f2fs: add mount option to select fault injection ratio
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
60
61 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
62 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
63 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
64
65 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
66 typecheck(unsigned long long, b) && \
67 ((long long)((a) - (b)) > 0))
68
69 typedef u32 block_t; /*
70 * should not change u32, since it is the on-disk block
71 * address format, __le32.
72 */
73 typedef u32 nid_t;
74
75 struct f2fs_mount_info {
76 unsigned int opt;
77 };
78
79 #define F2FS_FEATURE_ENCRYPT 0x0001
80
81 #define F2FS_HAS_FEATURE(sb, mask) \
82 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
83 #define F2FS_SET_FEATURE(sb, mask) \
84 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
85 #define F2FS_CLEAR_FEATURE(sb, mask) \
86 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
87
88 /*
89 * For checkpoint manager
90 */
91 enum {
92 NAT_BITMAP,
93 SIT_BITMAP
94 };
95
96 enum {
97 CP_UMOUNT,
98 CP_FASTBOOT,
99 CP_SYNC,
100 CP_RECOVERY,
101 CP_DISCARD,
102 };
103
104 #define DEF_BATCHED_TRIM_SECTIONS 32
105 #define BATCHED_TRIM_SEGMENTS(sbi) \
106 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
107 #define BATCHED_TRIM_BLOCKS(sbi) \
108 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
109 #define DEF_CP_INTERVAL 60 /* 60 secs */
110 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
111
112 struct cp_control {
113 int reason;
114 __u64 trim_start;
115 __u64 trim_end;
116 __u64 trim_minlen;
117 __u64 trimmed;
118 };
119
120 /*
121 * For CP/NAT/SIT/SSA readahead
122 */
123 enum {
124 META_CP,
125 META_NAT,
126 META_SIT,
127 META_SSA,
128 META_POR,
129 };
130
131 /* for the list of ino */
132 enum {
133 ORPHAN_INO, /* for orphan ino list */
134 APPEND_INO, /* for append ino list */
135 UPDATE_INO, /* for update ino list */
136 MAX_INO_ENTRY, /* max. list */
137 };
138
139 struct ino_entry {
140 struct list_head list; /* list head */
141 nid_t ino; /* inode number */
142 };
143
144 /* for the list of inodes to be GCed */
145 struct inode_entry {
146 struct list_head list; /* list head */
147 struct inode *inode; /* vfs inode pointer */
148 };
149
150 /* for the list of blockaddresses to be discarded */
151 struct discard_entry {
152 struct list_head list; /* list head */
153 block_t blkaddr; /* block address to be discarded */
154 int len; /* # of consecutive blocks of the discard */
155 };
156
157 /* for the list of fsync inodes, used only during recovery */
158 struct fsync_inode_entry {
159 struct list_head list; /* list head */
160 struct inode *inode; /* vfs inode pointer */
161 block_t blkaddr; /* block address locating the last fsync */
162 block_t last_dentry; /* block address locating the last dentry */
163 };
164
165 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
166 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
167
168 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
169 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
170 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
171 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
172
173 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
174 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
175
176 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
177 {
178 int before = nats_in_cursum(journal);
179 journal->n_nats = cpu_to_le16(before + i);
180 return before;
181 }
182
183 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
184 {
185 int before = sits_in_cursum(journal);
186 journal->n_sits = cpu_to_le16(before + i);
187 return before;
188 }
189
190 static inline bool __has_cursum_space(struct f2fs_journal *journal,
191 int size, int type)
192 {
193 if (type == NAT_JOURNAL)
194 return size <= MAX_NAT_JENTRIES(journal);
195 return size <= MAX_SIT_JENTRIES(journal);
196 }
197
198 /*
199 * ioctl commands
200 */
201 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
202 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
203 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
204
205 #define F2FS_IOCTL_MAGIC 0xf5
206 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
207 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
208 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
209 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
210 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
211 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
212 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
213 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
214
215 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
216 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
217 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
218
219 /*
220 * should be same as XFS_IOC_GOINGDOWN.
221 * Flags for going down operation used by FS_IOC_GOINGDOWN
222 */
223 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
224 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
225 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
226 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
227 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
228
229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
230 /*
231 * ioctl commands in 32 bit emulation
232 */
233 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
234 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
235 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
236 #endif
237
238 struct f2fs_defragment {
239 u64 start;
240 u64 len;
241 };
242
243 /*
244 * For INODE and NODE manager
245 */
246 /* for directory operations */
247 struct f2fs_dentry_ptr {
248 struct inode *inode;
249 const void *bitmap;
250 struct f2fs_dir_entry *dentry;
251 __u8 (*filename)[F2FS_SLOT_LEN];
252 int max;
253 };
254
255 static inline void make_dentry_ptr(struct inode *inode,
256 struct f2fs_dentry_ptr *d, void *src, int type)
257 {
258 d->inode = inode;
259
260 if (type == 1) {
261 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
262 d->max = NR_DENTRY_IN_BLOCK;
263 d->bitmap = &t->dentry_bitmap;
264 d->dentry = t->dentry;
265 d->filename = t->filename;
266 } else {
267 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
268 d->max = NR_INLINE_DENTRY;
269 d->bitmap = &t->dentry_bitmap;
270 d->dentry = t->dentry;
271 d->filename = t->filename;
272 }
273 }
274
275 /*
276 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
277 * as its node offset to distinguish from index node blocks.
278 * But some bits are used to mark the node block.
279 */
280 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
281 >> OFFSET_BIT_SHIFT)
282 enum {
283 ALLOC_NODE, /* allocate a new node page if needed */
284 LOOKUP_NODE, /* look up a node without readahead */
285 LOOKUP_NODE_RA, /*
286 * look up a node with readahead called
287 * by get_data_block.
288 */
289 };
290
291 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
292
293 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
294
295 /* vector size for gang look-up from extent cache that consists of radix tree */
296 #define EXT_TREE_VEC_SIZE 64
297
298 /* for in-memory extent cache entry */
299 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
300
301 /* number of extent info in extent cache we try to shrink */
302 #define EXTENT_CACHE_SHRINK_NUMBER 128
303
304 struct extent_info {
305 unsigned int fofs; /* start offset in a file */
306 u32 blk; /* start block address of the extent */
307 unsigned int len; /* length of the extent */
308 };
309
310 struct extent_node {
311 struct rb_node rb_node; /* rb node located in rb-tree */
312 struct list_head list; /* node in global extent list of sbi */
313 struct extent_info ei; /* extent info */
314 struct extent_tree *et; /* extent tree pointer */
315 };
316
317 struct extent_tree {
318 nid_t ino; /* inode number */
319 struct rb_root root; /* root of extent info rb-tree */
320 struct extent_node *cached_en; /* recently accessed extent node */
321 struct extent_info largest; /* largested extent info */
322 struct list_head list; /* to be used by sbi->zombie_list */
323 rwlock_t lock; /* protect extent info rb-tree */
324 atomic_t node_cnt; /* # of extent node in rb-tree*/
325 };
326
327 /*
328 * This structure is taken from ext4_map_blocks.
329 *
330 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
331 */
332 #define F2FS_MAP_NEW (1 << BH_New)
333 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
334 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
335 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
336 F2FS_MAP_UNWRITTEN)
337
338 struct f2fs_map_blocks {
339 block_t m_pblk;
340 block_t m_lblk;
341 unsigned int m_len;
342 unsigned int m_flags;
343 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
344 };
345
346 /* for flag in get_data_block */
347 #define F2FS_GET_BLOCK_READ 0
348 #define F2FS_GET_BLOCK_DIO 1
349 #define F2FS_GET_BLOCK_FIEMAP 2
350 #define F2FS_GET_BLOCK_BMAP 3
351 #define F2FS_GET_BLOCK_PRE_DIO 4
352 #define F2FS_GET_BLOCK_PRE_AIO 5
353
354 /*
355 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
356 */
357 #define FADVISE_COLD_BIT 0x01
358 #define FADVISE_LOST_PINO_BIT 0x02
359 #define FADVISE_ENCRYPT_BIT 0x04
360 #define FADVISE_ENC_NAME_BIT 0x08
361
362 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
363 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
364 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
365 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
366 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
367 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
368 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
369 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
370 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
371 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
372 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
373
374 #define DEF_DIR_LEVEL 0
375
376 struct f2fs_inode_info {
377 struct inode vfs_inode; /* serve a vfs inode */
378 unsigned long i_flags; /* keep an inode flags for ioctl */
379 unsigned char i_advise; /* use to give file attribute hints */
380 unsigned char i_dir_level; /* use for dentry level for large dir */
381 unsigned int i_current_depth; /* use only in directory structure */
382 unsigned int i_pino; /* parent inode number */
383 umode_t i_acl_mode; /* keep file acl mode temporarily */
384
385 /* Use below internally in f2fs*/
386 unsigned long flags; /* use to pass per-file flags */
387 struct rw_semaphore i_sem; /* protect fi info */
388 atomic_t dirty_pages; /* # of dirty pages */
389 f2fs_hash_t chash; /* hash value of given file name */
390 unsigned int clevel; /* maximum level of given file name */
391 nid_t i_xattr_nid; /* node id that contains xattrs */
392 unsigned long long xattr_ver; /* cp version of xattr modification */
393
394 struct list_head dirty_list; /* linked in global dirty list */
395 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
396 struct mutex inmem_lock; /* lock for inmemory pages */
397 struct extent_tree *extent_tree; /* cached extent_tree entry */
398 };
399
400 static inline void get_extent_info(struct extent_info *ext,
401 struct f2fs_extent i_ext)
402 {
403 ext->fofs = le32_to_cpu(i_ext.fofs);
404 ext->blk = le32_to_cpu(i_ext.blk);
405 ext->len = le32_to_cpu(i_ext.len);
406 }
407
408 static inline void set_raw_extent(struct extent_info *ext,
409 struct f2fs_extent *i_ext)
410 {
411 i_ext->fofs = cpu_to_le32(ext->fofs);
412 i_ext->blk = cpu_to_le32(ext->blk);
413 i_ext->len = cpu_to_le32(ext->len);
414 }
415
416 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
417 u32 blk, unsigned int len)
418 {
419 ei->fofs = fofs;
420 ei->blk = blk;
421 ei->len = len;
422 }
423
424 static inline bool __is_extent_same(struct extent_info *ei1,
425 struct extent_info *ei2)
426 {
427 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
428 ei1->len == ei2->len);
429 }
430
431 static inline bool __is_extent_mergeable(struct extent_info *back,
432 struct extent_info *front)
433 {
434 return (back->fofs + back->len == front->fofs &&
435 back->blk + back->len == front->blk);
436 }
437
438 static inline bool __is_back_mergeable(struct extent_info *cur,
439 struct extent_info *back)
440 {
441 return __is_extent_mergeable(back, cur);
442 }
443
444 static inline bool __is_front_mergeable(struct extent_info *cur,
445 struct extent_info *front)
446 {
447 return __is_extent_mergeable(cur, front);
448 }
449
450 static inline void __try_update_largest_extent(struct extent_tree *et,
451 struct extent_node *en)
452 {
453 if (en->ei.len > et->largest.len)
454 et->largest = en->ei;
455 }
456
457 struct f2fs_nm_info {
458 block_t nat_blkaddr; /* base disk address of NAT */
459 nid_t max_nid; /* maximum possible node ids */
460 nid_t available_nids; /* maximum available node ids */
461 nid_t next_scan_nid; /* the next nid to be scanned */
462 unsigned int ram_thresh; /* control the memory footprint */
463 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
464 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
465
466 /* NAT cache management */
467 struct radix_tree_root nat_root;/* root of the nat entry cache */
468 struct radix_tree_root nat_set_root;/* root of the nat set cache */
469 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
470 struct list_head nat_entries; /* cached nat entry list (clean) */
471 unsigned int nat_cnt; /* the # of cached nat entries */
472 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
473
474 /* free node ids management */
475 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
476 struct list_head free_nid_list; /* a list for free nids */
477 spinlock_t free_nid_list_lock; /* protect free nid list */
478 unsigned int fcnt; /* the number of free node id */
479 struct mutex build_lock; /* lock for build free nids */
480
481 /* for checkpoint */
482 char *nat_bitmap; /* NAT bitmap pointer */
483 int bitmap_size; /* bitmap size */
484 };
485
486 /*
487 * this structure is used as one of function parameters.
488 * all the information are dedicated to a given direct node block determined
489 * by the data offset in a file.
490 */
491 struct dnode_of_data {
492 struct inode *inode; /* vfs inode pointer */
493 struct page *inode_page; /* its inode page, NULL is possible */
494 struct page *node_page; /* cached direct node page */
495 nid_t nid; /* node id of the direct node block */
496 unsigned int ofs_in_node; /* data offset in the node page */
497 bool inode_page_locked; /* inode page is locked or not */
498 bool node_changed; /* is node block changed */
499 char cur_level; /* level of hole node page */
500 char max_level; /* level of current page located */
501 block_t data_blkaddr; /* block address of the node block */
502 };
503
504 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
505 struct page *ipage, struct page *npage, nid_t nid)
506 {
507 memset(dn, 0, sizeof(*dn));
508 dn->inode = inode;
509 dn->inode_page = ipage;
510 dn->node_page = npage;
511 dn->nid = nid;
512 }
513
514 /*
515 * For SIT manager
516 *
517 * By default, there are 6 active log areas across the whole main area.
518 * When considering hot and cold data separation to reduce cleaning overhead,
519 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
520 * respectively.
521 * In the current design, you should not change the numbers intentionally.
522 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
523 * logs individually according to the underlying devices. (default: 6)
524 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
525 * data and 8 for node logs.
526 */
527 #define NR_CURSEG_DATA_TYPE (3)
528 #define NR_CURSEG_NODE_TYPE (3)
529 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
530
531 enum {
532 CURSEG_HOT_DATA = 0, /* directory entry blocks */
533 CURSEG_WARM_DATA, /* data blocks */
534 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
535 CURSEG_HOT_NODE, /* direct node blocks of directory files */
536 CURSEG_WARM_NODE, /* direct node blocks of normal files */
537 CURSEG_COLD_NODE, /* indirect node blocks */
538 NO_CHECK_TYPE,
539 CURSEG_DIRECT_IO, /* to use for the direct IO path */
540 };
541
542 struct flush_cmd {
543 struct completion wait;
544 struct llist_node llnode;
545 int ret;
546 };
547
548 struct flush_cmd_control {
549 struct task_struct *f2fs_issue_flush; /* flush thread */
550 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
551 struct llist_head issue_list; /* list for command issue */
552 struct llist_node *dispatch_list; /* list for command dispatch */
553 };
554
555 struct f2fs_sm_info {
556 struct sit_info *sit_info; /* whole segment information */
557 struct free_segmap_info *free_info; /* free segment information */
558 struct dirty_seglist_info *dirty_info; /* dirty segment information */
559 struct curseg_info *curseg_array; /* active segment information */
560
561 block_t seg0_blkaddr; /* block address of 0'th segment */
562 block_t main_blkaddr; /* start block address of main area */
563 block_t ssa_blkaddr; /* start block address of SSA area */
564
565 unsigned int segment_count; /* total # of segments */
566 unsigned int main_segments; /* # of segments in main area */
567 unsigned int reserved_segments; /* # of reserved segments */
568 unsigned int ovp_segments; /* # of overprovision segments */
569
570 /* a threshold to reclaim prefree segments */
571 unsigned int rec_prefree_segments;
572
573 /* for small discard management */
574 struct list_head discard_list; /* 4KB discard list */
575 int nr_discards; /* # of discards in the list */
576 int max_discards; /* max. discards to be issued */
577
578 /* for batched trimming */
579 unsigned int trim_sections; /* # of sections to trim */
580
581 struct list_head sit_entry_set; /* sit entry set list */
582
583 unsigned int ipu_policy; /* in-place-update policy */
584 unsigned int min_ipu_util; /* in-place-update threshold */
585 unsigned int min_fsync_blocks; /* threshold for fsync */
586
587 /* for flush command control */
588 struct flush_cmd_control *cmd_control_info;
589
590 };
591
592 /*
593 * For superblock
594 */
595 /*
596 * COUNT_TYPE for monitoring
597 *
598 * f2fs monitors the number of several block types such as on-writeback,
599 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
600 */
601 enum count_type {
602 F2FS_WRITEBACK,
603 F2FS_DIRTY_DENTS,
604 F2FS_DIRTY_DATA,
605 F2FS_DIRTY_NODES,
606 F2FS_DIRTY_META,
607 F2FS_INMEM_PAGES,
608 NR_COUNT_TYPE,
609 };
610
611 /*
612 * The below are the page types of bios used in submit_bio().
613 * The available types are:
614 * DATA User data pages. It operates as async mode.
615 * NODE Node pages. It operates as async mode.
616 * META FS metadata pages such as SIT, NAT, CP.
617 * NR_PAGE_TYPE The number of page types.
618 * META_FLUSH Make sure the previous pages are written
619 * with waiting the bio's completion
620 * ... Only can be used with META.
621 */
622 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
623 enum page_type {
624 DATA,
625 NODE,
626 META,
627 NR_PAGE_TYPE,
628 META_FLUSH,
629 INMEM, /* the below types are used by tracepoints only. */
630 INMEM_DROP,
631 INMEM_REVOKE,
632 IPU,
633 OPU,
634 };
635
636 struct f2fs_io_info {
637 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
638 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
639 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
640 block_t new_blkaddr; /* new block address to be written */
641 block_t old_blkaddr; /* old block address before Cow */
642 struct page *page; /* page to be written */
643 struct page *encrypted_page; /* encrypted page */
644 };
645
646 #define is_read_io(rw) (((rw) & 1) == READ)
647 struct f2fs_bio_info {
648 struct f2fs_sb_info *sbi; /* f2fs superblock */
649 struct bio *bio; /* bios to merge */
650 sector_t last_block_in_bio; /* last block number */
651 struct f2fs_io_info fio; /* store buffered io info. */
652 struct rw_semaphore io_rwsem; /* blocking op for bio */
653 };
654
655 enum inode_type {
656 DIR_INODE, /* for dirty dir inode */
657 FILE_INODE, /* for dirty regular/symlink inode */
658 NR_INODE_TYPE,
659 };
660
661 /* for inner inode cache management */
662 struct inode_management {
663 struct radix_tree_root ino_root; /* ino entry array */
664 spinlock_t ino_lock; /* for ino entry lock */
665 struct list_head ino_list; /* inode list head */
666 unsigned long ino_num; /* number of entries */
667 };
668
669 /* For s_flag in struct f2fs_sb_info */
670 enum {
671 SBI_IS_DIRTY, /* dirty flag for checkpoint */
672 SBI_IS_CLOSE, /* specify unmounting */
673 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
674 SBI_POR_DOING, /* recovery is doing or not */
675 SBI_NEED_SB_WRITE, /* need to recover superblock */
676 };
677
678 enum {
679 CP_TIME,
680 REQ_TIME,
681 MAX_TIME,
682 };
683
684 struct f2fs_sb_info {
685 struct super_block *sb; /* pointer to VFS super block */
686 struct proc_dir_entry *s_proc; /* proc entry */
687 struct f2fs_super_block *raw_super; /* raw super block pointer */
688 int valid_super_block; /* valid super block no */
689 int s_flag; /* flags for sbi */
690
691 /* for node-related operations */
692 struct f2fs_nm_info *nm_info; /* node manager */
693 struct inode *node_inode; /* cache node blocks */
694
695 /* for segment-related operations */
696 struct f2fs_sm_info *sm_info; /* segment manager */
697
698 /* for bio operations */
699 struct f2fs_bio_info read_io; /* for read bios */
700 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
701
702 /* for checkpoint */
703 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
704 struct inode *meta_inode; /* cache meta blocks */
705 struct mutex cp_mutex; /* checkpoint procedure lock */
706 struct rw_semaphore cp_rwsem; /* blocking FS operations */
707 struct rw_semaphore node_write; /* locking node writes */
708 struct mutex writepages; /* mutex for writepages() */
709 wait_queue_head_t cp_wait;
710 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
711 long interval_time[MAX_TIME]; /* to store thresholds */
712
713 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
714
715 /* for orphan inode, use 0'th array */
716 unsigned int max_orphans; /* max orphan inodes */
717
718 /* for inode management */
719 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
720 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
721
722 /* for extent tree cache */
723 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
724 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
725 struct list_head extent_list; /* lru list for shrinker */
726 spinlock_t extent_lock; /* locking extent lru list */
727 atomic_t total_ext_tree; /* extent tree count */
728 struct list_head zombie_list; /* extent zombie tree list */
729 atomic_t total_zombie_tree; /* extent zombie tree count */
730 atomic_t total_ext_node; /* extent info count */
731
732 /* basic filesystem units */
733 unsigned int log_sectors_per_block; /* log2 sectors per block */
734 unsigned int log_blocksize; /* log2 block size */
735 unsigned int blocksize; /* block size */
736 unsigned int root_ino_num; /* root inode number*/
737 unsigned int node_ino_num; /* node inode number*/
738 unsigned int meta_ino_num; /* meta inode number*/
739 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
740 unsigned int blocks_per_seg; /* blocks per segment */
741 unsigned int segs_per_sec; /* segments per section */
742 unsigned int secs_per_zone; /* sections per zone */
743 unsigned int total_sections; /* total section count */
744 unsigned int total_node_count; /* total node block count */
745 unsigned int total_valid_node_count; /* valid node block count */
746 unsigned int total_valid_inode_count; /* valid inode count */
747 loff_t max_file_blocks; /* max block index of file */
748 int active_logs; /* # of active logs */
749 int dir_level; /* directory level */
750
751 block_t user_block_count; /* # of user blocks */
752 block_t total_valid_block_count; /* # of valid blocks */
753 block_t alloc_valid_block_count; /* # of allocated blocks */
754 block_t discard_blks; /* discard command candidats */
755 block_t last_valid_block_count; /* for recovery */
756 u32 s_next_generation; /* for NFS support */
757 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
758
759 struct f2fs_mount_info mount_opt; /* mount options */
760
761 /* for cleaning operations */
762 struct mutex gc_mutex; /* mutex for GC */
763 struct f2fs_gc_kthread *gc_thread; /* GC thread */
764 unsigned int cur_victim_sec; /* current victim section num */
765
766 /* maximum # of trials to find a victim segment for SSR and GC */
767 unsigned int max_victim_search;
768
769 /*
770 * for stat information.
771 * one is for the LFS mode, and the other is for the SSR mode.
772 */
773 #ifdef CONFIG_F2FS_STAT_FS
774 struct f2fs_stat_info *stat_info; /* FS status information */
775 unsigned int segment_count[2]; /* # of allocated segments */
776 unsigned int block_count[2]; /* # of allocated blocks */
777 atomic_t inplace_count; /* # of inplace update */
778 atomic64_t total_hit_ext; /* # of lookup extent cache */
779 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
780 atomic64_t read_hit_largest; /* # of hit largest extent node */
781 atomic64_t read_hit_cached; /* # of hit cached extent node */
782 atomic_t inline_xattr; /* # of inline_xattr inodes */
783 atomic_t inline_inode; /* # of inline_data inodes */
784 atomic_t inline_dir; /* # of inline_dentry inodes */
785 int bg_gc; /* background gc calls */
786 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
787 #endif
788 unsigned int last_victim[2]; /* last victim segment # */
789 spinlock_t stat_lock; /* lock for stat operations */
790
791 /* For sysfs suppport */
792 struct kobject s_kobj;
793 struct completion s_kobj_unregister;
794
795 /* For shrinker support */
796 struct list_head s_list;
797 struct mutex umount_mutex;
798 unsigned int shrinker_run_no;
799
800 /* For write statistics */
801 u64 sectors_written_start;
802 u64 kbytes_written;
803
804 /* Reference to checksum algorithm driver via cryptoapi */
805 struct crypto_shash *s_chksum_driver;
806 };
807
808 /* For write statistics. Suppose sector size is 512 bytes,
809 * and the return value is in kbytes. s is of struct f2fs_sb_info.
810 */
811 #define BD_PART_WRITTEN(s) \
812 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
813 s->sectors_written_start) >> 1)
814
815 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
816 {
817 sbi->last_time[type] = jiffies;
818 }
819
820 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
821 {
822 struct timespec ts = {sbi->interval_time[type], 0};
823 unsigned long interval = timespec_to_jiffies(&ts);
824
825 return time_after(jiffies, sbi->last_time[type] + interval);
826 }
827
828 static inline bool is_idle(struct f2fs_sb_info *sbi)
829 {
830 struct block_device *bdev = sbi->sb->s_bdev;
831 struct request_queue *q = bdev_get_queue(bdev);
832 struct request_list *rl = &q->root_rl;
833
834 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
835 return 0;
836
837 return f2fs_time_over(sbi, REQ_TIME);
838 }
839
840 /*
841 * Inline functions
842 */
843 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
844 unsigned int length)
845 {
846 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
847 u32 *ctx = (u32 *)shash_desc_ctx(shash);
848 int err;
849
850 shash->tfm = sbi->s_chksum_driver;
851 shash->flags = 0;
852 *ctx = F2FS_SUPER_MAGIC;
853
854 err = crypto_shash_update(shash, address, length);
855 BUG_ON(err);
856
857 return *ctx;
858 }
859
860 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
861 void *buf, size_t buf_size)
862 {
863 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
864 }
865
866 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
867 {
868 return container_of(inode, struct f2fs_inode_info, vfs_inode);
869 }
870
871 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
872 {
873 return sb->s_fs_info;
874 }
875
876 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
877 {
878 return F2FS_SB(inode->i_sb);
879 }
880
881 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
882 {
883 return F2FS_I_SB(mapping->host);
884 }
885
886 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
887 {
888 return F2FS_M_SB(page->mapping);
889 }
890
891 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
892 {
893 return (struct f2fs_super_block *)(sbi->raw_super);
894 }
895
896 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
897 {
898 return (struct f2fs_checkpoint *)(sbi->ckpt);
899 }
900
901 static inline struct f2fs_node *F2FS_NODE(struct page *page)
902 {
903 return (struct f2fs_node *)page_address(page);
904 }
905
906 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
907 {
908 return &((struct f2fs_node *)page_address(page))->i;
909 }
910
911 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
912 {
913 return (struct f2fs_nm_info *)(sbi->nm_info);
914 }
915
916 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
917 {
918 return (struct f2fs_sm_info *)(sbi->sm_info);
919 }
920
921 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
922 {
923 return (struct sit_info *)(SM_I(sbi)->sit_info);
924 }
925
926 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
927 {
928 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
929 }
930
931 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
932 {
933 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
934 }
935
936 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
937 {
938 return sbi->meta_inode->i_mapping;
939 }
940
941 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
942 {
943 return sbi->node_inode->i_mapping;
944 }
945
946 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
947 {
948 return sbi->s_flag & (0x01 << type);
949 }
950
951 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
952 {
953 sbi->s_flag |= (0x01 << type);
954 }
955
956 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
957 {
958 sbi->s_flag &= ~(0x01 << type);
959 }
960
961 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
962 {
963 return le64_to_cpu(cp->checkpoint_ver);
964 }
965
966 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
967 {
968 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
969 return ckpt_flags & f;
970 }
971
972 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
973 {
974 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
975 ckpt_flags |= f;
976 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
977 }
978
979 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
980 {
981 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
982 ckpt_flags &= (~f);
983 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
984 }
985
986 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
987 {
988 down_read(&sbi->cp_rwsem);
989 }
990
991 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
992 {
993 up_read(&sbi->cp_rwsem);
994 }
995
996 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
997 {
998 down_write(&sbi->cp_rwsem);
999 }
1000
1001 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1002 {
1003 up_write(&sbi->cp_rwsem);
1004 }
1005
1006 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1007 {
1008 int reason = CP_SYNC;
1009
1010 if (test_opt(sbi, FASTBOOT))
1011 reason = CP_FASTBOOT;
1012 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1013 reason = CP_UMOUNT;
1014 return reason;
1015 }
1016
1017 static inline bool __remain_node_summaries(int reason)
1018 {
1019 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1020 }
1021
1022 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1023 {
1024 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1025 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1026 }
1027
1028 /*
1029 * Check whether the given nid is within node id range.
1030 */
1031 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1032 {
1033 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1034 return -EINVAL;
1035 if (unlikely(nid >= NM_I(sbi)->max_nid))
1036 return -EINVAL;
1037 return 0;
1038 }
1039
1040 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1041
1042 /*
1043 * Check whether the inode has blocks or not
1044 */
1045 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1046 {
1047 if (F2FS_I(inode)->i_xattr_nid)
1048 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1049 else
1050 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1051 }
1052
1053 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1054 {
1055 return ofs == XATTR_NODE_OFFSET;
1056 }
1057
1058 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1059 struct inode *inode, blkcnt_t count)
1060 {
1061 block_t valid_block_count;
1062
1063 spin_lock(&sbi->stat_lock);
1064 valid_block_count =
1065 sbi->total_valid_block_count + (block_t)count;
1066 if (unlikely(valid_block_count > sbi->user_block_count)) {
1067 spin_unlock(&sbi->stat_lock);
1068 return false;
1069 }
1070 inode->i_blocks += count;
1071 sbi->total_valid_block_count = valid_block_count;
1072 sbi->alloc_valid_block_count += (block_t)count;
1073 spin_unlock(&sbi->stat_lock);
1074 return true;
1075 }
1076
1077 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1078 struct inode *inode,
1079 blkcnt_t count)
1080 {
1081 spin_lock(&sbi->stat_lock);
1082 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1083 f2fs_bug_on(sbi, inode->i_blocks < count);
1084 inode->i_blocks -= count;
1085 sbi->total_valid_block_count -= (block_t)count;
1086 spin_unlock(&sbi->stat_lock);
1087 }
1088
1089 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1090 {
1091 atomic_inc(&sbi->nr_pages[count_type]);
1092 set_sbi_flag(sbi, SBI_IS_DIRTY);
1093 }
1094
1095 static inline void inode_inc_dirty_pages(struct inode *inode)
1096 {
1097 atomic_inc(&F2FS_I(inode)->dirty_pages);
1098 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1099 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1100 }
1101
1102 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1103 {
1104 atomic_dec(&sbi->nr_pages[count_type]);
1105 }
1106
1107 static inline void inode_dec_dirty_pages(struct inode *inode)
1108 {
1109 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1110 !S_ISLNK(inode->i_mode))
1111 return;
1112
1113 atomic_dec(&F2FS_I(inode)->dirty_pages);
1114 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1115 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1116 }
1117
1118 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1119 {
1120 return atomic_read(&sbi->nr_pages[count_type]);
1121 }
1122
1123 static inline int get_dirty_pages(struct inode *inode)
1124 {
1125 return atomic_read(&F2FS_I(inode)->dirty_pages);
1126 }
1127
1128 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1129 {
1130 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1131 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1132 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1133 }
1134
1135 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1136 {
1137 return sbi->total_valid_block_count;
1138 }
1139
1140 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1141 {
1142 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1143
1144 /* return NAT or SIT bitmap */
1145 if (flag == NAT_BITMAP)
1146 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1147 else if (flag == SIT_BITMAP)
1148 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1149
1150 return 0;
1151 }
1152
1153 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1154 {
1155 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1156 }
1157
1158 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1159 {
1160 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1161 int offset;
1162
1163 if (__cp_payload(sbi) > 0) {
1164 if (flag == NAT_BITMAP)
1165 return &ckpt->sit_nat_version_bitmap;
1166 else
1167 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1168 } else {
1169 offset = (flag == NAT_BITMAP) ?
1170 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1171 return &ckpt->sit_nat_version_bitmap + offset;
1172 }
1173 }
1174
1175 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1176 {
1177 block_t start_addr;
1178 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1179 unsigned long long ckpt_version = cur_cp_version(ckpt);
1180
1181 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1182
1183 /*
1184 * odd numbered checkpoint should at cp segment 0
1185 * and even segment must be at cp segment 1
1186 */
1187 if (!(ckpt_version & 1))
1188 start_addr += sbi->blocks_per_seg;
1189
1190 return start_addr;
1191 }
1192
1193 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1194 {
1195 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1196 }
1197
1198 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1199 struct inode *inode)
1200 {
1201 block_t valid_block_count;
1202 unsigned int valid_node_count;
1203
1204 spin_lock(&sbi->stat_lock);
1205
1206 valid_block_count = sbi->total_valid_block_count + 1;
1207 if (unlikely(valid_block_count > sbi->user_block_count)) {
1208 spin_unlock(&sbi->stat_lock);
1209 return false;
1210 }
1211
1212 valid_node_count = sbi->total_valid_node_count + 1;
1213 if (unlikely(valid_node_count > sbi->total_node_count)) {
1214 spin_unlock(&sbi->stat_lock);
1215 return false;
1216 }
1217
1218 if (inode)
1219 inode->i_blocks++;
1220
1221 sbi->alloc_valid_block_count++;
1222 sbi->total_valid_node_count++;
1223 sbi->total_valid_block_count++;
1224 spin_unlock(&sbi->stat_lock);
1225
1226 return true;
1227 }
1228
1229 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1230 struct inode *inode)
1231 {
1232 spin_lock(&sbi->stat_lock);
1233
1234 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1235 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1236 f2fs_bug_on(sbi, !inode->i_blocks);
1237
1238 inode->i_blocks--;
1239 sbi->total_valid_node_count--;
1240 sbi->total_valid_block_count--;
1241
1242 spin_unlock(&sbi->stat_lock);
1243 }
1244
1245 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1246 {
1247 return sbi->total_valid_node_count;
1248 }
1249
1250 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1251 {
1252 spin_lock(&sbi->stat_lock);
1253 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1254 sbi->total_valid_inode_count++;
1255 spin_unlock(&sbi->stat_lock);
1256 }
1257
1258 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1259 {
1260 spin_lock(&sbi->stat_lock);
1261 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1262 sbi->total_valid_inode_count--;
1263 spin_unlock(&sbi->stat_lock);
1264 }
1265
1266 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1267 {
1268 return sbi->total_valid_inode_count;
1269 }
1270
1271 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1272 pgoff_t index, bool for_write)
1273 {
1274 if (!for_write)
1275 return grab_cache_page(mapping, index);
1276 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1277 }
1278
1279 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1280 {
1281 char *src_kaddr = kmap(src);
1282 char *dst_kaddr = kmap(dst);
1283
1284 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1285 kunmap(dst);
1286 kunmap(src);
1287 }
1288
1289 static inline void f2fs_put_page(struct page *page, int unlock)
1290 {
1291 if (!page)
1292 return;
1293
1294 if (unlock) {
1295 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1296 unlock_page(page);
1297 }
1298 put_page(page);
1299 }
1300
1301 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1302 {
1303 if (dn->node_page)
1304 f2fs_put_page(dn->node_page, 1);
1305 if (dn->inode_page && dn->node_page != dn->inode_page)
1306 f2fs_put_page(dn->inode_page, 0);
1307 dn->node_page = NULL;
1308 dn->inode_page = NULL;
1309 }
1310
1311 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1312 size_t size)
1313 {
1314 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1315 }
1316
1317 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1318 gfp_t flags)
1319 {
1320 void *entry;
1321
1322 entry = kmem_cache_alloc(cachep, flags);
1323 if (!entry)
1324 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1325 return entry;
1326 }
1327
1328 static inline struct bio *f2fs_bio_alloc(int npages)
1329 {
1330 struct bio *bio;
1331
1332 /* No failure on bio allocation */
1333 bio = bio_alloc(GFP_NOIO, npages);
1334 if (!bio)
1335 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1336 return bio;
1337 }
1338
1339 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1340 unsigned long index, void *item)
1341 {
1342 while (radix_tree_insert(root, index, item))
1343 cond_resched();
1344 }
1345
1346 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1347
1348 static inline bool IS_INODE(struct page *page)
1349 {
1350 struct f2fs_node *p = F2FS_NODE(page);
1351 return RAW_IS_INODE(p);
1352 }
1353
1354 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1355 {
1356 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1357 }
1358
1359 static inline block_t datablock_addr(struct page *node_page,
1360 unsigned int offset)
1361 {
1362 struct f2fs_node *raw_node;
1363 __le32 *addr_array;
1364 raw_node = F2FS_NODE(node_page);
1365 addr_array = blkaddr_in_node(raw_node);
1366 return le32_to_cpu(addr_array[offset]);
1367 }
1368
1369 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1370 {
1371 int mask;
1372
1373 addr += (nr >> 3);
1374 mask = 1 << (7 - (nr & 0x07));
1375 return mask & *addr;
1376 }
1377
1378 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1379 {
1380 int mask;
1381
1382 addr += (nr >> 3);
1383 mask = 1 << (7 - (nr & 0x07));
1384 *addr |= mask;
1385 }
1386
1387 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1388 {
1389 int mask;
1390
1391 addr += (nr >> 3);
1392 mask = 1 << (7 - (nr & 0x07));
1393 *addr &= ~mask;
1394 }
1395
1396 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1397 {
1398 int mask;
1399 int ret;
1400
1401 addr += (nr >> 3);
1402 mask = 1 << (7 - (nr & 0x07));
1403 ret = mask & *addr;
1404 *addr |= mask;
1405 return ret;
1406 }
1407
1408 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1409 {
1410 int mask;
1411 int ret;
1412
1413 addr += (nr >> 3);
1414 mask = 1 << (7 - (nr & 0x07));
1415 ret = mask & *addr;
1416 *addr &= ~mask;
1417 return ret;
1418 }
1419
1420 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1421 {
1422 int mask;
1423
1424 addr += (nr >> 3);
1425 mask = 1 << (7 - (nr & 0x07));
1426 *addr ^= mask;
1427 }
1428
1429 /* used for f2fs_inode_info->flags */
1430 enum {
1431 FI_NEW_INODE, /* indicate newly allocated inode */
1432 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1433 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1434 FI_INC_LINK, /* need to increment i_nlink */
1435 FI_ACL_MODE, /* indicate acl mode */
1436 FI_NO_ALLOC, /* should not allocate any blocks */
1437 FI_FREE_NID, /* free allocated nide */
1438 FI_UPDATE_DIR, /* should update inode block for consistency */
1439 FI_DELAY_IPUT, /* used for the recovery */
1440 FI_NO_EXTENT, /* not to use the extent cache */
1441 FI_INLINE_XATTR, /* used for inline xattr */
1442 FI_INLINE_DATA, /* used for inline data*/
1443 FI_INLINE_DENTRY, /* used for inline dentry */
1444 FI_APPEND_WRITE, /* inode has appended data */
1445 FI_UPDATE_WRITE, /* inode has in-place-update data */
1446 FI_NEED_IPU, /* used for ipu per file */
1447 FI_ATOMIC_FILE, /* indicate atomic file */
1448 FI_VOLATILE_FILE, /* indicate volatile file */
1449 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1450 FI_DROP_CACHE, /* drop dirty page cache */
1451 FI_DATA_EXIST, /* indicate data exists */
1452 FI_INLINE_DOTS, /* indicate inline dot dentries */
1453 FI_DO_DEFRAG, /* indicate defragment is running */
1454 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1455 };
1456
1457 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1458 {
1459 if (!test_bit(flag, &fi->flags))
1460 set_bit(flag, &fi->flags);
1461 }
1462
1463 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1464 {
1465 return test_bit(flag, &fi->flags);
1466 }
1467
1468 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1469 {
1470 if (test_bit(flag, &fi->flags))
1471 clear_bit(flag, &fi->flags);
1472 }
1473
1474 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1475 {
1476 fi->i_acl_mode = mode;
1477 set_inode_flag(fi, FI_ACL_MODE);
1478 }
1479
1480 static inline void get_inline_info(struct f2fs_inode_info *fi,
1481 struct f2fs_inode *ri)
1482 {
1483 if (ri->i_inline & F2FS_INLINE_XATTR)
1484 set_inode_flag(fi, FI_INLINE_XATTR);
1485 if (ri->i_inline & F2FS_INLINE_DATA)
1486 set_inode_flag(fi, FI_INLINE_DATA);
1487 if (ri->i_inline & F2FS_INLINE_DENTRY)
1488 set_inode_flag(fi, FI_INLINE_DENTRY);
1489 if (ri->i_inline & F2FS_DATA_EXIST)
1490 set_inode_flag(fi, FI_DATA_EXIST);
1491 if (ri->i_inline & F2FS_INLINE_DOTS)
1492 set_inode_flag(fi, FI_INLINE_DOTS);
1493 }
1494
1495 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1496 struct f2fs_inode *ri)
1497 {
1498 ri->i_inline = 0;
1499
1500 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1501 ri->i_inline |= F2FS_INLINE_XATTR;
1502 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1503 ri->i_inline |= F2FS_INLINE_DATA;
1504 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1505 ri->i_inline |= F2FS_INLINE_DENTRY;
1506 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1507 ri->i_inline |= F2FS_DATA_EXIST;
1508 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1509 ri->i_inline |= F2FS_INLINE_DOTS;
1510 }
1511
1512 static inline int f2fs_has_inline_xattr(struct inode *inode)
1513 {
1514 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1515 }
1516
1517 static inline unsigned int addrs_per_inode(struct inode *inode)
1518 {
1519 if (f2fs_has_inline_xattr(inode))
1520 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1521 return DEF_ADDRS_PER_INODE;
1522 }
1523
1524 static inline void *inline_xattr_addr(struct page *page)
1525 {
1526 struct f2fs_inode *ri = F2FS_INODE(page);
1527 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1528 F2FS_INLINE_XATTR_ADDRS]);
1529 }
1530
1531 static inline int inline_xattr_size(struct inode *inode)
1532 {
1533 if (f2fs_has_inline_xattr(inode))
1534 return F2FS_INLINE_XATTR_ADDRS << 2;
1535 else
1536 return 0;
1537 }
1538
1539 static inline int f2fs_has_inline_data(struct inode *inode)
1540 {
1541 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1542 }
1543
1544 static inline void f2fs_clear_inline_inode(struct inode *inode)
1545 {
1546 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1547 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1548 }
1549
1550 static inline int f2fs_exist_data(struct inode *inode)
1551 {
1552 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1553 }
1554
1555 static inline int f2fs_has_inline_dots(struct inode *inode)
1556 {
1557 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1558 }
1559
1560 static inline bool f2fs_is_atomic_file(struct inode *inode)
1561 {
1562 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1563 }
1564
1565 static inline bool f2fs_is_volatile_file(struct inode *inode)
1566 {
1567 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1568 }
1569
1570 static inline bool f2fs_is_first_block_written(struct inode *inode)
1571 {
1572 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1573 }
1574
1575 static inline bool f2fs_is_drop_cache(struct inode *inode)
1576 {
1577 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1578 }
1579
1580 static inline void *inline_data_addr(struct page *page)
1581 {
1582 struct f2fs_inode *ri = F2FS_INODE(page);
1583 return (void *)&(ri->i_addr[1]);
1584 }
1585
1586 static inline int f2fs_has_inline_dentry(struct inode *inode)
1587 {
1588 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1589 }
1590
1591 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1592 {
1593 if (!f2fs_has_inline_dentry(dir))
1594 kunmap(page);
1595 }
1596
1597 static inline int is_file(struct inode *inode, int type)
1598 {
1599 return F2FS_I(inode)->i_advise & type;
1600 }
1601
1602 static inline void set_file(struct inode *inode, int type)
1603 {
1604 F2FS_I(inode)->i_advise |= type;
1605 }
1606
1607 static inline void clear_file(struct inode *inode, int type)
1608 {
1609 F2FS_I(inode)->i_advise &= ~type;
1610 }
1611
1612 static inline int f2fs_readonly(struct super_block *sb)
1613 {
1614 return sb->s_flags & MS_RDONLY;
1615 }
1616
1617 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1618 {
1619 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1620 }
1621
1622 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1623 {
1624 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1625 sbi->sb->s_flags |= MS_RDONLY;
1626 }
1627
1628 static inline bool is_dot_dotdot(const struct qstr *str)
1629 {
1630 if (str->len == 1 && str->name[0] == '.')
1631 return true;
1632
1633 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1634 return true;
1635
1636 return false;
1637 }
1638
1639 static inline bool f2fs_may_extent_tree(struct inode *inode)
1640 {
1641 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1642 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1643 return false;
1644
1645 return S_ISREG(inode->i_mode);
1646 }
1647
1648 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1649 {
1650 return kmalloc(size, flags);
1651 }
1652
1653 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1654 {
1655 void *ret;
1656
1657 ret = kmalloc(size, flags | __GFP_NOWARN);
1658 if (!ret)
1659 ret = __vmalloc(size, flags, PAGE_KERNEL);
1660 return ret;
1661 }
1662
1663 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1664 {
1665 void *ret;
1666
1667 ret = kzalloc(size, flags | __GFP_NOWARN);
1668 if (!ret)
1669 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1670 return ret;
1671 }
1672
1673 #define get_inode_mode(i) \
1674 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1675 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1676
1677 /* get offset of first page in next direct node */
1678 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1679 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1680 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1681 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1682
1683 /*
1684 * file.c
1685 */
1686 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1687 void truncate_data_blocks(struct dnode_of_data *);
1688 int truncate_blocks(struct inode *, u64, bool);
1689 int f2fs_truncate(struct inode *, bool);
1690 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1691 int f2fs_setattr(struct dentry *, struct iattr *);
1692 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1693 int truncate_data_blocks_range(struct dnode_of_data *, int);
1694 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1695 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1696
1697 /*
1698 * inode.c
1699 */
1700 void f2fs_set_inode_flags(struct inode *);
1701 struct inode *f2fs_iget(struct super_block *, unsigned long);
1702 int try_to_free_nats(struct f2fs_sb_info *, int);
1703 int update_inode(struct inode *, struct page *);
1704 int update_inode_page(struct inode *);
1705 int f2fs_write_inode(struct inode *, struct writeback_control *);
1706 void f2fs_evict_inode(struct inode *);
1707 void handle_failed_inode(struct inode *);
1708
1709 /*
1710 * namei.c
1711 */
1712 struct dentry *f2fs_get_parent(struct dentry *child);
1713
1714 /*
1715 * dir.c
1716 */
1717 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1718 void set_de_type(struct f2fs_dir_entry *, umode_t);
1719 unsigned char get_de_type(struct f2fs_dir_entry *);
1720 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1721 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1722 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1723 unsigned int, struct fscrypt_str *);
1724 void do_make_empty_dir(struct inode *, struct inode *,
1725 struct f2fs_dentry_ptr *);
1726 struct page *init_inode_metadata(struct inode *, struct inode *,
1727 const struct qstr *, struct page *);
1728 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1729 int room_for_filename(const void *, int, int);
1730 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1731 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1732 struct page **);
1733 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1734 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1735 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1736 struct page *, struct inode *);
1737 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1738 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1739 const struct qstr *, f2fs_hash_t , unsigned int);
1740 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1741 struct inode *, nid_t, umode_t);
1742 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1743 umode_t);
1744 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1745 struct inode *);
1746 int f2fs_do_tmpfile(struct inode *, struct inode *);
1747 bool f2fs_empty_dir(struct inode *);
1748
1749 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1750 {
1751 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1752 inode, inode->i_ino, inode->i_mode);
1753 }
1754
1755 /*
1756 * super.c
1757 */
1758 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1759 int f2fs_sync_fs(struct super_block *, int);
1760 extern __printf(3, 4)
1761 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1762 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1763
1764 /*
1765 * hash.c
1766 */
1767 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1768
1769 /*
1770 * node.c
1771 */
1772 struct dnode_of_data;
1773 struct node_info;
1774
1775 bool available_free_memory(struct f2fs_sb_info *, int);
1776 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1777 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1778 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1779 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1780 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1781 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1782 int truncate_inode_blocks(struct inode *, pgoff_t);
1783 int truncate_xattr_node(struct inode *, struct page *);
1784 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1785 int remove_inode_page(struct inode *);
1786 struct page *new_inode_page(struct inode *);
1787 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1788 void ra_node_page(struct f2fs_sb_info *, nid_t);
1789 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1790 struct page *get_node_page_ra(struct page *, int);
1791 void sync_inode_page(struct dnode_of_data *);
1792 void move_node_page(struct page *, int);
1793 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1794 bool);
1795 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1796 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1797 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1798 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1799 int try_to_free_nids(struct f2fs_sb_info *, int);
1800 void recover_inline_xattr(struct inode *, struct page *);
1801 void recover_xattr_data(struct inode *, struct page *, block_t);
1802 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1803 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1804 struct f2fs_summary_block *);
1805 void flush_nat_entries(struct f2fs_sb_info *);
1806 int build_node_manager(struct f2fs_sb_info *);
1807 void destroy_node_manager(struct f2fs_sb_info *);
1808 int __init create_node_manager_caches(void);
1809 void destroy_node_manager_caches(void);
1810
1811 /*
1812 * segment.c
1813 */
1814 void register_inmem_page(struct inode *, struct page *);
1815 void drop_inmem_pages(struct inode *);
1816 int commit_inmem_pages(struct inode *);
1817 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1818 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1819 int f2fs_issue_flush(struct f2fs_sb_info *);
1820 int create_flush_cmd_control(struct f2fs_sb_info *);
1821 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1822 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1823 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1824 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1825 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1826 void release_discard_addrs(struct f2fs_sb_info *);
1827 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1828 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1829 void allocate_new_segments(struct f2fs_sb_info *);
1830 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1831 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1832 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1833 void write_meta_page(struct f2fs_sb_info *, struct page *);
1834 void write_node_page(unsigned int, struct f2fs_io_info *);
1835 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1836 void rewrite_data_page(struct f2fs_io_info *);
1837 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1838 block_t, block_t, bool, bool);
1839 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1840 block_t, block_t, unsigned char, bool, bool);
1841 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1842 block_t, block_t *, struct f2fs_summary *, int);
1843 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1844 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1845 void write_data_summaries(struct f2fs_sb_info *, block_t);
1846 void write_node_summaries(struct f2fs_sb_info *, block_t);
1847 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1848 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1849 int build_segment_manager(struct f2fs_sb_info *);
1850 void destroy_segment_manager(struct f2fs_sb_info *);
1851 int __init create_segment_manager_caches(void);
1852 void destroy_segment_manager_caches(void);
1853
1854 /*
1855 * checkpoint.c
1856 */
1857 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1858 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1859 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1860 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1861 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1862 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1863 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1864 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1865 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1866 void release_ino_entry(struct f2fs_sb_info *);
1867 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1868 int acquire_orphan_inode(struct f2fs_sb_info *);
1869 void release_orphan_inode(struct f2fs_sb_info *);
1870 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1871 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1872 int recover_orphan_inodes(struct f2fs_sb_info *);
1873 int get_valid_checkpoint(struct f2fs_sb_info *);
1874 void update_dirty_page(struct inode *, struct page *);
1875 void add_dirty_dir_inode(struct inode *);
1876 void remove_dirty_inode(struct inode *);
1877 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1878 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1879 void init_ino_entry_info(struct f2fs_sb_info *);
1880 int __init create_checkpoint_caches(void);
1881 void destroy_checkpoint_caches(void);
1882
1883 /*
1884 * data.c
1885 */
1886 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1887 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1888 struct page *, nid_t, enum page_type, int);
1889 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1890 int f2fs_submit_page_bio(struct f2fs_io_info *);
1891 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1892 void set_data_blkaddr(struct dnode_of_data *);
1893 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1894 int reserve_new_block(struct dnode_of_data *);
1895 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1896 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1897 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1898 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1899 struct page *find_data_page(struct inode *, pgoff_t);
1900 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1901 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1902 int do_write_data_page(struct f2fs_io_info *);
1903 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1904 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1905 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1906 int f2fs_release_page(struct page *, gfp_t);
1907
1908 /*
1909 * gc.c
1910 */
1911 int start_gc_thread(struct f2fs_sb_info *);
1912 void stop_gc_thread(struct f2fs_sb_info *);
1913 block_t start_bidx_of_node(unsigned int, struct inode *);
1914 int f2fs_gc(struct f2fs_sb_info *, bool);
1915 void build_gc_manager(struct f2fs_sb_info *);
1916
1917 /*
1918 * recovery.c
1919 */
1920 int recover_fsync_data(struct f2fs_sb_info *, bool);
1921 bool space_for_roll_forward(struct f2fs_sb_info *);
1922
1923 /*
1924 * debug.c
1925 */
1926 #ifdef CONFIG_F2FS_STAT_FS
1927 struct f2fs_stat_info {
1928 struct list_head stat_list;
1929 struct f2fs_sb_info *sbi;
1930 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1931 int main_area_segs, main_area_sections, main_area_zones;
1932 unsigned long long hit_largest, hit_cached, hit_rbtree;
1933 unsigned long long hit_total, total_ext;
1934 int ext_tree, zombie_tree, ext_node;
1935 int ndirty_node, ndirty_meta;
1936 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1937 int nats, dirty_nats, sits, dirty_sits, fnids;
1938 int total_count, utilization;
1939 int bg_gc, inmem_pages, wb_pages;
1940 int inline_xattr, inline_inode, inline_dir;
1941 unsigned int valid_count, valid_node_count, valid_inode_count;
1942 unsigned int bimodal, avg_vblocks;
1943 int util_free, util_valid, util_invalid;
1944 int rsvd_segs, overp_segs;
1945 int dirty_count, node_pages, meta_pages;
1946 int prefree_count, call_count, cp_count, bg_cp_count;
1947 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1948 int bg_node_segs, bg_data_segs;
1949 int tot_blks, data_blks, node_blks;
1950 int bg_data_blks, bg_node_blks;
1951 int curseg[NR_CURSEG_TYPE];
1952 int cursec[NR_CURSEG_TYPE];
1953 int curzone[NR_CURSEG_TYPE];
1954
1955 unsigned int segment_count[2];
1956 unsigned int block_count[2];
1957 unsigned int inplace_count;
1958 unsigned long long base_mem, cache_mem, page_mem;
1959 };
1960
1961 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1962 {
1963 return (struct f2fs_stat_info *)sbi->stat_info;
1964 }
1965
1966 #define stat_inc_cp_count(si) ((si)->cp_count++)
1967 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1968 #define stat_inc_call_count(si) ((si)->call_count++)
1969 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1970 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1971 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1972 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1973 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1974 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1975 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1976 #define stat_inc_inline_xattr(inode) \
1977 do { \
1978 if (f2fs_has_inline_xattr(inode)) \
1979 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1980 } while (0)
1981 #define stat_dec_inline_xattr(inode) \
1982 do { \
1983 if (f2fs_has_inline_xattr(inode)) \
1984 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1985 } while (0)
1986 #define stat_inc_inline_inode(inode) \
1987 do { \
1988 if (f2fs_has_inline_data(inode)) \
1989 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1990 } while (0)
1991 #define stat_dec_inline_inode(inode) \
1992 do { \
1993 if (f2fs_has_inline_data(inode)) \
1994 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1995 } while (0)
1996 #define stat_inc_inline_dir(inode) \
1997 do { \
1998 if (f2fs_has_inline_dentry(inode)) \
1999 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2000 } while (0)
2001 #define stat_dec_inline_dir(inode) \
2002 do { \
2003 if (f2fs_has_inline_dentry(inode)) \
2004 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2005 } while (0)
2006 #define stat_inc_seg_type(sbi, curseg) \
2007 ((sbi)->segment_count[(curseg)->alloc_type]++)
2008 #define stat_inc_block_count(sbi, curseg) \
2009 ((sbi)->block_count[(curseg)->alloc_type]++)
2010 #define stat_inc_inplace_blocks(sbi) \
2011 (atomic_inc(&(sbi)->inplace_count))
2012 #define stat_inc_seg_count(sbi, type, gc_type) \
2013 do { \
2014 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2015 (si)->tot_segs++; \
2016 if (type == SUM_TYPE_DATA) { \
2017 si->data_segs++; \
2018 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2019 } else { \
2020 si->node_segs++; \
2021 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2022 } \
2023 } while (0)
2024
2025 #define stat_inc_tot_blk_count(si, blks) \
2026 (si->tot_blks += (blks))
2027
2028 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2029 do { \
2030 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2031 stat_inc_tot_blk_count(si, blks); \
2032 si->data_blks += (blks); \
2033 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2034 } while (0)
2035
2036 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2037 do { \
2038 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2039 stat_inc_tot_blk_count(si, blks); \
2040 si->node_blks += (blks); \
2041 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2042 } while (0)
2043
2044 int f2fs_build_stats(struct f2fs_sb_info *);
2045 void f2fs_destroy_stats(struct f2fs_sb_info *);
2046 int __init f2fs_create_root_stats(void);
2047 void f2fs_destroy_root_stats(void);
2048 #else
2049 #define stat_inc_cp_count(si)
2050 #define stat_inc_bg_cp_count(si)
2051 #define stat_inc_call_count(si)
2052 #define stat_inc_bggc_count(si)
2053 #define stat_inc_dirty_inode(sbi, type)
2054 #define stat_dec_dirty_inode(sbi, type)
2055 #define stat_inc_total_hit(sb)
2056 #define stat_inc_rbtree_node_hit(sb)
2057 #define stat_inc_largest_node_hit(sbi)
2058 #define stat_inc_cached_node_hit(sbi)
2059 #define stat_inc_inline_xattr(inode)
2060 #define stat_dec_inline_xattr(inode)
2061 #define stat_inc_inline_inode(inode)
2062 #define stat_dec_inline_inode(inode)
2063 #define stat_inc_inline_dir(inode)
2064 #define stat_dec_inline_dir(inode)
2065 #define stat_inc_seg_type(sbi, curseg)
2066 #define stat_inc_block_count(sbi, curseg)
2067 #define stat_inc_inplace_blocks(sbi)
2068 #define stat_inc_seg_count(sbi, type, gc_type)
2069 #define stat_inc_tot_blk_count(si, blks)
2070 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2071 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2072
2073 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2074 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2075 static inline int __init f2fs_create_root_stats(void) { return 0; }
2076 static inline void f2fs_destroy_root_stats(void) { }
2077 #endif
2078
2079 extern const struct file_operations f2fs_dir_operations;
2080 extern const struct file_operations f2fs_file_operations;
2081 extern const struct inode_operations f2fs_file_inode_operations;
2082 extern const struct address_space_operations f2fs_dblock_aops;
2083 extern const struct address_space_operations f2fs_node_aops;
2084 extern const struct address_space_operations f2fs_meta_aops;
2085 extern const struct inode_operations f2fs_dir_inode_operations;
2086 extern const struct inode_operations f2fs_symlink_inode_operations;
2087 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2088 extern const struct inode_operations f2fs_special_inode_operations;
2089 extern struct kmem_cache *inode_entry_slab;
2090
2091 /*
2092 * inline.c
2093 */
2094 bool f2fs_may_inline_data(struct inode *);
2095 bool f2fs_may_inline_dentry(struct inode *);
2096 void read_inline_data(struct page *, struct page *);
2097 bool truncate_inline_inode(struct page *, u64);
2098 int f2fs_read_inline_data(struct inode *, struct page *);
2099 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2100 int f2fs_convert_inline_inode(struct inode *);
2101 int f2fs_write_inline_data(struct inode *, struct page *);
2102 bool recover_inline_data(struct inode *, struct page *);
2103 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2104 struct fscrypt_name *, struct page **);
2105 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2106 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2107 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2108 nid_t, umode_t);
2109 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2110 struct inode *, struct inode *);
2111 bool f2fs_empty_inline_dir(struct inode *);
2112 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2113 struct fscrypt_str *);
2114 int f2fs_inline_data_fiemap(struct inode *,
2115 struct fiemap_extent_info *, __u64, __u64);
2116
2117 /*
2118 * shrinker.c
2119 */
2120 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2121 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2122 void f2fs_join_shrinker(struct f2fs_sb_info *);
2123 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2124
2125 /*
2126 * extent_cache.c
2127 */
2128 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2129 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2130 unsigned int f2fs_destroy_extent_node(struct inode *);
2131 void f2fs_destroy_extent_tree(struct inode *);
2132 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2133 void f2fs_update_extent_cache(struct dnode_of_data *);
2134 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2135 pgoff_t, block_t, unsigned int);
2136 void init_extent_cache_info(struct f2fs_sb_info *);
2137 int __init create_extent_cache(void);
2138 void destroy_extent_cache(void);
2139
2140 /*
2141 * crypto support
2142 */
2143 static inline bool f2fs_encrypted_inode(struct inode *inode)
2144 {
2145 return file_is_encrypt(inode);
2146 }
2147
2148 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2149 {
2150 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2151 file_set_encrypt(inode);
2152 #endif
2153 }
2154
2155 static inline bool f2fs_bio_encrypted(struct bio *bio)
2156 {
2157 return bio->bi_private != NULL;
2158 }
2159
2160 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2161 {
2162 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2163 }
2164
2165 static inline bool f2fs_may_encrypt(struct inode *inode)
2166 {
2167 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2168 umode_t mode = inode->i_mode;
2169
2170 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2171 #else
2172 return 0;
2173 #endif
2174 }
2175
2176 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2177 #define fscrypt_set_d_op(i)
2178 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2179 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2180 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2181 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2182 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2183 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2184 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2185 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2186 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2187 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2188 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2189 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2190 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2191 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2192 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2193 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2194 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2195 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2196 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2197 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2198 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2199 #endif
2200 #endif
This page took 0.101456 seconds and 5 git commands to generate.