Merge tag 'media/v4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 struct f2fs_fault_info {
52 atomic_t inject_ops;
53 unsigned int inject_rate;
54 unsigned int inject_type;
55 };
56
57 extern struct f2fs_fault_info f2fs_fault;
58 extern char *fault_name[FAULT_MAX];
59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
60
61 static inline bool time_to_inject(int type)
62 {
63 if (!f2fs_fault.inject_rate)
64 return false;
65 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
66 return false;
67 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
68 return false;
69 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
70 return false;
71 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
72 return false;
73 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
74 return false;
75 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
76 return false;
77
78 atomic_inc(&f2fs_fault.inject_ops);
79 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
80 atomic_set(&f2fs_fault.inject_ops, 0);
81 printk("%sF2FS-fs : inject %s in %pF\n",
82 KERN_INFO,
83 fault_name[type],
84 __builtin_return_address(0));
85 return true;
86 }
87 return false;
88 }
89 #endif
90
91 /*
92 * For mount options
93 */
94 #define F2FS_MOUNT_BG_GC 0x00000001
95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
96 #define F2FS_MOUNT_DISCARD 0x00000004
97 #define F2FS_MOUNT_NOHEAP 0x00000008
98 #define F2FS_MOUNT_XATTR_USER 0x00000010
99 #define F2FS_MOUNT_POSIX_ACL 0x00000020
100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
101 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
102 #define F2FS_MOUNT_INLINE_DATA 0x00000100
103 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
104 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
105 #define F2FS_MOUNT_NOBARRIER 0x00000800
106 #define F2FS_MOUNT_FASTBOOT 0x00001000
107 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
108 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
109 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
110 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
111
112 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
115
116 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
117 typecheck(unsigned long long, b) && \
118 ((long long)((a) - (b)) > 0))
119
120 typedef u32 block_t; /*
121 * should not change u32, since it is the on-disk block
122 * address format, __le32.
123 */
124 typedef u32 nid_t;
125
126 struct f2fs_mount_info {
127 unsigned int opt;
128 };
129
130 #define F2FS_FEATURE_ENCRYPT 0x0001
131
132 #define F2FS_HAS_FEATURE(sb, mask) \
133 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
134 #define F2FS_SET_FEATURE(sb, mask) \
135 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
136 #define F2FS_CLEAR_FEATURE(sb, mask) \
137 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
138
139 /*
140 * For checkpoint manager
141 */
142 enum {
143 NAT_BITMAP,
144 SIT_BITMAP
145 };
146
147 enum {
148 CP_UMOUNT,
149 CP_FASTBOOT,
150 CP_SYNC,
151 CP_RECOVERY,
152 CP_DISCARD,
153 };
154
155 #define DEF_BATCHED_TRIM_SECTIONS 32
156 #define BATCHED_TRIM_SEGMENTS(sbi) \
157 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
158 #define BATCHED_TRIM_BLOCKS(sbi) \
159 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
160 #define DEF_CP_INTERVAL 60 /* 60 secs */
161 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
162
163 struct cp_control {
164 int reason;
165 __u64 trim_start;
166 __u64 trim_end;
167 __u64 trim_minlen;
168 __u64 trimmed;
169 };
170
171 /*
172 * For CP/NAT/SIT/SSA readahead
173 */
174 enum {
175 META_CP,
176 META_NAT,
177 META_SIT,
178 META_SSA,
179 META_POR,
180 };
181
182 /* for the list of ino */
183 enum {
184 ORPHAN_INO, /* for orphan ino list */
185 APPEND_INO, /* for append ino list */
186 UPDATE_INO, /* for update ino list */
187 MAX_INO_ENTRY, /* max. list */
188 };
189
190 struct ino_entry {
191 struct list_head list; /* list head */
192 nid_t ino; /* inode number */
193 };
194
195 /* for the list of inodes to be GCed */
196 struct inode_entry {
197 struct list_head list; /* list head */
198 struct inode *inode; /* vfs inode pointer */
199 };
200
201 /* for the list of blockaddresses to be discarded */
202 struct discard_entry {
203 struct list_head list; /* list head */
204 block_t blkaddr; /* block address to be discarded */
205 int len; /* # of consecutive blocks of the discard */
206 };
207
208 /* for the list of fsync inodes, used only during recovery */
209 struct fsync_inode_entry {
210 struct list_head list; /* list head */
211 struct inode *inode; /* vfs inode pointer */
212 block_t blkaddr; /* block address locating the last fsync */
213 block_t last_dentry; /* block address locating the last dentry */
214 };
215
216 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
217 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
218
219 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
220 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
221 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
222 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
223
224 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
225 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
226
227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
228 {
229 int before = nats_in_cursum(journal);
230 journal->n_nats = cpu_to_le16(before + i);
231 return before;
232 }
233
234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
235 {
236 int before = sits_in_cursum(journal);
237 journal->n_sits = cpu_to_le16(before + i);
238 return before;
239 }
240
241 static inline bool __has_cursum_space(struct f2fs_journal *journal,
242 int size, int type)
243 {
244 if (type == NAT_JOURNAL)
245 return size <= MAX_NAT_JENTRIES(journal);
246 return size <= MAX_SIT_JENTRIES(journal);
247 }
248
249 /*
250 * ioctl commands
251 */
252 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
253 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
254 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
255
256 #define F2FS_IOCTL_MAGIC 0xf5
257 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
259 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
261 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
262 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
263 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
264 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
265
266 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
267 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
269
270 /*
271 * should be same as XFS_IOC_GOINGDOWN.
272 * Flags for going down operation used by FS_IOC_GOINGDOWN
273 */
274 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
275 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
276 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
277 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
278 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
279
280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
281 /*
282 * ioctl commands in 32 bit emulation
283 */
284 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
285 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
286 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
287 #endif
288
289 struct f2fs_defragment {
290 u64 start;
291 u64 len;
292 };
293
294 /*
295 * For INODE and NODE manager
296 */
297 /* for directory operations */
298 struct f2fs_dentry_ptr {
299 struct inode *inode;
300 const void *bitmap;
301 struct f2fs_dir_entry *dentry;
302 __u8 (*filename)[F2FS_SLOT_LEN];
303 int max;
304 };
305
306 static inline void make_dentry_ptr(struct inode *inode,
307 struct f2fs_dentry_ptr *d, void *src, int type)
308 {
309 d->inode = inode;
310
311 if (type == 1) {
312 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
313 d->max = NR_DENTRY_IN_BLOCK;
314 d->bitmap = &t->dentry_bitmap;
315 d->dentry = t->dentry;
316 d->filename = t->filename;
317 } else {
318 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
319 d->max = NR_INLINE_DENTRY;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 }
324 }
325
326 /*
327 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
328 * as its node offset to distinguish from index node blocks.
329 * But some bits are used to mark the node block.
330 */
331 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
332 >> OFFSET_BIT_SHIFT)
333 enum {
334 ALLOC_NODE, /* allocate a new node page if needed */
335 LOOKUP_NODE, /* look up a node without readahead */
336 LOOKUP_NODE_RA, /*
337 * look up a node with readahead called
338 * by get_data_block.
339 */
340 };
341
342 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
343
344 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
345
346 /* vector size for gang look-up from extent cache that consists of radix tree */
347 #define EXT_TREE_VEC_SIZE 64
348
349 /* for in-memory extent cache entry */
350 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
351
352 /* number of extent info in extent cache we try to shrink */
353 #define EXTENT_CACHE_SHRINK_NUMBER 128
354
355 struct extent_info {
356 unsigned int fofs; /* start offset in a file */
357 u32 blk; /* start block address of the extent */
358 unsigned int len; /* length of the extent */
359 };
360
361 struct extent_node {
362 struct rb_node rb_node; /* rb node located in rb-tree */
363 struct list_head list; /* node in global extent list of sbi */
364 struct extent_info ei; /* extent info */
365 struct extent_tree *et; /* extent tree pointer */
366 };
367
368 struct extent_tree {
369 nid_t ino; /* inode number */
370 struct rb_root root; /* root of extent info rb-tree */
371 struct extent_node *cached_en; /* recently accessed extent node */
372 struct extent_info largest; /* largested extent info */
373 struct list_head list; /* to be used by sbi->zombie_list */
374 rwlock_t lock; /* protect extent info rb-tree */
375 atomic_t node_cnt; /* # of extent node in rb-tree*/
376 };
377
378 /*
379 * This structure is taken from ext4_map_blocks.
380 *
381 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
382 */
383 #define F2FS_MAP_NEW (1 << BH_New)
384 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
385 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
386 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
387 F2FS_MAP_UNWRITTEN)
388
389 struct f2fs_map_blocks {
390 block_t m_pblk;
391 block_t m_lblk;
392 unsigned int m_len;
393 unsigned int m_flags;
394 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
395 };
396
397 /* for flag in get_data_block */
398 #define F2FS_GET_BLOCK_READ 0
399 #define F2FS_GET_BLOCK_DIO 1
400 #define F2FS_GET_BLOCK_FIEMAP 2
401 #define F2FS_GET_BLOCK_BMAP 3
402 #define F2FS_GET_BLOCK_PRE_DIO 4
403 #define F2FS_GET_BLOCK_PRE_AIO 5
404
405 /*
406 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
407 */
408 #define FADVISE_COLD_BIT 0x01
409 #define FADVISE_LOST_PINO_BIT 0x02
410 #define FADVISE_ENCRYPT_BIT 0x04
411 #define FADVISE_ENC_NAME_BIT 0x08
412
413 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
414 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
415 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
416 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
417 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
418 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
419 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
420 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
422 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 struct percpu_counter dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444
445 struct list_head dirty_list; /* linked in global dirty list */
446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
447 struct mutex inmem_lock; /* lock for inmemory pages */
448 struct extent_tree *extent_tree; /* cached extent_tree entry */
449 };
450
451 static inline void get_extent_info(struct extent_info *ext,
452 struct f2fs_extent *i_ext)
453 {
454 ext->fofs = le32_to_cpu(i_ext->fofs);
455 ext->blk = le32_to_cpu(i_ext->blk);
456 ext->len = le32_to_cpu(i_ext->len);
457 }
458
459 static inline void set_raw_extent(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 i_ext->fofs = cpu_to_le32(ext->fofs);
463 i_ext->blk = cpu_to_le32(ext->blk);
464 i_ext->len = cpu_to_le32(ext->len);
465 }
466
467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
468 u32 blk, unsigned int len)
469 {
470 ei->fofs = fofs;
471 ei->blk = blk;
472 ei->len = len;
473 }
474
475 static inline bool __is_extent_same(struct extent_info *ei1,
476 struct extent_info *ei2)
477 {
478 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
479 ei1->len == ei2->len);
480 }
481
482 static inline bool __is_extent_mergeable(struct extent_info *back,
483 struct extent_info *front)
484 {
485 return (back->fofs + back->len == front->fofs &&
486 back->blk + back->len == front->blk);
487 }
488
489 static inline bool __is_back_mergeable(struct extent_info *cur,
490 struct extent_info *back)
491 {
492 return __is_extent_mergeable(back, cur);
493 }
494
495 static inline bool __is_front_mergeable(struct extent_info *cur,
496 struct extent_info *front)
497 {
498 return __is_extent_mergeable(cur, front);
499 }
500
501 static inline void __try_update_largest_extent(struct extent_tree *et,
502 struct extent_node *en)
503 {
504 if (en->ei.len > et->largest.len)
505 et->largest = en->ei;
506 }
507
508 struct f2fs_nm_info {
509 block_t nat_blkaddr; /* base disk address of NAT */
510 nid_t max_nid; /* maximum possible node ids */
511 nid_t available_nids; /* maximum available node ids */
512 nid_t next_scan_nid; /* the next nid to be scanned */
513 unsigned int ram_thresh; /* control the memory footprint */
514 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
515 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
516
517 /* NAT cache management */
518 struct radix_tree_root nat_root;/* root of the nat entry cache */
519 struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
521 struct list_head nat_entries; /* cached nat entry list (clean) */
522 unsigned int nat_cnt; /* the # of cached nat entries */
523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
524
525 /* free node ids management */
526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 struct list_head free_nid_list; /* a list for free nids */
528 spinlock_t free_nid_list_lock; /* protect free nid list */
529 unsigned int fcnt; /* the number of free node id */
530 struct mutex build_lock; /* lock for build free nids */
531
532 /* for checkpoint */
533 char *nat_bitmap; /* NAT bitmap pointer */
534 int bitmap_size; /* bitmap size */
535 };
536
537 /*
538 * this structure is used as one of function parameters.
539 * all the information are dedicated to a given direct node block determined
540 * by the data offset in a file.
541 */
542 struct dnode_of_data {
543 struct inode *inode; /* vfs inode pointer */
544 struct page *inode_page; /* its inode page, NULL is possible */
545 struct page *node_page; /* cached direct node page */
546 nid_t nid; /* node id of the direct node block */
547 unsigned int ofs_in_node; /* data offset in the node page */
548 bool inode_page_locked; /* inode page is locked or not */
549 bool node_changed; /* is node block changed */
550 char cur_level; /* level of hole node page */
551 char max_level; /* level of current page located */
552 block_t data_blkaddr; /* block address of the node block */
553 };
554
555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
556 struct page *ipage, struct page *npage, nid_t nid)
557 {
558 memset(dn, 0, sizeof(*dn));
559 dn->inode = inode;
560 dn->inode_page = ipage;
561 dn->node_page = npage;
562 dn->nid = nid;
563 }
564
565 /*
566 * For SIT manager
567 *
568 * By default, there are 6 active log areas across the whole main area.
569 * When considering hot and cold data separation to reduce cleaning overhead,
570 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
571 * respectively.
572 * In the current design, you should not change the numbers intentionally.
573 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
574 * logs individually according to the underlying devices. (default: 6)
575 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
576 * data and 8 for node logs.
577 */
578 #define NR_CURSEG_DATA_TYPE (3)
579 #define NR_CURSEG_NODE_TYPE (3)
580 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
581
582 enum {
583 CURSEG_HOT_DATA = 0, /* directory entry blocks */
584 CURSEG_WARM_DATA, /* data blocks */
585 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
586 CURSEG_HOT_NODE, /* direct node blocks of directory files */
587 CURSEG_WARM_NODE, /* direct node blocks of normal files */
588 CURSEG_COLD_NODE, /* indirect node blocks */
589 NO_CHECK_TYPE,
590 CURSEG_DIRECT_IO, /* to use for the direct IO path */
591 };
592
593 struct flush_cmd {
594 struct completion wait;
595 struct llist_node llnode;
596 int ret;
597 };
598
599 struct flush_cmd_control {
600 struct task_struct *f2fs_issue_flush; /* flush thread */
601 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
602 struct llist_head issue_list; /* list for command issue */
603 struct llist_node *dispatch_list; /* list for command dispatch */
604 };
605
606 struct f2fs_sm_info {
607 struct sit_info *sit_info; /* whole segment information */
608 struct free_segmap_info *free_info; /* free segment information */
609 struct dirty_seglist_info *dirty_info; /* dirty segment information */
610 struct curseg_info *curseg_array; /* active segment information */
611
612 block_t seg0_blkaddr; /* block address of 0'th segment */
613 block_t main_blkaddr; /* start block address of main area */
614 block_t ssa_blkaddr; /* start block address of SSA area */
615
616 unsigned int segment_count; /* total # of segments */
617 unsigned int main_segments; /* # of segments in main area */
618 unsigned int reserved_segments; /* # of reserved segments */
619 unsigned int ovp_segments; /* # of overprovision segments */
620
621 /* a threshold to reclaim prefree segments */
622 unsigned int rec_prefree_segments;
623
624 /* for small discard management */
625 struct list_head discard_list; /* 4KB discard list */
626 int nr_discards; /* # of discards in the list */
627 int max_discards; /* max. discards to be issued */
628
629 /* for batched trimming */
630 unsigned int trim_sections; /* # of sections to trim */
631
632 struct list_head sit_entry_set; /* sit entry set list */
633
634 unsigned int ipu_policy; /* in-place-update policy */
635 unsigned int min_ipu_util; /* in-place-update threshold */
636 unsigned int min_fsync_blocks; /* threshold for fsync */
637
638 /* for flush command control */
639 struct flush_cmd_control *cmd_control_info;
640
641 };
642
643 /*
644 * For superblock
645 */
646 /*
647 * COUNT_TYPE for monitoring
648 *
649 * f2fs monitors the number of several block types such as on-writeback,
650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651 */
652 enum count_type {
653 F2FS_DIRTY_DENTS,
654 F2FS_DIRTY_DATA,
655 F2FS_DIRTY_NODES,
656 F2FS_DIRTY_META,
657 F2FS_INMEM_PAGES,
658 NR_COUNT_TYPE,
659 };
660
661 /*
662 * The below are the page types of bios used in submit_bio().
663 * The available types are:
664 * DATA User data pages. It operates as async mode.
665 * NODE Node pages. It operates as async mode.
666 * META FS metadata pages such as SIT, NAT, CP.
667 * NR_PAGE_TYPE The number of page types.
668 * META_FLUSH Make sure the previous pages are written
669 * with waiting the bio's completion
670 * ... Only can be used with META.
671 */
672 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
673 enum page_type {
674 DATA,
675 NODE,
676 META,
677 NR_PAGE_TYPE,
678 META_FLUSH,
679 INMEM, /* the below types are used by tracepoints only. */
680 INMEM_DROP,
681 INMEM_REVOKE,
682 IPU,
683 OPU,
684 };
685
686 struct f2fs_io_info {
687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
689 int op; /* contains REQ_OP_ */
690 int op_flags; /* rq_flag_bits */
691 block_t new_blkaddr; /* new block address to be written */
692 block_t old_blkaddr; /* old block address before Cow */
693 struct page *page; /* page to be written */
694 struct page *encrypted_page; /* encrypted page */
695 };
696
697 #define is_read_io(rw) (rw == READ)
698 struct f2fs_bio_info {
699 struct f2fs_sb_info *sbi; /* f2fs superblock */
700 struct bio *bio; /* bios to merge */
701 sector_t last_block_in_bio; /* last block number */
702 struct f2fs_io_info fio; /* store buffered io info. */
703 struct rw_semaphore io_rwsem; /* blocking op for bio */
704 };
705
706 enum inode_type {
707 DIR_INODE, /* for dirty dir inode */
708 FILE_INODE, /* for dirty regular/symlink inode */
709 NR_INODE_TYPE,
710 };
711
712 /* for inner inode cache management */
713 struct inode_management {
714 struct radix_tree_root ino_root; /* ino entry array */
715 spinlock_t ino_lock; /* for ino entry lock */
716 struct list_head ino_list; /* inode list head */
717 unsigned long ino_num; /* number of entries */
718 };
719
720 /* For s_flag in struct f2fs_sb_info */
721 enum {
722 SBI_IS_DIRTY, /* dirty flag for checkpoint */
723 SBI_IS_CLOSE, /* specify unmounting */
724 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
725 SBI_POR_DOING, /* recovery is doing or not */
726 SBI_NEED_SB_WRITE, /* need to recover superblock */
727 };
728
729 enum {
730 CP_TIME,
731 REQ_TIME,
732 MAX_TIME,
733 };
734
735 #ifdef CONFIG_F2FS_FS_ENCRYPTION
736 #define F2FS_KEY_DESC_PREFIX "f2fs:"
737 #define F2FS_KEY_DESC_PREFIX_SIZE 5
738 #endif
739 struct f2fs_sb_info {
740 struct super_block *sb; /* pointer to VFS super block */
741 struct proc_dir_entry *s_proc; /* proc entry */
742 struct f2fs_super_block *raw_super; /* raw super block pointer */
743 int valid_super_block; /* valid super block no */
744 int s_flag; /* flags for sbi */
745
746 #ifdef CONFIG_F2FS_FS_ENCRYPTION
747 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
748 u8 key_prefix_size;
749 #endif
750 /* for node-related operations */
751 struct f2fs_nm_info *nm_info; /* node manager */
752 struct inode *node_inode; /* cache node blocks */
753
754 /* for segment-related operations */
755 struct f2fs_sm_info *sm_info; /* segment manager */
756
757 /* for bio operations */
758 struct f2fs_bio_info read_io; /* for read bios */
759 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
760
761 /* for checkpoint */
762 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
763 struct inode *meta_inode; /* cache meta blocks */
764 struct mutex cp_mutex; /* checkpoint procedure lock */
765 struct rw_semaphore cp_rwsem; /* blocking FS operations */
766 struct rw_semaphore node_write; /* locking node writes */
767 struct mutex writepages; /* mutex for writepages() */
768 wait_queue_head_t cp_wait;
769 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
770 long interval_time[MAX_TIME]; /* to store thresholds */
771
772 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
773
774 /* for orphan inode, use 0'th array */
775 unsigned int max_orphans; /* max orphan inodes */
776
777 /* for inode management */
778 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
779 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
780
781 /* for extent tree cache */
782 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
783 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
784 struct list_head extent_list; /* lru list for shrinker */
785 spinlock_t extent_lock; /* locking extent lru list */
786 atomic_t total_ext_tree; /* extent tree count */
787 struct list_head zombie_list; /* extent zombie tree list */
788 atomic_t total_zombie_tree; /* extent zombie tree count */
789 atomic_t total_ext_node; /* extent info count */
790
791 /* basic filesystem units */
792 unsigned int log_sectors_per_block; /* log2 sectors per block */
793 unsigned int log_blocksize; /* log2 block size */
794 unsigned int blocksize; /* block size */
795 unsigned int root_ino_num; /* root inode number*/
796 unsigned int node_ino_num; /* node inode number*/
797 unsigned int meta_ino_num; /* meta inode number*/
798 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
799 unsigned int blocks_per_seg; /* blocks per segment */
800 unsigned int segs_per_sec; /* segments per section */
801 unsigned int secs_per_zone; /* sections per zone */
802 unsigned int total_sections; /* total section count */
803 unsigned int total_node_count; /* total node block count */
804 unsigned int total_valid_node_count; /* valid node block count */
805 loff_t max_file_blocks; /* max block index of file */
806 int active_logs; /* # of active logs */
807 int dir_level; /* directory level */
808
809 block_t user_block_count; /* # of user blocks */
810 block_t total_valid_block_count; /* # of valid blocks */
811 block_t discard_blks; /* discard command candidats */
812 block_t last_valid_block_count; /* for recovery */
813 u32 s_next_generation; /* for NFS support */
814 atomic_t nr_wb_bios; /* # of writeback bios */
815
816 /* # of pages, see count_type */
817 struct percpu_counter nr_pages[NR_COUNT_TYPE];
818 /* # of allocated blocks */
819 struct percpu_counter alloc_valid_block_count;
820
821 /* valid inode count */
822 struct percpu_counter total_valid_inode_count;
823
824 struct f2fs_mount_info mount_opt; /* mount options */
825
826 /* for cleaning operations */
827 struct mutex gc_mutex; /* mutex for GC */
828 struct f2fs_gc_kthread *gc_thread; /* GC thread */
829 unsigned int cur_victim_sec; /* current victim section num */
830
831 /* maximum # of trials to find a victim segment for SSR and GC */
832 unsigned int max_victim_search;
833
834 /*
835 * for stat information.
836 * one is for the LFS mode, and the other is for the SSR mode.
837 */
838 #ifdef CONFIG_F2FS_STAT_FS
839 struct f2fs_stat_info *stat_info; /* FS status information */
840 unsigned int segment_count[2]; /* # of allocated segments */
841 unsigned int block_count[2]; /* # of allocated blocks */
842 atomic_t inplace_count; /* # of inplace update */
843 atomic64_t total_hit_ext; /* # of lookup extent cache */
844 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
845 atomic64_t read_hit_largest; /* # of hit largest extent node */
846 atomic64_t read_hit_cached; /* # of hit cached extent node */
847 atomic_t inline_xattr; /* # of inline_xattr inodes */
848 atomic_t inline_inode; /* # of inline_data inodes */
849 atomic_t inline_dir; /* # of inline_dentry inodes */
850 int bg_gc; /* background gc calls */
851 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
852 #endif
853 unsigned int last_victim[2]; /* last victim segment # */
854 spinlock_t stat_lock; /* lock for stat operations */
855
856 /* For sysfs suppport */
857 struct kobject s_kobj;
858 struct completion s_kobj_unregister;
859
860 /* For shrinker support */
861 struct list_head s_list;
862 struct mutex umount_mutex;
863 unsigned int shrinker_run_no;
864
865 /* For write statistics */
866 u64 sectors_written_start;
867 u64 kbytes_written;
868
869 /* Reference to checksum algorithm driver via cryptoapi */
870 struct crypto_shash *s_chksum_driver;
871 };
872
873 /* For write statistics. Suppose sector size is 512 bytes,
874 * and the return value is in kbytes. s is of struct f2fs_sb_info.
875 */
876 #define BD_PART_WRITTEN(s) \
877 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
878 s->sectors_written_start) >> 1)
879
880 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
881 {
882 sbi->last_time[type] = jiffies;
883 }
884
885 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
886 {
887 struct timespec ts = {sbi->interval_time[type], 0};
888 unsigned long interval = timespec_to_jiffies(&ts);
889
890 return time_after(jiffies, sbi->last_time[type] + interval);
891 }
892
893 static inline bool is_idle(struct f2fs_sb_info *sbi)
894 {
895 struct block_device *bdev = sbi->sb->s_bdev;
896 struct request_queue *q = bdev_get_queue(bdev);
897 struct request_list *rl = &q->root_rl;
898
899 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
900 return 0;
901
902 return f2fs_time_over(sbi, REQ_TIME);
903 }
904
905 /*
906 * Inline functions
907 */
908 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
909 unsigned int length)
910 {
911 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
912 u32 *ctx = (u32 *)shash_desc_ctx(shash);
913 int err;
914
915 shash->tfm = sbi->s_chksum_driver;
916 shash->flags = 0;
917 *ctx = F2FS_SUPER_MAGIC;
918
919 err = crypto_shash_update(shash, address, length);
920 BUG_ON(err);
921
922 return *ctx;
923 }
924
925 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
926 void *buf, size_t buf_size)
927 {
928 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
929 }
930
931 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
932 {
933 return container_of(inode, struct f2fs_inode_info, vfs_inode);
934 }
935
936 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
937 {
938 return sb->s_fs_info;
939 }
940
941 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
942 {
943 return F2FS_SB(inode->i_sb);
944 }
945
946 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
947 {
948 return F2FS_I_SB(mapping->host);
949 }
950
951 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
952 {
953 return F2FS_M_SB(page->mapping);
954 }
955
956 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
957 {
958 return (struct f2fs_super_block *)(sbi->raw_super);
959 }
960
961 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
962 {
963 return (struct f2fs_checkpoint *)(sbi->ckpt);
964 }
965
966 static inline struct f2fs_node *F2FS_NODE(struct page *page)
967 {
968 return (struct f2fs_node *)page_address(page);
969 }
970
971 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
972 {
973 return &((struct f2fs_node *)page_address(page))->i;
974 }
975
976 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
977 {
978 return (struct f2fs_nm_info *)(sbi->nm_info);
979 }
980
981 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
982 {
983 return (struct f2fs_sm_info *)(sbi->sm_info);
984 }
985
986 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
987 {
988 return (struct sit_info *)(SM_I(sbi)->sit_info);
989 }
990
991 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
992 {
993 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
994 }
995
996 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
997 {
998 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
999 }
1000
1001 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1002 {
1003 return sbi->meta_inode->i_mapping;
1004 }
1005
1006 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1007 {
1008 return sbi->node_inode->i_mapping;
1009 }
1010
1011 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1012 {
1013 return sbi->s_flag & (0x01 << type);
1014 }
1015
1016 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1017 {
1018 sbi->s_flag |= (0x01 << type);
1019 }
1020
1021 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1022 {
1023 sbi->s_flag &= ~(0x01 << type);
1024 }
1025
1026 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1027 {
1028 return le64_to_cpu(cp->checkpoint_ver);
1029 }
1030
1031 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1032 {
1033 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1034 return ckpt_flags & f;
1035 }
1036
1037 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1038 {
1039 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1040 ckpt_flags |= f;
1041 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1042 }
1043
1044 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1045 {
1046 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1047 ckpt_flags &= (~f);
1048 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1049 }
1050
1051 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1052 {
1053 down_read(&sbi->cp_rwsem);
1054 }
1055
1056 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1057 {
1058 up_read(&sbi->cp_rwsem);
1059 }
1060
1061 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1062 {
1063 down_write(&sbi->cp_rwsem);
1064 }
1065
1066 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1067 {
1068 up_write(&sbi->cp_rwsem);
1069 }
1070
1071 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1072 {
1073 int reason = CP_SYNC;
1074
1075 if (test_opt(sbi, FASTBOOT))
1076 reason = CP_FASTBOOT;
1077 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1078 reason = CP_UMOUNT;
1079 return reason;
1080 }
1081
1082 static inline bool __remain_node_summaries(int reason)
1083 {
1084 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1085 }
1086
1087 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1088 {
1089 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1090 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1091 }
1092
1093 /*
1094 * Check whether the given nid is within node id range.
1095 */
1096 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1097 {
1098 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1099 return -EINVAL;
1100 if (unlikely(nid >= NM_I(sbi)->max_nid))
1101 return -EINVAL;
1102 return 0;
1103 }
1104
1105 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1106
1107 /*
1108 * Check whether the inode has blocks or not
1109 */
1110 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1111 {
1112 if (F2FS_I(inode)->i_xattr_nid)
1113 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1114 else
1115 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1116 }
1117
1118 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1119 {
1120 return ofs == XATTR_NODE_OFFSET;
1121 }
1122
1123 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1124 struct inode *inode, blkcnt_t *count)
1125 {
1126 block_t valid_block_count;
1127
1128 spin_lock(&sbi->stat_lock);
1129 #ifdef CONFIG_F2FS_FAULT_INJECTION
1130 if (time_to_inject(FAULT_BLOCK)) {
1131 spin_unlock(&sbi->stat_lock);
1132 return false;
1133 }
1134 #endif
1135 valid_block_count =
1136 sbi->total_valid_block_count + (block_t)(*count);
1137 if (unlikely(valid_block_count > sbi->user_block_count)) {
1138 *count = sbi->user_block_count - sbi->total_valid_block_count;
1139 if (!*count) {
1140 spin_unlock(&sbi->stat_lock);
1141 return false;
1142 }
1143 }
1144 /* *count can be recalculated */
1145 inode->i_blocks += *count;
1146 sbi->total_valid_block_count =
1147 sbi->total_valid_block_count + (block_t)(*count);
1148 spin_unlock(&sbi->stat_lock);
1149
1150 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1151 return true;
1152 }
1153
1154 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1155 struct inode *inode,
1156 blkcnt_t count)
1157 {
1158 spin_lock(&sbi->stat_lock);
1159 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1160 f2fs_bug_on(sbi, inode->i_blocks < count);
1161 inode->i_blocks -= count;
1162 sbi->total_valid_block_count -= (block_t)count;
1163 spin_unlock(&sbi->stat_lock);
1164 }
1165
1166 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1167 {
1168 percpu_counter_inc(&sbi->nr_pages[count_type]);
1169 set_sbi_flag(sbi, SBI_IS_DIRTY);
1170 }
1171
1172 static inline void inode_inc_dirty_pages(struct inode *inode)
1173 {
1174 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1175 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1176 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1177 }
1178
1179 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1180 {
1181 percpu_counter_dec(&sbi->nr_pages[count_type]);
1182 }
1183
1184 static inline void inode_dec_dirty_pages(struct inode *inode)
1185 {
1186 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1187 !S_ISLNK(inode->i_mode))
1188 return;
1189
1190 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1191 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1192 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1193 }
1194
1195 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1196 {
1197 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1198 }
1199
1200 static inline s64 get_dirty_pages(struct inode *inode)
1201 {
1202 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1203 }
1204
1205 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1206 {
1207 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1208 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1209 sbi->log_blocks_per_seg;
1210
1211 return segs / sbi->segs_per_sec;
1212 }
1213
1214 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1215 {
1216 return sbi->total_valid_block_count;
1217 }
1218
1219 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1220 {
1221 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1222
1223 /* return NAT or SIT bitmap */
1224 if (flag == NAT_BITMAP)
1225 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1226 else if (flag == SIT_BITMAP)
1227 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1228
1229 return 0;
1230 }
1231
1232 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1233 {
1234 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1235 }
1236
1237 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1238 {
1239 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1240 int offset;
1241
1242 if (__cp_payload(sbi) > 0) {
1243 if (flag == NAT_BITMAP)
1244 return &ckpt->sit_nat_version_bitmap;
1245 else
1246 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1247 } else {
1248 offset = (flag == NAT_BITMAP) ?
1249 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1250 return &ckpt->sit_nat_version_bitmap + offset;
1251 }
1252 }
1253
1254 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1255 {
1256 block_t start_addr;
1257 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1258 unsigned long long ckpt_version = cur_cp_version(ckpt);
1259
1260 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1261
1262 /*
1263 * odd numbered checkpoint should at cp segment 0
1264 * and even segment must be at cp segment 1
1265 */
1266 if (!(ckpt_version & 1))
1267 start_addr += sbi->blocks_per_seg;
1268
1269 return start_addr;
1270 }
1271
1272 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1273 {
1274 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1275 }
1276
1277 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1278 struct inode *inode)
1279 {
1280 block_t valid_block_count;
1281 unsigned int valid_node_count;
1282
1283 spin_lock(&sbi->stat_lock);
1284
1285 valid_block_count = sbi->total_valid_block_count + 1;
1286 if (unlikely(valid_block_count > sbi->user_block_count)) {
1287 spin_unlock(&sbi->stat_lock);
1288 return false;
1289 }
1290
1291 valid_node_count = sbi->total_valid_node_count + 1;
1292 if (unlikely(valid_node_count > sbi->total_node_count)) {
1293 spin_unlock(&sbi->stat_lock);
1294 return false;
1295 }
1296
1297 if (inode)
1298 inode->i_blocks++;
1299
1300 sbi->total_valid_node_count++;
1301 sbi->total_valid_block_count++;
1302 spin_unlock(&sbi->stat_lock);
1303
1304 percpu_counter_inc(&sbi->alloc_valid_block_count);
1305 return true;
1306 }
1307
1308 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1309 struct inode *inode)
1310 {
1311 spin_lock(&sbi->stat_lock);
1312
1313 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1314 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1315 f2fs_bug_on(sbi, !inode->i_blocks);
1316
1317 inode->i_blocks--;
1318 sbi->total_valid_node_count--;
1319 sbi->total_valid_block_count--;
1320
1321 spin_unlock(&sbi->stat_lock);
1322 }
1323
1324 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1325 {
1326 return sbi->total_valid_node_count;
1327 }
1328
1329 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1330 {
1331 percpu_counter_inc(&sbi->total_valid_inode_count);
1332 }
1333
1334 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1335 {
1336 percpu_counter_dec(&sbi->total_valid_inode_count);
1337 }
1338
1339 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1340 {
1341 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1342 }
1343
1344 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1345 pgoff_t index, bool for_write)
1346 {
1347 #ifdef CONFIG_F2FS_FAULT_INJECTION
1348 struct page *page = find_lock_page(mapping, index);
1349 if (page)
1350 return page;
1351
1352 if (time_to_inject(FAULT_PAGE_ALLOC))
1353 return NULL;
1354 #endif
1355 if (!for_write)
1356 return grab_cache_page(mapping, index);
1357 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1358 }
1359
1360 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1361 {
1362 char *src_kaddr = kmap(src);
1363 char *dst_kaddr = kmap(dst);
1364
1365 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1366 kunmap(dst);
1367 kunmap(src);
1368 }
1369
1370 static inline void f2fs_put_page(struct page *page, int unlock)
1371 {
1372 if (!page)
1373 return;
1374
1375 if (unlock) {
1376 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1377 unlock_page(page);
1378 }
1379 put_page(page);
1380 }
1381
1382 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1383 {
1384 if (dn->node_page)
1385 f2fs_put_page(dn->node_page, 1);
1386 if (dn->inode_page && dn->node_page != dn->inode_page)
1387 f2fs_put_page(dn->inode_page, 0);
1388 dn->node_page = NULL;
1389 dn->inode_page = NULL;
1390 }
1391
1392 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1393 size_t size)
1394 {
1395 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1396 }
1397
1398 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1399 gfp_t flags)
1400 {
1401 void *entry;
1402
1403 entry = kmem_cache_alloc(cachep, flags);
1404 if (!entry)
1405 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1406 return entry;
1407 }
1408
1409 static inline struct bio *f2fs_bio_alloc(int npages)
1410 {
1411 struct bio *bio;
1412
1413 /* No failure on bio allocation */
1414 bio = bio_alloc(GFP_NOIO, npages);
1415 if (!bio)
1416 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1417 return bio;
1418 }
1419
1420 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1421 unsigned long index, void *item)
1422 {
1423 while (radix_tree_insert(root, index, item))
1424 cond_resched();
1425 }
1426
1427 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1428
1429 static inline bool IS_INODE(struct page *page)
1430 {
1431 struct f2fs_node *p = F2FS_NODE(page);
1432 return RAW_IS_INODE(p);
1433 }
1434
1435 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1436 {
1437 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1438 }
1439
1440 static inline block_t datablock_addr(struct page *node_page,
1441 unsigned int offset)
1442 {
1443 struct f2fs_node *raw_node;
1444 __le32 *addr_array;
1445 raw_node = F2FS_NODE(node_page);
1446 addr_array = blkaddr_in_node(raw_node);
1447 return le32_to_cpu(addr_array[offset]);
1448 }
1449
1450 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1451 {
1452 int mask;
1453
1454 addr += (nr >> 3);
1455 mask = 1 << (7 - (nr & 0x07));
1456 return mask & *addr;
1457 }
1458
1459 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1460 {
1461 int mask;
1462
1463 addr += (nr >> 3);
1464 mask = 1 << (7 - (nr & 0x07));
1465 *addr |= mask;
1466 }
1467
1468 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1469 {
1470 int mask;
1471
1472 addr += (nr >> 3);
1473 mask = 1 << (7 - (nr & 0x07));
1474 *addr &= ~mask;
1475 }
1476
1477 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1478 {
1479 int mask;
1480 int ret;
1481
1482 addr += (nr >> 3);
1483 mask = 1 << (7 - (nr & 0x07));
1484 ret = mask & *addr;
1485 *addr |= mask;
1486 return ret;
1487 }
1488
1489 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1490 {
1491 int mask;
1492 int ret;
1493
1494 addr += (nr >> 3);
1495 mask = 1 << (7 - (nr & 0x07));
1496 ret = mask & *addr;
1497 *addr &= ~mask;
1498 return ret;
1499 }
1500
1501 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1502 {
1503 int mask;
1504
1505 addr += (nr >> 3);
1506 mask = 1 << (7 - (nr & 0x07));
1507 *addr ^= mask;
1508 }
1509
1510 /* used for f2fs_inode_info->flags */
1511 enum {
1512 FI_NEW_INODE, /* indicate newly allocated inode */
1513 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1514 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1515 FI_INC_LINK, /* need to increment i_nlink */
1516 FI_ACL_MODE, /* indicate acl mode */
1517 FI_NO_ALLOC, /* should not allocate any blocks */
1518 FI_FREE_NID, /* free allocated nide */
1519 FI_UPDATE_DIR, /* should update inode block for consistency */
1520 FI_NO_EXTENT, /* not to use the extent cache */
1521 FI_INLINE_XATTR, /* used for inline xattr */
1522 FI_INLINE_DATA, /* used for inline data*/
1523 FI_INLINE_DENTRY, /* used for inline dentry */
1524 FI_APPEND_WRITE, /* inode has appended data */
1525 FI_UPDATE_WRITE, /* inode has in-place-update data */
1526 FI_NEED_IPU, /* used for ipu per file */
1527 FI_ATOMIC_FILE, /* indicate atomic file */
1528 FI_VOLATILE_FILE, /* indicate volatile file */
1529 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1530 FI_DROP_CACHE, /* drop dirty page cache */
1531 FI_DATA_EXIST, /* indicate data exists */
1532 FI_INLINE_DOTS, /* indicate inline dot dentries */
1533 FI_DO_DEFRAG, /* indicate defragment is running */
1534 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1535 };
1536
1537 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1538 {
1539 if (!test_bit(flag, &fi->flags))
1540 set_bit(flag, &fi->flags);
1541 }
1542
1543 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1544 {
1545 return test_bit(flag, &fi->flags);
1546 }
1547
1548 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1549 {
1550 if (test_bit(flag, &fi->flags))
1551 clear_bit(flag, &fi->flags);
1552 }
1553
1554 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1555 {
1556 fi->i_acl_mode = mode;
1557 set_inode_flag(fi, FI_ACL_MODE);
1558 }
1559
1560 static inline void get_inline_info(struct f2fs_inode_info *fi,
1561 struct f2fs_inode *ri)
1562 {
1563 if (ri->i_inline & F2FS_INLINE_XATTR)
1564 set_inode_flag(fi, FI_INLINE_XATTR);
1565 if (ri->i_inline & F2FS_INLINE_DATA)
1566 set_inode_flag(fi, FI_INLINE_DATA);
1567 if (ri->i_inline & F2FS_INLINE_DENTRY)
1568 set_inode_flag(fi, FI_INLINE_DENTRY);
1569 if (ri->i_inline & F2FS_DATA_EXIST)
1570 set_inode_flag(fi, FI_DATA_EXIST);
1571 if (ri->i_inline & F2FS_INLINE_DOTS)
1572 set_inode_flag(fi, FI_INLINE_DOTS);
1573 }
1574
1575 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1576 struct f2fs_inode *ri)
1577 {
1578 ri->i_inline = 0;
1579
1580 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1581 ri->i_inline |= F2FS_INLINE_XATTR;
1582 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1583 ri->i_inline |= F2FS_INLINE_DATA;
1584 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1585 ri->i_inline |= F2FS_INLINE_DENTRY;
1586 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1587 ri->i_inline |= F2FS_DATA_EXIST;
1588 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1589 ri->i_inline |= F2FS_INLINE_DOTS;
1590 }
1591
1592 static inline int f2fs_has_inline_xattr(struct inode *inode)
1593 {
1594 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1595 }
1596
1597 static inline unsigned int addrs_per_inode(struct inode *inode)
1598 {
1599 if (f2fs_has_inline_xattr(inode))
1600 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1601 return DEF_ADDRS_PER_INODE;
1602 }
1603
1604 static inline void *inline_xattr_addr(struct page *page)
1605 {
1606 struct f2fs_inode *ri = F2FS_INODE(page);
1607 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1608 F2FS_INLINE_XATTR_ADDRS]);
1609 }
1610
1611 static inline int inline_xattr_size(struct inode *inode)
1612 {
1613 if (f2fs_has_inline_xattr(inode))
1614 return F2FS_INLINE_XATTR_ADDRS << 2;
1615 else
1616 return 0;
1617 }
1618
1619 static inline int f2fs_has_inline_data(struct inode *inode)
1620 {
1621 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1622 }
1623
1624 static inline void f2fs_clear_inline_inode(struct inode *inode)
1625 {
1626 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1627 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1628 }
1629
1630 static inline int f2fs_exist_data(struct inode *inode)
1631 {
1632 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1633 }
1634
1635 static inline int f2fs_has_inline_dots(struct inode *inode)
1636 {
1637 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1638 }
1639
1640 static inline bool f2fs_is_atomic_file(struct inode *inode)
1641 {
1642 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1643 }
1644
1645 static inline bool f2fs_is_volatile_file(struct inode *inode)
1646 {
1647 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1648 }
1649
1650 static inline bool f2fs_is_first_block_written(struct inode *inode)
1651 {
1652 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1653 }
1654
1655 static inline bool f2fs_is_drop_cache(struct inode *inode)
1656 {
1657 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1658 }
1659
1660 static inline void *inline_data_addr(struct page *page)
1661 {
1662 struct f2fs_inode *ri = F2FS_INODE(page);
1663 return (void *)&(ri->i_addr[1]);
1664 }
1665
1666 static inline int f2fs_has_inline_dentry(struct inode *inode)
1667 {
1668 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1669 }
1670
1671 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1672 {
1673 if (!f2fs_has_inline_dentry(dir))
1674 kunmap(page);
1675 }
1676
1677 static inline int is_file(struct inode *inode, int type)
1678 {
1679 return F2FS_I(inode)->i_advise & type;
1680 }
1681
1682 static inline void set_file(struct inode *inode, int type)
1683 {
1684 F2FS_I(inode)->i_advise |= type;
1685 }
1686
1687 static inline void clear_file(struct inode *inode, int type)
1688 {
1689 F2FS_I(inode)->i_advise &= ~type;
1690 }
1691
1692 static inline int f2fs_readonly(struct super_block *sb)
1693 {
1694 return sb->s_flags & MS_RDONLY;
1695 }
1696
1697 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1698 {
1699 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1700 }
1701
1702 static inline bool is_dot_dotdot(const struct qstr *str)
1703 {
1704 if (str->len == 1 && str->name[0] == '.')
1705 return true;
1706
1707 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1708 return true;
1709
1710 return false;
1711 }
1712
1713 static inline bool f2fs_may_extent_tree(struct inode *inode)
1714 {
1715 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1716 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1717 return false;
1718
1719 return S_ISREG(inode->i_mode);
1720 }
1721
1722 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1723 {
1724 #ifdef CONFIG_F2FS_FAULT_INJECTION
1725 if (time_to_inject(FAULT_KMALLOC))
1726 return NULL;
1727 #endif
1728 return kmalloc(size, flags);
1729 }
1730
1731 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1732 {
1733 void *ret;
1734
1735 ret = kmalloc(size, flags | __GFP_NOWARN);
1736 if (!ret)
1737 ret = __vmalloc(size, flags, PAGE_KERNEL);
1738 return ret;
1739 }
1740
1741 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1742 {
1743 void *ret;
1744
1745 ret = kzalloc(size, flags | __GFP_NOWARN);
1746 if (!ret)
1747 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1748 return ret;
1749 }
1750
1751 #define get_inode_mode(i) \
1752 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1753 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1754
1755 /* get offset of first page in next direct node */
1756 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1757 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1758 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1759 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1760
1761 /*
1762 * file.c
1763 */
1764 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1765 void truncate_data_blocks(struct dnode_of_data *);
1766 int truncate_blocks(struct inode *, u64, bool);
1767 int f2fs_truncate(struct inode *, bool);
1768 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1769 int f2fs_setattr(struct dentry *, struct iattr *);
1770 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1771 int truncate_data_blocks_range(struct dnode_of_data *, int);
1772 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1773 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1774
1775 /*
1776 * inode.c
1777 */
1778 void f2fs_set_inode_flags(struct inode *);
1779 struct inode *f2fs_iget(struct super_block *, unsigned long);
1780 int try_to_free_nats(struct f2fs_sb_info *, int);
1781 int update_inode(struct inode *, struct page *);
1782 int update_inode_page(struct inode *);
1783 int f2fs_write_inode(struct inode *, struct writeback_control *);
1784 void f2fs_evict_inode(struct inode *);
1785 void handle_failed_inode(struct inode *);
1786
1787 /*
1788 * namei.c
1789 */
1790 struct dentry *f2fs_get_parent(struct dentry *child);
1791
1792 /*
1793 * dir.c
1794 */
1795 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1796 void set_de_type(struct f2fs_dir_entry *, umode_t);
1797 unsigned char get_de_type(struct f2fs_dir_entry *);
1798 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1799 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1800 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1801 unsigned int, struct fscrypt_str *);
1802 void do_make_empty_dir(struct inode *, struct inode *,
1803 struct f2fs_dentry_ptr *);
1804 struct page *init_inode_metadata(struct inode *, struct inode *,
1805 const struct qstr *, struct page *);
1806 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1807 int room_for_filename(const void *, int, int);
1808 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1809 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1810 struct page **);
1811 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1812 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1813 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1814 struct page *, struct inode *);
1815 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1816 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1817 const struct qstr *, f2fs_hash_t , unsigned int);
1818 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1819 struct inode *, nid_t, umode_t);
1820 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1821 umode_t);
1822 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1823 struct inode *);
1824 int f2fs_do_tmpfile(struct inode *, struct inode *);
1825 bool f2fs_empty_dir(struct inode *);
1826
1827 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1828 {
1829 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1830 inode, inode->i_ino, inode->i_mode);
1831 }
1832
1833 /*
1834 * super.c
1835 */
1836 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1837 int f2fs_sync_fs(struct super_block *, int);
1838 extern __printf(3, 4)
1839 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1840 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1841
1842 /*
1843 * hash.c
1844 */
1845 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1846
1847 /*
1848 * node.c
1849 */
1850 struct dnode_of_data;
1851 struct node_info;
1852
1853 bool available_free_memory(struct f2fs_sb_info *, int);
1854 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1855 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1856 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1857 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1858 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1859 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1860 int truncate_inode_blocks(struct inode *, pgoff_t);
1861 int truncate_xattr_node(struct inode *, struct page *);
1862 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1863 int remove_inode_page(struct inode *);
1864 struct page *new_inode_page(struct inode *);
1865 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1866 void ra_node_page(struct f2fs_sb_info *, nid_t);
1867 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1868 struct page *get_node_page_ra(struct page *, int);
1869 void sync_inode_page(struct dnode_of_data *);
1870 void move_node_page(struct page *, int);
1871 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1872 bool);
1873 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1874 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1875 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1876 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1877 int try_to_free_nids(struct f2fs_sb_info *, int);
1878 void recover_inline_xattr(struct inode *, struct page *);
1879 void recover_xattr_data(struct inode *, struct page *, block_t);
1880 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1881 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1882 struct f2fs_summary_block *);
1883 void flush_nat_entries(struct f2fs_sb_info *);
1884 int build_node_manager(struct f2fs_sb_info *);
1885 void destroy_node_manager(struct f2fs_sb_info *);
1886 int __init create_node_manager_caches(void);
1887 void destroy_node_manager_caches(void);
1888
1889 /*
1890 * segment.c
1891 */
1892 void register_inmem_page(struct inode *, struct page *);
1893 void drop_inmem_pages(struct inode *);
1894 int commit_inmem_pages(struct inode *);
1895 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1896 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1897 int f2fs_issue_flush(struct f2fs_sb_info *);
1898 int create_flush_cmd_control(struct f2fs_sb_info *);
1899 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1900 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1901 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1902 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1903 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1904 void release_discard_addrs(struct f2fs_sb_info *);
1905 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1906 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1907 void allocate_new_segments(struct f2fs_sb_info *);
1908 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1909 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1910 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1911 void write_meta_page(struct f2fs_sb_info *, struct page *);
1912 void write_node_page(unsigned int, struct f2fs_io_info *);
1913 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1914 void rewrite_data_page(struct f2fs_io_info *);
1915 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1916 block_t, block_t, bool, bool);
1917 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1918 block_t, block_t, unsigned char, bool, bool);
1919 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1920 block_t, block_t *, struct f2fs_summary *, int);
1921 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1922 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1923 void write_data_summaries(struct f2fs_sb_info *, block_t);
1924 void write_node_summaries(struct f2fs_sb_info *, block_t);
1925 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1926 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1927 int build_segment_manager(struct f2fs_sb_info *);
1928 void destroy_segment_manager(struct f2fs_sb_info *);
1929 int __init create_segment_manager_caches(void);
1930 void destroy_segment_manager_caches(void);
1931
1932 /*
1933 * checkpoint.c
1934 */
1935 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
1936 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1937 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1938 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1939 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1940 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1941 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1942 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1943 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1944 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1945 void release_ino_entry(struct f2fs_sb_info *, bool);
1946 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1947 int acquire_orphan_inode(struct f2fs_sb_info *);
1948 void release_orphan_inode(struct f2fs_sb_info *);
1949 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1950 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1951 int recover_orphan_inodes(struct f2fs_sb_info *);
1952 int get_valid_checkpoint(struct f2fs_sb_info *);
1953 void update_dirty_page(struct inode *, struct page *);
1954 void remove_dirty_inode(struct inode *);
1955 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1956 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1957 void init_ino_entry_info(struct f2fs_sb_info *);
1958 int __init create_checkpoint_caches(void);
1959 void destroy_checkpoint_caches(void);
1960
1961 /*
1962 * data.c
1963 */
1964 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1965 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1966 struct page *, nid_t, enum page_type, int);
1967 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1968 int f2fs_submit_page_bio(struct f2fs_io_info *);
1969 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1970 void set_data_blkaddr(struct dnode_of_data *);
1971 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1972 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
1973 int reserve_new_block(struct dnode_of_data *);
1974 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1975 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1976 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1977 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1978 struct page *find_data_page(struct inode *, pgoff_t);
1979 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1980 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1981 int do_write_data_page(struct f2fs_io_info *);
1982 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1983 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1984 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1985 int f2fs_release_page(struct page *, gfp_t);
1986
1987 /*
1988 * gc.c
1989 */
1990 int start_gc_thread(struct f2fs_sb_info *);
1991 void stop_gc_thread(struct f2fs_sb_info *);
1992 block_t start_bidx_of_node(unsigned int, struct inode *);
1993 int f2fs_gc(struct f2fs_sb_info *, bool);
1994 void build_gc_manager(struct f2fs_sb_info *);
1995
1996 /*
1997 * recovery.c
1998 */
1999 int recover_fsync_data(struct f2fs_sb_info *, bool);
2000 bool space_for_roll_forward(struct f2fs_sb_info *);
2001
2002 /*
2003 * debug.c
2004 */
2005 #ifdef CONFIG_F2FS_STAT_FS
2006 struct f2fs_stat_info {
2007 struct list_head stat_list;
2008 struct f2fs_sb_info *sbi;
2009 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2010 int main_area_segs, main_area_sections, main_area_zones;
2011 unsigned long long hit_largest, hit_cached, hit_rbtree;
2012 unsigned long long hit_total, total_ext;
2013 int ext_tree, zombie_tree, ext_node;
2014 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2015 unsigned int ndirty_dirs, ndirty_files;
2016 int nats, dirty_nats, sits, dirty_sits, fnids;
2017 int total_count, utilization;
2018 int bg_gc, wb_bios;
2019 int inline_xattr, inline_inode, inline_dir, orphans;
2020 unsigned int valid_count, valid_node_count, valid_inode_count;
2021 unsigned int bimodal, avg_vblocks;
2022 int util_free, util_valid, util_invalid;
2023 int rsvd_segs, overp_segs;
2024 int dirty_count, node_pages, meta_pages;
2025 int prefree_count, call_count, cp_count, bg_cp_count;
2026 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2027 int bg_node_segs, bg_data_segs;
2028 int tot_blks, data_blks, node_blks;
2029 int bg_data_blks, bg_node_blks;
2030 int curseg[NR_CURSEG_TYPE];
2031 int cursec[NR_CURSEG_TYPE];
2032 int curzone[NR_CURSEG_TYPE];
2033
2034 unsigned int segment_count[2];
2035 unsigned int block_count[2];
2036 unsigned int inplace_count;
2037 unsigned long long base_mem, cache_mem, page_mem;
2038 };
2039
2040 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2041 {
2042 return (struct f2fs_stat_info *)sbi->stat_info;
2043 }
2044
2045 #define stat_inc_cp_count(si) ((si)->cp_count++)
2046 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2047 #define stat_inc_call_count(si) ((si)->call_count++)
2048 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2049 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2050 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2051 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2052 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2053 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2054 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2055 #define stat_inc_inline_xattr(inode) \
2056 do { \
2057 if (f2fs_has_inline_xattr(inode)) \
2058 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2059 } while (0)
2060 #define stat_dec_inline_xattr(inode) \
2061 do { \
2062 if (f2fs_has_inline_xattr(inode)) \
2063 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2064 } while (0)
2065 #define stat_inc_inline_inode(inode) \
2066 do { \
2067 if (f2fs_has_inline_data(inode)) \
2068 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2069 } while (0)
2070 #define stat_dec_inline_inode(inode) \
2071 do { \
2072 if (f2fs_has_inline_data(inode)) \
2073 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2074 } while (0)
2075 #define stat_inc_inline_dir(inode) \
2076 do { \
2077 if (f2fs_has_inline_dentry(inode)) \
2078 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2079 } while (0)
2080 #define stat_dec_inline_dir(inode) \
2081 do { \
2082 if (f2fs_has_inline_dentry(inode)) \
2083 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2084 } while (0)
2085 #define stat_inc_seg_type(sbi, curseg) \
2086 ((sbi)->segment_count[(curseg)->alloc_type]++)
2087 #define stat_inc_block_count(sbi, curseg) \
2088 ((sbi)->block_count[(curseg)->alloc_type]++)
2089 #define stat_inc_inplace_blocks(sbi) \
2090 (atomic_inc(&(sbi)->inplace_count))
2091 #define stat_inc_seg_count(sbi, type, gc_type) \
2092 do { \
2093 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2094 (si)->tot_segs++; \
2095 if (type == SUM_TYPE_DATA) { \
2096 si->data_segs++; \
2097 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2098 } else { \
2099 si->node_segs++; \
2100 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2101 } \
2102 } while (0)
2103
2104 #define stat_inc_tot_blk_count(si, blks) \
2105 (si->tot_blks += (blks))
2106
2107 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2108 do { \
2109 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2110 stat_inc_tot_blk_count(si, blks); \
2111 si->data_blks += (blks); \
2112 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2113 } while (0)
2114
2115 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2116 do { \
2117 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2118 stat_inc_tot_blk_count(si, blks); \
2119 si->node_blks += (blks); \
2120 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2121 } while (0)
2122
2123 int f2fs_build_stats(struct f2fs_sb_info *);
2124 void f2fs_destroy_stats(struct f2fs_sb_info *);
2125 int __init f2fs_create_root_stats(void);
2126 void f2fs_destroy_root_stats(void);
2127 #else
2128 #define stat_inc_cp_count(si)
2129 #define stat_inc_bg_cp_count(si)
2130 #define stat_inc_call_count(si)
2131 #define stat_inc_bggc_count(si)
2132 #define stat_inc_dirty_inode(sbi, type)
2133 #define stat_dec_dirty_inode(sbi, type)
2134 #define stat_inc_total_hit(sb)
2135 #define stat_inc_rbtree_node_hit(sb)
2136 #define stat_inc_largest_node_hit(sbi)
2137 #define stat_inc_cached_node_hit(sbi)
2138 #define stat_inc_inline_xattr(inode)
2139 #define stat_dec_inline_xattr(inode)
2140 #define stat_inc_inline_inode(inode)
2141 #define stat_dec_inline_inode(inode)
2142 #define stat_inc_inline_dir(inode)
2143 #define stat_dec_inline_dir(inode)
2144 #define stat_inc_seg_type(sbi, curseg)
2145 #define stat_inc_block_count(sbi, curseg)
2146 #define stat_inc_inplace_blocks(sbi)
2147 #define stat_inc_seg_count(sbi, type, gc_type)
2148 #define stat_inc_tot_blk_count(si, blks)
2149 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2150 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2151
2152 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2153 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2154 static inline int __init f2fs_create_root_stats(void) { return 0; }
2155 static inline void f2fs_destroy_root_stats(void) { }
2156 #endif
2157
2158 extern const struct file_operations f2fs_dir_operations;
2159 extern const struct file_operations f2fs_file_operations;
2160 extern const struct inode_operations f2fs_file_inode_operations;
2161 extern const struct address_space_operations f2fs_dblock_aops;
2162 extern const struct address_space_operations f2fs_node_aops;
2163 extern const struct address_space_operations f2fs_meta_aops;
2164 extern const struct inode_operations f2fs_dir_inode_operations;
2165 extern const struct inode_operations f2fs_symlink_inode_operations;
2166 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2167 extern const struct inode_operations f2fs_special_inode_operations;
2168 extern struct kmem_cache *inode_entry_slab;
2169
2170 /*
2171 * inline.c
2172 */
2173 bool f2fs_may_inline_data(struct inode *);
2174 bool f2fs_may_inline_dentry(struct inode *);
2175 void read_inline_data(struct page *, struct page *);
2176 bool truncate_inline_inode(struct page *, u64);
2177 int f2fs_read_inline_data(struct inode *, struct page *);
2178 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2179 int f2fs_convert_inline_inode(struct inode *);
2180 int f2fs_write_inline_data(struct inode *, struct page *);
2181 bool recover_inline_data(struct inode *, struct page *);
2182 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2183 struct fscrypt_name *, struct page **);
2184 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2185 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2186 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2187 nid_t, umode_t);
2188 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2189 struct inode *, struct inode *);
2190 bool f2fs_empty_inline_dir(struct inode *);
2191 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2192 struct fscrypt_str *);
2193 int f2fs_inline_data_fiemap(struct inode *,
2194 struct fiemap_extent_info *, __u64, __u64);
2195
2196 /*
2197 * shrinker.c
2198 */
2199 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2200 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2201 void f2fs_join_shrinker(struct f2fs_sb_info *);
2202 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2203
2204 /*
2205 * extent_cache.c
2206 */
2207 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2208 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2209 unsigned int f2fs_destroy_extent_node(struct inode *);
2210 void f2fs_destroy_extent_tree(struct inode *);
2211 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2212 void f2fs_update_extent_cache(struct dnode_of_data *);
2213 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2214 pgoff_t, block_t, unsigned int);
2215 void init_extent_cache_info(struct f2fs_sb_info *);
2216 int __init create_extent_cache(void);
2217 void destroy_extent_cache(void);
2218
2219 /*
2220 * crypto support
2221 */
2222 static inline bool f2fs_encrypted_inode(struct inode *inode)
2223 {
2224 return file_is_encrypt(inode);
2225 }
2226
2227 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2228 {
2229 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2230 file_set_encrypt(inode);
2231 #endif
2232 }
2233
2234 static inline bool f2fs_bio_encrypted(struct bio *bio)
2235 {
2236 return bio->bi_private != NULL;
2237 }
2238
2239 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2240 {
2241 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2242 }
2243
2244 static inline bool f2fs_may_encrypt(struct inode *inode)
2245 {
2246 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2247 umode_t mode = inode->i_mode;
2248
2249 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2250 #else
2251 return 0;
2252 #endif
2253 }
2254
2255 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2256 #define fscrypt_set_d_op(i)
2257 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2258 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2259 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2260 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2261 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2262 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2263 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2264 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2265 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2266 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2267 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2268 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2269 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2270 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2271 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2272 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2273 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2274 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2275 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2276 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2277 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2278 #endif
2279 #endif
This page took 0.08875 seconds and 5 git commands to generate.