f2fs crypto: activate encryption support for fs APIs
[deliverable/linux.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/prefetch.h>
20 #include <linux/uio.h>
21 #include <linux/cleancache.h>
22
23 #include "f2fs.h"
24 #include "node.h"
25 #include "segment.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 static struct kmem_cache *extent_tree_slab;
30 static struct kmem_cache *extent_node_slab;
31
32 static void f2fs_read_end_io(struct bio *bio, int err)
33 {
34 struct bio_vec *bvec;
35 int i;
36
37 bio_for_each_segment_all(bvec, bio, i) {
38 struct page *page = bvec->bv_page;
39
40 if (!err) {
41 SetPageUptodate(page);
42 } else {
43 ClearPageUptodate(page);
44 SetPageError(page);
45 }
46 unlock_page(page);
47 }
48 bio_put(bio);
49 }
50
51 /*
52 * I/O completion handler for multipage BIOs.
53 * copied from fs/mpage.c
54 */
55 static void mpage_end_io(struct bio *bio, int err)
56 {
57 struct bio_vec *bv;
58 int i;
59
60 bio_for_each_segment_all(bv, bio, i) {
61 struct page *page = bv->bv_page;
62
63 if (!err) {
64 SetPageUptodate(page);
65 } else {
66 ClearPageUptodate(page);
67 SetPageError(page);
68 }
69 unlock_page(page);
70 }
71
72 bio_put(bio);
73 }
74
75 static void f2fs_write_end_io(struct bio *bio, int err)
76 {
77 struct f2fs_sb_info *sbi = bio->bi_private;
78 struct bio_vec *bvec;
79 int i;
80
81 bio_for_each_segment_all(bvec, bio, i) {
82 struct page *page = bvec->bv_page;
83
84 if (unlikely(err)) {
85 set_page_dirty(page);
86 set_bit(AS_EIO, &page->mapping->flags);
87 f2fs_stop_checkpoint(sbi);
88 }
89 end_page_writeback(page);
90 dec_page_count(sbi, F2FS_WRITEBACK);
91 }
92
93 if (!get_pages(sbi, F2FS_WRITEBACK) &&
94 !list_empty(&sbi->cp_wait.task_list))
95 wake_up(&sbi->cp_wait);
96
97 bio_put(bio);
98 }
99
100 /*
101 * Low-level block read/write IO operations.
102 */
103 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
104 int npages, bool is_read)
105 {
106 struct bio *bio;
107
108 /* No failure on bio allocation */
109 bio = bio_alloc(GFP_NOIO, npages);
110
111 bio->bi_bdev = sbi->sb->s_bdev;
112 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
113 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
114 bio->bi_private = sbi;
115
116 return bio;
117 }
118
119 static void __submit_merged_bio(struct f2fs_bio_info *io)
120 {
121 struct f2fs_io_info *fio = &io->fio;
122
123 if (!io->bio)
124 return;
125
126 if (is_read_io(fio->rw))
127 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
128 else
129 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
130
131 submit_bio(fio->rw, io->bio);
132 io->bio = NULL;
133 }
134
135 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
136 enum page_type type, int rw)
137 {
138 enum page_type btype = PAGE_TYPE_OF_BIO(type);
139 struct f2fs_bio_info *io;
140
141 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
142
143 down_write(&io->io_rwsem);
144
145 /* change META to META_FLUSH in the checkpoint procedure */
146 if (type >= META_FLUSH) {
147 io->fio.type = META_FLUSH;
148 if (test_opt(sbi, NOBARRIER))
149 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
150 else
151 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
152 }
153 __submit_merged_bio(io);
154 up_write(&io->io_rwsem);
155 }
156
157 /*
158 * Fill the locked page with data located in the block address.
159 * Return unlocked page.
160 */
161 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
162 {
163 struct bio *bio;
164 struct page *page = fio->page;
165
166 trace_f2fs_submit_page_bio(page, fio);
167 f2fs_trace_ios(fio, 0);
168
169 /* Allocate a new bio */
170 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
171
172 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
173 bio_put(bio);
174 f2fs_put_page(page, 1);
175 return -EFAULT;
176 }
177
178 submit_bio(fio->rw, bio);
179 return 0;
180 }
181
182 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
183 {
184 struct f2fs_sb_info *sbi = fio->sbi;
185 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
186 struct f2fs_bio_info *io;
187 bool is_read = is_read_io(fio->rw);
188
189 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
190
191 verify_block_addr(sbi, fio->blk_addr);
192
193 down_write(&io->io_rwsem);
194
195 if (!is_read)
196 inc_page_count(sbi, F2FS_WRITEBACK);
197
198 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
199 io->fio.rw != fio->rw))
200 __submit_merged_bio(io);
201 alloc_new:
202 if (io->bio == NULL) {
203 int bio_blocks = MAX_BIO_BLOCKS(sbi);
204
205 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
206 io->fio = *fio;
207 }
208
209 if (bio_add_page(io->bio, fio->page, PAGE_CACHE_SIZE, 0) <
210 PAGE_CACHE_SIZE) {
211 __submit_merged_bio(io);
212 goto alloc_new;
213 }
214
215 io->last_block_in_bio = fio->blk_addr;
216 f2fs_trace_ios(fio, 0);
217
218 up_write(&io->io_rwsem);
219 trace_f2fs_submit_page_mbio(fio->page, fio);
220 }
221
222 /*
223 * Lock ordering for the change of data block address:
224 * ->data_page
225 * ->node_page
226 * update block addresses in the node page
227 */
228 void set_data_blkaddr(struct dnode_of_data *dn)
229 {
230 struct f2fs_node *rn;
231 __le32 *addr_array;
232 struct page *node_page = dn->node_page;
233 unsigned int ofs_in_node = dn->ofs_in_node;
234
235 f2fs_wait_on_page_writeback(node_page, NODE);
236
237 rn = F2FS_NODE(node_page);
238
239 /* Get physical address of data block */
240 addr_array = blkaddr_in_node(rn);
241 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
242 set_page_dirty(node_page);
243 }
244
245 int reserve_new_block(struct dnode_of_data *dn)
246 {
247 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
248
249 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
250 return -EPERM;
251 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
252 return -ENOSPC;
253
254 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
255
256 dn->data_blkaddr = NEW_ADDR;
257 set_data_blkaddr(dn);
258 mark_inode_dirty(dn->inode);
259 sync_inode_page(dn);
260 return 0;
261 }
262
263 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
264 {
265 bool need_put = dn->inode_page ? false : true;
266 int err;
267
268 err = get_dnode_of_data(dn, index, ALLOC_NODE);
269 if (err)
270 return err;
271
272 if (dn->data_blkaddr == NULL_ADDR)
273 err = reserve_new_block(dn);
274 if (err || need_put)
275 f2fs_put_dnode(dn);
276 return err;
277 }
278
279 static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
280 struct extent_info *ei)
281 {
282 struct f2fs_inode_info *fi = F2FS_I(inode);
283 pgoff_t start_fofs, end_fofs;
284 block_t start_blkaddr;
285
286 read_lock(&fi->ext_lock);
287 if (fi->ext.len == 0) {
288 read_unlock(&fi->ext_lock);
289 return false;
290 }
291
292 stat_inc_total_hit(inode->i_sb);
293
294 start_fofs = fi->ext.fofs;
295 end_fofs = fi->ext.fofs + fi->ext.len - 1;
296 start_blkaddr = fi->ext.blk;
297
298 if (pgofs >= start_fofs && pgofs <= end_fofs) {
299 *ei = fi->ext;
300 stat_inc_read_hit(inode->i_sb);
301 read_unlock(&fi->ext_lock);
302 return true;
303 }
304 read_unlock(&fi->ext_lock);
305 return false;
306 }
307
308 static bool update_extent_info(struct inode *inode, pgoff_t fofs,
309 block_t blkaddr)
310 {
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 pgoff_t start_fofs, end_fofs;
313 block_t start_blkaddr, end_blkaddr;
314 int need_update = true;
315
316 write_lock(&fi->ext_lock);
317
318 start_fofs = fi->ext.fofs;
319 end_fofs = fi->ext.fofs + fi->ext.len - 1;
320 start_blkaddr = fi->ext.blk;
321 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
322
323 /* Drop and initialize the matched extent */
324 if (fi->ext.len == 1 && fofs == start_fofs)
325 fi->ext.len = 0;
326
327 /* Initial extent */
328 if (fi->ext.len == 0) {
329 if (blkaddr != NULL_ADDR) {
330 fi->ext.fofs = fofs;
331 fi->ext.blk = blkaddr;
332 fi->ext.len = 1;
333 }
334 goto end_update;
335 }
336
337 /* Front merge */
338 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
339 fi->ext.fofs--;
340 fi->ext.blk--;
341 fi->ext.len++;
342 goto end_update;
343 }
344
345 /* Back merge */
346 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
347 fi->ext.len++;
348 goto end_update;
349 }
350
351 /* Split the existing extent */
352 if (fi->ext.len > 1 &&
353 fofs >= start_fofs && fofs <= end_fofs) {
354 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
355 fi->ext.len = fofs - start_fofs;
356 } else {
357 fi->ext.fofs = fofs + 1;
358 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
359 fi->ext.len -= fofs - start_fofs + 1;
360 }
361 } else {
362 need_update = false;
363 }
364
365 /* Finally, if the extent is very fragmented, let's drop the cache. */
366 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
367 fi->ext.len = 0;
368 set_inode_flag(fi, FI_NO_EXTENT);
369 need_update = true;
370 }
371 end_update:
372 write_unlock(&fi->ext_lock);
373 return need_update;
374 }
375
376 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
377 struct extent_tree *et, struct extent_info *ei,
378 struct rb_node *parent, struct rb_node **p)
379 {
380 struct extent_node *en;
381
382 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
383 if (!en)
384 return NULL;
385
386 en->ei = *ei;
387 INIT_LIST_HEAD(&en->list);
388
389 rb_link_node(&en->rb_node, parent, p);
390 rb_insert_color(&en->rb_node, &et->root);
391 et->count++;
392 atomic_inc(&sbi->total_ext_node);
393 return en;
394 }
395
396 static void __detach_extent_node(struct f2fs_sb_info *sbi,
397 struct extent_tree *et, struct extent_node *en)
398 {
399 rb_erase(&en->rb_node, &et->root);
400 et->count--;
401 atomic_dec(&sbi->total_ext_node);
402
403 if (et->cached_en == en)
404 et->cached_en = NULL;
405 }
406
407 static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
408 nid_t ino)
409 {
410 struct extent_tree *et;
411
412 down_read(&sbi->extent_tree_lock);
413 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
414 if (!et) {
415 up_read(&sbi->extent_tree_lock);
416 return NULL;
417 }
418 atomic_inc(&et->refcount);
419 up_read(&sbi->extent_tree_lock);
420
421 return et;
422 }
423
424 static struct extent_tree *__grab_extent_tree(struct inode *inode)
425 {
426 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
427 struct extent_tree *et;
428 nid_t ino = inode->i_ino;
429
430 down_write(&sbi->extent_tree_lock);
431 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
432 if (!et) {
433 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
434 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
435 memset(et, 0, sizeof(struct extent_tree));
436 et->ino = ino;
437 et->root = RB_ROOT;
438 et->cached_en = NULL;
439 rwlock_init(&et->lock);
440 atomic_set(&et->refcount, 0);
441 et->count = 0;
442 sbi->total_ext_tree++;
443 }
444 atomic_inc(&et->refcount);
445 up_write(&sbi->extent_tree_lock);
446
447 return et;
448 }
449
450 static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
451 unsigned int fofs)
452 {
453 struct rb_node *node = et->root.rb_node;
454 struct extent_node *en;
455
456 if (et->cached_en) {
457 struct extent_info *cei = &et->cached_en->ei;
458
459 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
460 return et->cached_en;
461 }
462
463 while (node) {
464 en = rb_entry(node, struct extent_node, rb_node);
465
466 if (fofs < en->ei.fofs) {
467 node = node->rb_left;
468 } else if (fofs >= en->ei.fofs + en->ei.len) {
469 node = node->rb_right;
470 } else {
471 et->cached_en = en;
472 return en;
473 }
474 }
475 return NULL;
476 }
477
478 static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
479 struct extent_tree *et, struct extent_node *en)
480 {
481 struct extent_node *prev;
482 struct rb_node *node;
483
484 node = rb_prev(&en->rb_node);
485 if (!node)
486 return NULL;
487
488 prev = rb_entry(node, struct extent_node, rb_node);
489 if (__is_back_mergeable(&en->ei, &prev->ei)) {
490 en->ei.fofs = prev->ei.fofs;
491 en->ei.blk = prev->ei.blk;
492 en->ei.len += prev->ei.len;
493 __detach_extent_node(sbi, et, prev);
494 return prev;
495 }
496 return NULL;
497 }
498
499 static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
500 struct extent_tree *et, struct extent_node *en)
501 {
502 struct extent_node *next;
503 struct rb_node *node;
504
505 node = rb_next(&en->rb_node);
506 if (!node)
507 return NULL;
508
509 next = rb_entry(node, struct extent_node, rb_node);
510 if (__is_front_mergeable(&en->ei, &next->ei)) {
511 en->ei.len += next->ei.len;
512 __detach_extent_node(sbi, et, next);
513 return next;
514 }
515 return NULL;
516 }
517
518 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
519 struct extent_tree *et, struct extent_info *ei,
520 struct extent_node **den)
521 {
522 struct rb_node **p = &et->root.rb_node;
523 struct rb_node *parent = NULL;
524 struct extent_node *en;
525
526 while (*p) {
527 parent = *p;
528 en = rb_entry(parent, struct extent_node, rb_node);
529
530 if (ei->fofs < en->ei.fofs) {
531 if (__is_front_mergeable(ei, &en->ei)) {
532 f2fs_bug_on(sbi, !den);
533 en->ei.fofs = ei->fofs;
534 en->ei.blk = ei->blk;
535 en->ei.len += ei->len;
536 *den = __try_back_merge(sbi, et, en);
537 return en;
538 }
539 p = &(*p)->rb_left;
540 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
541 if (__is_back_mergeable(ei, &en->ei)) {
542 f2fs_bug_on(sbi, !den);
543 en->ei.len += ei->len;
544 *den = __try_front_merge(sbi, et, en);
545 return en;
546 }
547 p = &(*p)->rb_right;
548 } else {
549 f2fs_bug_on(sbi, 1);
550 }
551 }
552
553 return __attach_extent_node(sbi, et, ei, parent, p);
554 }
555
556 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
557 struct extent_tree *et, bool free_all)
558 {
559 struct rb_node *node, *next;
560 struct extent_node *en;
561 unsigned int count = et->count;
562
563 node = rb_first(&et->root);
564 while (node) {
565 next = rb_next(node);
566 en = rb_entry(node, struct extent_node, rb_node);
567
568 if (free_all) {
569 spin_lock(&sbi->extent_lock);
570 if (!list_empty(&en->list))
571 list_del_init(&en->list);
572 spin_unlock(&sbi->extent_lock);
573 }
574
575 if (free_all || list_empty(&en->list)) {
576 __detach_extent_node(sbi, et, en);
577 kmem_cache_free(extent_node_slab, en);
578 }
579 node = next;
580 }
581
582 return count - et->count;
583 }
584
585 static void f2fs_init_extent_tree(struct inode *inode,
586 struct f2fs_extent *i_ext)
587 {
588 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
589 struct extent_tree *et;
590 struct extent_node *en;
591 struct extent_info ei;
592
593 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
594 return;
595
596 et = __grab_extent_tree(inode);
597
598 write_lock(&et->lock);
599 if (et->count)
600 goto out;
601
602 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
603 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
604
605 en = __insert_extent_tree(sbi, et, &ei, NULL);
606 if (en) {
607 et->cached_en = en;
608
609 spin_lock(&sbi->extent_lock);
610 list_add_tail(&en->list, &sbi->extent_list);
611 spin_unlock(&sbi->extent_lock);
612 }
613 out:
614 write_unlock(&et->lock);
615 atomic_dec(&et->refcount);
616 }
617
618 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
619 struct extent_info *ei)
620 {
621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
622 struct extent_tree *et;
623 struct extent_node *en;
624
625 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
626
627 et = __find_extent_tree(sbi, inode->i_ino);
628 if (!et)
629 return false;
630
631 read_lock(&et->lock);
632 en = __lookup_extent_tree(et, pgofs);
633 if (en) {
634 *ei = en->ei;
635 spin_lock(&sbi->extent_lock);
636 if (!list_empty(&en->list))
637 list_move_tail(&en->list, &sbi->extent_list);
638 spin_unlock(&sbi->extent_lock);
639 stat_inc_read_hit(sbi->sb);
640 }
641 stat_inc_total_hit(sbi->sb);
642 read_unlock(&et->lock);
643
644 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
645
646 atomic_dec(&et->refcount);
647 return en ? true : false;
648 }
649
650 static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
651 block_t blkaddr)
652 {
653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
654 struct extent_tree *et;
655 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
656 struct extent_node *den = NULL;
657 struct extent_info ei, dei;
658 unsigned int endofs;
659
660 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
661
662 et = __grab_extent_tree(inode);
663
664 write_lock(&et->lock);
665
666 /* 1. lookup and remove existing extent info in cache */
667 en = __lookup_extent_tree(et, fofs);
668 if (!en)
669 goto update_extent;
670
671 dei = en->ei;
672 __detach_extent_node(sbi, et, en);
673
674 /* 2. if extent can be split more, split and insert the left part */
675 if (dei.len > 1) {
676 /* insert left part of split extent into cache */
677 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
678 set_extent_info(&ei, dei.fofs, dei.blk,
679 fofs - dei.fofs);
680 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
681 }
682
683 /* insert right part of split extent into cache */
684 endofs = dei.fofs + dei.len - 1;
685 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
686 set_extent_info(&ei, fofs + 1,
687 fofs - dei.fofs + dei.blk, endofs - fofs);
688 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
689 }
690 }
691
692 update_extent:
693 /* 3. update extent in extent cache */
694 if (blkaddr) {
695 set_extent_info(&ei, fofs, blkaddr, 1);
696 en3 = __insert_extent_tree(sbi, et, &ei, &den);
697 }
698
699 /* 4. update in global extent list */
700 spin_lock(&sbi->extent_lock);
701 if (en && !list_empty(&en->list))
702 list_del(&en->list);
703 /*
704 * en1 and en2 split from en, they will become more and more smaller
705 * fragments after splitting several times. So if the length is smaller
706 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
707 */
708 if (en1)
709 list_add_tail(&en1->list, &sbi->extent_list);
710 if (en2)
711 list_add_tail(&en2->list, &sbi->extent_list);
712 if (en3) {
713 if (list_empty(&en3->list))
714 list_add_tail(&en3->list, &sbi->extent_list);
715 else
716 list_move_tail(&en3->list, &sbi->extent_list);
717 }
718 if (den && !list_empty(&den->list))
719 list_del(&den->list);
720 spin_unlock(&sbi->extent_lock);
721
722 /* 5. release extent node */
723 if (en)
724 kmem_cache_free(extent_node_slab, en);
725 if (den)
726 kmem_cache_free(extent_node_slab, den);
727
728 write_unlock(&et->lock);
729 atomic_dec(&et->refcount);
730 }
731
732 void f2fs_preserve_extent_tree(struct inode *inode)
733 {
734 struct extent_tree *et;
735 struct extent_info *ext = &F2FS_I(inode)->ext;
736 bool sync = false;
737
738 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
739 return;
740
741 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
742 if (!et) {
743 if (ext->len) {
744 ext->len = 0;
745 update_inode_page(inode);
746 }
747 return;
748 }
749
750 read_lock(&et->lock);
751 if (et->count) {
752 struct extent_node *en;
753
754 if (et->cached_en) {
755 en = et->cached_en;
756 } else {
757 struct rb_node *node = rb_first(&et->root);
758
759 if (!node)
760 node = rb_last(&et->root);
761 en = rb_entry(node, struct extent_node, rb_node);
762 }
763
764 if (__is_extent_same(ext, &en->ei))
765 goto out;
766
767 *ext = en->ei;
768 sync = true;
769 } else if (ext->len) {
770 ext->len = 0;
771 sync = true;
772 }
773 out:
774 read_unlock(&et->lock);
775 atomic_dec(&et->refcount);
776
777 if (sync)
778 update_inode_page(inode);
779 }
780
781 void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
782 {
783 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
784 struct extent_node *en, *tmp;
785 unsigned long ino = F2FS_ROOT_INO(sbi);
786 struct radix_tree_iter iter;
787 void **slot;
788 unsigned int found;
789 unsigned int node_cnt = 0, tree_cnt = 0;
790
791 if (!test_opt(sbi, EXTENT_CACHE))
792 return;
793
794 if (available_free_memory(sbi, EXTENT_CACHE))
795 return;
796
797 spin_lock(&sbi->extent_lock);
798 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
799 if (!nr_shrink--)
800 break;
801 list_del_init(&en->list);
802 }
803 spin_unlock(&sbi->extent_lock);
804
805 down_read(&sbi->extent_tree_lock);
806 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
807 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
808 unsigned i;
809
810 ino = treevec[found - 1]->ino + 1;
811 for (i = 0; i < found; i++) {
812 struct extent_tree *et = treevec[i];
813
814 atomic_inc(&et->refcount);
815 write_lock(&et->lock);
816 node_cnt += __free_extent_tree(sbi, et, false);
817 write_unlock(&et->lock);
818 atomic_dec(&et->refcount);
819 }
820 }
821 up_read(&sbi->extent_tree_lock);
822
823 down_write(&sbi->extent_tree_lock);
824 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
825 F2FS_ROOT_INO(sbi)) {
826 struct extent_tree *et = (struct extent_tree *)*slot;
827
828 if (!atomic_read(&et->refcount) && !et->count) {
829 radix_tree_delete(&sbi->extent_tree_root, et->ino);
830 kmem_cache_free(extent_tree_slab, et);
831 sbi->total_ext_tree--;
832 tree_cnt++;
833 }
834 }
835 up_write(&sbi->extent_tree_lock);
836
837 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
838 }
839
840 void f2fs_destroy_extent_tree(struct inode *inode)
841 {
842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 struct extent_tree *et;
844 unsigned int node_cnt = 0;
845
846 if (!test_opt(sbi, EXTENT_CACHE))
847 return;
848
849 et = __find_extent_tree(sbi, inode->i_ino);
850 if (!et)
851 goto out;
852
853 /* free all extent info belong to this extent tree */
854 write_lock(&et->lock);
855 node_cnt = __free_extent_tree(sbi, et, true);
856 write_unlock(&et->lock);
857
858 atomic_dec(&et->refcount);
859
860 /* try to find and delete extent tree entry in radix tree */
861 down_write(&sbi->extent_tree_lock);
862 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
863 if (!et) {
864 up_write(&sbi->extent_tree_lock);
865 goto out;
866 }
867 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
868 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
869 kmem_cache_free(extent_tree_slab, et);
870 sbi->total_ext_tree--;
871 up_write(&sbi->extent_tree_lock);
872 out:
873 trace_f2fs_destroy_extent_tree(inode, node_cnt);
874 return;
875 }
876
877 void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
878 {
879 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
880 f2fs_init_extent_tree(inode, i_ext);
881
882 write_lock(&F2FS_I(inode)->ext_lock);
883 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
884 write_unlock(&F2FS_I(inode)->ext_lock);
885 }
886
887 static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
888 struct extent_info *ei)
889 {
890 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
891 return false;
892
893 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
894 return f2fs_lookup_extent_tree(inode, pgofs, ei);
895
896 return lookup_extent_info(inode, pgofs, ei);
897 }
898
899 void f2fs_update_extent_cache(struct dnode_of_data *dn)
900 {
901 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
902 pgoff_t fofs;
903
904 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
905
906 if (is_inode_flag_set(fi, FI_NO_EXTENT))
907 return;
908
909 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
910 dn->ofs_in_node;
911
912 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
913 return f2fs_update_extent_tree(dn->inode, fofs,
914 dn->data_blkaddr);
915
916 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
917 sync_inode_page(dn);
918 }
919
920 struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
921 {
922 struct address_space *mapping = inode->i_mapping;
923 struct dnode_of_data dn;
924 struct page *page;
925 struct extent_info ei;
926 int err;
927 struct f2fs_io_info fio = {
928 .sbi = F2FS_I_SB(inode),
929 .type = DATA,
930 .rw = rw,
931 };
932
933 page = grab_cache_page(mapping, index);
934 if (!page)
935 return ERR_PTR(-ENOMEM);
936
937 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
938 dn.data_blkaddr = ei.blk + index - ei.fofs;
939 goto got_it;
940 }
941
942 set_new_dnode(&dn, inode, NULL, NULL, 0);
943 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
944 if (err) {
945 f2fs_put_page(page, 1);
946 return ERR_PTR(err);
947 }
948 f2fs_put_dnode(&dn);
949
950 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
951 f2fs_put_page(page, 1);
952 return ERR_PTR(-ENOENT);
953 }
954 got_it:
955 if (PageUptodate(page)) {
956 unlock_page(page);
957 return page;
958 }
959
960 /*
961 * A new dentry page is allocated but not able to be written, since its
962 * new inode page couldn't be allocated due to -ENOSPC.
963 * In such the case, its blkaddr can be remained as NEW_ADDR.
964 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
965 */
966 if (dn.data_blkaddr == NEW_ADDR) {
967 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
968 SetPageUptodate(page);
969 unlock_page(page);
970 return page;
971 }
972
973 fio.blk_addr = dn.data_blkaddr;
974 fio.page = page;
975 err = f2fs_submit_page_bio(&fio);
976 if (err)
977 return ERR_PTR(err);
978 return page;
979 }
980
981 struct page *find_data_page(struct inode *inode, pgoff_t index)
982 {
983 struct address_space *mapping = inode->i_mapping;
984 struct page *page;
985
986 page = find_get_page(mapping, index);
987 if (page && PageUptodate(page))
988 return page;
989 f2fs_put_page(page, 0);
990
991 page = get_read_data_page(inode, index, READ_SYNC);
992 if (IS_ERR(page))
993 return page;
994
995 if (PageUptodate(page))
996 return page;
997
998 wait_on_page_locked(page);
999 if (unlikely(!PageUptodate(page))) {
1000 f2fs_put_page(page, 0);
1001 return ERR_PTR(-EIO);
1002 }
1003 return page;
1004 }
1005
1006 /*
1007 * If it tries to access a hole, return an error.
1008 * Because, the callers, functions in dir.c and GC, should be able to know
1009 * whether this page exists or not.
1010 */
1011 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
1012 {
1013 struct address_space *mapping = inode->i_mapping;
1014 struct page *page;
1015 repeat:
1016 page = get_read_data_page(inode, index, READ_SYNC);
1017 if (IS_ERR(page))
1018 return page;
1019
1020 /* wait for read completion */
1021 lock_page(page);
1022 if (unlikely(!PageUptodate(page))) {
1023 f2fs_put_page(page, 1);
1024 return ERR_PTR(-EIO);
1025 }
1026 if (unlikely(page->mapping != mapping)) {
1027 f2fs_put_page(page, 1);
1028 goto repeat;
1029 }
1030 return page;
1031 }
1032
1033 /*
1034 * Caller ensures that this data page is never allocated.
1035 * A new zero-filled data page is allocated in the page cache.
1036 *
1037 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1038 * f2fs_unlock_op().
1039 * Note that, ipage is set only by make_empty_dir.
1040 */
1041 struct page *get_new_data_page(struct inode *inode,
1042 struct page *ipage, pgoff_t index, bool new_i_size)
1043 {
1044 struct address_space *mapping = inode->i_mapping;
1045 struct page *page;
1046 struct dnode_of_data dn;
1047 int err;
1048 repeat:
1049 page = grab_cache_page(mapping, index);
1050 if (!page)
1051 return ERR_PTR(-ENOMEM);
1052
1053 set_new_dnode(&dn, inode, ipage, NULL, 0);
1054 err = f2fs_reserve_block(&dn, index);
1055 if (err) {
1056 f2fs_put_page(page, 1);
1057 return ERR_PTR(err);
1058 }
1059 if (!ipage)
1060 f2fs_put_dnode(&dn);
1061
1062 if (PageUptodate(page))
1063 goto got_it;
1064
1065 if (dn.data_blkaddr == NEW_ADDR) {
1066 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1067 SetPageUptodate(page);
1068 } else {
1069 struct f2fs_io_info fio = {
1070 .sbi = F2FS_I_SB(inode),
1071 .type = DATA,
1072 .rw = READ_SYNC,
1073 .blk_addr = dn.data_blkaddr,
1074 .page = page,
1075 };
1076 err = f2fs_submit_page_bio(&fio);
1077 if (err)
1078 return ERR_PTR(err);
1079
1080 lock_page(page);
1081 if (unlikely(!PageUptodate(page))) {
1082 f2fs_put_page(page, 1);
1083 return ERR_PTR(-EIO);
1084 }
1085 if (unlikely(page->mapping != mapping)) {
1086 f2fs_put_page(page, 1);
1087 goto repeat;
1088 }
1089 }
1090 got_it:
1091 if (new_i_size &&
1092 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1093 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
1094 /* Only the directory inode sets new_i_size */
1095 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
1096 }
1097 return page;
1098 }
1099
1100 static int __allocate_data_block(struct dnode_of_data *dn)
1101 {
1102 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1103 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
1104 struct f2fs_summary sum;
1105 struct node_info ni;
1106 int seg = CURSEG_WARM_DATA;
1107 pgoff_t fofs;
1108
1109 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1110 return -EPERM;
1111
1112 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1113 if (dn->data_blkaddr == NEW_ADDR)
1114 goto alloc;
1115
1116 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1117 return -ENOSPC;
1118
1119 alloc:
1120 get_node_info(sbi, dn->nid, &ni);
1121 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1122
1123 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1124 seg = CURSEG_DIRECT_IO;
1125
1126 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1127 &sum, seg);
1128
1129 /* direct IO doesn't use extent cache to maximize the performance */
1130 set_data_blkaddr(dn);
1131
1132 /* update i_size */
1133 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1134 dn->ofs_in_node;
1135 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1136 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1137
1138 return 0;
1139 }
1140
1141 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1142 size_t count)
1143 {
1144 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1145 struct dnode_of_data dn;
1146 u64 start = F2FS_BYTES_TO_BLK(offset);
1147 u64 len = F2FS_BYTES_TO_BLK(count);
1148 bool allocated;
1149 u64 end_offset;
1150
1151 while (len) {
1152 f2fs_balance_fs(sbi);
1153 f2fs_lock_op(sbi);
1154
1155 /* When reading holes, we need its node page */
1156 set_new_dnode(&dn, inode, NULL, NULL, 0);
1157 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1158 goto out;
1159
1160 allocated = false;
1161 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1162
1163 while (dn.ofs_in_node < end_offset && len) {
1164 block_t blkaddr;
1165
1166 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1167 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
1168 if (__allocate_data_block(&dn))
1169 goto sync_out;
1170 allocated = true;
1171 }
1172 len--;
1173 start++;
1174 dn.ofs_in_node++;
1175 }
1176
1177 if (allocated)
1178 sync_inode_page(&dn);
1179
1180 f2fs_put_dnode(&dn);
1181 f2fs_unlock_op(sbi);
1182 }
1183 return;
1184
1185 sync_out:
1186 if (allocated)
1187 sync_inode_page(&dn);
1188 f2fs_put_dnode(&dn);
1189 out:
1190 f2fs_unlock_op(sbi);
1191 return;
1192 }
1193
1194 /*
1195 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1196 * f2fs_map_blocks structure.
1197 * If original data blocks are allocated, then give them to blockdev.
1198 * Otherwise,
1199 * a. preallocate requested block addresses
1200 * b. do not use extent cache for better performance
1201 * c. give the block addresses to blockdev
1202 */
1203 static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1204 int create, bool fiemap)
1205 {
1206 unsigned int maxblocks = map->m_len;
1207 struct dnode_of_data dn;
1208 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1209 pgoff_t pgofs, end_offset;
1210 int err = 0, ofs = 1;
1211 struct extent_info ei;
1212 bool allocated = false;
1213
1214 map->m_len = 0;
1215 map->m_flags = 0;
1216
1217 /* it only supports block size == page size */
1218 pgofs = (pgoff_t)map->m_lblk;
1219
1220 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1221 map->m_pblk = ei.blk + pgofs - ei.fofs;
1222 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1223 map->m_flags = F2FS_MAP_MAPPED;
1224 goto out;
1225 }
1226
1227 if (create)
1228 f2fs_lock_op(F2FS_I_SB(inode));
1229
1230 /* When reading holes, we need its node page */
1231 set_new_dnode(&dn, inode, NULL, NULL, 0);
1232 err = get_dnode_of_data(&dn, pgofs, mode);
1233 if (err) {
1234 if (err == -ENOENT)
1235 err = 0;
1236 goto unlock_out;
1237 }
1238 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1239 goto put_out;
1240
1241 if (dn.data_blkaddr != NULL_ADDR) {
1242 map->m_flags = F2FS_MAP_MAPPED;
1243 map->m_pblk = dn.data_blkaddr;
1244 if (dn.data_blkaddr == NEW_ADDR)
1245 map->m_flags |= F2FS_MAP_UNWRITTEN;
1246 } else if (create) {
1247 err = __allocate_data_block(&dn);
1248 if (err)
1249 goto put_out;
1250 allocated = true;
1251 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1252 map->m_pblk = dn.data_blkaddr;
1253 } else {
1254 goto put_out;
1255 }
1256
1257 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1258 map->m_len = 1;
1259 dn.ofs_in_node++;
1260 pgofs++;
1261
1262 get_next:
1263 if (dn.ofs_in_node >= end_offset) {
1264 if (allocated)
1265 sync_inode_page(&dn);
1266 allocated = false;
1267 f2fs_put_dnode(&dn);
1268
1269 set_new_dnode(&dn, inode, NULL, NULL, 0);
1270 err = get_dnode_of_data(&dn, pgofs, mode);
1271 if (err) {
1272 if (err == -ENOENT)
1273 err = 0;
1274 goto unlock_out;
1275 }
1276 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1277 goto put_out;
1278
1279 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1280 }
1281
1282 if (maxblocks > map->m_len) {
1283 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1284 if (blkaddr == NULL_ADDR && create) {
1285 err = __allocate_data_block(&dn);
1286 if (err)
1287 goto sync_out;
1288 allocated = true;
1289 map->m_flags |= F2FS_MAP_NEW;
1290 blkaddr = dn.data_blkaddr;
1291 }
1292 /* Give more consecutive addresses for the readahead */
1293 if ((map->m_pblk != NEW_ADDR &&
1294 blkaddr == (map->m_pblk + ofs)) ||
1295 (map->m_pblk == NEW_ADDR &&
1296 blkaddr == NEW_ADDR)) {
1297 ofs++;
1298 dn.ofs_in_node++;
1299 pgofs++;
1300 map->m_len++;
1301 goto get_next;
1302 }
1303 }
1304 sync_out:
1305 if (allocated)
1306 sync_inode_page(&dn);
1307 put_out:
1308 f2fs_put_dnode(&dn);
1309 unlock_out:
1310 if (create)
1311 f2fs_unlock_op(F2FS_I_SB(inode));
1312 out:
1313 trace_f2fs_map_blocks(inode, map, err);
1314 return err;
1315 }
1316
1317 static int __get_data_block(struct inode *inode, sector_t iblock,
1318 struct buffer_head *bh, int create, bool fiemap)
1319 {
1320 struct f2fs_map_blocks map;
1321 int ret;
1322
1323 map.m_lblk = iblock;
1324 map.m_len = bh->b_size >> inode->i_blkbits;
1325
1326 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1327 if (!ret) {
1328 map_bh(bh, inode->i_sb, map.m_pblk);
1329 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1330 bh->b_size = map.m_len << inode->i_blkbits;
1331 }
1332 return ret;
1333 }
1334
1335 static int get_data_block(struct inode *inode, sector_t iblock,
1336 struct buffer_head *bh_result, int create)
1337 {
1338 return __get_data_block(inode, iblock, bh_result, create, false);
1339 }
1340
1341 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1342 struct buffer_head *bh_result, int create)
1343 {
1344 return __get_data_block(inode, iblock, bh_result, create, true);
1345 }
1346
1347 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1348 {
1349 return (offset >> inode->i_blkbits);
1350 }
1351
1352 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1353 {
1354 return (blk << inode->i_blkbits);
1355 }
1356
1357 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1358 u64 start, u64 len)
1359 {
1360 struct buffer_head map_bh;
1361 sector_t start_blk, last_blk;
1362 loff_t isize = i_size_read(inode);
1363 u64 logical = 0, phys = 0, size = 0;
1364 u32 flags = 0;
1365 bool past_eof = false, whole_file = false;
1366 int ret = 0;
1367
1368 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1369 if (ret)
1370 return ret;
1371
1372 mutex_lock(&inode->i_mutex);
1373
1374 if (len >= isize) {
1375 whole_file = true;
1376 len = isize;
1377 }
1378
1379 if (logical_to_blk(inode, len) == 0)
1380 len = blk_to_logical(inode, 1);
1381
1382 start_blk = logical_to_blk(inode, start);
1383 last_blk = logical_to_blk(inode, start + len - 1);
1384 next:
1385 memset(&map_bh, 0, sizeof(struct buffer_head));
1386 map_bh.b_size = len;
1387
1388 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1389 if (ret)
1390 goto out;
1391
1392 /* HOLE */
1393 if (!buffer_mapped(&map_bh)) {
1394 start_blk++;
1395
1396 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1397 past_eof = 1;
1398
1399 if (past_eof && size) {
1400 flags |= FIEMAP_EXTENT_LAST;
1401 ret = fiemap_fill_next_extent(fieinfo, logical,
1402 phys, size, flags);
1403 } else if (size) {
1404 ret = fiemap_fill_next_extent(fieinfo, logical,
1405 phys, size, flags);
1406 size = 0;
1407 }
1408
1409 /* if we have holes up to/past EOF then we're done */
1410 if (start_blk > last_blk || past_eof || ret)
1411 goto out;
1412 } else {
1413 if (start_blk > last_blk && !whole_file) {
1414 ret = fiemap_fill_next_extent(fieinfo, logical,
1415 phys, size, flags);
1416 goto out;
1417 }
1418
1419 /*
1420 * if size != 0 then we know we already have an extent
1421 * to add, so add it.
1422 */
1423 if (size) {
1424 ret = fiemap_fill_next_extent(fieinfo, logical,
1425 phys, size, flags);
1426 if (ret)
1427 goto out;
1428 }
1429
1430 logical = blk_to_logical(inode, start_blk);
1431 phys = blk_to_logical(inode, map_bh.b_blocknr);
1432 size = map_bh.b_size;
1433 flags = 0;
1434 if (buffer_unwritten(&map_bh))
1435 flags = FIEMAP_EXTENT_UNWRITTEN;
1436
1437 start_blk += logical_to_blk(inode, size);
1438
1439 /*
1440 * If we are past the EOF, then we need to make sure as
1441 * soon as we find a hole that the last extent we found
1442 * is marked with FIEMAP_EXTENT_LAST
1443 */
1444 if (!past_eof && logical + size >= isize)
1445 past_eof = true;
1446 }
1447 cond_resched();
1448 if (fatal_signal_pending(current))
1449 ret = -EINTR;
1450 else
1451 goto next;
1452 out:
1453 if (ret == 1)
1454 ret = 0;
1455
1456 mutex_unlock(&inode->i_mutex);
1457 return ret;
1458 }
1459
1460 /*
1461 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1462 * Major change was from block_size == page_size in f2fs by default.
1463 */
1464 static int f2fs_mpage_readpages(struct address_space *mapping,
1465 struct list_head *pages, struct page *page,
1466 unsigned nr_pages)
1467 {
1468 struct bio *bio = NULL;
1469 unsigned page_idx;
1470 sector_t last_block_in_bio = 0;
1471 struct inode *inode = mapping->host;
1472 const unsigned blkbits = inode->i_blkbits;
1473 const unsigned blocksize = 1 << blkbits;
1474 sector_t block_in_file;
1475 sector_t last_block;
1476 sector_t last_block_in_file;
1477 sector_t block_nr;
1478 struct block_device *bdev = inode->i_sb->s_bdev;
1479 struct f2fs_map_blocks map;
1480
1481 map.m_pblk = 0;
1482 map.m_lblk = 0;
1483 map.m_len = 0;
1484 map.m_flags = 0;
1485
1486 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1487
1488 prefetchw(&page->flags);
1489 if (pages) {
1490 page = list_entry(pages->prev, struct page, lru);
1491 list_del(&page->lru);
1492 if (add_to_page_cache_lru(page, mapping,
1493 page->index, GFP_KERNEL))
1494 goto next_page;
1495 }
1496
1497 block_in_file = (sector_t)page->index;
1498 last_block = block_in_file + nr_pages;
1499 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1500 blkbits;
1501 if (last_block > last_block_in_file)
1502 last_block = last_block_in_file;
1503
1504 /*
1505 * Map blocks using the previous result first.
1506 */
1507 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1508 block_in_file > map.m_lblk &&
1509 block_in_file < (map.m_lblk + map.m_len))
1510 goto got_it;
1511
1512 /*
1513 * Then do more f2fs_map_blocks() calls until we are
1514 * done with this page.
1515 */
1516 map.m_flags = 0;
1517
1518 if (block_in_file < last_block) {
1519 map.m_lblk = block_in_file;
1520 map.m_len = last_block - block_in_file;
1521
1522 if (f2fs_map_blocks(inode, &map, 0, false))
1523 goto set_error_page;
1524 }
1525 got_it:
1526 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1527 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1528 SetPageMappedToDisk(page);
1529
1530 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1531 SetPageUptodate(page);
1532 goto confused;
1533 }
1534 } else {
1535 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1536 SetPageUptodate(page);
1537 unlock_page(page);
1538 goto next_page;
1539 }
1540
1541 /*
1542 * This page will go to BIO. Do we need to send this
1543 * BIO off first?
1544 */
1545 if (bio && (last_block_in_bio != block_nr - 1)) {
1546 submit_and_realloc:
1547 submit_bio(READ, bio);
1548 bio = NULL;
1549 }
1550 if (bio == NULL) {
1551 bio = bio_alloc(GFP_KERNEL,
1552 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
1553 if (!bio)
1554 goto set_error_page;
1555 bio->bi_bdev = bdev;
1556 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1557 bio->bi_end_io = mpage_end_io;
1558 bio->bi_private = NULL;
1559 }
1560
1561 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1562 goto submit_and_realloc;
1563
1564 last_block_in_bio = block_nr;
1565 goto next_page;
1566 set_error_page:
1567 SetPageError(page);
1568 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1569 unlock_page(page);
1570 goto next_page;
1571 confused:
1572 if (bio) {
1573 submit_bio(READ, bio);
1574 bio = NULL;
1575 }
1576 unlock_page(page);
1577 next_page:
1578 if (pages)
1579 page_cache_release(page);
1580 }
1581 BUG_ON(pages && !list_empty(pages));
1582 if (bio)
1583 submit_bio(READ, bio);
1584 return 0;
1585 }
1586
1587 static int f2fs_read_data_page(struct file *file, struct page *page)
1588 {
1589 struct inode *inode = page->mapping->host;
1590 int ret = -EAGAIN;
1591
1592 trace_f2fs_readpage(page, DATA);
1593
1594 /* If the file has inline data, try to read it directly */
1595 if (f2fs_has_inline_data(inode))
1596 ret = f2fs_read_inline_data(inode, page);
1597 if (ret == -EAGAIN)
1598 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1599 return ret;
1600 }
1601
1602 static int f2fs_read_data_pages(struct file *file,
1603 struct address_space *mapping,
1604 struct list_head *pages, unsigned nr_pages)
1605 {
1606 struct inode *inode = file->f_mapping->host;
1607
1608 /* If the file has inline data, skip readpages */
1609 if (f2fs_has_inline_data(inode))
1610 return 0;
1611
1612 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1613 }
1614
1615 int do_write_data_page(struct f2fs_io_info *fio)
1616 {
1617 struct page *page = fio->page;
1618 struct inode *inode = page->mapping->host;
1619 struct dnode_of_data dn;
1620 int err = 0;
1621
1622 set_new_dnode(&dn, inode, NULL, NULL, 0);
1623 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1624 if (err)
1625 return err;
1626
1627 fio->blk_addr = dn.data_blkaddr;
1628
1629 /* This page is already truncated */
1630 if (fio->blk_addr == NULL_ADDR) {
1631 ClearPageUptodate(page);
1632 goto out_writepage;
1633 }
1634
1635 set_page_writeback(page);
1636
1637 /*
1638 * If current allocation needs SSR,
1639 * it had better in-place writes for updated data.
1640 */
1641 if (unlikely(fio->blk_addr != NEW_ADDR &&
1642 !is_cold_data(page) &&
1643 need_inplace_update(inode))) {
1644 rewrite_data_page(fio);
1645 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1646 trace_f2fs_do_write_data_page(page, IPU);
1647 } else {
1648 write_data_page(&dn, fio);
1649 set_data_blkaddr(&dn);
1650 f2fs_update_extent_cache(&dn);
1651 trace_f2fs_do_write_data_page(page, OPU);
1652 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1653 if (page->index == 0)
1654 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1655 }
1656 out_writepage:
1657 f2fs_put_dnode(&dn);
1658 return err;
1659 }
1660
1661 static int f2fs_write_data_page(struct page *page,
1662 struct writeback_control *wbc)
1663 {
1664 struct inode *inode = page->mapping->host;
1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666 loff_t i_size = i_size_read(inode);
1667 const pgoff_t end_index = ((unsigned long long) i_size)
1668 >> PAGE_CACHE_SHIFT;
1669 unsigned offset = 0;
1670 bool need_balance_fs = false;
1671 int err = 0;
1672 struct f2fs_io_info fio = {
1673 .sbi = sbi,
1674 .type = DATA,
1675 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1676 .page = page,
1677 };
1678
1679 trace_f2fs_writepage(page, DATA);
1680
1681 if (page->index < end_index)
1682 goto write;
1683
1684 /*
1685 * If the offset is out-of-range of file size,
1686 * this page does not have to be written to disk.
1687 */
1688 offset = i_size & (PAGE_CACHE_SIZE - 1);
1689 if ((page->index >= end_index + 1) || !offset)
1690 goto out;
1691
1692 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1693 write:
1694 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1695 goto redirty_out;
1696 if (f2fs_is_drop_cache(inode))
1697 goto out;
1698 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1699 available_free_memory(sbi, BASE_CHECK))
1700 goto redirty_out;
1701
1702 /* Dentry blocks are controlled by checkpoint */
1703 if (S_ISDIR(inode->i_mode)) {
1704 if (unlikely(f2fs_cp_error(sbi)))
1705 goto redirty_out;
1706 err = do_write_data_page(&fio);
1707 goto done;
1708 }
1709
1710 /* we should bypass data pages to proceed the kworkder jobs */
1711 if (unlikely(f2fs_cp_error(sbi))) {
1712 SetPageError(page);
1713 goto out;
1714 }
1715
1716 if (!wbc->for_reclaim)
1717 need_balance_fs = true;
1718 else if (has_not_enough_free_secs(sbi, 0))
1719 goto redirty_out;
1720
1721 err = -EAGAIN;
1722 f2fs_lock_op(sbi);
1723 if (f2fs_has_inline_data(inode))
1724 err = f2fs_write_inline_data(inode, page);
1725 if (err == -EAGAIN)
1726 err = do_write_data_page(&fio);
1727 f2fs_unlock_op(sbi);
1728 done:
1729 if (err && err != -ENOENT)
1730 goto redirty_out;
1731
1732 clear_cold_data(page);
1733 out:
1734 inode_dec_dirty_pages(inode);
1735 if (err)
1736 ClearPageUptodate(page);
1737 unlock_page(page);
1738 if (need_balance_fs)
1739 f2fs_balance_fs(sbi);
1740 if (wbc->for_reclaim)
1741 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1742 return 0;
1743
1744 redirty_out:
1745 redirty_page_for_writepage(wbc, page);
1746 return AOP_WRITEPAGE_ACTIVATE;
1747 }
1748
1749 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1750 void *data)
1751 {
1752 struct address_space *mapping = data;
1753 int ret = mapping->a_ops->writepage(page, wbc);
1754 mapping_set_error(mapping, ret);
1755 return ret;
1756 }
1757
1758 static int f2fs_write_data_pages(struct address_space *mapping,
1759 struct writeback_control *wbc)
1760 {
1761 struct inode *inode = mapping->host;
1762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1763 bool locked = false;
1764 int ret;
1765 long diff;
1766
1767 trace_f2fs_writepages(mapping->host, wbc, DATA);
1768
1769 /* deal with chardevs and other special file */
1770 if (!mapping->a_ops->writepage)
1771 return 0;
1772
1773 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1774 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1775 available_free_memory(sbi, DIRTY_DENTS))
1776 goto skip_write;
1777
1778 /* during POR, we don't need to trigger writepage at all. */
1779 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1780 goto skip_write;
1781
1782 diff = nr_pages_to_write(sbi, DATA, wbc);
1783
1784 if (!S_ISDIR(inode->i_mode)) {
1785 mutex_lock(&sbi->writepages);
1786 locked = true;
1787 }
1788 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1789 if (locked)
1790 mutex_unlock(&sbi->writepages);
1791
1792 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1793
1794 remove_dirty_dir_inode(inode);
1795
1796 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1797 return ret;
1798
1799 skip_write:
1800 wbc->pages_skipped += get_dirty_pages(inode);
1801 return 0;
1802 }
1803
1804 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1805 {
1806 struct inode *inode = mapping->host;
1807
1808 if (to > inode->i_size) {
1809 truncate_pagecache(inode, inode->i_size);
1810 truncate_blocks(inode, inode->i_size, true);
1811 }
1812 }
1813
1814 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1815 loff_t pos, unsigned len, unsigned flags,
1816 struct page **pagep, void **fsdata)
1817 {
1818 struct inode *inode = mapping->host;
1819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1820 struct page *page, *ipage;
1821 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1822 struct dnode_of_data dn;
1823 int err = 0;
1824
1825 trace_f2fs_write_begin(inode, pos, len, flags);
1826
1827 f2fs_balance_fs(sbi);
1828
1829 /*
1830 * We should check this at this moment to avoid deadlock on inode page
1831 * and #0 page. The locking rule for inline_data conversion should be:
1832 * lock_page(page #0) -> lock_page(inode_page)
1833 */
1834 if (index != 0) {
1835 err = f2fs_convert_inline_inode(inode);
1836 if (err)
1837 goto fail;
1838 }
1839 repeat:
1840 page = grab_cache_page_write_begin(mapping, index, flags);
1841 if (!page) {
1842 err = -ENOMEM;
1843 goto fail;
1844 }
1845
1846 *pagep = page;
1847
1848 f2fs_lock_op(sbi);
1849
1850 /* check inline_data */
1851 ipage = get_node_page(sbi, inode->i_ino);
1852 if (IS_ERR(ipage)) {
1853 err = PTR_ERR(ipage);
1854 goto unlock_fail;
1855 }
1856
1857 set_new_dnode(&dn, inode, ipage, ipage, 0);
1858
1859 if (f2fs_has_inline_data(inode)) {
1860 if (pos + len <= MAX_INLINE_DATA) {
1861 read_inline_data(page, ipage);
1862 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1863 sync_inode_page(&dn);
1864 goto put_next;
1865 }
1866 err = f2fs_convert_inline_page(&dn, page);
1867 if (err)
1868 goto put_fail;
1869 }
1870 err = f2fs_reserve_block(&dn, index);
1871 if (err)
1872 goto put_fail;
1873 put_next:
1874 f2fs_put_dnode(&dn);
1875 f2fs_unlock_op(sbi);
1876
1877 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1878 return 0;
1879
1880 f2fs_wait_on_page_writeback(page, DATA);
1881
1882 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1883 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1884 unsigned end = start + len;
1885
1886 /* Reading beyond i_size is simple: memset to zero */
1887 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1888 goto out;
1889 }
1890
1891 if (dn.data_blkaddr == NEW_ADDR) {
1892 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1893 } else {
1894 struct f2fs_io_info fio = {
1895 .sbi = sbi,
1896 .type = DATA,
1897 .rw = READ_SYNC,
1898 .blk_addr = dn.data_blkaddr,
1899 .page = page,
1900 };
1901 err = f2fs_submit_page_bio(&fio);
1902 if (err)
1903 goto fail;
1904
1905 lock_page(page);
1906 if (unlikely(!PageUptodate(page))) {
1907 f2fs_put_page(page, 1);
1908 err = -EIO;
1909 goto fail;
1910 }
1911 if (unlikely(page->mapping != mapping)) {
1912 f2fs_put_page(page, 1);
1913 goto repeat;
1914 }
1915 }
1916 out:
1917 SetPageUptodate(page);
1918 clear_cold_data(page);
1919 return 0;
1920
1921 put_fail:
1922 f2fs_put_dnode(&dn);
1923 unlock_fail:
1924 f2fs_unlock_op(sbi);
1925 f2fs_put_page(page, 1);
1926 fail:
1927 f2fs_write_failed(mapping, pos + len);
1928 return err;
1929 }
1930
1931 static int f2fs_write_end(struct file *file,
1932 struct address_space *mapping,
1933 loff_t pos, unsigned len, unsigned copied,
1934 struct page *page, void *fsdata)
1935 {
1936 struct inode *inode = page->mapping->host;
1937
1938 trace_f2fs_write_end(inode, pos, len, copied);
1939
1940 set_page_dirty(page);
1941
1942 if (pos + copied > i_size_read(inode)) {
1943 i_size_write(inode, pos + copied);
1944 mark_inode_dirty(inode);
1945 update_inode_page(inode);
1946 }
1947
1948 f2fs_put_page(page, 1);
1949 return copied;
1950 }
1951
1952 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1953 loff_t offset)
1954 {
1955 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1956
1957 if (iov_iter_rw(iter) == READ)
1958 return 0;
1959
1960 if (offset & blocksize_mask)
1961 return -EINVAL;
1962
1963 if (iov_iter_alignment(iter) & blocksize_mask)
1964 return -EINVAL;
1965
1966 return 0;
1967 }
1968
1969 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1970 loff_t offset)
1971 {
1972 struct file *file = iocb->ki_filp;
1973 struct address_space *mapping = file->f_mapping;
1974 struct inode *inode = mapping->host;
1975 size_t count = iov_iter_count(iter);
1976 int err;
1977
1978 /* we don't need to use inline_data strictly */
1979 if (f2fs_has_inline_data(inode)) {
1980 err = f2fs_convert_inline_inode(inode);
1981 if (err)
1982 return err;
1983 }
1984
1985 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1986 return 0;
1987
1988 if (check_direct_IO(inode, iter, offset))
1989 return 0;
1990
1991 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
1992
1993 if (iov_iter_rw(iter) == WRITE)
1994 __allocate_data_blocks(inode, offset, count);
1995
1996 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
1997 if (err < 0 && iov_iter_rw(iter) == WRITE)
1998 f2fs_write_failed(mapping, offset + count);
1999
2000 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
2001
2002 return err;
2003 }
2004
2005 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2006 unsigned int length)
2007 {
2008 struct inode *inode = page->mapping->host;
2009 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2010
2011 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2012 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
2013 return;
2014
2015 if (PageDirty(page)) {
2016 if (inode->i_ino == F2FS_META_INO(sbi))
2017 dec_page_count(sbi, F2FS_DIRTY_META);
2018 else if (inode->i_ino == F2FS_NODE_INO(sbi))
2019 dec_page_count(sbi, F2FS_DIRTY_NODES);
2020 else
2021 inode_dec_dirty_pages(inode);
2022 }
2023 ClearPagePrivate(page);
2024 }
2025
2026 int f2fs_release_page(struct page *page, gfp_t wait)
2027 {
2028 /* If this is dirty page, keep PagePrivate */
2029 if (PageDirty(page))
2030 return 0;
2031
2032 ClearPagePrivate(page);
2033 return 1;
2034 }
2035
2036 static int f2fs_set_data_page_dirty(struct page *page)
2037 {
2038 struct address_space *mapping = page->mapping;
2039 struct inode *inode = mapping->host;
2040
2041 trace_f2fs_set_page_dirty(page, DATA);
2042
2043 SetPageUptodate(page);
2044
2045 if (f2fs_is_atomic_file(inode)) {
2046 register_inmem_page(inode, page);
2047 return 1;
2048 }
2049
2050 mark_inode_dirty(inode);
2051
2052 if (!PageDirty(page)) {
2053 __set_page_dirty_nobuffers(page);
2054 update_dirty_page(inode, page);
2055 return 1;
2056 }
2057 return 0;
2058 }
2059
2060 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2061 {
2062 struct inode *inode = mapping->host;
2063
2064 /* we don't need to use inline_data strictly */
2065 if (f2fs_has_inline_data(inode)) {
2066 int err = f2fs_convert_inline_inode(inode);
2067 if (err)
2068 return err;
2069 }
2070 return generic_block_bmap(mapping, block, get_data_block);
2071 }
2072
2073 void init_extent_cache_info(struct f2fs_sb_info *sbi)
2074 {
2075 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
2076 init_rwsem(&sbi->extent_tree_lock);
2077 INIT_LIST_HEAD(&sbi->extent_list);
2078 spin_lock_init(&sbi->extent_lock);
2079 sbi->total_ext_tree = 0;
2080 atomic_set(&sbi->total_ext_node, 0);
2081 }
2082
2083 int __init create_extent_cache(void)
2084 {
2085 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
2086 sizeof(struct extent_tree));
2087 if (!extent_tree_slab)
2088 return -ENOMEM;
2089 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
2090 sizeof(struct extent_node));
2091 if (!extent_node_slab) {
2092 kmem_cache_destroy(extent_tree_slab);
2093 return -ENOMEM;
2094 }
2095 return 0;
2096 }
2097
2098 void destroy_extent_cache(void)
2099 {
2100 kmem_cache_destroy(extent_node_slab);
2101 kmem_cache_destroy(extent_tree_slab);
2102 }
2103
2104 const struct address_space_operations f2fs_dblock_aops = {
2105 .readpage = f2fs_read_data_page,
2106 .readpages = f2fs_read_data_pages,
2107 .writepage = f2fs_write_data_page,
2108 .writepages = f2fs_write_data_pages,
2109 .write_begin = f2fs_write_begin,
2110 .write_end = f2fs_write_end,
2111 .set_page_dirty = f2fs_set_data_page_dirty,
2112 .invalidatepage = f2fs_invalidate_page,
2113 .releasepage = f2fs_release_page,
2114 .direct_IO = f2fs_direct_IO,
2115 .bmap = f2fs_bmap,
2116 };
This page took 0.075368 seconds and 6 git commands to generate.