f2fs: use extent_cache by default
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define F2FS_FEATURE_ENCRYPT 0x0001
74
75 #define F2FS_HAS_FEATURE(sb, mask) \
76 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
77 #define F2FS_SET_FEATURE(sb, mask) \
78 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
79 #define F2FS_CLEAR_FEATURE(sb, mask) \
80 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
81
82 #define CRCPOLY_LE 0xedb88320
83
84 static inline __u32 f2fs_crc32(void *buf, size_t len)
85 {
86 unsigned char *p = (unsigned char *)buf;
87 __u32 crc = F2FS_SUPER_MAGIC;
88 int i;
89
90 while (len--) {
91 crc ^= *p++;
92 for (i = 0; i < 8; i++)
93 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
94 }
95 return crc;
96 }
97
98 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
99 {
100 return f2fs_crc32(buf, buf_size) == blk_crc;
101 }
102
103 /*
104 * For checkpoint manager
105 */
106 enum {
107 NAT_BITMAP,
108 SIT_BITMAP
109 };
110
111 enum {
112 CP_UMOUNT,
113 CP_FASTBOOT,
114 CP_SYNC,
115 CP_RECOVERY,
116 CP_DISCARD,
117 };
118
119 #define DEF_BATCHED_TRIM_SECTIONS 32
120 #define BATCHED_TRIM_SEGMENTS(sbi) \
121 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
122 #define BATCHED_TRIM_BLOCKS(sbi) \
123 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
124
125 struct cp_control {
126 int reason;
127 __u64 trim_start;
128 __u64 trim_end;
129 __u64 trim_minlen;
130 __u64 trimmed;
131 };
132
133 /*
134 * For CP/NAT/SIT/SSA readahead
135 */
136 enum {
137 META_CP,
138 META_NAT,
139 META_SIT,
140 META_SSA,
141 META_POR,
142 };
143
144 /* for the list of ino */
145 enum {
146 ORPHAN_INO, /* for orphan ino list */
147 APPEND_INO, /* for append ino list */
148 UPDATE_INO, /* for update ino list */
149 MAX_INO_ENTRY, /* max. list */
150 };
151
152 struct ino_entry {
153 struct list_head list; /* list head */
154 nid_t ino; /* inode number */
155 };
156
157 /*
158 * for the list of directory inodes or gc inodes.
159 * NOTE: there are two slab users for this structure, if we add/modify/delete
160 * fields in structure for one of slab users, it may affect fields or size of
161 * other one, in this condition, it's better to split both of slab and related
162 * data structure.
163 */
164 struct inode_entry {
165 struct list_head list; /* list head */
166 struct inode *inode; /* vfs inode pointer */
167 };
168
169 /* for the list of blockaddresses to be discarded */
170 struct discard_entry {
171 struct list_head list; /* list head */
172 block_t blkaddr; /* block address to be discarded */
173 int len; /* # of consecutive blocks of the discard */
174 };
175
176 /* for the list of fsync inodes, used only during recovery */
177 struct fsync_inode_entry {
178 struct list_head list; /* list head */
179 struct inode *inode; /* vfs inode pointer */
180 block_t blkaddr; /* block address locating the last fsync */
181 block_t last_dentry; /* block address locating the last dentry */
182 block_t last_inode; /* block address locating the last inode */
183 };
184
185 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
186 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
187
188 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
189 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
190 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
191 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
192
193 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
194 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
195
196 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
197 {
198 int before = nats_in_cursum(rs);
199 rs->n_nats = cpu_to_le16(before + i);
200 return before;
201 }
202
203 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
204 {
205 int before = sits_in_cursum(rs);
206 rs->n_sits = cpu_to_le16(before + i);
207 return before;
208 }
209
210 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
211 int type)
212 {
213 if (type == NAT_JOURNAL)
214 return size <= MAX_NAT_JENTRIES(sum);
215 return size <= MAX_SIT_JENTRIES(sum);
216 }
217
218 /*
219 * ioctl commands
220 */
221 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
222 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
223 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
224
225 #define F2FS_IOCTL_MAGIC 0xf5
226 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
227 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
228 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
229 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
230 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
231
232 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
233 _IOR('f', 19, struct f2fs_encryption_policy)
234 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
235 _IOW('f', 20, __u8[16])
236 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
237 _IOW('f', 21, struct f2fs_encryption_policy)
238
239 /*
240 * should be same as XFS_IOC_GOINGDOWN.
241 * Flags for going down operation used by FS_IOC_GOINGDOWN
242 */
243 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
244 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
245 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
246 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
247
248 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
249 /*
250 * ioctl commands in 32 bit emulation
251 */
252 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
253 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
254 #endif
255
256 /*
257 * For INODE and NODE manager
258 */
259 /* for directory operations */
260 struct f2fs_str {
261 unsigned char *name;
262 u32 len;
263 };
264
265 struct f2fs_filename {
266 const struct qstr *usr_fname;
267 struct f2fs_str disk_name;
268 f2fs_hash_t hash;
269 #ifdef CONFIG_F2FS_FS_ENCRYPTION
270 struct f2fs_str crypto_buf;
271 #endif
272 };
273
274 #define FSTR_INIT(n, l) { .name = n, .len = l }
275 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
276 #define fname_name(p) ((p)->disk_name.name)
277 #define fname_len(p) ((p)->disk_name.len)
278
279 struct f2fs_dentry_ptr {
280 struct inode *inode;
281 const void *bitmap;
282 struct f2fs_dir_entry *dentry;
283 __u8 (*filename)[F2FS_SLOT_LEN];
284 int max;
285 };
286
287 static inline void make_dentry_ptr(struct inode *inode,
288 struct f2fs_dentry_ptr *d, void *src, int type)
289 {
290 d->inode = inode;
291
292 if (type == 1) {
293 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
294 d->max = NR_DENTRY_IN_BLOCK;
295 d->bitmap = &t->dentry_bitmap;
296 d->dentry = t->dentry;
297 d->filename = t->filename;
298 } else {
299 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
300 d->max = NR_INLINE_DENTRY;
301 d->bitmap = &t->dentry_bitmap;
302 d->dentry = t->dentry;
303 d->filename = t->filename;
304 }
305 }
306
307 /*
308 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
309 * as its node offset to distinguish from index node blocks.
310 * But some bits are used to mark the node block.
311 */
312 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
313 >> OFFSET_BIT_SHIFT)
314 enum {
315 ALLOC_NODE, /* allocate a new node page if needed */
316 LOOKUP_NODE, /* look up a node without readahead */
317 LOOKUP_NODE_RA, /*
318 * look up a node with readahead called
319 * by get_data_block.
320 */
321 };
322
323 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
324
325 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
326
327 /* vector size for gang look-up from extent cache that consists of radix tree */
328 #define EXT_TREE_VEC_SIZE 64
329
330 /* for in-memory extent cache entry */
331 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
332
333 /* number of extent info in extent cache we try to shrink */
334 #define EXTENT_CACHE_SHRINK_NUMBER 128
335
336 struct extent_info {
337 unsigned int fofs; /* start offset in a file */
338 u32 blk; /* start block address of the extent */
339 unsigned int len; /* length of the extent */
340 };
341
342 struct extent_node {
343 struct rb_node rb_node; /* rb node located in rb-tree */
344 struct list_head list; /* node in global extent list of sbi */
345 struct extent_info ei; /* extent info */
346 };
347
348 struct extent_tree {
349 nid_t ino; /* inode number */
350 struct rb_root root; /* root of extent info rb-tree */
351 struct extent_node *cached_en; /* recently accessed extent node */
352 struct extent_info largest; /* largested extent info */
353 rwlock_t lock; /* protect extent info rb-tree */
354 atomic_t refcount; /* reference count of rb-tree */
355 unsigned int count; /* # of extent node in rb-tree*/
356 };
357
358 /*
359 * This structure is taken from ext4_map_blocks.
360 *
361 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
362 */
363 #define F2FS_MAP_NEW (1 << BH_New)
364 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
365 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
366 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
367 F2FS_MAP_UNWRITTEN)
368
369 struct f2fs_map_blocks {
370 block_t m_pblk;
371 block_t m_lblk;
372 unsigned int m_len;
373 unsigned int m_flags;
374 };
375
376 /*
377 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
378 */
379 #define FADVISE_COLD_BIT 0x01
380 #define FADVISE_LOST_PINO_BIT 0x02
381 #define FADVISE_ENCRYPT_BIT 0x04
382 #define FADVISE_ENC_NAME_BIT 0x08
383
384 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
385 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
386 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
387 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
388 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
389 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
390 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
391 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
392 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
393 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
394 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
395
396 /* Encryption algorithms */
397 #define F2FS_ENCRYPTION_MODE_INVALID 0
398 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
399 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
400 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
401 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
402
403 #include "f2fs_crypto.h"
404
405 #define DEF_DIR_LEVEL 0
406
407 struct f2fs_inode_info {
408 struct inode vfs_inode; /* serve a vfs inode */
409 unsigned long i_flags; /* keep an inode flags for ioctl */
410 unsigned char i_advise; /* use to give file attribute hints */
411 unsigned char i_dir_level; /* use for dentry level for large dir */
412 unsigned int i_current_depth; /* use only in directory structure */
413 unsigned int i_pino; /* parent inode number */
414 umode_t i_acl_mode; /* keep file acl mode temporarily */
415
416 /* Use below internally in f2fs*/
417 unsigned long flags; /* use to pass per-file flags */
418 struct rw_semaphore i_sem; /* protect fi info */
419 atomic_t dirty_pages; /* # of dirty pages */
420 f2fs_hash_t chash; /* hash value of given file name */
421 unsigned int clevel; /* maximum level of given file name */
422 nid_t i_xattr_nid; /* node id that contains xattrs */
423 unsigned long long xattr_ver; /* cp version of xattr modification */
424 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
425
426 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
427 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
428 struct mutex inmem_lock; /* lock for inmemory pages */
429
430 struct extent_tree *extent_tree; /* cached extent_tree entry */
431
432 #ifdef CONFIG_F2FS_FS_ENCRYPTION
433 /* Encryption params */
434 struct f2fs_crypt_info *i_crypt_info;
435 #endif
436 };
437
438 static inline void get_extent_info(struct extent_info *ext,
439 struct f2fs_extent i_ext)
440 {
441 ext->fofs = le32_to_cpu(i_ext.fofs);
442 ext->blk = le32_to_cpu(i_ext.blk);
443 ext->len = le32_to_cpu(i_ext.len);
444 }
445
446 static inline void set_raw_extent(struct extent_info *ext,
447 struct f2fs_extent *i_ext)
448 {
449 i_ext->fofs = cpu_to_le32(ext->fofs);
450 i_ext->blk = cpu_to_le32(ext->blk);
451 i_ext->len = cpu_to_le32(ext->len);
452 }
453
454 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
455 u32 blk, unsigned int len)
456 {
457 ei->fofs = fofs;
458 ei->blk = blk;
459 ei->len = len;
460 }
461
462 static inline bool __is_extent_same(struct extent_info *ei1,
463 struct extent_info *ei2)
464 {
465 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
466 ei1->len == ei2->len);
467 }
468
469 static inline bool __is_extent_mergeable(struct extent_info *back,
470 struct extent_info *front)
471 {
472 return (back->fofs + back->len == front->fofs &&
473 back->blk + back->len == front->blk);
474 }
475
476 static inline bool __is_back_mergeable(struct extent_info *cur,
477 struct extent_info *back)
478 {
479 return __is_extent_mergeable(back, cur);
480 }
481
482 static inline bool __is_front_mergeable(struct extent_info *cur,
483 struct extent_info *front)
484 {
485 return __is_extent_mergeable(cur, front);
486 }
487
488 struct f2fs_nm_info {
489 block_t nat_blkaddr; /* base disk address of NAT */
490 nid_t max_nid; /* maximum possible node ids */
491 nid_t available_nids; /* maximum available node ids */
492 nid_t next_scan_nid; /* the next nid to be scanned */
493 unsigned int ram_thresh; /* control the memory footprint */
494
495 /* NAT cache management */
496 struct radix_tree_root nat_root;/* root of the nat entry cache */
497 struct radix_tree_root nat_set_root;/* root of the nat set cache */
498 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
499 struct list_head nat_entries; /* cached nat entry list (clean) */
500 unsigned int nat_cnt; /* the # of cached nat entries */
501 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
502
503 /* free node ids management */
504 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
505 struct list_head free_nid_list; /* a list for free nids */
506 spinlock_t free_nid_list_lock; /* protect free nid list */
507 unsigned int fcnt; /* the number of free node id */
508 struct mutex build_lock; /* lock for build free nids */
509
510 /* for checkpoint */
511 char *nat_bitmap; /* NAT bitmap pointer */
512 int bitmap_size; /* bitmap size */
513 };
514
515 /*
516 * this structure is used as one of function parameters.
517 * all the information are dedicated to a given direct node block determined
518 * by the data offset in a file.
519 */
520 struct dnode_of_data {
521 struct inode *inode; /* vfs inode pointer */
522 struct page *inode_page; /* its inode page, NULL is possible */
523 struct page *node_page; /* cached direct node page */
524 nid_t nid; /* node id of the direct node block */
525 unsigned int ofs_in_node; /* data offset in the node page */
526 bool inode_page_locked; /* inode page is locked or not */
527 block_t data_blkaddr; /* block address of the node block */
528 };
529
530 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
531 struct page *ipage, struct page *npage, nid_t nid)
532 {
533 memset(dn, 0, sizeof(*dn));
534 dn->inode = inode;
535 dn->inode_page = ipage;
536 dn->node_page = npage;
537 dn->nid = nid;
538 }
539
540 /*
541 * For SIT manager
542 *
543 * By default, there are 6 active log areas across the whole main area.
544 * When considering hot and cold data separation to reduce cleaning overhead,
545 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
546 * respectively.
547 * In the current design, you should not change the numbers intentionally.
548 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
549 * logs individually according to the underlying devices. (default: 6)
550 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
551 * data and 8 for node logs.
552 */
553 #define NR_CURSEG_DATA_TYPE (3)
554 #define NR_CURSEG_NODE_TYPE (3)
555 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
556
557 enum {
558 CURSEG_HOT_DATA = 0, /* directory entry blocks */
559 CURSEG_WARM_DATA, /* data blocks */
560 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
561 CURSEG_HOT_NODE, /* direct node blocks of directory files */
562 CURSEG_WARM_NODE, /* direct node blocks of normal files */
563 CURSEG_COLD_NODE, /* indirect node blocks */
564 NO_CHECK_TYPE,
565 CURSEG_DIRECT_IO, /* to use for the direct IO path */
566 };
567
568 struct flush_cmd {
569 struct completion wait;
570 struct llist_node llnode;
571 int ret;
572 };
573
574 struct flush_cmd_control {
575 struct task_struct *f2fs_issue_flush; /* flush thread */
576 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
577 struct llist_head issue_list; /* list for command issue */
578 struct llist_node *dispatch_list; /* list for command dispatch */
579 };
580
581 struct f2fs_sm_info {
582 struct sit_info *sit_info; /* whole segment information */
583 struct free_segmap_info *free_info; /* free segment information */
584 struct dirty_seglist_info *dirty_info; /* dirty segment information */
585 struct curseg_info *curseg_array; /* active segment information */
586
587 block_t seg0_blkaddr; /* block address of 0'th segment */
588 block_t main_blkaddr; /* start block address of main area */
589 block_t ssa_blkaddr; /* start block address of SSA area */
590
591 unsigned int segment_count; /* total # of segments */
592 unsigned int main_segments; /* # of segments in main area */
593 unsigned int reserved_segments; /* # of reserved segments */
594 unsigned int ovp_segments; /* # of overprovision segments */
595
596 /* a threshold to reclaim prefree segments */
597 unsigned int rec_prefree_segments;
598
599 /* for small discard management */
600 struct list_head discard_list; /* 4KB discard list */
601 int nr_discards; /* # of discards in the list */
602 int max_discards; /* max. discards to be issued */
603
604 /* for batched trimming */
605 unsigned int trim_sections; /* # of sections to trim */
606
607 struct list_head sit_entry_set; /* sit entry set list */
608
609 unsigned int ipu_policy; /* in-place-update policy */
610 unsigned int min_ipu_util; /* in-place-update threshold */
611 unsigned int min_fsync_blocks; /* threshold for fsync */
612
613 /* for flush command control */
614 struct flush_cmd_control *cmd_control_info;
615
616 };
617
618 /*
619 * For superblock
620 */
621 /*
622 * COUNT_TYPE for monitoring
623 *
624 * f2fs monitors the number of several block types such as on-writeback,
625 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
626 */
627 enum count_type {
628 F2FS_WRITEBACK,
629 F2FS_DIRTY_DENTS,
630 F2FS_DIRTY_NODES,
631 F2FS_DIRTY_META,
632 F2FS_INMEM_PAGES,
633 NR_COUNT_TYPE,
634 };
635
636 /*
637 * The below are the page types of bios used in submit_bio().
638 * The available types are:
639 * DATA User data pages. It operates as async mode.
640 * NODE Node pages. It operates as async mode.
641 * META FS metadata pages such as SIT, NAT, CP.
642 * NR_PAGE_TYPE The number of page types.
643 * META_FLUSH Make sure the previous pages are written
644 * with waiting the bio's completion
645 * ... Only can be used with META.
646 */
647 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
648 enum page_type {
649 DATA,
650 NODE,
651 META,
652 NR_PAGE_TYPE,
653 META_FLUSH,
654 INMEM, /* the below types are used by tracepoints only. */
655 INMEM_DROP,
656 IPU,
657 OPU,
658 };
659
660 struct f2fs_io_info {
661 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
662 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
663 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
664 block_t blk_addr; /* block address to be written */
665 struct page *page; /* page to be written */
666 struct page *encrypted_page; /* encrypted page */
667 };
668
669 #define is_read_io(rw) (((rw) & 1) == READ)
670 struct f2fs_bio_info {
671 struct f2fs_sb_info *sbi; /* f2fs superblock */
672 struct bio *bio; /* bios to merge */
673 sector_t last_block_in_bio; /* last block number */
674 struct f2fs_io_info fio; /* store buffered io info. */
675 struct rw_semaphore io_rwsem; /* blocking op for bio */
676 };
677
678 /* for inner inode cache management */
679 struct inode_management {
680 struct radix_tree_root ino_root; /* ino entry array */
681 spinlock_t ino_lock; /* for ino entry lock */
682 struct list_head ino_list; /* inode list head */
683 unsigned long ino_num; /* number of entries */
684 };
685
686 /* For s_flag in struct f2fs_sb_info */
687 enum {
688 SBI_IS_DIRTY, /* dirty flag for checkpoint */
689 SBI_IS_CLOSE, /* specify unmounting */
690 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
691 SBI_POR_DOING, /* recovery is doing or not */
692 };
693
694 struct f2fs_sb_info {
695 struct super_block *sb; /* pointer to VFS super block */
696 struct proc_dir_entry *s_proc; /* proc entry */
697 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
698 struct f2fs_super_block *raw_super; /* raw super block pointer */
699 int s_flag; /* flags for sbi */
700
701 /* for node-related operations */
702 struct f2fs_nm_info *nm_info; /* node manager */
703 struct inode *node_inode; /* cache node blocks */
704
705 /* for segment-related operations */
706 struct f2fs_sm_info *sm_info; /* segment manager */
707
708 /* for bio operations */
709 struct f2fs_bio_info read_io; /* for read bios */
710 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
711
712 /* for checkpoint */
713 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
714 struct inode *meta_inode; /* cache meta blocks */
715 struct mutex cp_mutex; /* checkpoint procedure lock */
716 struct rw_semaphore cp_rwsem; /* blocking FS operations */
717 struct rw_semaphore node_write; /* locking node writes */
718 struct mutex writepages; /* mutex for writepages() */
719 wait_queue_head_t cp_wait;
720
721 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
722
723 /* for orphan inode, use 0'th array */
724 unsigned int max_orphans; /* max orphan inodes */
725
726 /* for directory inode management */
727 struct list_head dir_inode_list; /* dir inode list */
728 spinlock_t dir_inode_lock; /* for dir inode list lock */
729
730 /* for extent tree cache */
731 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
732 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
733 struct list_head extent_list; /* lru list for shrinker */
734 spinlock_t extent_lock; /* locking extent lru list */
735 int total_ext_tree; /* extent tree count */
736 atomic_t total_ext_node; /* extent info count */
737
738 /* basic filesystem units */
739 unsigned int log_sectors_per_block; /* log2 sectors per block */
740 unsigned int log_blocksize; /* log2 block size */
741 unsigned int blocksize; /* block size */
742 unsigned int root_ino_num; /* root inode number*/
743 unsigned int node_ino_num; /* node inode number*/
744 unsigned int meta_ino_num; /* meta inode number*/
745 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
746 unsigned int blocks_per_seg; /* blocks per segment */
747 unsigned int segs_per_sec; /* segments per section */
748 unsigned int secs_per_zone; /* sections per zone */
749 unsigned int total_sections; /* total section count */
750 unsigned int total_node_count; /* total node block count */
751 unsigned int total_valid_node_count; /* valid node block count */
752 unsigned int total_valid_inode_count; /* valid inode count */
753 int active_logs; /* # of active logs */
754 int dir_level; /* directory level */
755
756 block_t user_block_count; /* # of user blocks */
757 block_t total_valid_block_count; /* # of valid blocks */
758 block_t alloc_valid_block_count; /* # of allocated blocks */
759 block_t discard_blks; /* discard command candidats */
760 block_t last_valid_block_count; /* for recovery */
761 u32 s_next_generation; /* for NFS support */
762 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
763
764 struct f2fs_mount_info mount_opt; /* mount options */
765
766 /* for cleaning operations */
767 struct mutex gc_mutex; /* mutex for GC */
768 struct f2fs_gc_kthread *gc_thread; /* GC thread */
769 unsigned int cur_victim_sec; /* current victim section num */
770
771 /* maximum # of trials to find a victim segment for SSR and GC */
772 unsigned int max_victim_search;
773
774 /*
775 * for stat information.
776 * one is for the LFS mode, and the other is for the SSR mode.
777 */
778 #ifdef CONFIG_F2FS_STAT_FS
779 struct f2fs_stat_info *stat_info; /* FS status information */
780 unsigned int segment_count[2]; /* # of allocated segments */
781 unsigned int block_count[2]; /* # of allocated blocks */
782 atomic_t inplace_count; /* # of inplace update */
783 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
784 atomic_t inline_inode; /* # of inline_data inodes */
785 atomic_t inline_dir; /* # of inline_dentry inodes */
786 int bg_gc; /* background gc calls */
787 unsigned int n_dirty_dirs; /* # of dir inodes */
788 #endif
789 unsigned int last_victim[2]; /* last victim segment # */
790 spinlock_t stat_lock; /* lock for stat operations */
791
792 /* For sysfs suppport */
793 struct kobject s_kobj;
794 struct completion s_kobj_unregister;
795
796 /* For shrinker support */
797 struct list_head s_list;
798 struct mutex umount_mutex;
799 unsigned int shrinker_run_no;
800 };
801
802 /*
803 * Inline functions
804 */
805 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
806 {
807 return container_of(inode, struct f2fs_inode_info, vfs_inode);
808 }
809
810 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
811 {
812 return sb->s_fs_info;
813 }
814
815 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
816 {
817 return F2FS_SB(inode->i_sb);
818 }
819
820 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
821 {
822 return F2FS_I_SB(mapping->host);
823 }
824
825 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
826 {
827 return F2FS_M_SB(page->mapping);
828 }
829
830 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
831 {
832 return (struct f2fs_super_block *)(sbi->raw_super);
833 }
834
835 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
836 {
837 return (struct f2fs_checkpoint *)(sbi->ckpt);
838 }
839
840 static inline struct f2fs_node *F2FS_NODE(struct page *page)
841 {
842 return (struct f2fs_node *)page_address(page);
843 }
844
845 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
846 {
847 return &((struct f2fs_node *)page_address(page))->i;
848 }
849
850 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
851 {
852 return (struct f2fs_nm_info *)(sbi->nm_info);
853 }
854
855 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
856 {
857 return (struct f2fs_sm_info *)(sbi->sm_info);
858 }
859
860 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
861 {
862 return (struct sit_info *)(SM_I(sbi)->sit_info);
863 }
864
865 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
866 {
867 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
868 }
869
870 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
871 {
872 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
873 }
874
875 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
876 {
877 return sbi->meta_inode->i_mapping;
878 }
879
880 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
881 {
882 return sbi->node_inode->i_mapping;
883 }
884
885 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
886 {
887 return sbi->s_flag & (0x01 << type);
888 }
889
890 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
891 {
892 sbi->s_flag |= (0x01 << type);
893 }
894
895 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
896 {
897 sbi->s_flag &= ~(0x01 << type);
898 }
899
900 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
901 {
902 return le64_to_cpu(cp->checkpoint_ver);
903 }
904
905 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
906 {
907 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
908 return ckpt_flags & f;
909 }
910
911 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
912 {
913 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
914 ckpt_flags |= f;
915 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
916 }
917
918 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
919 {
920 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
921 ckpt_flags &= (~f);
922 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
923 }
924
925 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
926 {
927 down_read(&sbi->cp_rwsem);
928 }
929
930 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
931 {
932 up_read(&sbi->cp_rwsem);
933 }
934
935 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
936 {
937 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
938 }
939
940 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
941 {
942 up_write(&sbi->cp_rwsem);
943 }
944
945 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
946 {
947 int reason = CP_SYNC;
948
949 if (test_opt(sbi, FASTBOOT))
950 reason = CP_FASTBOOT;
951 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
952 reason = CP_UMOUNT;
953 return reason;
954 }
955
956 static inline bool __remain_node_summaries(int reason)
957 {
958 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
959 }
960
961 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
962 {
963 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
964 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
965 }
966
967 /*
968 * Check whether the given nid is within node id range.
969 */
970 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
971 {
972 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
973 return -EINVAL;
974 if (unlikely(nid >= NM_I(sbi)->max_nid))
975 return -EINVAL;
976 return 0;
977 }
978
979 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
980
981 /*
982 * Check whether the inode has blocks or not
983 */
984 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
985 {
986 if (F2FS_I(inode)->i_xattr_nid)
987 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
988 else
989 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
990 }
991
992 static inline bool f2fs_has_xattr_block(unsigned int ofs)
993 {
994 return ofs == XATTR_NODE_OFFSET;
995 }
996
997 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
998 struct inode *inode, blkcnt_t count)
999 {
1000 block_t valid_block_count;
1001
1002 spin_lock(&sbi->stat_lock);
1003 valid_block_count =
1004 sbi->total_valid_block_count + (block_t)count;
1005 if (unlikely(valid_block_count > sbi->user_block_count)) {
1006 spin_unlock(&sbi->stat_lock);
1007 return false;
1008 }
1009 inode->i_blocks += count;
1010 sbi->total_valid_block_count = valid_block_count;
1011 sbi->alloc_valid_block_count += (block_t)count;
1012 spin_unlock(&sbi->stat_lock);
1013 return true;
1014 }
1015
1016 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1017 struct inode *inode,
1018 blkcnt_t count)
1019 {
1020 spin_lock(&sbi->stat_lock);
1021 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1022 f2fs_bug_on(sbi, inode->i_blocks < count);
1023 inode->i_blocks -= count;
1024 sbi->total_valid_block_count -= (block_t)count;
1025 spin_unlock(&sbi->stat_lock);
1026 }
1027
1028 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1029 {
1030 atomic_inc(&sbi->nr_pages[count_type]);
1031 set_sbi_flag(sbi, SBI_IS_DIRTY);
1032 }
1033
1034 static inline void inode_inc_dirty_pages(struct inode *inode)
1035 {
1036 atomic_inc(&F2FS_I(inode)->dirty_pages);
1037 if (S_ISDIR(inode->i_mode))
1038 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1039 }
1040
1041 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1042 {
1043 atomic_dec(&sbi->nr_pages[count_type]);
1044 }
1045
1046 static inline void inode_dec_dirty_pages(struct inode *inode)
1047 {
1048 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1049 !S_ISLNK(inode->i_mode))
1050 return;
1051
1052 atomic_dec(&F2FS_I(inode)->dirty_pages);
1053
1054 if (S_ISDIR(inode->i_mode))
1055 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1056 }
1057
1058 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1059 {
1060 return atomic_read(&sbi->nr_pages[count_type]);
1061 }
1062
1063 static inline int get_dirty_pages(struct inode *inode)
1064 {
1065 return atomic_read(&F2FS_I(inode)->dirty_pages);
1066 }
1067
1068 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1069 {
1070 unsigned int pages_per_sec = sbi->segs_per_sec *
1071 (1 << sbi->log_blocks_per_seg);
1072 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1073 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1074 }
1075
1076 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1077 {
1078 return sbi->total_valid_block_count;
1079 }
1080
1081 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1082 {
1083 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1084
1085 /* return NAT or SIT bitmap */
1086 if (flag == NAT_BITMAP)
1087 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1088 else if (flag == SIT_BITMAP)
1089 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1090
1091 return 0;
1092 }
1093
1094 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1095 {
1096 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1097 }
1098
1099 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1100 {
1101 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1102 int offset;
1103
1104 if (__cp_payload(sbi) > 0) {
1105 if (flag == NAT_BITMAP)
1106 return &ckpt->sit_nat_version_bitmap;
1107 else
1108 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1109 } else {
1110 offset = (flag == NAT_BITMAP) ?
1111 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1112 return &ckpt->sit_nat_version_bitmap + offset;
1113 }
1114 }
1115
1116 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1117 {
1118 block_t start_addr;
1119 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1120 unsigned long long ckpt_version = cur_cp_version(ckpt);
1121
1122 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1123
1124 /*
1125 * odd numbered checkpoint should at cp segment 0
1126 * and even segment must be at cp segment 1
1127 */
1128 if (!(ckpt_version & 1))
1129 start_addr += sbi->blocks_per_seg;
1130
1131 return start_addr;
1132 }
1133
1134 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1135 {
1136 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1137 }
1138
1139 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1140 struct inode *inode)
1141 {
1142 block_t valid_block_count;
1143 unsigned int valid_node_count;
1144
1145 spin_lock(&sbi->stat_lock);
1146
1147 valid_block_count = sbi->total_valid_block_count + 1;
1148 if (unlikely(valid_block_count > sbi->user_block_count)) {
1149 spin_unlock(&sbi->stat_lock);
1150 return false;
1151 }
1152
1153 valid_node_count = sbi->total_valid_node_count + 1;
1154 if (unlikely(valid_node_count > sbi->total_node_count)) {
1155 spin_unlock(&sbi->stat_lock);
1156 return false;
1157 }
1158
1159 if (inode)
1160 inode->i_blocks++;
1161
1162 sbi->alloc_valid_block_count++;
1163 sbi->total_valid_node_count++;
1164 sbi->total_valid_block_count++;
1165 spin_unlock(&sbi->stat_lock);
1166
1167 return true;
1168 }
1169
1170 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1171 struct inode *inode)
1172 {
1173 spin_lock(&sbi->stat_lock);
1174
1175 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1176 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1177 f2fs_bug_on(sbi, !inode->i_blocks);
1178
1179 inode->i_blocks--;
1180 sbi->total_valid_node_count--;
1181 sbi->total_valid_block_count--;
1182
1183 spin_unlock(&sbi->stat_lock);
1184 }
1185
1186 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1187 {
1188 return sbi->total_valid_node_count;
1189 }
1190
1191 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1192 {
1193 spin_lock(&sbi->stat_lock);
1194 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1195 sbi->total_valid_inode_count++;
1196 spin_unlock(&sbi->stat_lock);
1197 }
1198
1199 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1200 {
1201 spin_lock(&sbi->stat_lock);
1202 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1203 sbi->total_valid_inode_count--;
1204 spin_unlock(&sbi->stat_lock);
1205 }
1206
1207 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1208 {
1209 return sbi->total_valid_inode_count;
1210 }
1211
1212 static inline void f2fs_put_page(struct page *page, int unlock)
1213 {
1214 if (!page)
1215 return;
1216
1217 if (unlock) {
1218 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1219 unlock_page(page);
1220 }
1221 page_cache_release(page);
1222 }
1223
1224 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1225 {
1226 if (dn->node_page)
1227 f2fs_put_page(dn->node_page, 1);
1228 if (dn->inode_page && dn->node_page != dn->inode_page)
1229 f2fs_put_page(dn->inode_page, 0);
1230 dn->node_page = NULL;
1231 dn->inode_page = NULL;
1232 }
1233
1234 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1235 size_t size)
1236 {
1237 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1238 }
1239
1240 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1241 gfp_t flags)
1242 {
1243 void *entry;
1244 retry:
1245 entry = kmem_cache_alloc(cachep, flags);
1246 if (!entry) {
1247 cond_resched();
1248 goto retry;
1249 }
1250
1251 return entry;
1252 }
1253
1254 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1255 unsigned long index, void *item)
1256 {
1257 while (radix_tree_insert(root, index, item))
1258 cond_resched();
1259 }
1260
1261 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1262
1263 static inline bool IS_INODE(struct page *page)
1264 {
1265 struct f2fs_node *p = F2FS_NODE(page);
1266 return RAW_IS_INODE(p);
1267 }
1268
1269 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1270 {
1271 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1272 }
1273
1274 static inline block_t datablock_addr(struct page *node_page,
1275 unsigned int offset)
1276 {
1277 struct f2fs_node *raw_node;
1278 __le32 *addr_array;
1279 raw_node = F2FS_NODE(node_page);
1280 addr_array = blkaddr_in_node(raw_node);
1281 return le32_to_cpu(addr_array[offset]);
1282 }
1283
1284 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1285 {
1286 int mask;
1287
1288 addr += (nr >> 3);
1289 mask = 1 << (7 - (nr & 0x07));
1290 return mask & *addr;
1291 }
1292
1293 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1294 {
1295 int mask;
1296
1297 addr += (nr >> 3);
1298 mask = 1 << (7 - (nr & 0x07));
1299 *addr |= mask;
1300 }
1301
1302 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1303 {
1304 int mask;
1305
1306 addr += (nr >> 3);
1307 mask = 1 << (7 - (nr & 0x07));
1308 *addr &= ~mask;
1309 }
1310
1311 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1312 {
1313 int mask;
1314 int ret;
1315
1316 addr += (nr >> 3);
1317 mask = 1 << (7 - (nr & 0x07));
1318 ret = mask & *addr;
1319 *addr |= mask;
1320 return ret;
1321 }
1322
1323 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1324 {
1325 int mask;
1326 int ret;
1327
1328 addr += (nr >> 3);
1329 mask = 1 << (7 - (nr & 0x07));
1330 ret = mask & *addr;
1331 *addr &= ~mask;
1332 return ret;
1333 }
1334
1335 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1336 {
1337 int mask;
1338
1339 addr += (nr >> 3);
1340 mask = 1 << (7 - (nr & 0x07));
1341 *addr ^= mask;
1342 }
1343
1344 /* used for f2fs_inode_info->flags */
1345 enum {
1346 FI_NEW_INODE, /* indicate newly allocated inode */
1347 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1348 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1349 FI_INC_LINK, /* need to increment i_nlink */
1350 FI_ACL_MODE, /* indicate acl mode */
1351 FI_NO_ALLOC, /* should not allocate any blocks */
1352 FI_FREE_NID, /* free allocated nide */
1353 FI_UPDATE_DIR, /* should update inode block for consistency */
1354 FI_DELAY_IPUT, /* used for the recovery */
1355 FI_NO_EXTENT, /* not to use the extent cache */
1356 FI_INLINE_XATTR, /* used for inline xattr */
1357 FI_INLINE_DATA, /* used for inline data*/
1358 FI_INLINE_DENTRY, /* used for inline dentry */
1359 FI_APPEND_WRITE, /* inode has appended data */
1360 FI_UPDATE_WRITE, /* inode has in-place-update data */
1361 FI_NEED_IPU, /* used for ipu per file */
1362 FI_ATOMIC_FILE, /* indicate atomic file */
1363 FI_VOLATILE_FILE, /* indicate volatile file */
1364 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1365 FI_DROP_CACHE, /* drop dirty page cache */
1366 FI_DATA_EXIST, /* indicate data exists */
1367 FI_INLINE_DOTS, /* indicate inline dot dentries */
1368 };
1369
1370 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1371 {
1372 if (!test_bit(flag, &fi->flags))
1373 set_bit(flag, &fi->flags);
1374 }
1375
1376 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1377 {
1378 return test_bit(flag, &fi->flags);
1379 }
1380
1381 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1382 {
1383 if (test_bit(flag, &fi->flags))
1384 clear_bit(flag, &fi->flags);
1385 }
1386
1387 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1388 {
1389 fi->i_acl_mode = mode;
1390 set_inode_flag(fi, FI_ACL_MODE);
1391 }
1392
1393 static inline void get_inline_info(struct f2fs_inode_info *fi,
1394 struct f2fs_inode *ri)
1395 {
1396 if (ri->i_inline & F2FS_INLINE_XATTR)
1397 set_inode_flag(fi, FI_INLINE_XATTR);
1398 if (ri->i_inline & F2FS_INLINE_DATA)
1399 set_inode_flag(fi, FI_INLINE_DATA);
1400 if (ri->i_inline & F2FS_INLINE_DENTRY)
1401 set_inode_flag(fi, FI_INLINE_DENTRY);
1402 if (ri->i_inline & F2FS_DATA_EXIST)
1403 set_inode_flag(fi, FI_DATA_EXIST);
1404 if (ri->i_inline & F2FS_INLINE_DOTS)
1405 set_inode_flag(fi, FI_INLINE_DOTS);
1406 }
1407
1408 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1409 struct f2fs_inode *ri)
1410 {
1411 ri->i_inline = 0;
1412
1413 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1414 ri->i_inline |= F2FS_INLINE_XATTR;
1415 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1416 ri->i_inline |= F2FS_INLINE_DATA;
1417 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1418 ri->i_inline |= F2FS_INLINE_DENTRY;
1419 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1420 ri->i_inline |= F2FS_DATA_EXIST;
1421 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1422 ri->i_inline |= F2FS_INLINE_DOTS;
1423 }
1424
1425 static inline int f2fs_has_inline_xattr(struct inode *inode)
1426 {
1427 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1428 }
1429
1430 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1431 {
1432 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1433 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1434 return DEF_ADDRS_PER_INODE;
1435 }
1436
1437 static inline void *inline_xattr_addr(struct page *page)
1438 {
1439 struct f2fs_inode *ri = F2FS_INODE(page);
1440 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1441 F2FS_INLINE_XATTR_ADDRS]);
1442 }
1443
1444 static inline int inline_xattr_size(struct inode *inode)
1445 {
1446 if (f2fs_has_inline_xattr(inode))
1447 return F2FS_INLINE_XATTR_ADDRS << 2;
1448 else
1449 return 0;
1450 }
1451
1452 static inline int f2fs_has_inline_data(struct inode *inode)
1453 {
1454 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1455 }
1456
1457 static inline void f2fs_clear_inline_inode(struct inode *inode)
1458 {
1459 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1460 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1461 }
1462
1463 static inline int f2fs_exist_data(struct inode *inode)
1464 {
1465 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1466 }
1467
1468 static inline int f2fs_has_inline_dots(struct inode *inode)
1469 {
1470 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1471 }
1472
1473 static inline bool f2fs_is_atomic_file(struct inode *inode)
1474 {
1475 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1476 }
1477
1478 static inline bool f2fs_is_volatile_file(struct inode *inode)
1479 {
1480 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1481 }
1482
1483 static inline bool f2fs_is_first_block_written(struct inode *inode)
1484 {
1485 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1486 }
1487
1488 static inline bool f2fs_is_drop_cache(struct inode *inode)
1489 {
1490 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1491 }
1492
1493 static inline void *inline_data_addr(struct page *page)
1494 {
1495 struct f2fs_inode *ri = F2FS_INODE(page);
1496 return (void *)&(ri->i_addr[1]);
1497 }
1498
1499 static inline int f2fs_has_inline_dentry(struct inode *inode)
1500 {
1501 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1502 }
1503
1504 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1505 {
1506 if (!f2fs_has_inline_dentry(dir))
1507 kunmap(page);
1508 }
1509
1510 static inline int is_file(struct inode *inode, int type)
1511 {
1512 return F2FS_I(inode)->i_advise & type;
1513 }
1514
1515 static inline void set_file(struct inode *inode, int type)
1516 {
1517 F2FS_I(inode)->i_advise |= type;
1518 }
1519
1520 static inline void clear_file(struct inode *inode, int type)
1521 {
1522 F2FS_I(inode)->i_advise &= ~type;
1523 }
1524
1525 static inline int f2fs_readonly(struct super_block *sb)
1526 {
1527 return sb->s_flags & MS_RDONLY;
1528 }
1529
1530 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1531 {
1532 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1533 }
1534
1535 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1536 {
1537 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1538 sbi->sb->s_flags |= MS_RDONLY;
1539 }
1540
1541 static inline bool is_dot_dotdot(const struct qstr *str)
1542 {
1543 if (str->len == 1 && str->name[0] == '.')
1544 return true;
1545
1546 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1547 return true;
1548
1549 return false;
1550 }
1551
1552 static inline bool f2fs_may_extent_tree(struct inode *inode)
1553 {
1554 mode_t mode = inode->i_mode;
1555
1556 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1557 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1558 return false;
1559
1560 return S_ISREG(mode);
1561 }
1562
1563 #define get_inode_mode(i) \
1564 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1565 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1566
1567 /* get offset of first page in next direct node */
1568 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1569 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1570 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1571 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1572
1573 /*
1574 * file.c
1575 */
1576 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1577 void truncate_data_blocks(struct dnode_of_data *);
1578 int truncate_blocks(struct inode *, u64, bool);
1579 void f2fs_truncate(struct inode *);
1580 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1581 int f2fs_setattr(struct dentry *, struct iattr *);
1582 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1583 int truncate_data_blocks_range(struct dnode_of_data *, int);
1584 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1585 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1586
1587 /*
1588 * inode.c
1589 */
1590 void f2fs_set_inode_flags(struct inode *);
1591 struct inode *f2fs_iget(struct super_block *, unsigned long);
1592 int try_to_free_nats(struct f2fs_sb_info *, int);
1593 void update_inode(struct inode *, struct page *);
1594 void update_inode_page(struct inode *);
1595 int f2fs_write_inode(struct inode *, struct writeback_control *);
1596 void f2fs_evict_inode(struct inode *);
1597 void handle_failed_inode(struct inode *);
1598
1599 /*
1600 * namei.c
1601 */
1602 struct dentry *f2fs_get_parent(struct dentry *child);
1603
1604 /*
1605 * dir.c
1606 */
1607 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1608 void set_de_type(struct f2fs_dir_entry *, umode_t);
1609
1610 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1611 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1612 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1613 unsigned int, struct f2fs_str *);
1614 void do_make_empty_dir(struct inode *, struct inode *,
1615 struct f2fs_dentry_ptr *);
1616 struct page *init_inode_metadata(struct inode *, struct inode *,
1617 const struct qstr *, struct page *);
1618 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1619 int room_for_filename(const void *, int, int);
1620 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1621 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1622 struct page **);
1623 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1624 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1625 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1626 struct page *, struct inode *);
1627 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1628 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1629 const struct qstr *, f2fs_hash_t , unsigned int);
1630 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1631 umode_t);
1632 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1633 struct inode *);
1634 int f2fs_do_tmpfile(struct inode *, struct inode *);
1635 bool f2fs_empty_dir(struct inode *);
1636
1637 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1638 {
1639 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1640 inode, inode->i_ino, inode->i_mode);
1641 }
1642
1643 /*
1644 * super.c
1645 */
1646 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1647 int f2fs_sync_fs(struct super_block *, int);
1648 extern __printf(3, 4)
1649 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1650
1651 /*
1652 * hash.c
1653 */
1654 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1655
1656 /*
1657 * node.c
1658 */
1659 struct dnode_of_data;
1660 struct node_info;
1661
1662 bool available_free_memory(struct f2fs_sb_info *, int);
1663 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1664 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1665 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1666 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1667 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1668 int truncate_inode_blocks(struct inode *, pgoff_t);
1669 int truncate_xattr_node(struct inode *, struct page *);
1670 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1671 void remove_inode_page(struct inode *);
1672 struct page *new_inode_page(struct inode *);
1673 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1674 void ra_node_page(struct f2fs_sb_info *, nid_t);
1675 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1676 struct page *get_node_page_ra(struct page *, int);
1677 void sync_inode_page(struct dnode_of_data *);
1678 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1679 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1680 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1681 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1682 void recover_inline_xattr(struct inode *, struct page *);
1683 void recover_xattr_data(struct inode *, struct page *, block_t);
1684 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1685 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1686 struct f2fs_summary_block *);
1687 void flush_nat_entries(struct f2fs_sb_info *);
1688 int build_node_manager(struct f2fs_sb_info *);
1689 void destroy_node_manager(struct f2fs_sb_info *);
1690 int __init create_node_manager_caches(void);
1691 void destroy_node_manager_caches(void);
1692
1693 /*
1694 * segment.c
1695 */
1696 void register_inmem_page(struct inode *, struct page *);
1697 void commit_inmem_pages(struct inode *, bool);
1698 void f2fs_balance_fs(struct f2fs_sb_info *);
1699 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1700 int f2fs_issue_flush(struct f2fs_sb_info *);
1701 int create_flush_cmd_control(struct f2fs_sb_info *);
1702 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1703 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1704 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1705 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1706 void release_discard_addrs(struct f2fs_sb_info *);
1707 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1708 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1709 void allocate_new_segments(struct f2fs_sb_info *);
1710 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1711 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1712 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1713 void write_meta_page(struct f2fs_sb_info *, struct page *);
1714 void write_node_page(unsigned int, struct f2fs_io_info *);
1715 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1716 void rewrite_data_page(struct f2fs_io_info *);
1717 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1718 block_t, block_t, unsigned char, bool);
1719 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1720 block_t, block_t *, struct f2fs_summary *, int);
1721 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1722 void write_data_summaries(struct f2fs_sb_info *, block_t);
1723 void write_node_summaries(struct f2fs_sb_info *, block_t);
1724 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1725 int, unsigned int, int);
1726 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1727 int build_segment_manager(struct f2fs_sb_info *);
1728 void destroy_segment_manager(struct f2fs_sb_info *);
1729 int __init create_segment_manager_caches(void);
1730 void destroy_segment_manager_caches(void);
1731
1732 /*
1733 * checkpoint.c
1734 */
1735 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1736 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1737 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1738 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1739 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1740 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1741 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1742 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1743 void release_dirty_inode(struct f2fs_sb_info *);
1744 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1745 int acquire_orphan_inode(struct f2fs_sb_info *);
1746 void release_orphan_inode(struct f2fs_sb_info *);
1747 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1748 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1749 void recover_orphan_inodes(struct f2fs_sb_info *);
1750 int get_valid_checkpoint(struct f2fs_sb_info *);
1751 void update_dirty_page(struct inode *, struct page *);
1752 void add_dirty_dir_inode(struct inode *);
1753 void remove_dirty_dir_inode(struct inode *);
1754 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1755 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1756 void init_ino_entry_info(struct f2fs_sb_info *);
1757 int __init create_checkpoint_caches(void);
1758 void destroy_checkpoint_caches(void);
1759
1760 /*
1761 * data.c
1762 */
1763 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1764 int f2fs_submit_page_bio(struct f2fs_io_info *);
1765 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1766 void set_data_blkaddr(struct dnode_of_data *);
1767 int reserve_new_block(struct dnode_of_data *);
1768 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1769 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1770 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
1771 unsigned int f2fs_destroy_extent_node(struct inode *);
1772 void f2fs_destroy_extent_tree(struct inode *);
1773 void f2fs_update_extent_cache(struct dnode_of_data *);
1774 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1775 struct page *find_data_page(struct inode *, pgoff_t);
1776 struct page *get_lock_data_page(struct inode *, pgoff_t);
1777 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1778 int do_write_data_page(struct f2fs_io_info *);
1779 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1780 void init_extent_cache_info(struct f2fs_sb_info *);
1781 int __init create_extent_cache(void);
1782 void destroy_extent_cache(void);
1783 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1784 int f2fs_release_page(struct page *, gfp_t);
1785
1786 /*
1787 * gc.c
1788 */
1789 int start_gc_thread(struct f2fs_sb_info *);
1790 void stop_gc_thread(struct f2fs_sb_info *);
1791 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1792 int f2fs_gc(struct f2fs_sb_info *);
1793 void build_gc_manager(struct f2fs_sb_info *);
1794
1795 /*
1796 * recovery.c
1797 */
1798 int recover_fsync_data(struct f2fs_sb_info *);
1799 bool space_for_roll_forward(struct f2fs_sb_info *);
1800
1801 /*
1802 * debug.c
1803 */
1804 #ifdef CONFIG_F2FS_STAT_FS
1805 struct f2fs_stat_info {
1806 struct list_head stat_list;
1807 struct f2fs_sb_info *sbi;
1808 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1809 int main_area_segs, main_area_sections, main_area_zones;
1810 int hit_ext, total_ext, ext_tree, ext_node;
1811 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1812 int nats, dirty_nats, sits, dirty_sits, fnids;
1813 int total_count, utilization;
1814 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1815 unsigned int valid_count, valid_node_count, valid_inode_count;
1816 unsigned int bimodal, avg_vblocks;
1817 int util_free, util_valid, util_invalid;
1818 int rsvd_segs, overp_segs;
1819 int dirty_count, node_pages, meta_pages;
1820 int prefree_count, call_count, cp_count;
1821 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1822 int bg_node_segs, bg_data_segs;
1823 int tot_blks, data_blks, node_blks;
1824 int bg_data_blks, bg_node_blks;
1825 int curseg[NR_CURSEG_TYPE];
1826 int cursec[NR_CURSEG_TYPE];
1827 int curzone[NR_CURSEG_TYPE];
1828
1829 unsigned int segment_count[2];
1830 unsigned int block_count[2];
1831 unsigned int inplace_count;
1832 unsigned base_mem, cache_mem, page_mem;
1833 };
1834
1835 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1836 {
1837 return (struct f2fs_stat_info *)sbi->stat_info;
1838 }
1839
1840 #define stat_inc_cp_count(si) ((si)->cp_count++)
1841 #define stat_inc_call_count(si) ((si)->call_count++)
1842 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1843 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1844 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1845 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1846 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1847 #define stat_inc_inline_inode(inode) \
1848 do { \
1849 if (f2fs_has_inline_data(inode)) \
1850 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1851 } while (0)
1852 #define stat_dec_inline_inode(inode) \
1853 do { \
1854 if (f2fs_has_inline_data(inode)) \
1855 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1856 } while (0)
1857 #define stat_inc_inline_dir(inode) \
1858 do { \
1859 if (f2fs_has_inline_dentry(inode)) \
1860 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1861 } while (0)
1862 #define stat_dec_inline_dir(inode) \
1863 do { \
1864 if (f2fs_has_inline_dentry(inode)) \
1865 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1866 } while (0)
1867 #define stat_inc_seg_type(sbi, curseg) \
1868 ((sbi)->segment_count[(curseg)->alloc_type]++)
1869 #define stat_inc_block_count(sbi, curseg) \
1870 ((sbi)->block_count[(curseg)->alloc_type]++)
1871 #define stat_inc_inplace_blocks(sbi) \
1872 (atomic_inc(&(sbi)->inplace_count))
1873 #define stat_inc_seg_count(sbi, type, gc_type) \
1874 do { \
1875 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1876 (si)->tot_segs++; \
1877 if (type == SUM_TYPE_DATA) { \
1878 si->data_segs++; \
1879 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1880 } else { \
1881 si->node_segs++; \
1882 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1883 } \
1884 } while (0)
1885
1886 #define stat_inc_tot_blk_count(si, blks) \
1887 (si->tot_blks += (blks))
1888
1889 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1890 do { \
1891 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1892 stat_inc_tot_blk_count(si, blks); \
1893 si->data_blks += (blks); \
1894 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1895 } while (0)
1896
1897 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1898 do { \
1899 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1900 stat_inc_tot_blk_count(si, blks); \
1901 si->node_blks += (blks); \
1902 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1903 } while (0)
1904
1905 int f2fs_build_stats(struct f2fs_sb_info *);
1906 void f2fs_destroy_stats(struct f2fs_sb_info *);
1907 void __init f2fs_create_root_stats(void);
1908 void f2fs_destroy_root_stats(void);
1909 #else
1910 #define stat_inc_cp_count(si)
1911 #define stat_inc_call_count(si)
1912 #define stat_inc_bggc_count(si)
1913 #define stat_inc_dirty_dir(sbi)
1914 #define stat_dec_dirty_dir(sbi)
1915 #define stat_inc_total_hit(sb)
1916 #define stat_inc_read_hit(sb)
1917 #define stat_inc_inline_inode(inode)
1918 #define stat_dec_inline_inode(inode)
1919 #define stat_inc_inline_dir(inode)
1920 #define stat_dec_inline_dir(inode)
1921 #define stat_inc_seg_type(sbi, curseg)
1922 #define stat_inc_block_count(sbi, curseg)
1923 #define stat_inc_inplace_blocks(sbi)
1924 #define stat_inc_seg_count(sbi, type, gc_type)
1925 #define stat_inc_tot_blk_count(si, blks)
1926 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1927 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1928
1929 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1930 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1931 static inline void __init f2fs_create_root_stats(void) { }
1932 static inline void f2fs_destroy_root_stats(void) { }
1933 #endif
1934
1935 extern const struct file_operations f2fs_dir_operations;
1936 extern const struct file_operations f2fs_file_operations;
1937 extern const struct inode_operations f2fs_file_inode_operations;
1938 extern const struct address_space_operations f2fs_dblock_aops;
1939 extern const struct address_space_operations f2fs_node_aops;
1940 extern const struct address_space_operations f2fs_meta_aops;
1941 extern const struct inode_operations f2fs_dir_inode_operations;
1942 extern const struct inode_operations f2fs_symlink_inode_operations;
1943 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1944 extern const struct inode_operations f2fs_special_inode_operations;
1945 extern struct kmem_cache *inode_entry_slab;
1946
1947 /*
1948 * inline.c
1949 */
1950 bool f2fs_may_inline_data(struct inode *);
1951 bool f2fs_may_inline_dentry(struct inode *);
1952 void read_inline_data(struct page *, struct page *);
1953 bool truncate_inline_inode(struct page *, u64);
1954 int f2fs_read_inline_data(struct inode *, struct page *);
1955 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1956 int f2fs_convert_inline_inode(struct inode *);
1957 int f2fs_write_inline_data(struct inode *, struct page *);
1958 bool recover_inline_data(struct inode *, struct page *);
1959 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1960 struct f2fs_filename *, struct page **);
1961 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1962 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1963 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1964 nid_t, umode_t);
1965 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1966 struct inode *, struct inode *);
1967 bool f2fs_empty_inline_dir(struct inode *);
1968 int f2fs_read_inline_dir(struct file *, struct dir_context *,
1969 struct f2fs_str *);
1970
1971 /*
1972 * shrinker.c
1973 */
1974 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
1975 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
1976 void f2fs_join_shrinker(struct f2fs_sb_info *);
1977 void f2fs_leave_shrinker(struct f2fs_sb_info *);
1978
1979 /*
1980 * crypto support
1981 */
1982 static inline int f2fs_encrypted_inode(struct inode *inode)
1983 {
1984 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1985 return file_is_encrypt(inode);
1986 #else
1987 return 0;
1988 #endif
1989 }
1990
1991 static inline void f2fs_set_encrypted_inode(struct inode *inode)
1992 {
1993 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1994 file_set_encrypt(inode);
1995 #endif
1996 }
1997
1998 static inline bool f2fs_bio_encrypted(struct bio *bio)
1999 {
2000 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2001 return unlikely(bio->bi_private != NULL);
2002 #else
2003 return false;
2004 #endif
2005 }
2006
2007 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2008 {
2009 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2010 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2011 #else
2012 return 0;
2013 #endif
2014 }
2015
2016 static inline bool f2fs_may_encrypt(struct inode *inode)
2017 {
2018 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2019 mode_t mode = inode->i_mode;
2020
2021 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2022 #else
2023 return 0;
2024 #endif
2025 }
2026
2027 /* crypto_policy.c */
2028 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2029 struct inode *);
2030 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2031 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2032 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2033
2034 /* crypt.c */
2035 extern struct kmem_cache *f2fs_crypt_info_cachep;
2036 bool f2fs_valid_contents_enc_mode(uint32_t);
2037 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2038 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2039 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2040 struct page *f2fs_encrypt(struct inode *, struct page *);
2041 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2042 int f2fs_decrypt_one(struct inode *, struct page *);
2043 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2044
2045 /* crypto_key.c */
2046 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2047 int _f2fs_get_encryption_info(struct inode *inode);
2048
2049 /* crypto_fname.c */
2050 bool f2fs_valid_filenames_enc_mode(uint32_t);
2051 u32 f2fs_fname_crypto_round_up(u32, u32);
2052 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2053 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2054 const struct f2fs_str *, struct f2fs_str *);
2055 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2056 struct f2fs_str *);
2057
2058 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2059 void f2fs_restore_and_release_control_page(struct page **);
2060 void f2fs_restore_control_page(struct page *);
2061
2062 int __init f2fs_init_crypto(void);
2063 int f2fs_crypto_initialize(void);
2064 void f2fs_exit_crypto(void);
2065
2066 int f2fs_has_encryption_key(struct inode *);
2067
2068 static inline int f2fs_get_encryption_info(struct inode *inode)
2069 {
2070 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2071
2072 if (!ci ||
2073 (ci->ci_keyring_key &&
2074 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2075 (1 << KEY_FLAG_REVOKED) |
2076 (1 << KEY_FLAG_DEAD)))))
2077 return _f2fs_get_encryption_info(inode);
2078 return 0;
2079 }
2080
2081 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2082 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2083 int lookup, struct f2fs_filename *);
2084 void f2fs_fname_free_filename(struct f2fs_filename *);
2085 #else
2086 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2087 static inline void f2fs_restore_control_page(struct page *p) { }
2088
2089 static inline int __init f2fs_init_crypto(void) { return 0; }
2090 static inline void f2fs_exit_crypto(void) { }
2091
2092 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2093 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2094 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2095
2096 static inline int f2fs_fname_setup_filename(struct inode *dir,
2097 const struct qstr *iname,
2098 int lookup, struct f2fs_filename *fname)
2099 {
2100 memset(fname, 0, sizeof(struct f2fs_filename));
2101 fname->usr_fname = iname;
2102 fname->disk_name.name = (unsigned char *)iname->name;
2103 fname->disk_name.len = iname->len;
2104 return 0;
2105 }
2106
2107 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2108 #endif
2109 #endif
This page took 0.073968 seconds and 5 git commands to generate.