03a2b86a28ba4501f45b732edce1d65cfab1722d
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57
58 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
59 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
60 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
61
62 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
63 typecheck(unsigned long long, b) && \
64 ((long long)((a) - (b)) > 0))
65
66 typedef u32 block_t; /*
67 * should not change u32, since it is the on-disk block
68 * address format, __le32.
69 */
70 typedef u32 nid_t;
71
72 struct f2fs_mount_info {
73 unsigned int opt;
74 };
75
76 #define F2FS_FEATURE_ENCRYPT 0x0001
77
78 #define F2FS_HAS_FEATURE(sb, mask) \
79 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
80 #define F2FS_SET_FEATURE(sb, mask) \
81 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
82 #define F2FS_CLEAR_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
84
85 #define CRCPOLY_LE 0xedb88320
86
87 static inline __u32 f2fs_crc32(void *buf, size_t len)
88 {
89 unsigned char *p = (unsigned char *)buf;
90 __u32 crc = F2FS_SUPER_MAGIC;
91 int i;
92
93 while (len--) {
94 crc ^= *p++;
95 for (i = 0; i < 8; i++)
96 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
97 }
98 return crc;
99 }
100
101 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
102 {
103 return f2fs_crc32(buf, buf_size) == blk_crc;
104 }
105
106 /*
107 * For checkpoint manager
108 */
109 enum {
110 NAT_BITMAP,
111 SIT_BITMAP
112 };
113
114 enum {
115 CP_UMOUNT,
116 CP_FASTBOOT,
117 CP_SYNC,
118 CP_RECOVERY,
119 CP_DISCARD,
120 };
121
122 #define DEF_BATCHED_TRIM_SECTIONS 32
123 #define BATCHED_TRIM_SEGMENTS(sbi) \
124 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
125 #define BATCHED_TRIM_BLOCKS(sbi) \
126 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
127 #define DEF_CP_INTERVAL 60 /* 60 secs */
128
129 struct cp_control {
130 int reason;
131 __u64 trim_start;
132 __u64 trim_end;
133 __u64 trim_minlen;
134 __u64 trimmed;
135 };
136
137 /*
138 * For CP/NAT/SIT/SSA readahead
139 */
140 enum {
141 META_CP,
142 META_NAT,
143 META_SIT,
144 META_SSA,
145 META_POR,
146 };
147
148 /* for the list of ino */
149 enum {
150 ORPHAN_INO, /* for orphan ino list */
151 APPEND_INO, /* for append ino list */
152 UPDATE_INO, /* for update ino list */
153 MAX_INO_ENTRY, /* max. list */
154 };
155
156 struct ino_entry {
157 struct list_head list; /* list head */
158 nid_t ino; /* inode number */
159 };
160
161 /* for the list of inodes to be GCed */
162 struct inode_entry {
163 struct list_head list; /* list head */
164 struct inode *inode; /* vfs inode pointer */
165 };
166
167 /* for the list of blockaddresses to be discarded */
168 struct discard_entry {
169 struct list_head list; /* list head */
170 block_t blkaddr; /* block address to be discarded */
171 int len; /* # of consecutive blocks of the discard */
172 };
173
174 /* for the list of fsync inodes, used only during recovery */
175 struct fsync_inode_entry {
176 struct list_head list; /* list head */
177 struct inode *inode; /* vfs inode pointer */
178 block_t blkaddr; /* block address locating the last fsync */
179 block_t last_dentry; /* block address locating the last dentry */
180 block_t last_inode; /* block address locating the last inode */
181 };
182
183 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
184 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
185
186 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
187 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
188 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
189 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
190
191 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
192 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
193
194 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
195 {
196 int before = nats_in_cursum(rs);
197 rs->n_nats = cpu_to_le16(before + i);
198 return before;
199 }
200
201 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
202 {
203 int before = sits_in_cursum(rs);
204 rs->n_sits = cpu_to_le16(before + i);
205 return before;
206 }
207
208 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
209 int type)
210 {
211 if (type == NAT_JOURNAL)
212 return size <= MAX_NAT_JENTRIES(sum);
213 return size <= MAX_SIT_JENTRIES(sum);
214 }
215
216 /*
217 * ioctl commands
218 */
219 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
220 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
221 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
222
223 #define F2FS_IOCTL_MAGIC 0xf5
224 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
225 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
226 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
227 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
228 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
229 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
230 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
231 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
232
233 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
234 _IOR('f', 19, struct f2fs_encryption_policy)
235 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
236 _IOW('f', 20, __u8[16])
237 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
238 _IOW('f', 21, struct f2fs_encryption_policy)
239
240 /*
241 * should be same as XFS_IOC_GOINGDOWN.
242 * Flags for going down operation used by FS_IOC_GOINGDOWN
243 */
244 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
245 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
246 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
247 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
248 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
249
250 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
251 /*
252 * ioctl commands in 32 bit emulation
253 */
254 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
255 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
256 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
257 #endif
258
259 struct f2fs_defragment {
260 u64 start;
261 u64 len;
262 };
263
264 /*
265 * For INODE and NODE manager
266 */
267 /* for directory operations */
268 struct f2fs_str {
269 unsigned char *name;
270 u32 len;
271 };
272
273 struct f2fs_filename {
274 const struct qstr *usr_fname;
275 struct f2fs_str disk_name;
276 f2fs_hash_t hash;
277 #ifdef CONFIG_F2FS_FS_ENCRYPTION
278 struct f2fs_str crypto_buf;
279 #endif
280 };
281
282 #define FSTR_INIT(n, l) { .name = n, .len = l }
283 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
284 #define fname_name(p) ((p)->disk_name.name)
285 #define fname_len(p) ((p)->disk_name.len)
286
287 struct f2fs_dentry_ptr {
288 struct inode *inode;
289 const void *bitmap;
290 struct f2fs_dir_entry *dentry;
291 __u8 (*filename)[F2FS_SLOT_LEN];
292 int max;
293 };
294
295 static inline void make_dentry_ptr(struct inode *inode,
296 struct f2fs_dentry_ptr *d, void *src, int type)
297 {
298 d->inode = inode;
299
300 if (type == 1) {
301 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
302 d->max = NR_DENTRY_IN_BLOCK;
303 d->bitmap = &t->dentry_bitmap;
304 d->dentry = t->dentry;
305 d->filename = t->filename;
306 } else {
307 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
308 d->max = NR_INLINE_DENTRY;
309 d->bitmap = &t->dentry_bitmap;
310 d->dentry = t->dentry;
311 d->filename = t->filename;
312 }
313 }
314
315 /*
316 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
317 * as its node offset to distinguish from index node blocks.
318 * But some bits are used to mark the node block.
319 */
320 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
321 >> OFFSET_BIT_SHIFT)
322 enum {
323 ALLOC_NODE, /* allocate a new node page if needed */
324 LOOKUP_NODE, /* look up a node without readahead */
325 LOOKUP_NODE_RA, /*
326 * look up a node with readahead called
327 * by get_data_block.
328 */
329 };
330
331 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
332
333 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
334
335 /* vector size for gang look-up from extent cache that consists of radix tree */
336 #define EXT_TREE_VEC_SIZE 64
337
338 /* for in-memory extent cache entry */
339 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
340
341 /* number of extent info in extent cache we try to shrink */
342 #define EXTENT_CACHE_SHRINK_NUMBER 128
343
344 struct extent_info {
345 unsigned int fofs; /* start offset in a file */
346 u32 blk; /* start block address of the extent */
347 unsigned int len; /* length of the extent */
348 };
349
350 struct extent_node {
351 struct rb_node rb_node; /* rb node located in rb-tree */
352 struct list_head list; /* node in global extent list of sbi */
353 struct extent_info ei; /* extent info */
354 };
355
356 struct extent_tree {
357 nid_t ino; /* inode number */
358 struct rb_root root; /* root of extent info rb-tree */
359 struct extent_node *cached_en; /* recently accessed extent node */
360 struct extent_info largest; /* largested extent info */
361 rwlock_t lock; /* protect extent info rb-tree */
362 atomic_t refcount; /* reference count of rb-tree */
363 unsigned int count; /* # of extent node in rb-tree*/
364 };
365
366 /*
367 * This structure is taken from ext4_map_blocks.
368 *
369 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
370 */
371 #define F2FS_MAP_NEW (1 << BH_New)
372 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
373 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
374 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
375 F2FS_MAP_UNWRITTEN)
376
377 struct f2fs_map_blocks {
378 block_t m_pblk;
379 block_t m_lblk;
380 unsigned int m_len;
381 unsigned int m_flags;
382 };
383
384 /* for flag in get_data_block */
385 #define F2FS_GET_BLOCK_READ 0
386 #define F2FS_GET_BLOCK_DIO 1
387 #define F2FS_GET_BLOCK_FIEMAP 2
388 #define F2FS_GET_BLOCK_BMAP 3
389
390 /*
391 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
392 */
393 #define FADVISE_COLD_BIT 0x01
394 #define FADVISE_LOST_PINO_BIT 0x02
395 #define FADVISE_ENCRYPT_BIT 0x04
396 #define FADVISE_ENC_NAME_BIT 0x08
397
398 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
399 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
400 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
401 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
402 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
403 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
404 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
405 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
406 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
407 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
408 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
409
410 /* Encryption algorithms */
411 #define F2FS_ENCRYPTION_MODE_INVALID 0
412 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
413 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
414 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
415 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
416
417 #include "f2fs_crypto.h"
418
419 #define DEF_DIR_LEVEL 0
420
421 struct f2fs_inode_info {
422 struct inode vfs_inode; /* serve a vfs inode */
423 unsigned long i_flags; /* keep an inode flags for ioctl */
424 unsigned char i_advise; /* use to give file attribute hints */
425 unsigned char i_dir_level; /* use for dentry level for large dir */
426 unsigned int i_current_depth; /* use only in directory structure */
427 unsigned int i_pino; /* parent inode number */
428 umode_t i_acl_mode; /* keep file acl mode temporarily */
429
430 /* Use below internally in f2fs*/
431 unsigned long flags; /* use to pass per-file flags */
432 struct rw_semaphore i_sem; /* protect fi info */
433 atomic_t dirty_pages; /* # of dirty pages */
434 f2fs_hash_t chash; /* hash value of given file name */
435 unsigned int clevel; /* maximum level of given file name */
436 nid_t i_xattr_nid; /* node id that contains xattrs */
437 unsigned long long xattr_ver; /* cp version of xattr modification */
438
439 struct list_head dirty_list; /* linked in global dirty list */
440 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
441 struct mutex inmem_lock; /* lock for inmemory pages */
442
443 struct extent_tree *extent_tree; /* cached extent_tree entry */
444
445 #ifdef CONFIG_F2FS_FS_ENCRYPTION
446 /* Encryption params */
447 struct f2fs_crypt_info *i_crypt_info;
448 #endif
449 };
450
451 static inline void get_extent_info(struct extent_info *ext,
452 struct f2fs_extent i_ext)
453 {
454 ext->fofs = le32_to_cpu(i_ext.fofs);
455 ext->blk = le32_to_cpu(i_ext.blk);
456 ext->len = le32_to_cpu(i_ext.len);
457 }
458
459 static inline void set_raw_extent(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 i_ext->fofs = cpu_to_le32(ext->fofs);
463 i_ext->blk = cpu_to_le32(ext->blk);
464 i_ext->len = cpu_to_le32(ext->len);
465 }
466
467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
468 u32 blk, unsigned int len)
469 {
470 ei->fofs = fofs;
471 ei->blk = blk;
472 ei->len = len;
473 }
474
475 static inline bool __is_extent_same(struct extent_info *ei1,
476 struct extent_info *ei2)
477 {
478 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
479 ei1->len == ei2->len);
480 }
481
482 static inline bool __is_extent_mergeable(struct extent_info *back,
483 struct extent_info *front)
484 {
485 return (back->fofs + back->len == front->fofs &&
486 back->blk + back->len == front->blk);
487 }
488
489 static inline bool __is_back_mergeable(struct extent_info *cur,
490 struct extent_info *back)
491 {
492 return __is_extent_mergeable(back, cur);
493 }
494
495 static inline bool __is_front_mergeable(struct extent_info *cur,
496 struct extent_info *front)
497 {
498 return __is_extent_mergeable(cur, front);
499 }
500
501 static inline void __try_update_largest_extent(struct extent_tree *et,
502 struct extent_node *en)
503 {
504 if (en->ei.len > et->largest.len)
505 et->largest = en->ei;
506 }
507
508 struct f2fs_nm_info {
509 block_t nat_blkaddr; /* base disk address of NAT */
510 nid_t max_nid; /* maximum possible node ids */
511 nid_t available_nids; /* maximum available node ids */
512 nid_t next_scan_nid; /* the next nid to be scanned */
513 unsigned int ram_thresh; /* control the memory footprint */
514 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
515
516 /* NAT cache management */
517 struct radix_tree_root nat_root;/* root of the nat entry cache */
518 struct radix_tree_root nat_set_root;/* root of the nat set cache */
519 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
520 struct list_head nat_entries; /* cached nat entry list (clean) */
521 unsigned int nat_cnt; /* the # of cached nat entries */
522 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
523
524 /* free node ids management */
525 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
526 struct list_head free_nid_list; /* a list for free nids */
527 spinlock_t free_nid_list_lock; /* protect free nid list */
528 unsigned int fcnt; /* the number of free node id */
529 struct mutex build_lock; /* lock for build free nids */
530
531 /* for checkpoint */
532 char *nat_bitmap; /* NAT bitmap pointer */
533 int bitmap_size; /* bitmap size */
534 };
535
536 /*
537 * this structure is used as one of function parameters.
538 * all the information are dedicated to a given direct node block determined
539 * by the data offset in a file.
540 */
541 struct dnode_of_data {
542 struct inode *inode; /* vfs inode pointer */
543 struct page *inode_page; /* its inode page, NULL is possible */
544 struct page *node_page; /* cached direct node page */
545 nid_t nid; /* node id of the direct node block */
546 unsigned int ofs_in_node; /* data offset in the node page */
547 bool inode_page_locked; /* inode page is locked or not */
548 block_t data_blkaddr; /* block address of the node block */
549 };
550
551 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
552 struct page *ipage, struct page *npage, nid_t nid)
553 {
554 memset(dn, 0, sizeof(*dn));
555 dn->inode = inode;
556 dn->inode_page = ipage;
557 dn->node_page = npage;
558 dn->nid = nid;
559 }
560
561 /*
562 * For SIT manager
563 *
564 * By default, there are 6 active log areas across the whole main area.
565 * When considering hot and cold data separation to reduce cleaning overhead,
566 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
567 * respectively.
568 * In the current design, you should not change the numbers intentionally.
569 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
570 * logs individually according to the underlying devices. (default: 6)
571 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
572 * data and 8 for node logs.
573 */
574 #define NR_CURSEG_DATA_TYPE (3)
575 #define NR_CURSEG_NODE_TYPE (3)
576 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
577
578 enum {
579 CURSEG_HOT_DATA = 0, /* directory entry blocks */
580 CURSEG_WARM_DATA, /* data blocks */
581 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
582 CURSEG_HOT_NODE, /* direct node blocks of directory files */
583 CURSEG_WARM_NODE, /* direct node blocks of normal files */
584 CURSEG_COLD_NODE, /* indirect node blocks */
585 NO_CHECK_TYPE,
586 CURSEG_DIRECT_IO, /* to use for the direct IO path */
587 };
588
589 struct flush_cmd {
590 struct completion wait;
591 struct llist_node llnode;
592 int ret;
593 };
594
595 struct flush_cmd_control {
596 struct task_struct *f2fs_issue_flush; /* flush thread */
597 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
598 struct llist_head issue_list; /* list for command issue */
599 struct llist_node *dispatch_list; /* list for command dispatch */
600 };
601
602 struct f2fs_sm_info {
603 struct sit_info *sit_info; /* whole segment information */
604 struct free_segmap_info *free_info; /* free segment information */
605 struct dirty_seglist_info *dirty_info; /* dirty segment information */
606 struct curseg_info *curseg_array; /* active segment information */
607
608 block_t seg0_blkaddr; /* block address of 0'th segment */
609 block_t main_blkaddr; /* start block address of main area */
610 block_t ssa_blkaddr; /* start block address of SSA area */
611
612 unsigned int segment_count; /* total # of segments */
613 unsigned int main_segments; /* # of segments in main area */
614 unsigned int reserved_segments; /* # of reserved segments */
615 unsigned int ovp_segments; /* # of overprovision segments */
616
617 /* a threshold to reclaim prefree segments */
618 unsigned int rec_prefree_segments;
619
620 /* for small discard management */
621 struct list_head discard_list; /* 4KB discard list */
622 int nr_discards; /* # of discards in the list */
623 int max_discards; /* max. discards to be issued */
624
625 /* for batched trimming */
626 unsigned int trim_sections; /* # of sections to trim */
627
628 struct list_head sit_entry_set; /* sit entry set list */
629
630 unsigned int ipu_policy; /* in-place-update policy */
631 unsigned int min_ipu_util; /* in-place-update threshold */
632 unsigned int min_fsync_blocks; /* threshold for fsync */
633
634 /* for flush command control */
635 struct flush_cmd_control *cmd_control_info;
636
637 };
638
639 /*
640 * For superblock
641 */
642 /*
643 * COUNT_TYPE for monitoring
644 *
645 * f2fs monitors the number of several block types such as on-writeback,
646 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
647 */
648 enum count_type {
649 F2FS_WRITEBACK,
650 F2FS_DIRTY_DENTS,
651 F2FS_DIRTY_DATA,
652 F2FS_DIRTY_NODES,
653 F2FS_DIRTY_META,
654 F2FS_INMEM_PAGES,
655 NR_COUNT_TYPE,
656 };
657
658 /*
659 * The below are the page types of bios used in submit_bio().
660 * The available types are:
661 * DATA User data pages. It operates as async mode.
662 * NODE Node pages. It operates as async mode.
663 * META FS metadata pages such as SIT, NAT, CP.
664 * NR_PAGE_TYPE The number of page types.
665 * META_FLUSH Make sure the previous pages are written
666 * with waiting the bio's completion
667 * ... Only can be used with META.
668 */
669 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
670 enum page_type {
671 DATA,
672 NODE,
673 META,
674 NR_PAGE_TYPE,
675 META_FLUSH,
676 INMEM, /* the below types are used by tracepoints only. */
677 INMEM_DROP,
678 IPU,
679 OPU,
680 };
681
682 struct f2fs_io_info {
683 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
684 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
685 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
686 block_t blk_addr; /* block address to be written */
687 struct page *page; /* page to be written */
688 struct page *encrypted_page; /* encrypted page */
689 };
690
691 #define is_read_io(rw) (((rw) & 1) == READ)
692 struct f2fs_bio_info {
693 struct f2fs_sb_info *sbi; /* f2fs superblock */
694 struct bio *bio; /* bios to merge */
695 sector_t last_block_in_bio; /* last block number */
696 struct f2fs_io_info fio; /* store buffered io info. */
697 struct rw_semaphore io_rwsem; /* blocking op for bio */
698 };
699
700 enum inode_type {
701 DIR_INODE, /* for dirty dir inode */
702 FILE_INODE, /* for dirty regular/symlink inode */
703 NR_INODE_TYPE,
704 };
705
706 /* for inner inode cache management */
707 struct inode_management {
708 struct radix_tree_root ino_root; /* ino entry array */
709 spinlock_t ino_lock; /* for ino entry lock */
710 struct list_head ino_list; /* inode list head */
711 unsigned long ino_num; /* number of entries */
712 };
713
714 /* For s_flag in struct f2fs_sb_info */
715 enum {
716 SBI_IS_DIRTY, /* dirty flag for checkpoint */
717 SBI_IS_CLOSE, /* specify unmounting */
718 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
719 SBI_POR_DOING, /* recovery is doing or not */
720 };
721
722 struct f2fs_sb_info {
723 struct super_block *sb; /* pointer to VFS super block */
724 struct proc_dir_entry *s_proc; /* proc entry */
725 struct f2fs_super_block *raw_super; /* raw super block pointer */
726 int valid_super_block; /* valid super block no */
727 int s_flag; /* flags for sbi */
728
729 /* for node-related operations */
730 struct f2fs_nm_info *nm_info; /* node manager */
731 struct inode *node_inode; /* cache node blocks */
732
733 /* for segment-related operations */
734 struct f2fs_sm_info *sm_info; /* segment manager */
735
736 /* for bio operations */
737 struct f2fs_bio_info read_io; /* for read bios */
738 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
739
740 /* for checkpoint */
741 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
742 struct inode *meta_inode; /* cache meta blocks */
743 struct mutex cp_mutex; /* checkpoint procedure lock */
744 struct rw_semaphore cp_rwsem; /* blocking FS operations */
745 struct rw_semaphore node_write; /* locking node writes */
746 struct mutex writepages; /* mutex for writepages() */
747 wait_queue_head_t cp_wait;
748 long cp_expires, cp_interval; /* next expected periodic cp */
749
750 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
751
752 /* for orphan inode, use 0'th array */
753 unsigned int max_orphans; /* max orphan inodes */
754
755 /* for inode management */
756 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
757 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
758
759 /* for extent tree cache */
760 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
761 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
762 struct list_head extent_list; /* lru list for shrinker */
763 spinlock_t extent_lock; /* locking extent lru list */
764 int total_ext_tree; /* extent tree count */
765 atomic_t total_ext_node; /* extent info count */
766
767 /* basic filesystem units */
768 unsigned int log_sectors_per_block; /* log2 sectors per block */
769 unsigned int log_blocksize; /* log2 block size */
770 unsigned int blocksize; /* block size */
771 unsigned int root_ino_num; /* root inode number*/
772 unsigned int node_ino_num; /* node inode number*/
773 unsigned int meta_ino_num; /* meta inode number*/
774 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
775 unsigned int blocks_per_seg; /* blocks per segment */
776 unsigned int segs_per_sec; /* segments per section */
777 unsigned int secs_per_zone; /* sections per zone */
778 unsigned int total_sections; /* total section count */
779 unsigned int total_node_count; /* total node block count */
780 unsigned int total_valid_node_count; /* valid node block count */
781 unsigned int total_valid_inode_count; /* valid inode count */
782 int active_logs; /* # of active logs */
783 int dir_level; /* directory level */
784
785 block_t user_block_count; /* # of user blocks */
786 block_t total_valid_block_count; /* # of valid blocks */
787 block_t alloc_valid_block_count; /* # of allocated blocks */
788 block_t discard_blks; /* discard command candidats */
789 block_t last_valid_block_count; /* for recovery */
790 u32 s_next_generation; /* for NFS support */
791 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
792
793 struct f2fs_mount_info mount_opt; /* mount options */
794
795 /* for cleaning operations */
796 struct mutex gc_mutex; /* mutex for GC */
797 struct f2fs_gc_kthread *gc_thread; /* GC thread */
798 unsigned int cur_victim_sec; /* current victim section num */
799
800 /* maximum # of trials to find a victim segment for SSR and GC */
801 unsigned int max_victim_search;
802
803 /*
804 * for stat information.
805 * one is for the LFS mode, and the other is for the SSR mode.
806 */
807 #ifdef CONFIG_F2FS_STAT_FS
808 struct f2fs_stat_info *stat_info; /* FS status information */
809 unsigned int segment_count[2]; /* # of allocated segments */
810 unsigned int block_count[2]; /* # of allocated blocks */
811 atomic_t inplace_count; /* # of inplace update */
812 atomic64_t total_hit_ext; /* # of lookup extent cache */
813 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
814 atomic64_t read_hit_largest; /* # of hit largest extent node */
815 atomic64_t read_hit_cached; /* # of hit cached extent node */
816 atomic_t inline_xattr; /* # of inline_xattr inodes */
817 atomic_t inline_inode; /* # of inline_data inodes */
818 atomic_t inline_dir; /* # of inline_dentry inodes */
819 int bg_gc; /* background gc calls */
820 unsigned int n_dirty_dirs; /* # of dir inodes */
821 #endif
822 unsigned int last_victim[2]; /* last victim segment # */
823 spinlock_t stat_lock; /* lock for stat operations */
824
825 /* For sysfs suppport */
826 struct kobject s_kobj;
827 struct completion s_kobj_unregister;
828
829 /* For shrinker support */
830 struct list_head s_list;
831 struct mutex umount_mutex;
832 unsigned int shrinker_run_no;
833 };
834
835 /*
836 * Inline functions
837 */
838 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
839 {
840 return container_of(inode, struct f2fs_inode_info, vfs_inode);
841 }
842
843 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
844 {
845 return sb->s_fs_info;
846 }
847
848 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
849 {
850 return F2FS_SB(inode->i_sb);
851 }
852
853 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
854 {
855 return F2FS_I_SB(mapping->host);
856 }
857
858 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
859 {
860 return F2FS_M_SB(page->mapping);
861 }
862
863 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
864 {
865 return (struct f2fs_super_block *)(sbi->raw_super);
866 }
867
868 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
869 {
870 return (struct f2fs_checkpoint *)(sbi->ckpt);
871 }
872
873 static inline struct f2fs_node *F2FS_NODE(struct page *page)
874 {
875 return (struct f2fs_node *)page_address(page);
876 }
877
878 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
879 {
880 return &((struct f2fs_node *)page_address(page))->i;
881 }
882
883 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
884 {
885 return (struct f2fs_nm_info *)(sbi->nm_info);
886 }
887
888 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
889 {
890 return (struct f2fs_sm_info *)(sbi->sm_info);
891 }
892
893 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
894 {
895 return (struct sit_info *)(SM_I(sbi)->sit_info);
896 }
897
898 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
899 {
900 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
901 }
902
903 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
904 {
905 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
906 }
907
908 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
909 {
910 return sbi->meta_inode->i_mapping;
911 }
912
913 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
914 {
915 return sbi->node_inode->i_mapping;
916 }
917
918 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
919 {
920 return sbi->s_flag & (0x01 << type);
921 }
922
923 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
924 {
925 sbi->s_flag |= (0x01 << type);
926 }
927
928 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
929 {
930 sbi->s_flag &= ~(0x01 << type);
931 }
932
933 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
934 {
935 return le64_to_cpu(cp->checkpoint_ver);
936 }
937
938 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
939 {
940 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
941 return ckpt_flags & f;
942 }
943
944 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
945 {
946 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
947 ckpt_flags |= f;
948 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
949 }
950
951 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
952 {
953 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
954 ckpt_flags &= (~f);
955 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
956 }
957
958 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
959 {
960 down_read(&sbi->cp_rwsem);
961 }
962
963 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
964 {
965 up_read(&sbi->cp_rwsem);
966 }
967
968 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
969 {
970 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
971 }
972
973 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
974 {
975 up_write(&sbi->cp_rwsem);
976 }
977
978 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
979 {
980 int reason = CP_SYNC;
981
982 if (test_opt(sbi, FASTBOOT))
983 reason = CP_FASTBOOT;
984 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
985 reason = CP_UMOUNT;
986 return reason;
987 }
988
989 static inline bool __remain_node_summaries(int reason)
990 {
991 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
992 }
993
994 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
995 {
996 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
997 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
998 }
999
1000 /*
1001 * Check whether the given nid is within node id range.
1002 */
1003 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1004 {
1005 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1006 return -EINVAL;
1007 if (unlikely(nid >= NM_I(sbi)->max_nid))
1008 return -EINVAL;
1009 return 0;
1010 }
1011
1012 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1013
1014 /*
1015 * Check whether the inode has blocks or not
1016 */
1017 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1018 {
1019 if (F2FS_I(inode)->i_xattr_nid)
1020 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1021 else
1022 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1023 }
1024
1025 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1026 {
1027 return ofs == XATTR_NODE_OFFSET;
1028 }
1029
1030 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1031 struct inode *inode, blkcnt_t count)
1032 {
1033 block_t valid_block_count;
1034
1035 spin_lock(&sbi->stat_lock);
1036 valid_block_count =
1037 sbi->total_valid_block_count + (block_t)count;
1038 if (unlikely(valid_block_count > sbi->user_block_count)) {
1039 spin_unlock(&sbi->stat_lock);
1040 return false;
1041 }
1042 inode->i_blocks += count;
1043 sbi->total_valid_block_count = valid_block_count;
1044 sbi->alloc_valid_block_count += (block_t)count;
1045 spin_unlock(&sbi->stat_lock);
1046 return true;
1047 }
1048
1049 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1050 struct inode *inode,
1051 blkcnt_t count)
1052 {
1053 spin_lock(&sbi->stat_lock);
1054 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1055 f2fs_bug_on(sbi, inode->i_blocks < count);
1056 inode->i_blocks -= count;
1057 sbi->total_valid_block_count -= (block_t)count;
1058 spin_unlock(&sbi->stat_lock);
1059 }
1060
1061 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1062 {
1063 atomic_inc(&sbi->nr_pages[count_type]);
1064 set_sbi_flag(sbi, SBI_IS_DIRTY);
1065 }
1066
1067 static inline void inode_inc_dirty_pages(struct inode *inode)
1068 {
1069 atomic_inc(&F2FS_I(inode)->dirty_pages);
1070 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1071 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1072 }
1073
1074 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1075 {
1076 atomic_dec(&sbi->nr_pages[count_type]);
1077 }
1078
1079 static inline void inode_dec_dirty_pages(struct inode *inode)
1080 {
1081 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1082 !S_ISLNK(inode->i_mode))
1083 return;
1084
1085 atomic_dec(&F2FS_I(inode)->dirty_pages);
1086 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1087 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1088 }
1089
1090 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1091 {
1092 return atomic_read(&sbi->nr_pages[count_type]);
1093 }
1094
1095 static inline int get_dirty_pages(struct inode *inode)
1096 {
1097 return atomic_read(&F2FS_I(inode)->dirty_pages);
1098 }
1099
1100 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1101 {
1102 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1103 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1104 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1105 }
1106
1107 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1108 {
1109 return sbi->total_valid_block_count;
1110 }
1111
1112 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1113 {
1114 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1115
1116 /* return NAT or SIT bitmap */
1117 if (flag == NAT_BITMAP)
1118 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1119 else if (flag == SIT_BITMAP)
1120 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1121
1122 return 0;
1123 }
1124
1125 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1126 {
1127 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1128 }
1129
1130 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1131 {
1132 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1133 int offset;
1134
1135 if (__cp_payload(sbi) > 0) {
1136 if (flag == NAT_BITMAP)
1137 return &ckpt->sit_nat_version_bitmap;
1138 else
1139 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1140 } else {
1141 offset = (flag == NAT_BITMAP) ?
1142 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1143 return &ckpt->sit_nat_version_bitmap + offset;
1144 }
1145 }
1146
1147 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1148 {
1149 block_t start_addr;
1150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1151 unsigned long long ckpt_version = cur_cp_version(ckpt);
1152
1153 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1154
1155 /*
1156 * odd numbered checkpoint should at cp segment 0
1157 * and even segment must be at cp segment 1
1158 */
1159 if (!(ckpt_version & 1))
1160 start_addr += sbi->blocks_per_seg;
1161
1162 return start_addr;
1163 }
1164
1165 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1166 {
1167 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1168 }
1169
1170 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1171 struct inode *inode)
1172 {
1173 block_t valid_block_count;
1174 unsigned int valid_node_count;
1175
1176 spin_lock(&sbi->stat_lock);
1177
1178 valid_block_count = sbi->total_valid_block_count + 1;
1179 if (unlikely(valid_block_count > sbi->user_block_count)) {
1180 spin_unlock(&sbi->stat_lock);
1181 return false;
1182 }
1183
1184 valid_node_count = sbi->total_valid_node_count + 1;
1185 if (unlikely(valid_node_count > sbi->total_node_count)) {
1186 spin_unlock(&sbi->stat_lock);
1187 return false;
1188 }
1189
1190 if (inode)
1191 inode->i_blocks++;
1192
1193 sbi->alloc_valid_block_count++;
1194 sbi->total_valid_node_count++;
1195 sbi->total_valid_block_count++;
1196 spin_unlock(&sbi->stat_lock);
1197
1198 return true;
1199 }
1200
1201 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1202 struct inode *inode)
1203 {
1204 spin_lock(&sbi->stat_lock);
1205
1206 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1207 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1208 f2fs_bug_on(sbi, !inode->i_blocks);
1209
1210 inode->i_blocks--;
1211 sbi->total_valid_node_count--;
1212 sbi->total_valid_block_count--;
1213
1214 spin_unlock(&sbi->stat_lock);
1215 }
1216
1217 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1218 {
1219 return sbi->total_valid_node_count;
1220 }
1221
1222 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1223 {
1224 spin_lock(&sbi->stat_lock);
1225 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1226 sbi->total_valid_inode_count++;
1227 spin_unlock(&sbi->stat_lock);
1228 }
1229
1230 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1231 {
1232 spin_lock(&sbi->stat_lock);
1233 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1234 sbi->total_valid_inode_count--;
1235 spin_unlock(&sbi->stat_lock);
1236 }
1237
1238 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1239 {
1240 return sbi->total_valid_inode_count;
1241 }
1242
1243 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1244 pgoff_t index, bool for_write)
1245 {
1246 if (!for_write)
1247 return grab_cache_page(mapping, index);
1248 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1249 }
1250
1251 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1252 {
1253 char *src_kaddr = kmap(src);
1254 char *dst_kaddr = kmap(dst);
1255
1256 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1257 kunmap(dst);
1258 kunmap(src);
1259 }
1260
1261 static inline void f2fs_put_page(struct page *page, int unlock)
1262 {
1263 if (!page)
1264 return;
1265
1266 if (unlock) {
1267 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1268 unlock_page(page);
1269 }
1270 page_cache_release(page);
1271 }
1272
1273 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1274 {
1275 if (dn->node_page)
1276 f2fs_put_page(dn->node_page, 1);
1277 if (dn->inode_page && dn->node_page != dn->inode_page)
1278 f2fs_put_page(dn->inode_page, 0);
1279 dn->node_page = NULL;
1280 dn->inode_page = NULL;
1281 }
1282
1283 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1284 size_t size)
1285 {
1286 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1287 }
1288
1289 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1290 gfp_t flags)
1291 {
1292 void *entry;
1293
1294 entry = kmem_cache_alloc(cachep, flags);
1295 if (!entry)
1296 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1297 return entry;
1298 }
1299
1300 static inline struct bio *f2fs_bio_alloc(int npages)
1301 {
1302 struct bio *bio;
1303
1304 /* No failure on bio allocation */
1305 bio = bio_alloc(GFP_NOIO, npages);
1306 if (!bio)
1307 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1308 return bio;
1309 }
1310
1311 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1312 unsigned long index, void *item)
1313 {
1314 while (radix_tree_insert(root, index, item))
1315 cond_resched();
1316 }
1317
1318 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1319
1320 static inline bool IS_INODE(struct page *page)
1321 {
1322 struct f2fs_node *p = F2FS_NODE(page);
1323 return RAW_IS_INODE(p);
1324 }
1325
1326 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1327 {
1328 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1329 }
1330
1331 static inline block_t datablock_addr(struct page *node_page,
1332 unsigned int offset)
1333 {
1334 struct f2fs_node *raw_node;
1335 __le32 *addr_array;
1336 raw_node = F2FS_NODE(node_page);
1337 addr_array = blkaddr_in_node(raw_node);
1338 return le32_to_cpu(addr_array[offset]);
1339 }
1340
1341 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1342 {
1343 int mask;
1344
1345 addr += (nr >> 3);
1346 mask = 1 << (7 - (nr & 0x07));
1347 return mask & *addr;
1348 }
1349
1350 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1351 {
1352 int mask;
1353
1354 addr += (nr >> 3);
1355 mask = 1 << (7 - (nr & 0x07));
1356 *addr |= mask;
1357 }
1358
1359 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1360 {
1361 int mask;
1362
1363 addr += (nr >> 3);
1364 mask = 1 << (7 - (nr & 0x07));
1365 *addr &= ~mask;
1366 }
1367
1368 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1369 {
1370 int mask;
1371 int ret;
1372
1373 addr += (nr >> 3);
1374 mask = 1 << (7 - (nr & 0x07));
1375 ret = mask & *addr;
1376 *addr |= mask;
1377 return ret;
1378 }
1379
1380 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1381 {
1382 int mask;
1383 int ret;
1384
1385 addr += (nr >> 3);
1386 mask = 1 << (7 - (nr & 0x07));
1387 ret = mask & *addr;
1388 *addr &= ~mask;
1389 return ret;
1390 }
1391
1392 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1393 {
1394 int mask;
1395
1396 addr += (nr >> 3);
1397 mask = 1 << (7 - (nr & 0x07));
1398 *addr ^= mask;
1399 }
1400
1401 /* used for f2fs_inode_info->flags */
1402 enum {
1403 FI_NEW_INODE, /* indicate newly allocated inode */
1404 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1405 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1406 FI_INC_LINK, /* need to increment i_nlink */
1407 FI_ACL_MODE, /* indicate acl mode */
1408 FI_NO_ALLOC, /* should not allocate any blocks */
1409 FI_FREE_NID, /* free allocated nide */
1410 FI_UPDATE_DIR, /* should update inode block for consistency */
1411 FI_DELAY_IPUT, /* used for the recovery */
1412 FI_NO_EXTENT, /* not to use the extent cache */
1413 FI_INLINE_XATTR, /* used for inline xattr */
1414 FI_INLINE_DATA, /* used for inline data*/
1415 FI_INLINE_DENTRY, /* used for inline dentry */
1416 FI_APPEND_WRITE, /* inode has appended data */
1417 FI_UPDATE_WRITE, /* inode has in-place-update data */
1418 FI_NEED_IPU, /* used for ipu per file */
1419 FI_ATOMIC_FILE, /* indicate atomic file */
1420 FI_VOLATILE_FILE, /* indicate volatile file */
1421 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1422 FI_DROP_CACHE, /* drop dirty page cache */
1423 FI_DATA_EXIST, /* indicate data exists */
1424 FI_INLINE_DOTS, /* indicate inline dot dentries */
1425 FI_DO_DEFRAG, /* indicate defragment is running */
1426 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1427 };
1428
1429 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1430 {
1431 if (!test_bit(flag, &fi->flags))
1432 set_bit(flag, &fi->flags);
1433 }
1434
1435 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1436 {
1437 return test_bit(flag, &fi->flags);
1438 }
1439
1440 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1441 {
1442 if (test_bit(flag, &fi->flags))
1443 clear_bit(flag, &fi->flags);
1444 }
1445
1446 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1447 {
1448 fi->i_acl_mode = mode;
1449 set_inode_flag(fi, FI_ACL_MODE);
1450 }
1451
1452 static inline void get_inline_info(struct f2fs_inode_info *fi,
1453 struct f2fs_inode *ri)
1454 {
1455 if (ri->i_inline & F2FS_INLINE_XATTR)
1456 set_inode_flag(fi, FI_INLINE_XATTR);
1457 if (ri->i_inline & F2FS_INLINE_DATA)
1458 set_inode_flag(fi, FI_INLINE_DATA);
1459 if (ri->i_inline & F2FS_INLINE_DENTRY)
1460 set_inode_flag(fi, FI_INLINE_DENTRY);
1461 if (ri->i_inline & F2FS_DATA_EXIST)
1462 set_inode_flag(fi, FI_DATA_EXIST);
1463 if (ri->i_inline & F2FS_INLINE_DOTS)
1464 set_inode_flag(fi, FI_INLINE_DOTS);
1465 }
1466
1467 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1468 struct f2fs_inode *ri)
1469 {
1470 ri->i_inline = 0;
1471
1472 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1473 ri->i_inline |= F2FS_INLINE_XATTR;
1474 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1475 ri->i_inline |= F2FS_INLINE_DATA;
1476 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1477 ri->i_inline |= F2FS_INLINE_DENTRY;
1478 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1479 ri->i_inline |= F2FS_DATA_EXIST;
1480 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1481 ri->i_inline |= F2FS_INLINE_DOTS;
1482 }
1483
1484 static inline int f2fs_has_inline_xattr(struct inode *inode)
1485 {
1486 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1487 }
1488
1489 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1490 {
1491 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1492 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1493 return DEF_ADDRS_PER_INODE;
1494 }
1495
1496 static inline void *inline_xattr_addr(struct page *page)
1497 {
1498 struct f2fs_inode *ri = F2FS_INODE(page);
1499 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1500 F2FS_INLINE_XATTR_ADDRS]);
1501 }
1502
1503 static inline int inline_xattr_size(struct inode *inode)
1504 {
1505 if (f2fs_has_inline_xattr(inode))
1506 return F2FS_INLINE_XATTR_ADDRS << 2;
1507 else
1508 return 0;
1509 }
1510
1511 static inline int f2fs_has_inline_data(struct inode *inode)
1512 {
1513 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1514 }
1515
1516 static inline void f2fs_clear_inline_inode(struct inode *inode)
1517 {
1518 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1519 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1520 }
1521
1522 static inline int f2fs_exist_data(struct inode *inode)
1523 {
1524 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1525 }
1526
1527 static inline int f2fs_has_inline_dots(struct inode *inode)
1528 {
1529 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1530 }
1531
1532 static inline bool f2fs_is_atomic_file(struct inode *inode)
1533 {
1534 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1535 }
1536
1537 static inline bool f2fs_is_volatile_file(struct inode *inode)
1538 {
1539 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1540 }
1541
1542 static inline bool f2fs_is_first_block_written(struct inode *inode)
1543 {
1544 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1545 }
1546
1547 static inline bool f2fs_is_drop_cache(struct inode *inode)
1548 {
1549 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1550 }
1551
1552 static inline void *inline_data_addr(struct page *page)
1553 {
1554 struct f2fs_inode *ri = F2FS_INODE(page);
1555 return (void *)&(ri->i_addr[1]);
1556 }
1557
1558 static inline int f2fs_has_inline_dentry(struct inode *inode)
1559 {
1560 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1561 }
1562
1563 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1564 {
1565 if (!f2fs_has_inline_dentry(dir))
1566 kunmap(page);
1567 }
1568
1569 static inline int is_file(struct inode *inode, int type)
1570 {
1571 return F2FS_I(inode)->i_advise & type;
1572 }
1573
1574 static inline void set_file(struct inode *inode, int type)
1575 {
1576 F2FS_I(inode)->i_advise |= type;
1577 }
1578
1579 static inline void clear_file(struct inode *inode, int type)
1580 {
1581 F2FS_I(inode)->i_advise &= ~type;
1582 }
1583
1584 static inline int f2fs_readonly(struct super_block *sb)
1585 {
1586 return sb->s_flags & MS_RDONLY;
1587 }
1588
1589 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1590 {
1591 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1592 }
1593
1594 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1595 {
1596 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1597 sbi->sb->s_flags |= MS_RDONLY;
1598 }
1599
1600 static inline bool is_dot_dotdot(const struct qstr *str)
1601 {
1602 if (str->len == 1 && str->name[0] == '.')
1603 return true;
1604
1605 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1606 return true;
1607
1608 return false;
1609 }
1610
1611 static inline bool f2fs_may_extent_tree(struct inode *inode)
1612 {
1613 mode_t mode = inode->i_mode;
1614
1615 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1616 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1617 return false;
1618
1619 return S_ISREG(mode);
1620 }
1621
1622 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1623 {
1624 void *ret;
1625
1626 ret = kmalloc(size, flags | __GFP_NOWARN);
1627 if (!ret)
1628 ret = __vmalloc(size, flags, PAGE_KERNEL);
1629 return ret;
1630 }
1631
1632 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1633 {
1634 void *ret;
1635
1636 ret = kzalloc(size, flags | __GFP_NOWARN);
1637 if (!ret)
1638 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1639 return ret;
1640 }
1641
1642 #define get_inode_mode(i) \
1643 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1644 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1645
1646 /* get offset of first page in next direct node */
1647 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1648 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1649 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1650 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1651
1652 /*
1653 * file.c
1654 */
1655 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1656 void truncate_data_blocks(struct dnode_of_data *);
1657 int truncate_blocks(struct inode *, u64, bool);
1658 int f2fs_truncate(struct inode *, bool);
1659 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1660 int f2fs_setattr(struct dentry *, struct iattr *);
1661 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1662 int truncate_data_blocks_range(struct dnode_of_data *, int);
1663 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1664 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1665
1666 /*
1667 * inode.c
1668 */
1669 void f2fs_set_inode_flags(struct inode *);
1670 struct inode *f2fs_iget(struct super_block *, unsigned long);
1671 int try_to_free_nats(struct f2fs_sb_info *, int);
1672 void update_inode(struct inode *, struct page *);
1673 void update_inode_page(struct inode *);
1674 int f2fs_write_inode(struct inode *, struct writeback_control *);
1675 void f2fs_evict_inode(struct inode *);
1676 void handle_failed_inode(struct inode *);
1677
1678 /*
1679 * namei.c
1680 */
1681 struct dentry *f2fs_get_parent(struct dentry *child);
1682
1683 /*
1684 * dir.c
1685 */
1686 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1687 void set_de_type(struct f2fs_dir_entry *, umode_t);
1688
1689 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1690 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1691 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1692 unsigned int, struct f2fs_str *);
1693 void do_make_empty_dir(struct inode *, struct inode *,
1694 struct f2fs_dentry_ptr *);
1695 struct page *init_inode_metadata(struct inode *, struct inode *,
1696 const struct qstr *, struct page *);
1697 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1698 int room_for_filename(const void *, int, int);
1699 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1700 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1701 struct page **);
1702 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1703 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1704 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1705 struct page *, struct inode *);
1706 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1707 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1708 const struct qstr *, f2fs_hash_t , unsigned int);
1709 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1710 umode_t);
1711 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1712 struct inode *);
1713 int f2fs_do_tmpfile(struct inode *, struct inode *);
1714 bool f2fs_empty_dir(struct inode *);
1715
1716 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1717 {
1718 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1719 inode, inode->i_ino, inode->i_mode);
1720 }
1721
1722 /*
1723 * super.c
1724 */
1725 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1726 int f2fs_sync_fs(struct super_block *, int);
1727 extern __printf(3, 4)
1728 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1729
1730 /*
1731 * hash.c
1732 */
1733 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1734
1735 /*
1736 * node.c
1737 */
1738 struct dnode_of_data;
1739 struct node_info;
1740
1741 bool available_free_memory(struct f2fs_sb_info *, int);
1742 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1743 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1744 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1745 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1746 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1747 int truncate_inode_blocks(struct inode *, pgoff_t);
1748 int truncate_xattr_node(struct inode *, struct page *);
1749 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1750 int remove_inode_page(struct inode *);
1751 struct page *new_inode_page(struct inode *);
1752 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1753 void ra_node_page(struct f2fs_sb_info *, nid_t);
1754 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1755 struct page *get_node_page_ra(struct page *, int);
1756 void sync_inode_page(struct dnode_of_data *);
1757 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1758 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1759 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1760 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1761 int try_to_free_nids(struct f2fs_sb_info *, int);
1762 void recover_inline_xattr(struct inode *, struct page *);
1763 void recover_xattr_data(struct inode *, struct page *, block_t);
1764 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1765 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1766 struct f2fs_summary_block *);
1767 void flush_nat_entries(struct f2fs_sb_info *);
1768 int build_node_manager(struct f2fs_sb_info *);
1769 void destroy_node_manager(struct f2fs_sb_info *);
1770 int __init create_node_manager_caches(void);
1771 void destroy_node_manager_caches(void);
1772
1773 /*
1774 * segment.c
1775 */
1776 void register_inmem_page(struct inode *, struct page *);
1777 int commit_inmem_pages(struct inode *, bool);
1778 void f2fs_balance_fs(struct f2fs_sb_info *);
1779 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1780 int f2fs_issue_flush(struct f2fs_sb_info *);
1781 int create_flush_cmd_control(struct f2fs_sb_info *);
1782 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1783 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1784 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1785 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1786 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1787 void release_discard_addrs(struct f2fs_sb_info *);
1788 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1789 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1790 void allocate_new_segments(struct f2fs_sb_info *);
1791 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1792 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1793 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1794 void write_meta_page(struct f2fs_sb_info *, struct page *);
1795 void write_node_page(unsigned int, struct f2fs_io_info *);
1796 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1797 void rewrite_data_page(struct f2fs_io_info *);
1798 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1799 block_t, block_t, unsigned char, bool);
1800 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1801 block_t, block_t *, struct f2fs_summary *, int);
1802 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1803 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1804 void write_data_summaries(struct f2fs_sb_info *, block_t);
1805 void write_node_summaries(struct f2fs_sb_info *, block_t);
1806 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1807 int, unsigned int, int);
1808 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1809 int build_segment_manager(struct f2fs_sb_info *);
1810 void destroy_segment_manager(struct f2fs_sb_info *);
1811 int __init create_segment_manager_caches(void);
1812 void destroy_segment_manager_caches(void);
1813
1814 /*
1815 * checkpoint.c
1816 */
1817 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1818 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1819 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1820 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1821 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1822 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1823 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1824 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1825 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1826 void release_ino_entry(struct f2fs_sb_info *);
1827 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1828 int acquire_orphan_inode(struct f2fs_sb_info *);
1829 void release_orphan_inode(struct f2fs_sb_info *);
1830 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1831 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1832 int recover_orphan_inodes(struct f2fs_sb_info *);
1833 int get_valid_checkpoint(struct f2fs_sb_info *);
1834 void update_dirty_page(struct inode *, struct page *);
1835 void add_dirty_dir_inode(struct inode *);
1836 void remove_dirty_inode(struct inode *);
1837 void sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1838 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1839 void init_ino_entry_info(struct f2fs_sb_info *);
1840 int __init create_checkpoint_caches(void);
1841 void destroy_checkpoint_caches(void);
1842
1843 /*
1844 * data.c
1845 */
1846 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1847 int f2fs_submit_page_bio(struct f2fs_io_info *);
1848 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1849 void set_data_blkaddr(struct dnode_of_data *);
1850 int reserve_new_block(struct dnode_of_data *);
1851 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1852 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1853 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1854 struct page *find_data_page(struct inode *, pgoff_t);
1855 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1856 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1857 int do_write_data_page(struct f2fs_io_info *);
1858 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1859 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1860 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1861 int f2fs_release_page(struct page *, gfp_t);
1862
1863 /*
1864 * gc.c
1865 */
1866 int start_gc_thread(struct f2fs_sb_info *);
1867 void stop_gc_thread(struct f2fs_sb_info *);
1868 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1869 int f2fs_gc(struct f2fs_sb_info *, bool);
1870 void build_gc_manager(struct f2fs_sb_info *);
1871
1872 /*
1873 * recovery.c
1874 */
1875 int recover_fsync_data(struct f2fs_sb_info *);
1876 bool space_for_roll_forward(struct f2fs_sb_info *);
1877
1878 /*
1879 * debug.c
1880 */
1881 #ifdef CONFIG_F2FS_STAT_FS
1882 struct f2fs_stat_info {
1883 struct list_head stat_list;
1884 struct f2fs_sb_info *sbi;
1885 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1886 int main_area_segs, main_area_sections, main_area_zones;
1887 unsigned long long hit_largest, hit_cached, hit_rbtree;
1888 unsigned long long hit_total, total_ext;
1889 int ext_tree, ext_node;
1890 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1891 int nats, dirty_nats, sits, dirty_sits, fnids;
1892 int total_count, utilization;
1893 int bg_gc, inmem_pages, wb_pages;
1894 int inline_xattr, inline_inode, inline_dir;
1895 unsigned int valid_count, valid_node_count, valid_inode_count;
1896 unsigned int bimodal, avg_vblocks;
1897 int util_free, util_valid, util_invalid;
1898 int rsvd_segs, overp_segs;
1899 int dirty_count, node_pages, meta_pages;
1900 int prefree_count, call_count, cp_count;
1901 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1902 int bg_node_segs, bg_data_segs;
1903 int tot_blks, data_blks, node_blks;
1904 int bg_data_blks, bg_node_blks;
1905 int curseg[NR_CURSEG_TYPE];
1906 int cursec[NR_CURSEG_TYPE];
1907 int curzone[NR_CURSEG_TYPE];
1908
1909 unsigned int segment_count[2];
1910 unsigned int block_count[2];
1911 unsigned int inplace_count;
1912 unsigned long long base_mem, cache_mem, page_mem;
1913 };
1914
1915 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1916 {
1917 return (struct f2fs_stat_info *)sbi->stat_info;
1918 }
1919
1920 #define stat_inc_cp_count(si) ((si)->cp_count++)
1921 #define stat_inc_call_count(si) ((si)->call_count++)
1922 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1923 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1924 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1925 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1926 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1927 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1928 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1929 #define stat_inc_inline_xattr(inode) \
1930 do { \
1931 if (f2fs_has_inline_xattr(inode)) \
1932 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1933 } while (0)
1934 #define stat_dec_inline_xattr(inode) \
1935 do { \
1936 if (f2fs_has_inline_xattr(inode)) \
1937 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1938 } while (0)
1939 #define stat_inc_inline_inode(inode) \
1940 do { \
1941 if (f2fs_has_inline_data(inode)) \
1942 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1943 } while (0)
1944 #define stat_dec_inline_inode(inode) \
1945 do { \
1946 if (f2fs_has_inline_data(inode)) \
1947 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1948 } while (0)
1949 #define stat_inc_inline_dir(inode) \
1950 do { \
1951 if (f2fs_has_inline_dentry(inode)) \
1952 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1953 } while (0)
1954 #define stat_dec_inline_dir(inode) \
1955 do { \
1956 if (f2fs_has_inline_dentry(inode)) \
1957 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1958 } while (0)
1959 #define stat_inc_seg_type(sbi, curseg) \
1960 ((sbi)->segment_count[(curseg)->alloc_type]++)
1961 #define stat_inc_block_count(sbi, curseg) \
1962 ((sbi)->block_count[(curseg)->alloc_type]++)
1963 #define stat_inc_inplace_blocks(sbi) \
1964 (atomic_inc(&(sbi)->inplace_count))
1965 #define stat_inc_seg_count(sbi, type, gc_type) \
1966 do { \
1967 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1968 (si)->tot_segs++; \
1969 if (type == SUM_TYPE_DATA) { \
1970 si->data_segs++; \
1971 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1972 } else { \
1973 si->node_segs++; \
1974 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1975 } \
1976 } while (0)
1977
1978 #define stat_inc_tot_blk_count(si, blks) \
1979 (si->tot_blks += (blks))
1980
1981 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1982 do { \
1983 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1984 stat_inc_tot_blk_count(si, blks); \
1985 si->data_blks += (blks); \
1986 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1987 } while (0)
1988
1989 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1990 do { \
1991 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1992 stat_inc_tot_blk_count(si, blks); \
1993 si->node_blks += (blks); \
1994 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1995 } while (0)
1996
1997 int f2fs_build_stats(struct f2fs_sb_info *);
1998 void f2fs_destroy_stats(struct f2fs_sb_info *);
1999 int __init f2fs_create_root_stats(void);
2000 void f2fs_destroy_root_stats(void);
2001 #else
2002 #define stat_inc_cp_count(si)
2003 #define stat_inc_call_count(si)
2004 #define stat_inc_bggc_count(si)
2005 #define stat_inc_dirty_dir(sbi)
2006 #define stat_dec_dirty_dir(sbi)
2007 #define stat_inc_total_hit(sb)
2008 #define stat_inc_rbtree_node_hit(sb)
2009 #define stat_inc_largest_node_hit(sbi)
2010 #define stat_inc_cached_node_hit(sbi)
2011 #define stat_inc_inline_xattr(inode)
2012 #define stat_dec_inline_xattr(inode)
2013 #define stat_inc_inline_inode(inode)
2014 #define stat_dec_inline_inode(inode)
2015 #define stat_inc_inline_dir(inode)
2016 #define stat_dec_inline_dir(inode)
2017 #define stat_inc_seg_type(sbi, curseg)
2018 #define stat_inc_block_count(sbi, curseg)
2019 #define stat_inc_inplace_blocks(sbi)
2020 #define stat_inc_seg_count(sbi, type, gc_type)
2021 #define stat_inc_tot_blk_count(si, blks)
2022 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2023 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2024
2025 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2026 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2027 static inline int __init f2fs_create_root_stats(void) { return 0; }
2028 static inline void f2fs_destroy_root_stats(void) { }
2029 #endif
2030
2031 extern const struct file_operations f2fs_dir_operations;
2032 extern const struct file_operations f2fs_file_operations;
2033 extern const struct inode_operations f2fs_file_inode_operations;
2034 extern const struct address_space_operations f2fs_dblock_aops;
2035 extern const struct address_space_operations f2fs_node_aops;
2036 extern const struct address_space_operations f2fs_meta_aops;
2037 extern const struct inode_operations f2fs_dir_inode_operations;
2038 extern const struct inode_operations f2fs_symlink_inode_operations;
2039 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2040 extern const struct inode_operations f2fs_special_inode_operations;
2041 extern struct kmem_cache *inode_entry_slab;
2042
2043 /*
2044 * inline.c
2045 */
2046 bool f2fs_may_inline_data(struct inode *);
2047 bool f2fs_may_inline_dentry(struct inode *);
2048 void read_inline_data(struct page *, struct page *);
2049 bool truncate_inline_inode(struct page *, u64);
2050 int f2fs_read_inline_data(struct inode *, struct page *);
2051 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2052 int f2fs_convert_inline_inode(struct inode *);
2053 int f2fs_write_inline_data(struct inode *, struct page *);
2054 bool recover_inline_data(struct inode *, struct page *);
2055 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2056 struct f2fs_filename *, struct page **);
2057 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2058 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2059 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2060 nid_t, umode_t);
2061 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2062 struct inode *, struct inode *);
2063 bool f2fs_empty_inline_dir(struct inode *);
2064 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2065 struct f2fs_str *);
2066 int f2fs_inline_data_fiemap(struct inode *,
2067 struct fiemap_extent_info *, __u64, __u64);
2068
2069 /*
2070 * shrinker.c
2071 */
2072 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2073 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2074 void f2fs_join_shrinker(struct f2fs_sb_info *);
2075 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2076
2077 /*
2078 * extent_cache.c
2079 */
2080 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2081 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2082 unsigned int f2fs_destroy_extent_node(struct inode *);
2083 void f2fs_destroy_extent_tree(struct inode *);
2084 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2085 void f2fs_update_extent_cache(struct dnode_of_data *);
2086 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2087 pgoff_t, block_t, unsigned int);
2088 void init_extent_cache_info(struct f2fs_sb_info *);
2089 int __init create_extent_cache(void);
2090 void destroy_extent_cache(void);
2091
2092 /*
2093 * crypto support
2094 */
2095 static inline int f2fs_encrypted_inode(struct inode *inode)
2096 {
2097 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2098 return file_is_encrypt(inode);
2099 #else
2100 return 0;
2101 #endif
2102 }
2103
2104 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2105 {
2106 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2107 file_set_encrypt(inode);
2108 #endif
2109 }
2110
2111 static inline bool f2fs_bio_encrypted(struct bio *bio)
2112 {
2113 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2114 return unlikely(bio->bi_private != NULL);
2115 #else
2116 return false;
2117 #endif
2118 }
2119
2120 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2121 {
2122 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2123 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 static inline bool f2fs_may_encrypt(struct inode *inode)
2130 {
2131 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2132 mode_t mode = inode->i_mode;
2133
2134 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2135 #else
2136 return 0;
2137 #endif
2138 }
2139
2140 /* crypto_policy.c */
2141 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2142 struct inode *);
2143 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2144 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2145 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2146
2147 /* crypt.c */
2148 extern struct kmem_cache *f2fs_crypt_info_cachep;
2149 bool f2fs_valid_contents_enc_mode(uint32_t);
2150 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2151 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2152 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2153 struct page *f2fs_encrypt(struct inode *, struct page *);
2154 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2155 int f2fs_decrypt_one(struct inode *, struct page *);
2156 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2157
2158 /* crypto_key.c */
2159 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2160 int _f2fs_get_encryption_info(struct inode *inode);
2161
2162 /* crypto_fname.c */
2163 bool f2fs_valid_filenames_enc_mode(uint32_t);
2164 u32 f2fs_fname_crypto_round_up(u32, u32);
2165 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2166 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2167 const struct f2fs_str *, struct f2fs_str *);
2168 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2169 struct f2fs_str *);
2170
2171 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2172 void f2fs_restore_and_release_control_page(struct page **);
2173 void f2fs_restore_control_page(struct page *);
2174
2175 int __init f2fs_init_crypto(void);
2176 int f2fs_crypto_initialize(void);
2177 void f2fs_exit_crypto(void);
2178
2179 int f2fs_has_encryption_key(struct inode *);
2180
2181 static inline int f2fs_get_encryption_info(struct inode *inode)
2182 {
2183 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2184
2185 if (!ci ||
2186 (ci->ci_keyring_key &&
2187 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2188 (1 << KEY_FLAG_REVOKED) |
2189 (1 << KEY_FLAG_DEAD)))))
2190 return _f2fs_get_encryption_info(inode);
2191 return 0;
2192 }
2193
2194 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2195 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2196 int lookup, struct f2fs_filename *);
2197 void f2fs_fname_free_filename(struct f2fs_filename *);
2198 #else
2199 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2200 static inline void f2fs_restore_control_page(struct page *p) { }
2201
2202 static inline int __init f2fs_init_crypto(void) { return 0; }
2203 static inline void f2fs_exit_crypto(void) { }
2204
2205 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2206 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2207 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2208
2209 static inline int f2fs_fname_setup_filename(struct inode *dir,
2210 const struct qstr *iname,
2211 int lookup, struct f2fs_filename *fname)
2212 {
2213 memset(fname, 0, sizeof(struct f2fs_filename));
2214 fname->usr_fname = iname;
2215 fname->disk_name.name = (unsigned char *)iname->name;
2216 fname->disk_name.len = iname->len;
2217 return 0;
2218 }
2219
2220 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2221 #endif
2222 #endif
This page took 0.075486 seconds and 4 git commands to generate.