page_memcg(page);
1811
1812 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1813 return;
1814 }
1815
1816 static int f2fs_set_data_page_dirty(struct page *page)
1817 {
1818 struct address_space *mapping = page->mapping;
1819 struct inode *inode = mapping->host;
1820
1821 trace_f2fs_set_page_dirty(page, DATA);
1822
1823 if (!PageUptodate(page))
1824 SetPageUptodate(page);
1825
1826 if (f2fs_is_atomic_file(inode)) {
1827 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1828 register_inmem_page(inode, page);
1829 return 1;
1830 }
1831 /*
1832 * Previously, this page has been registered, we just
1833 * return here.
1834 */
1835 return 0;
1836 }
1837
1838 if (!PageDirty(page)) {
1839 f2fs_set_page_dirty_nobuffers(page);
1840 update_dirty_page(inode, page);
1841 return 1;
1842 }
1843 return 0;
1844 }
1845
1846 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1847 {
1848 struct inode *inode = mapping->host;
1849
1850 if (f2fs_has_inline_data(inode))
1851 return 0;
1852
1853 /* make sure allocating whole blocks */
1854 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1855 filemap_write_and_wait(mapping);
1856
1857 return generic_block_bmap(mapping, block, get_data_block_bmap);
1858 }
1859
1860 const struct address_space_operations f2fs_dblock_aops = {
1861 .readpage = f2fs_read_data_page,
1862 .readpages = f2fs_read_data_pages,
1863 .writepage = f2fs_write_data_page,
1864 .writepages = f2fs_write_data_pages,
1865 .write_begin = f2fs_write_begin,
1866 .write_end = f2fs_write_end,
1867 .set_page_dirty = f2fs_set_data_page_dirty,
1868 .invalidatepage = f2fs_invalidate_page,
1869 .releasepage = f2fs_release_page,
1870 .direct_IO = f2fs_direct_IO,
1871 .bmap = f2fs_bmap,
1872 };
This page took 0.098695 seconds and 6 git commands to generate.