f2fs: remove writepages lock
[deliverable/linux.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "trace.h"
28 #include <trace/events/f2fs.h>
29
30 static void f2fs_read_end_io(struct bio *bio)
31 {
32 struct bio_vec *bvec;
33 int i;
34
35 if (f2fs_bio_encrypted(bio)) {
36 if (bio->bi_error) {
37 fscrypt_release_ctx(bio->bi_private);
38 } else {
39 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
40 return;
41 }
42 }
43
44 bio_for_each_segment_all(bvec, bio, i) {
45 struct page *page = bvec->bv_page;
46
47 if (!bio->bi_error) {
48 SetPageUptodate(page);
49 } else {
50 ClearPageUptodate(page);
51 SetPageError(page);
52 }
53 unlock_page(page);
54 }
55 bio_put(bio);
56 }
57
58 static void f2fs_write_end_io(struct bio *bio)
59 {
60 struct f2fs_sb_info *sbi = bio->bi_private;
61 struct bio_vec *bvec;
62 int i;
63
64 bio_for_each_segment_all(bvec, bio, i) {
65 struct page *page = bvec->bv_page;
66
67 fscrypt_pullback_bio_page(&page, true);
68
69 if (unlikely(bio->bi_error)) {
70 set_bit(AS_EIO, &page->mapping->flags);
71 f2fs_stop_checkpoint(sbi, true);
72 }
73 end_page_writeback(page);
74 }
75 if (atomic_dec_and_test(&sbi->nr_wb_bios) &&
76 wq_has_sleeper(&sbi->cp_wait))
77 wake_up(&sbi->cp_wait);
78
79 bio_put(bio);
80 }
81
82 /*
83 * Low-level block read/write IO operations.
84 */
85 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
86 int npages, bool is_read)
87 {
88 struct bio *bio;
89
90 bio = f2fs_bio_alloc(npages);
91
92 bio->bi_bdev = sbi->sb->s_bdev;
93 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
94 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
95 bio->bi_private = is_read ? NULL : sbi;
96
97 return bio;
98 }
99
100 static inline void __submit_bio(struct f2fs_sb_info *sbi, int rw,
101 struct bio *bio)
102 {
103 if (!is_read_io(rw))
104 atomic_inc(&sbi->nr_wb_bios);
105 submit_bio(rw, bio);
106 }
107
108 static void __submit_merged_bio(struct f2fs_bio_info *io)
109 {
110 struct f2fs_io_info *fio = &io->fio;
111
112 if (!io->bio)
113 return;
114
115 if (is_read_io(fio->rw))
116 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
117 else
118 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
119
120 __submit_bio(io->sbi, fio->rw, io->bio);
121 io->bio = NULL;
122 }
123
124 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
125 struct page *page, nid_t ino)
126 {
127 struct bio_vec *bvec;
128 struct page *target;
129 int i;
130
131 if (!io->bio)
132 return false;
133
134 if (!inode && !page && !ino)
135 return true;
136
137 bio_for_each_segment_all(bvec, io->bio, i) {
138
139 if (bvec->bv_page->mapping)
140 target = bvec->bv_page;
141 else
142 target = fscrypt_control_page(bvec->bv_page);
143
144 if (inode && inode == target->mapping->host)
145 return true;
146 if (page && page == target)
147 return true;
148 if (ino && ino == ino_of_node(target))
149 return true;
150 }
151
152 return false;
153 }
154
155 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
156 struct page *page, nid_t ino,
157 enum page_type type)
158 {
159 enum page_type btype = PAGE_TYPE_OF_BIO(type);
160 struct f2fs_bio_info *io = &sbi->write_io[btype];
161 bool ret;
162
163 down_read(&io->io_rwsem);
164 ret = __has_merged_page(io, inode, page, ino);
165 up_read(&io->io_rwsem);
166 return ret;
167 }
168
169 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
170 struct inode *inode, struct page *page,
171 nid_t ino, enum page_type type, int rw)
172 {
173 enum page_type btype = PAGE_TYPE_OF_BIO(type);
174 struct f2fs_bio_info *io;
175
176 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
177
178 down_write(&io->io_rwsem);
179
180 if (!__has_merged_page(io, inode, page, ino))
181 goto out;
182
183 /* change META to META_FLUSH in the checkpoint procedure */
184 if (type >= META_FLUSH) {
185 io->fio.type = META_FLUSH;
186 if (test_opt(sbi, NOBARRIER))
187 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
188 else
189 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
190 }
191 __submit_merged_bio(io);
192 out:
193 up_write(&io->io_rwsem);
194 }
195
196 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
197 int rw)
198 {
199 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
200 }
201
202 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
203 struct inode *inode, struct page *page,
204 nid_t ino, enum page_type type, int rw)
205 {
206 if (has_merged_page(sbi, inode, page, ino, type))
207 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
208 }
209
210 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
211 {
212 f2fs_submit_merged_bio(sbi, DATA, WRITE);
213 f2fs_submit_merged_bio(sbi, NODE, WRITE);
214 f2fs_submit_merged_bio(sbi, META, WRITE);
215 }
216
217 /*
218 * Fill the locked page with data located in the block address.
219 * Return unlocked page.
220 */
221 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
222 {
223 struct bio *bio;
224 struct page *page = fio->encrypted_page ?
225 fio->encrypted_page : fio->page;
226
227 trace_f2fs_submit_page_bio(page, fio);
228 f2fs_trace_ios(fio, 0);
229
230 /* Allocate a new bio */
231 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->rw));
232
233 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
234 bio_put(bio);
235 return -EFAULT;
236 }
237
238 __submit_bio(fio->sbi, fio->rw, bio);
239 return 0;
240 }
241
242 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
243 {
244 struct f2fs_sb_info *sbi = fio->sbi;
245 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
246 struct f2fs_bio_info *io;
247 bool is_read = is_read_io(fio->rw);
248 struct page *bio_page;
249
250 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
251
252 if (fio->old_blkaddr != NEW_ADDR)
253 verify_block_addr(sbi, fio->old_blkaddr);
254 verify_block_addr(sbi, fio->new_blkaddr);
255
256 down_write(&io->io_rwsem);
257
258 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
259 io->fio.rw != fio->rw))
260 __submit_merged_bio(io);
261 alloc_new:
262 if (io->bio == NULL) {
263 int bio_blocks = MAX_BIO_BLOCKS(sbi);
264
265 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
266 bio_blocks, is_read);
267 io->fio = *fio;
268 }
269
270 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
271
272 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
273 PAGE_SIZE) {
274 __submit_merged_bio(io);
275 goto alloc_new;
276 }
277
278 io->last_block_in_bio = fio->new_blkaddr;
279 f2fs_trace_ios(fio, 0);
280
281 up_write(&io->io_rwsem);
282 trace_f2fs_submit_page_mbio(fio->page, fio);
283 }
284
285 static void __set_data_blkaddr(struct dnode_of_data *dn)
286 {
287 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
288 __le32 *addr_array;
289
290 /* Get physical address of data block */
291 addr_array = blkaddr_in_node(rn);
292 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
293 }
294
295 /*
296 * Lock ordering for the change of data block address:
297 * ->data_page
298 * ->node_page
299 * update block addresses in the node page
300 */
301 void set_data_blkaddr(struct dnode_of_data *dn)
302 {
303 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
304 __set_data_blkaddr(dn);
305 if (set_page_dirty(dn->node_page))
306 dn->node_changed = true;
307 }
308
309 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
310 {
311 dn->data_blkaddr = blkaddr;
312 set_data_blkaddr(dn);
313 f2fs_update_extent_cache(dn);
314 }
315
316 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
317 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
318 {
319 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
320
321 if (!count)
322 return 0;
323
324 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
325 return -EPERM;
326 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
327 return -ENOSPC;
328
329 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
330 dn->ofs_in_node, count);
331
332 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
333
334 for (; count > 0; dn->ofs_in_node++) {
335 block_t blkaddr =
336 datablock_addr(dn->node_page, dn->ofs_in_node);
337 if (blkaddr == NULL_ADDR) {
338 dn->data_blkaddr = NEW_ADDR;
339 __set_data_blkaddr(dn);
340 count--;
341 }
342 }
343
344 if (set_page_dirty(dn->node_page))
345 dn->node_changed = true;
346 return 0;
347 }
348
349 /* Should keep dn->ofs_in_node unchanged */
350 int reserve_new_block(struct dnode_of_data *dn)
351 {
352 unsigned int ofs_in_node = dn->ofs_in_node;
353 int ret;
354
355 ret = reserve_new_blocks(dn, 1);
356 dn->ofs_in_node = ofs_in_node;
357 return ret;
358 }
359
360 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
361 {
362 bool need_put = dn->inode_page ? false : true;
363 int err;
364
365 err = get_dnode_of_data(dn, index, ALLOC_NODE);
366 if (err)
367 return err;
368
369 if (dn->data_blkaddr == NULL_ADDR)
370 err = reserve_new_block(dn);
371 if (err || need_put)
372 f2fs_put_dnode(dn);
373 return err;
374 }
375
376 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
377 {
378 struct extent_info ei;
379 struct inode *inode = dn->inode;
380
381 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
382 dn->data_blkaddr = ei.blk + index - ei.fofs;
383 return 0;
384 }
385
386 return f2fs_reserve_block(dn, index);
387 }
388
389 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
390 int rw, bool for_write)
391 {
392 struct address_space *mapping = inode->i_mapping;
393 struct dnode_of_data dn;
394 struct page *page;
395 struct extent_info ei;
396 int err;
397 struct f2fs_io_info fio = {
398 .sbi = F2FS_I_SB(inode),
399 .type = DATA,
400 .rw = rw,
401 .encrypted_page = NULL,
402 };
403
404 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
405 return read_mapping_page(mapping, index, NULL);
406
407 page = f2fs_grab_cache_page(mapping, index, for_write);
408 if (!page)
409 return ERR_PTR(-ENOMEM);
410
411 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
412 dn.data_blkaddr = ei.blk + index - ei.fofs;
413 goto got_it;
414 }
415
416 set_new_dnode(&dn, inode, NULL, NULL, 0);
417 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
418 if (err)
419 goto put_err;
420 f2fs_put_dnode(&dn);
421
422 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
423 err = -ENOENT;
424 goto put_err;
425 }
426 got_it:
427 if (PageUptodate(page)) {
428 unlock_page(page);
429 return page;
430 }
431
432 /*
433 * A new dentry page is allocated but not able to be written, since its
434 * new inode page couldn't be allocated due to -ENOSPC.
435 * In such the case, its blkaddr can be remained as NEW_ADDR.
436 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
437 */
438 if (dn.data_blkaddr == NEW_ADDR) {
439 zero_user_segment(page, 0, PAGE_SIZE);
440 SetPageUptodate(page);
441 unlock_page(page);
442 return page;
443 }
444
445 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
446 fio.page = page;
447 err = f2fs_submit_page_bio(&fio);
448 if (err)
449 goto put_err;
450 return page;
451
452 put_err:
453 f2fs_put_page(page, 1);
454 return ERR_PTR(err);
455 }
456
457 struct page *find_data_page(struct inode *inode, pgoff_t index)
458 {
459 struct address_space *mapping = inode->i_mapping;
460 struct page *page;
461
462 page = find_get_page(mapping, index);
463 if (page && PageUptodate(page))
464 return page;
465 f2fs_put_page(page, 0);
466
467 page = get_read_data_page(inode, index, READ_SYNC, false);
468 if (IS_ERR(page))
469 return page;
470
471 if (PageUptodate(page))
472 return page;
473
474 wait_on_page_locked(page);
475 if (unlikely(!PageUptodate(page))) {
476 f2fs_put_page(page, 0);
477 return ERR_PTR(-EIO);
478 }
479 return page;
480 }
481
482 /*
483 * If it tries to access a hole, return an error.
484 * Because, the callers, functions in dir.c and GC, should be able to know
485 * whether this page exists or not.
486 */
487 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
488 bool for_write)
489 {
490 struct address_space *mapping = inode->i_mapping;
491 struct page *page;
492 repeat:
493 page = get_read_data_page(inode, index, READ_SYNC, for_write);
494 if (IS_ERR(page))
495 return page;
496
497 /* wait for read completion */
498 lock_page(page);
499 if (unlikely(!PageUptodate(page))) {
500 f2fs_put_page(page, 1);
501 return ERR_PTR(-EIO);
502 }
503 if (unlikely(page->mapping != mapping)) {
504 f2fs_put_page(page, 1);
505 goto repeat;
506 }
507 return page;
508 }
509
510 /*
511 * Caller ensures that this data page is never allocated.
512 * A new zero-filled data page is allocated in the page cache.
513 *
514 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
515 * f2fs_unlock_op().
516 * Note that, ipage is set only by make_empty_dir, and if any error occur,
517 * ipage should be released by this function.
518 */
519 struct page *get_new_data_page(struct inode *inode,
520 struct page *ipage, pgoff_t index, bool new_i_size)
521 {
522 struct address_space *mapping = inode->i_mapping;
523 struct page *page;
524 struct dnode_of_data dn;
525 int err;
526
527 page = f2fs_grab_cache_page(mapping, index, true);
528 if (!page) {
529 /*
530 * before exiting, we should make sure ipage will be released
531 * if any error occur.
532 */
533 f2fs_put_page(ipage, 1);
534 return ERR_PTR(-ENOMEM);
535 }
536
537 set_new_dnode(&dn, inode, ipage, NULL, 0);
538 err = f2fs_reserve_block(&dn, index);
539 if (err) {
540 f2fs_put_page(page, 1);
541 return ERR_PTR(err);
542 }
543 if (!ipage)
544 f2fs_put_dnode(&dn);
545
546 if (PageUptodate(page))
547 goto got_it;
548
549 if (dn.data_blkaddr == NEW_ADDR) {
550 zero_user_segment(page, 0, PAGE_SIZE);
551 SetPageUptodate(page);
552 } else {
553 f2fs_put_page(page, 1);
554
555 /* if ipage exists, blkaddr should be NEW_ADDR */
556 f2fs_bug_on(F2FS_I_SB(inode), ipage);
557 page = get_lock_data_page(inode, index, true);
558 if (IS_ERR(page))
559 return page;
560 }
561 got_it:
562 if (new_i_size && i_size_read(inode) <
563 ((loff_t)(index + 1) << PAGE_SHIFT))
564 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
565 return page;
566 }
567
568 static int __allocate_data_block(struct dnode_of_data *dn)
569 {
570 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
571 struct f2fs_summary sum;
572 struct node_info ni;
573 int seg = CURSEG_WARM_DATA;
574 pgoff_t fofs;
575 blkcnt_t count = 1;
576
577 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
578 return -EPERM;
579
580 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
581 if (dn->data_blkaddr == NEW_ADDR)
582 goto alloc;
583
584 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
585 return -ENOSPC;
586
587 alloc:
588 get_node_info(sbi, dn->nid, &ni);
589 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
590
591 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
592 seg = CURSEG_DIRECT_IO;
593
594 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
595 &sum, seg);
596 set_data_blkaddr(dn);
597
598 /* update i_size */
599 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
600 dn->ofs_in_node;
601 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
602 f2fs_i_size_write(dn->inode,
603 ((loff_t)(fofs + 1) << PAGE_SHIFT));
604 return 0;
605 }
606
607 ssize_t f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
608 {
609 struct inode *inode = file_inode(iocb->ki_filp);
610 struct f2fs_map_blocks map;
611 ssize_t ret = 0;
612
613 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
614 map.m_len = F2FS_BYTES_TO_BLK(iov_iter_count(from));
615 map.m_next_pgofs = NULL;
616
617 if (f2fs_encrypted_inode(inode))
618 return 0;
619
620 if (iocb->ki_flags & IOCB_DIRECT) {
621 ret = f2fs_convert_inline_inode(inode);
622 if (ret)
623 return ret;
624 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_DIO);
625 }
626 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
627 ret = f2fs_convert_inline_inode(inode);
628 if (ret)
629 return ret;
630 }
631 if (!f2fs_has_inline_data(inode))
632 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
633 return ret;
634 }
635
636 /*
637 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
638 * f2fs_map_blocks structure.
639 * If original data blocks are allocated, then give them to blockdev.
640 * Otherwise,
641 * a. preallocate requested block addresses
642 * b. do not use extent cache for better performance
643 * c. give the block addresses to blockdev
644 */
645 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
646 int create, int flag)
647 {
648 unsigned int maxblocks = map->m_len;
649 struct dnode_of_data dn;
650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
651 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
652 pgoff_t pgofs, end_offset, end;
653 int err = 0, ofs = 1;
654 unsigned int ofs_in_node, last_ofs_in_node;
655 blkcnt_t prealloc;
656 struct extent_info ei;
657 bool allocated = false;
658 block_t blkaddr;
659
660 map->m_len = 0;
661 map->m_flags = 0;
662
663 /* it only supports block size == page size */
664 pgofs = (pgoff_t)map->m_lblk;
665 end = pgofs + maxblocks;
666
667 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
668 map->m_pblk = ei.blk + pgofs - ei.fofs;
669 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
670 map->m_flags = F2FS_MAP_MAPPED;
671 goto out;
672 }
673
674 next_dnode:
675 if (create)
676 f2fs_lock_op(sbi);
677
678 /* When reading holes, we need its node page */
679 set_new_dnode(&dn, inode, NULL, NULL, 0);
680 err = get_dnode_of_data(&dn, pgofs, mode);
681 if (err) {
682 if (flag == F2FS_GET_BLOCK_BMAP)
683 map->m_pblk = 0;
684 if (err == -ENOENT) {
685 err = 0;
686 if (map->m_next_pgofs)
687 *map->m_next_pgofs =
688 get_next_page_offset(&dn, pgofs);
689 }
690 goto unlock_out;
691 }
692
693 prealloc = 0;
694 ofs_in_node = dn.ofs_in_node;
695 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
696
697 next_block:
698 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
699
700 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
701 if (create) {
702 if (unlikely(f2fs_cp_error(sbi))) {
703 err = -EIO;
704 goto sync_out;
705 }
706 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
707 if (blkaddr == NULL_ADDR) {
708 prealloc++;
709 last_ofs_in_node = dn.ofs_in_node;
710 }
711 } else {
712 err = __allocate_data_block(&dn);
713 if (!err) {
714 set_inode_flag(inode, FI_APPEND_WRITE);
715 allocated = true;
716 }
717 }
718 if (err)
719 goto sync_out;
720 map->m_flags = F2FS_MAP_NEW;
721 blkaddr = dn.data_blkaddr;
722 } else {
723 if (flag == F2FS_GET_BLOCK_BMAP) {
724 map->m_pblk = 0;
725 goto sync_out;
726 }
727 if (flag == F2FS_GET_BLOCK_FIEMAP &&
728 blkaddr == NULL_ADDR) {
729 if (map->m_next_pgofs)
730 *map->m_next_pgofs = pgofs + 1;
731 }
732 if (flag != F2FS_GET_BLOCK_FIEMAP ||
733 blkaddr != NEW_ADDR)
734 goto sync_out;
735 }
736 }
737
738 if (flag == F2FS_GET_BLOCK_PRE_AIO)
739 goto skip;
740
741 if (map->m_len == 0) {
742 /* preallocated unwritten block should be mapped for fiemap. */
743 if (blkaddr == NEW_ADDR)
744 map->m_flags |= F2FS_MAP_UNWRITTEN;
745 map->m_flags |= F2FS_MAP_MAPPED;
746
747 map->m_pblk = blkaddr;
748 map->m_len = 1;
749 } else if ((map->m_pblk != NEW_ADDR &&
750 blkaddr == (map->m_pblk + ofs)) ||
751 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
752 flag == F2FS_GET_BLOCK_PRE_DIO) {
753 ofs++;
754 map->m_len++;
755 } else {
756 goto sync_out;
757 }
758
759 skip:
760 dn.ofs_in_node++;
761 pgofs++;
762
763 /* preallocate blocks in batch for one dnode page */
764 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
765 (pgofs == end || dn.ofs_in_node == end_offset)) {
766
767 dn.ofs_in_node = ofs_in_node;
768 err = reserve_new_blocks(&dn, prealloc);
769 if (err)
770 goto sync_out;
771
772 map->m_len += dn.ofs_in_node - ofs_in_node;
773 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
774 err = -ENOSPC;
775 goto sync_out;
776 }
777 dn.ofs_in_node = end_offset;
778 }
779
780 if (pgofs >= end)
781 goto sync_out;
782 else if (dn.ofs_in_node < end_offset)
783 goto next_block;
784
785 f2fs_put_dnode(&dn);
786
787 if (create) {
788 f2fs_unlock_op(sbi);
789 f2fs_balance_fs(sbi, allocated);
790 }
791 allocated = false;
792 goto next_dnode;
793
794 sync_out:
795 f2fs_put_dnode(&dn);
796 unlock_out:
797 if (create) {
798 f2fs_unlock_op(sbi);
799 f2fs_balance_fs(sbi, allocated);
800 }
801 out:
802 trace_f2fs_map_blocks(inode, map, err);
803 return err;
804 }
805
806 static int __get_data_block(struct inode *inode, sector_t iblock,
807 struct buffer_head *bh, int create, int flag,
808 pgoff_t *next_pgofs)
809 {
810 struct f2fs_map_blocks map;
811 int ret;
812
813 map.m_lblk = iblock;
814 map.m_len = bh->b_size >> inode->i_blkbits;
815 map.m_next_pgofs = next_pgofs;
816
817 ret = f2fs_map_blocks(inode, &map, create, flag);
818 if (!ret) {
819 map_bh(bh, inode->i_sb, map.m_pblk);
820 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
821 bh->b_size = map.m_len << inode->i_blkbits;
822 }
823 return ret;
824 }
825
826 static int get_data_block(struct inode *inode, sector_t iblock,
827 struct buffer_head *bh_result, int create, int flag,
828 pgoff_t *next_pgofs)
829 {
830 return __get_data_block(inode, iblock, bh_result, create,
831 flag, next_pgofs);
832 }
833
834 static int get_data_block_dio(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int create)
836 {
837 return __get_data_block(inode, iblock, bh_result, create,
838 F2FS_GET_BLOCK_DIO, NULL);
839 }
840
841 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
842 struct buffer_head *bh_result, int create)
843 {
844 /* Block number less than F2FS MAX BLOCKS */
845 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
846 return -EFBIG;
847
848 return __get_data_block(inode, iblock, bh_result, create,
849 F2FS_GET_BLOCK_BMAP, NULL);
850 }
851
852 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
853 {
854 return (offset >> inode->i_blkbits);
855 }
856
857 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
858 {
859 return (blk << inode->i_blkbits);
860 }
861
862 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
863 u64 start, u64 len)
864 {
865 struct buffer_head map_bh;
866 sector_t start_blk, last_blk;
867 pgoff_t next_pgofs;
868 loff_t isize;
869 u64 logical = 0, phys = 0, size = 0;
870 u32 flags = 0;
871 int ret = 0;
872
873 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
874 if (ret)
875 return ret;
876
877 if (f2fs_has_inline_data(inode)) {
878 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
879 if (ret != -EAGAIN)
880 return ret;
881 }
882
883 inode_lock(inode);
884
885 isize = i_size_read(inode);
886 if (start >= isize)
887 goto out;
888
889 if (start + len > isize)
890 len = isize - start;
891
892 if (logical_to_blk(inode, len) == 0)
893 len = blk_to_logical(inode, 1);
894
895 start_blk = logical_to_blk(inode, start);
896 last_blk = logical_to_blk(inode, start + len - 1);
897
898 next:
899 memset(&map_bh, 0, sizeof(struct buffer_head));
900 map_bh.b_size = len;
901
902 ret = get_data_block(inode, start_blk, &map_bh, 0,
903 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
904 if (ret)
905 goto out;
906
907 /* HOLE */
908 if (!buffer_mapped(&map_bh)) {
909 start_blk = next_pgofs;
910 /* Go through holes util pass the EOF */
911 if (blk_to_logical(inode, start_blk) < isize)
912 goto prep_next;
913 /* Found a hole beyond isize means no more extents.
914 * Note that the premise is that filesystems don't
915 * punch holes beyond isize and keep size unchanged.
916 */
917 flags |= FIEMAP_EXTENT_LAST;
918 }
919
920 if (size) {
921 if (f2fs_encrypted_inode(inode))
922 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
923
924 ret = fiemap_fill_next_extent(fieinfo, logical,
925 phys, size, flags);
926 }
927
928 if (start_blk > last_blk || ret)
929 goto out;
930
931 logical = blk_to_logical(inode, start_blk);
932 phys = blk_to_logical(inode, map_bh.b_blocknr);
933 size = map_bh.b_size;
934 flags = 0;
935 if (buffer_unwritten(&map_bh))
936 flags = FIEMAP_EXTENT_UNWRITTEN;
937
938 start_blk += logical_to_blk(inode, size);
939
940 prep_next:
941 cond_resched();
942 if (fatal_signal_pending(current))
943 ret = -EINTR;
944 else
945 goto next;
946 out:
947 if (ret == 1)
948 ret = 0;
949
950 inode_unlock(inode);
951 return ret;
952 }
953
954 /*
955 * This function was originally taken from fs/mpage.c, and customized for f2fs.
956 * Major change was from block_size == page_size in f2fs by default.
957 */
958 static int f2fs_mpage_readpages(struct address_space *mapping,
959 struct list_head *pages, struct page *page,
960 unsigned nr_pages)
961 {
962 struct bio *bio = NULL;
963 unsigned page_idx;
964 sector_t last_block_in_bio = 0;
965 struct inode *inode = mapping->host;
966 const unsigned blkbits = inode->i_blkbits;
967 const unsigned blocksize = 1 << blkbits;
968 sector_t block_in_file;
969 sector_t last_block;
970 sector_t last_block_in_file;
971 sector_t block_nr;
972 struct block_device *bdev = inode->i_sb->s_bdev;
973 struct f2fs_map_blocks map;
974
975 map.m_pblk = 0;
976 map.m_lblk = 0;
977 map.m_len = 0;
978 map.m_flags = 0;
979 map.m_next_pgofs = NULL;
980
981 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
982
983 prefetchw(&page->flags);
984 if (pages) {
985 page = list_entry(pages->prev, struct page, lru);
986 list_del(&page->lru);
987 if (add_to_page_cache_lru(page, mapping,
988 page->index, GFP_KERNEL))
989 goto next_page;
990 }
991
992 block_in_file = (sector_t)page->index;
993 last_block = block_in_file + nr_pages;
994 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
995 blkbits;
996 if (last_block > last_block_in_file)
997 last_block = last_block_in_file;
998
999 /*
1000 * Map blocks using the previous result first.
1001 */
1002 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1003 block_in_file > map.m_lblk &&
1004 block_in_file < (map.m_lblk + map.m_len))
1005 goto got_it;
1006
1007 /*
1008 * Then do more f2fs_map_blocks() calls until we are
1009 * done with this page.
1010 */
1011 map.m_flags = 0;
1012
1013 if (block_in_file < last_block) {
1014 map.m_lblk = block_in_file;
1015 map.m_len = last_block - block_in_file;
1016
1017 if (f2fs_map_blocks(inode, &map, 0,
1018 F2FS_GET_BLOCK_READ))
1019 goto set_error_page;
1020 }
1021 got_it:
1022 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1023 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1024 SetPageMappedToDisk(page);
1025
1026 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1027 SetPageUptodate(page);
1028 goto confused;
1029 }
1030 } else {
1031 zero_user_segment(page, 0, PAGE_SIZE);
1032 SetPageUptodate(page);
1033 unlock_page(page);
1034 goto next_page;
1035 }
1036
1037 /*
1038 * This page will go to BIO. Do we need to send this
1039 * BIO off first?
1040 */
1041 if (bio && (last_block_in_bio != block_nr - 1)) {
1042 submit_and_realloc:
1043 __submit_bio(F2FS_I_SB(inode), READ, bio);
1044 bio = NULL;
1045 }
1046 if (bio == NULL) {
1047 struct fscrypt_ctx *ctx = NULL;
1048
1049 if (f2fs_encrypted_inode(inode) &&
1050 S_ISREG(inode->i_mode)) {
1051
1052 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1053 if (IS_ERR(ctx))
1054 goto set_error_page;
1055
1056 /* wait the page to be moved by cleaning */
1057 f2fs_wait_on_encrypted_page_writeback(
1058 F2FS_I_SB(inode), block_nr);
1059 }
1060
1061 bio = bio_alloc(GFP_KERNEL,
1062 min_t(int, nr_pages, BIO_MAX_PAGES));
1063 if (!bio) {
1064 if (ctx)
1065 fscrypt_release_ctx(ctx);
1066 goto set_error_page;
1067 }
1068 bio->bi_bdev = bdev;
1069 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1070 bio->bi_end_io = f2fs_read_end_io;
1071 bio->bi_private = ctx;
1072 }
1073
1074 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1075 goto submit_and_realloc;
1076
1077 last_block_in_bio = block_nr;
1078 goto next_page;
1079 set_error_page:
1080 SetPageError(page);
1081 zero_user_segment(page, 0, PAGE_SIZE);
1082 unlock_page(page);
1083 goto next_page;
1084 confused:
1085 if (bio) {
1086 __submit_bio(F2FS_I_SB(inode), READ, bio);
1087 bio = NULL;
1088 }
1089 unlock_page(page);
1090 next_page:
1091 if (pages)
1092 put_page(page);
1093 }
1094 BUG_ON(pages && !list_empty(pages));
1095 if (bio)
1096 __submit_bio(F2FS_I_SB(inode), READ, bio);
1097 return 0;
1098 }
1099
1100 static int f2fs_read_data_page(struct file *file, struct page *page)
1101 {
1102 struct inode *inode = page->mapping->host;
1103 int ret = -EAGAIN;
1104
1105 trace_f2fs_readpage(page, DATA);
1106
1107 /* If the file has inline data, try to read it directly */
1108 if (f2fs_has_inline_data(inode))
1109 ret = f2fs_read_inline_data(inode, page);
1110 if (ret == -EAGAIN)
1111 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1112 return ret;
1113 }
1114
1115 static int f2fs_read_data_pages(struct file *file,
1116 struct address_space *mapping,
1117 struct list_head *pages, unsigned nr_pages)
1118 {
1119 struct inode *inode = file->f_mapping->host;
1120 struct page *page = list_entry(pages->prev, struct page, lru);
1121
1122 trace_f2fs_readpages(inode, page, nr_pages);
1123
1124 /* If the file has inline data, skip readpages */
1125 if (f2fs_has_inline_data(inode))
1126 return 0;
1127
1128 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1129 }
1130
1131 int do_write_data_page(struct f2fs_io_info *fio)
1132 {
1133 struct page *page = fio->page;
1134 struct inode *inode = page->mapping->host;
1135 struct dnode_of_data dn;
1136 int err = 0;
1137
1138 set_new_dnode(&dn, inode, NULL, NULL, 0);
1139 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1140 if (err)
1141 return err;
1142
1143 fio->old_blkaddr = dn.data_blkaddr;
1144
1145 /* This page is already truncated */
1146 if (fio->old_blkaddr == NULL_ADDR) {
1147 ClearPageUptodate(page);
1148 goto out_writepage;
1149 }
1150
1151 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1152 gfp_t gfp_flags = GFP_NOFS;
1153
1154 /* wait for GCed encrypted page writeback */
1155 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1156 fio->old_blkaddr);
1157 retry_encrypt:
1158 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1159 gfp_flags);
1160 if (IS_ERR(fio->encrypted_page)) {
1161 err = PTR_ERR(fio->encrypted_page);
1162 if (err == -ENOMEM) {
1163 /* flush pending ios and wait for a while */
1164 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1165 congestion_wait(BLK_RW_ASYNC, HZ/50);
1166 gfp_flags |= __GFP_NOFAIL;
1167 err = 0;
1168 goto retry_encrypt;
1169 }
1170 goto out_writepage;
1171 }
1172 }
1173
1174 set_page_writeback(page);
1175
1176 /*
1177 * If current allocation needs SSR,
1178 * it had better in-place writes for updated data.
1179 */
1180 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1181 !is_cold_data(page) &&
1182 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1183 need_inplace_update(inode))) {
1184 rewrite_data_page(fio);
1185 set_inode_flag(inode, FI_UPDATE_WRITE);
1186 trace_f2fs_do_write_data_page(page, IPU);
1187 } else {
1188 write_data_page(&dn, fio);
1189 trace_f2fs_do_write_data_page(page, OPU);
1190 set_inode_flag(inode, FI_APPEND_WRITE);
1191 if (page->index == 0)
1192 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1193 }
1194 out_writepage:
1195 f2fs_put_dnode(&dn);
1196 return err;
1197 }
1198
1199 static int f2fs_write_data_page(struct page *page,
1200 struct writeback_control *wbc)
1201 {
1202 struct inode *inode = page->mapping->host;
1203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1204 loff_t i_size = i_size_read(inode);
1205 const pgoff_t end_index = ((unsigned long long) i_size)
1206 >> PAGE_SHIFT;
1207 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1208 unsigned offset = 0;
1209 bool need_balance_fs = false;
1210 int err = 0;
1211 struct f2fs_io_info fio = {
1212 .sbi = sbi,
1213 .type = DATA,
1214 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1215 .page = page,
1216 .encrypted_page = NULL,
1217 };
1218
1219 trace_f2fs_writepage(page, DATA);
1220
1221 if (page->index < end_index)
1222 goto write;
1223
1224 /*
1225 * If the offset is out-of-range of file size,
1226 * this page does not have to be written to disk.
1227 */
1228 offset = i_size & (PAGE_SIZE - 1);
1229 if ((page->index >= end_index + 1) || !offset)
1230 goto out;
1231
1232 zero_user_segment(page, offset, PAGE_SIZE);
1233 write:
1234 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1235 goto redirty_out;
1236 if (f2fs_is_drop_cache(inode))
1237 goto out;
1238 /* we should not write 0'th page having journal header */
1239 if (f2fs_is_volatile_file(inode) && (!page->index ||
1240 (!wbc->for_reclaim &&
1241 available_free_memory(sbi, BASE_CHECK))))
1242 goto redirty_out;
1243
1244 /* Dentry blocks are controlled by checkpoint */
1245 if (S_ISDIR(inode->i_mode)) {
1246 if (unlikely(f2fs_cp_error(sbi)))
1247 goto redirty_out;
1248 err = do_write_data_page(&fio);
1249 goto done;
1250 }
1251
1252 /* we should bypass data pages to proceed the kworkder jobs */
1253 if (unlikely(f2fs_cp_error(sbi))) {
1254 SetPageError(page);
1255 goto out;
1256 }
1257
1258 if (!wbc->for_reclaim)
1259 need_balance_fs = true;
1260 else if (has_not_enough_free_secs(sbi, 0))
1261 goto redirty_out;
1262
1263 err = -EAGAIN;
1264 f2fs_lock_op(sbi);
1265 if (f2fs_has_inline_data(inode))
1266 err = f2fs_write_inline_data(inode, page);
1267 if (err == -EAGAIN)
1268 err = do_write_data_page(&fio);
1269 if (F2FS_I(inode)->last_disk_size < psize)
1270 F2FS_I(inode)->last_disk_size = psize;
1271 f2fs_unlock_op(sbi);
1272 done:
1273 if (err && err != -ENOENT)
1274 goto redirty_out;
1275
1276 clear_cold_data(page);
1277 out:
1278 inode_dec_dirty_pages(inode);
1279 if (err)
1280 ClearPageUptodate(page);
1281
1282 if (wbc->for_reclaim) {
1283 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1284 remove_dirty_inode(inode);
1285 }
1286
1287 unlock_page(page);
1288 f2fs_balance_fs(sbi, need_balance_fs);
1289
1290 if (unlikely(f2fs_cp_error(sbi)))
1291 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1292
1293 return 0;
1294
1295 redirty_out:
1296 redirty_page_for_writepage(wbc, page);
1297 return AOP_WRITEPAGE_ACTIVATE;
1298 }
1299
1300 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1301 void *data)
1302 {
1303 struct address_space *mapping = data;
1304 int ret = mapping->a_ops->writepage(page, wbc);
1305 mapping_set_error(mapping, ret);
1306 return ret;
1307 }
1308
1309 /*
1310 * This function was copied from write_cche_pages from mm/page-writeback.c.
1311 * The major change is making write step of cold data page separately from
1312 * warm/hot data page.
1313 */
1314 static int f2fs_write_cache_pages(struct address_space *mapping,
1315 struct writeback_control *wbc, writepage_t writepage,
1316 void *data)
1317 {
1318 int ret = 0;
1319 int done = 0;
1320 struct pagevec pvec;
1321 int nr_pages;
1322 pgoff_t uninitialized_var(writeback_index);
1323 pgoff_t index;
1324 pgoff_t end; /* Inclusive */
1325 pgoff_t done_index;
1326 int cycled;
1327 int range_whole = 0;
1328 int tag;
1329 int step = 0;
1330
1331 pagevec_init(&pvec, 0);
1332 next:
1333 if (wbc->range_cyclic) {
1334 writeback_index = mapping->writeback_index; /* prev offset */
1335 index = writeback_index;
1336 if (index == 0)
1337 cycled = 1;
1338 else
1339 cycled = 0;
1340 end = -1;
1341 } else {
1342 index = wbc->range_start >> PAGE_SHIFT;
1343 end = wbc->range_end >> PAGE_SHIFT;
1344 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1345 range_whole = 1;
1346 cycled = 1; /* ignore range_cyclic tests */
1347 }
1348 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1349 tag = PAGECACHE_TAG_TOWRITE;
1350 else
1351 tag = PAGECACHE_TAG_DIRTY;
1352 retry:
1353 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1354 tag_pages_for_writeback(mapping, index, end);
1355 done_index = index;
1356 while (!done && (index <= end)) {
1357 int i;
1358
1359 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1360 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1361 if (nr_pages == 0)
1362 break;
1363
1364 for (i = 0; i < nr_pages; i++) {
1365 struct page *page = pvec.pages[i];
1366
1367 if (page->index > end) {
1368 done = 1;
1369 break;
1370 }
1371
1372 done_index = page->index;
1373
1374 lock_page(page);
1375
1376 if (unlikely(page->mapping != mapping)) {
1377 continue_unlock:
1378 unlock_page(page);
1379 continue;
1380 }
1381
1382 if (!PageDirty(page)) {
1383 /* someone wrote it for us */
1384 goto continue_unlock;
1385 }
1386
1387 if (step == is_cold_data(page))
1388 goto continue_unlock;
1389
1390 if (PageWriteback(page)) {
1391 if (wbc->sync_mode != WB_SYNC_NONE)
1392 f2fs_wait_on_page_writeback(page,
1393 DATA, true);
1394 else
1395 goto continue_unlock;
1396 }
1397
1398 BUG_ON(PageWriteback(page));
1399 if (!clear_page_dirty_for_io(page))
1400 goto continue_unlock;
1401
1402 ret = (*writepage)(page, wbc, data);
1403 if (unlikely(ret)) {
1404 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1405 unlock_page(page);
1406 ret = 0;
1407 } else {
1408 done_index = page->index + 1;
1409 done = 1;
1410 break;
1411 }
1412 }
1413
1414 if (--wbc->nr_to_write <= 0 &&
1415 wbc->sync_mode == WB_SYNC_NONE) {
1416 done = 1;
1417 break;
1418 }
1419 }
1420 pagevec_release(&pvec);
1421 cond_resched();
1422 }
1423
1424 if (step < 1) {
1425 step++;
1426 goto next;
1427 }
1428
1429 if (!cycled && !done) {
1430 cycled = 1;
1431 index = 0;
1432 end = writeback_index - 1;
1433 goto retry;
1434 }
1435 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1436 mapping->writeback_index = done_index;
1437
1438 return ret;
1439 }
1440
1441 static int f2fs_write_data_pages(struct address_space *mapping,
1442 struct writeback_control *wbc)
1443 {
1444 struct inode *inode = mapping->host;
1445 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1446 int ret;
1447 long diff;
1448
1449 /* deal with chardevs and other special file */
1450 if (!mapping->a_ops->writepage)
1451 return 0;
1452
1453 /* skip writing if there is no dirty page in this inode */
1454 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1455 return 0;
1456
1457 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1458 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1459 available_free_memory(sbi, DIRTY_DENTS))
1460 goto skip_write;
1461
1462 /* skip writing during file defragment */
1463 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1464 goto skip_write;
1465
1466 /* during POR, we don't need to trigger writepage at all. */
1467 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1468 goto skip_write;
1469
1470 trace_f2fs_writepages(mapping->host, wbc, DATA);
1471
1472 diff = nr_pages_to_write(sbi, DATA, wbc);
1473
1474 ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1475 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
1476
1477 remove_dirty_inode(inode);
1478
1479 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1480 return ret;
1481
1482 skip_write:
1483 wbc->pages_skipped += get_dirty_pages(inode);
1484 trace_f2fs_writepages(mapping->host, wbc, DATA);
1485 return 0;
1486 }
1487
1488 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1489 {
1490 struct inode *inode = mapping->host;
1491 loff_t i_size = i_size_read(inode);
1492
1493 if (to > i_size) {
1494 truncate_pagecache(inode, i_size);
1495 truncate_blocks(inode, i_size, true);
1496 }
1497 }
1498
1499 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1500 struct page *page, loff_t pos, unsigned len,
1501 block_t *blk_addr, bool *node_changed)
1502 {
1503 struct inode *inode = page->mapping->host;
1504 pgoff_t index = page->index;
1505 struct dnode_of_data dn;
1506 struct page *ipage;
1507 bool locked = false;
1508 struct extent_info ei;
1509 int err = 0;
1510
1511 /*
1512 * we already allocated all the blocks, so we don't need to get
1513 * the block addresses when there is no need to fill the page.
1514 */
1515 if (!f2fs_has_inline_data(inode) && !f2fs_encrypted_inode(inode) &&
1516 len == PAGE_SIZE)
1517 return 0;
1518
1519 if (f2fs_has_inline_data(inode) ||
1520 (pos & PAGE_MASK) >= i_size_read(inode)) {
1521 f2fs_lock_op(sbi);
1522 locked = true;
1523 }
1524 restart:
1525 /* check inline_data */
1526 ipage = get_node_page(sbi, inode->i_ino);
1527 if (IS_ERR(ipage)) {
1528 err = PTR_ERR(ipage);
1529 goto unlock_out;
1530 }
1531
1532 set_new_dnode(&dn, inode, ipage, ipage, 0);
1533
1534 if (f2fs_has_inline_data(inode)) {
1535 if (pos + len <= MAX_INLINE_DATA) {
1536 read_inline_data(page, ipage);
1537 set_inode_flag(inode, FI_DATA_EXIST);
1538 if (inode->i_nlink)
1539 set_inline_node(ipage);
1540 } else {
1541 err = f2fs_convert_inline_page(&dn, page);
1542 if (err)
1543 goto out;
1544 if (dn.data_blkaddr == NULL_ADDR)
1545 err = f2fs_get_block(&dn, index);
1546 }
1547 } else if (locked) {
1548 err = f2fs_get_block(&dn, index);
1549 } else {
1550 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1551 dn.data_blkaddr = ei.blk + index - ei.fofs;
1552 } else {
1553 /* hole case */
1554 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1555 if (err || dn.data_blkaddr == NULL_ADDR) {
1556 f2fs_put_dnode(&dn);
1557 f2fs_lock_op(sbi);
1558 locked = true;
1559 goto restart;
1560 }
1561 }
1562 }
1563
1564 /* convert_inline_page can make node_changed */
1565 *blk_addr = dn.data_blkaddr;
1566 *node_changed = dn.node_changed;
1567 out:
1568 f2fs_put_dnode(&dn);
1569 unlock_out:
1570 if (locked)
1571 f2fs_unlock_op(sbi);
1572 return err;
1573 }
1574
1575 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1576 loff_t pos, unsigned len, unsigned flags,
1577 struct page **pagep, void **fsdata)
1578 {
1579 struct inode *inode = mapping->host;
1580 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1581 struct page *page = NULL;
1582 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1583 bool need_balance = false;
1584 block_t blkaddr = NULL_ADDR;
1585 int err = 0;
1586
1587 trace_f2fs_write_begin(inode, pos, len, flags);
1588
1589 /*
1590 * We should check this at this moment to avoid deadlock on inode page
1591 * and #0 page. The locking rule for inline_data conversion should be:
1592 * lock_page(page #0) -> lock_page(inode_page)
1593 */
1594 if (index != 0) {
1595 err = f2fs_convert_inline_inode(inode);
1596 if (err)
1597 goto fail;
1598 }
1599 repeat:
1600 page = grab_cache_page_write_begin(mapping, index, flags);
1601 if (!page) {
1602 err = -ENOMEM;
1603 goto fail;
1604 }
1605
1606 *pagep = page;
1607
1608 err = prepare_write_begin(sbi, page, pos, len,
1609 &blkaddr, &need_balance);
1610 if (err)
1611 goto fail;
1612
1613 if (need_balance && has_not_enough_free_secs(sbi, 0)) {
1614 unlock_page(page);
1615 f2fs_balance_fs(sbi, true);
1616 lock_page(page);
1617 if (page->mapping != mapping) {
1618 /* The page got truncated from under us */
1619 f2fs_put_page(page, 1);
1620 goto repeat;
1621 }
1622 }
1623
1624 f2fs_wait_on_page_writeback(page, DATA, false);
1625
1626 /* wait for GCed encrypted page writeback */
1627 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1628 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1629
1630 if (len == PAGE_SIZE)
1631 goto out_update;
1632 if (PageUptodate(page))
1633 goto out_clear;
1634
1635 if ((pos & PAGE_MASK) >= i_size_read(inode)) {
1636 unsigned start = pos & (PAGE_SIZE - 1);
1637 unsigned end = start + len;
1638
1639 /* Reading beyond i_size is simple: memset to zero */
1640 zero_user_segments(page, 0, start, end, PAGE_SIZE);
1641 goto out_update;
1642 }
1643
1644 if (blkaddr == NEW_ADDR) {
1645 zero_user_segment(page, 0, PAGE_SIZE);
1646 } else {
1647 struct f2fs_io_info fio = {
1648 .sbi = sbi,
1649 .type = DATA,
1650 .rw = READ_SYNC,
1651 .old_blkaddr = blkaddr,
1652 .new_blkaddr = blkaddr,
1653 .page = page,
1654 .encrypted_page = NULL,
1655 };
1656 err = f2fs_submit_page_bio(&fio);
1657 if (err)
1658 goto fail;
1659
1660 lock_page(page);
1661 if (unlikely(!PageUptodate(page))) {
1662 err = -EIO;
1663 goto fail;
1664 }
1665 if (unlikely(page->mapping != mapping)) {
1666 f2fs_put_page(page, 1);
1667 goto repeat;
1668 }
1669
1670 /* avoid symlink page */
1671 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1672 err = fscrypt_decrypt_page(page);
1673 if (err)
1674 goto fail;
1675 }
1676 }
1677 out_update:
1678 SetPageUptodate(page);
1679 out_clear:
1680 clear_cold_data(page);
1681 return 0;
1682
1683 fail:
1684 f2fs_put_page(page, 1);
1685 f2fs_write_failed(mapping, pos + len);
1686 return err;
1687 }
1688
1689 static int f2fs_write_end(struct file *file,
1690 struct address_space *mapping,
1691 loff_t pos, unsigned len, unsigned copied,
1692 struct page *page, void *fsdata)
1693 {
1694 struct inode *inode = page->mapping->host;
1695
1696 trace_f2fs_write_end(inode, pos, len, copied);
1697
1698 set_page_dirty(page);
1699
1700 if (pos + copied > i_size_read(inode))
1701 f2fs_i_size_write(inode, pos + copied);
1702
1703 f2fs_put_page(page, 1);
1704 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1705 return copied;
1706 }
1707
1708 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1709 loff_t offset)
1710 {
1711 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1712
1713 if (offset & blocksize_mask)
1714 return -EINVAL;
1715
1716 if (iov_iter_alignment(iter) & blocksize_mask)
1717 return -EINVAL;
1718
1719 return 0;
1720 }
1721
1722 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1723 {
1724 struct address_space *mapping = iocb->ki_filp->f_mapping;
1725 struct inode *inode = mapping->host;
1726 size_t count = iov_iter_count(iter);
1727 loff_t offset = iocb->ki_pos;
1728 int err;
1729
1730 err = check_direct_IO(inode, iter, offset);
1731 if (err)
1732 return err;
1733
1734 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1735 return 0;
1736
1737 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1738
1739 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1740 if (iov_iter_rw(iter) == WRITE) {
1741 if (err > 0)
1742 set_inode_flag(inode, FI_UPDATE_WRITE);
1743 else if (err < 0)
1744 f2fs_write_failed(mapping, offset + count);
1745 }
1746
1747 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
1748
1749 return err;
1750 }
1751
1752 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1753 unsigned int length)
1754 {
1755 struct inode *inode = page->mapping->host;
1756 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1757
1758 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1759 (offset % PAGE_SIZE || length != PAGE_SIZE))
1760 return;
1761
1762 if (PageDirty(page)) {
1763 if (inode->i_ino == F2FS_META_INO(sbi))
1764 dec_page_count(sbi, F2FS_DIRTY_META);
1765 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1766 dec_page_count(sbi, F2FS_DIRTY_NODES);
1767 else
1768 inode_dec_dirty_pages(inode);
1769 }
1770
1771 /* This is atomic written page, keep Private */
1772 if (IS_ATOMIC_WRITTEN_PAGE(page))
1773 return;
1774
1775 set_page_private(page, 0);
1776 ClearPagePrivate(page);
1777 }
1778
1779 int f2fs_release_page(struct page *page, gfp_t wait)
1780 {
1781 /* If this is dirty page, keep PagePrivate */
1782 if (PageDirty(page))
1783 return 0;
1784
1785 /* This is atomic written page, keep Private */
1786 if (IS_ATOMIC_WRITTEN_PAGE(page))
1787 return 0;
1788
1789 set_page_private(page, 0);
1790 ClearPagePrivate(page);
1791 return 1;
1792 }
1793
1794 static int f2fs_set_data_page_dirty(struct page *page)
1795 {
1796 struct address_space *mapping = page->mapping;
1797 struct inode *inode = mapping->host;
1798
1799 trace_f2fs_set_page_dirty(page, DATA);
1800
1801 SetPageUptodate(page);
1802
1803 if (f2fs_is_atomic_file(inode)) {
1804 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1805 register_inmem_page(inode, page);
1806 return 1;
1807 }
1808 /*
1809 * Previously, this page has been registered, we just
1810 * return here.
1811 */
1812 return 0;
1813 }
1814
1815 if (!PageDirty(page)) {
1816 __set_page_dirty_nobuffers(page);
1817 update_dirty_page(inode, page);
1818 return 1;
1819 }
1820 return 0;
1821 }
1822
1823 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1824 {
1825 struct inode *inode = mapping->host;
1826
1827 if (f2fs_has_inline_data(inode))
1828 return 0;
1829
1830 /* make sure allocating whole blocks */
1831 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1832 filemap_write_and_wait(mapping);
1833
1834 return generic_block_bmap(mapping, block, get_data_block_bmap);
1835 }
1836
1837 const struct address_space_operations f2fs_dblock_aops = {
1838 .readpage = f2fs_read_data_page,
1839 .readpages = f2fs_read_data_pages,
1840 .writepage = f2fs_write_data_page,
1841 .writepages = f2fs_write_data_pages,
1842 .write_begin = f2fs_write_begin,
1843 .write_end = f2fs_write_end,
1844 .set_page_dirty = f2fs_set_data_page_dirty,
1845 .invalidatepage = f2fs_invalidate_page,
1846 .releasepage = f2fs_release_page,
1847 .direct_IO = f2fs_direct_IO,
1848 .bmap = f2fs_bmap,
1849 };
This page took 0.091663 seconds and 6 git commands to generate.