f2fs crypto: fix incorrect positioning for GCing encrypted data page
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition) \
31 do { \
32 if (unlikely(condition)) { \
33 WARN_ON(1); \
34 set_sbi_flag(sbi, SBI_NEED_FSCK); \
35 } \
36 } while (0)
37 #define f2fs_down_write(x, y) down_write(x)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 #define CRCPOLY_LE 0xedb88320
88
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 unsigned char *p = (unsigned char *)buf;
92 __u32 crc = F2FS_SUPER_MAGIC;
93 int i;
94
95 while (len--) {
96 crc ^= *p++;
97 for (i = 0; i < 8; i++)
98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 }
100 return crc;
101 }
102
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107
108 /*
109 * For checkpoint manager
110 */
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 enum {
117 CP_UMOUNT,
118 CP_FASTBOOT,
119 CP_SYNC,
120 CP_RECOVERY,
121 CP_DISCARD,
122 };
123
124 #define DEF_BATCHED_TRIM_SECTIONS 32
125 #define BATCHED_TRIM_SEGMENTS(sbi) \
126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi) \
128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL 60 /* 60 secs */
130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
131
132 struct cp_control {
133 int reason;
134 __u64 trim_start;
135 __u64 trim_end;
136 __u64 trim_minlen;
137 __u64 trimmed;
138 };
139
140 /*
141 * For CP/NAT/SIT/SSA readahead
142 */
143 enum {
144 META_CP,
145 META_NAT,
146 META_SIT,
147 META_SSA,
148 META_POR,
149 };
150
151 /* for the list of ino */
152 enum {
153 ORPHAN_INO, /* for orphan ino list */
154 APPEND_INO, /* for append ino list */
155 UPDATE_INO, /* for update ino list */
156 MAX_INO_ENTRY, /* max. list */
157 };
158
159 struct ino_entry {
160 struct list_head list; /* list head */
161 nid_t ino; /* inode number */
162 };
163
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
187 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
188
189 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
190 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
191 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
192 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
195 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
196
197 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
198 {
199 int before = nats_in_cursum(journal);
200 journal->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
205 {
206 int before = sits_in_cursum(journal);
207 journal->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_journal *journal,
212 int size, int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(journal);
216 return size <= MAX_SIT_JENTRIES(journal);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
235
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
237 _IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
239 _IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
241 _IOW('f', 21, struct f2fs_encryption_policy)
242
243 /*
244 * should be same as XFS_IOC_GOINGDOWN.
245 * Flags for going down operation used by FS_IOC_GOINGDOWN
246 */
247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
252
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255 * ioctl commands in 32 bit emulation
256 */
257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
260 #endif
261
262 struct f2fs_defragment {
263 u64 start;
264 u64 len;
265 };
266
267 /*
268 * For INODE and NODE manager
269 */
270 /* for directory operations */
271 struct f2fs_str {
272 unsigned char *name;
273 u32 len;
274 };
275
276 struct f2fs_filename {
277 const struct qstr *usr_fname;
278 struct f2fs_str disk_name;
279 f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 struct f2fs_str crypto_buf;
282 #endif
283 };
284
285 #define FSTR_INIT(n, l) { .name = n, .len = l }
286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p) ((p)->disk_name.name)
288 #define fname_len(p) ((p)->disk_name.len)
289
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394 #define F2FS_GET_BLOCK_PRE_DIO 4
395 #define F2FS_GET_BLOCK_PRE_AIO 5
396
397 /*
398 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
399 */
400 #define FADVISE_COLD_BIT 0x01
401 #define FADVISE_LOST_PINO_BIT 0x02
402 #define FADVISE_ENCRYPT_BIT 0x04
403 #define FADVISE_ENC_NAME_BIT 0x08
404
405 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
406 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
408 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
410 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
411 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
414 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
415 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
416
417 /* Encryption algorithms */
418 #define F2FS_ENCRYPTION_MODE_INVALID 0
419 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
420 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
421 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
422 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
423
424 #include "f2fs_crypto.h"
425
426 #define DEF_DIR_LEVEL 0
427
428 struct f2fs_inode_info {
429 struct inode vfs_inode; /* serve a vfs inode */
430 unsigned long i_flags; /* keep an inode flags for ioctl */
431 unsigned char i_advise; /* use to give file attribute hints */
432 unsigned char i_dir_level; /* use for dentry level for large dir */
433 unsigned int i_current_depth; /* use only in directory structure */
434 unsigned int i_pino; /* parent inode number */
435 umode_t i_acl_mode; /* keep file acl mode temporarily */
436
437 /* Use below internally in f2fs*/
438 unsigned long flags; /* use to pass per-file flags */
439 struct rw_semaphore i_sem; /* protect fi info */
440 atomic_t dirty_pages; /* # of dirty pages */
441 f2fs_hash_t chash; /* hash value of given file name */
442 unsigned int clevel; /* maximum level of given file name */
443 nid_t i_xattr_nid; /* node id that contains xattrs */
444 unsigned long long xattr_ver; /* cp version of xattr modification */
445
446 struct list_head dirty_list; /* linked in global dirty list */
447 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
448 struct mutex inmem_lock; /* lock for inmemory pages */
449
450 struct extent_tree *extent_tree; /* cached extent_tree entry */
451
452 #ifdef CONFIG_F2FS_FS_ENCRYPTION
453 /* Encryption params */
454 struct f2fs_crypt_info *i_crypt_info;
455 #endif
456 };
457
458 static inline void get_extent_info(struct extent_info *ext,
459 struct f2fs_extent i_ext)
460 {
461 ext->fofs = le32_to_cpu(i_ext.fofs);
462 ext->blk = le32_to_cpu(i_ext.blk);
463 ext->len = le32_to_cpu(i_ext.len);
464 }
465
466 static inline void set_raw_extent(struct extent_info *ext,
467 struct f2fs_extent *i_ext)
468 {
469 i_ext->fofs = cpu_to_le32(ext->fofs);
470 i_ext->blk = cpu_to_le32(ext->blk);
471 i_ext->len = cpu_to_le32(ext->len);
472 }
473
474 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
475 u32 blk, unsigned int len)
476 {
477 ei->fofs = fofs;
478 ei->blk = blk;
479 ei->len = len;
480 }
481
482 static inline bool __is_extent_same(struct extent_info *ei1,
483 struct extent_info *ei2)
484 {
485 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
486 ei1->len == ei2->len);
487 }
488
489 static inline bool __is_extent_mergeable(struct extent_info *back,
490 struct extent_info *front)
491 {
492 return (back->fofs + back->len == front->fofs &&
493 back->blk + back->len == front->blk);
494 }
495
496 static inline bool __is_back_mergeable(struct extent_info *cur,
497 struct extent_info *back)
498 {
499 return __is_extent_mergeable(back, cur);
500 }
501
502 static inline bool __is_front_mergeable(struct extent_info *cur,
503 struct extent_info *front)
504 {
505 return __is_extent_mergeable(cur, front);
506 }
507
508 static inline void __try_update_largest_extent(struct extent_tree *et,
509 struct extent_node *en)
510 {
511 if (en->ei.len > et->largest.len)
512 et->largest = en->ei;
513 }
514
515 struct f2fs_nm_info {
516 block_t nat_blkaddr; /* base disk address of NAT */
517 nid_t max_nid; /* maximum possible node ids */
518 nid_t available_nids; /* maximum available node ids */
519 nid_t next_scan_nid; /* the next nid to be scanned */
520 unsigned int ram_thresh; /* control the memory footprint */
521 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
522 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
523
524 /* NAT cache management */
525 struct radix_tree_root nat_root;/* root of the nat entry cache */
526 struct radix_tree_root nat_set_root;/* root of the nat set cache */
527 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
528 struct list_head nat_entries; /* cached nat entry list (clean) */
529 unsigned int nat_cnt; /* the # of cached nat entries */
530 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
531
532 /* free node ids management */
533 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
534 struct list_head free_nid_list; /* a list for free nids */
535 spinlock_t free_nid_list_lock; /* protect free nid list */
536 unsigned int fcnt; /* the number of free node id */
537 struct mutex build_lock; /* lock for build free nids */
538
539 /* for checkpoint */
540 char *nat_bitmap; /* NAT bitmap pointer */
541 int bitmap_size; /* bitmap size */
542 };
543
544 /*
545 * this structure is used as one of function parameters.
546 * all the information are dedicated to a given direct node block determined
547 * by the data offset in a file.
548 */
549 struct dnode_of_data {
550 struct inode *inode; /* vfs inode pointer */
551 struct page *inode_page; /* its inode page, NULL is possible */
552 struct page *node_page; /* cached direct node page */
553 nid_t nid; /* node id of the direct node block */
554 unsigned int ofs_in_node; /* data offset in the node page */
555 bool inode_page_locked; /* inode page is locked or not */
556 bool node_changed; /* is node block changed */
557 char cur_level; /* level of hole node page */
558 char max_level; /* level of current page located */
559 block_t data_blkaddr; /* block address of the node block */
560 };
561
562 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
563 struct page *ipage, struct page *npage, nid_t nid)
564 {
565 memset(dn, 0, sizeof(*dn));
566 dn->inode = inode;
567 dn->inode_page = ipage;
568 dn->node_page = npage;
569 dn->nid = nid;
570 }
571
572 /*
573 * For SIT manager
574 *
575 * By default, there are 6 active log areas across the whole main area.
576 * When considering hot and cold data separation to reduce cleaning overhead,
577 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
578 * respectively.
579 * In the current design, you should not change the numbers intentionally.
580 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
581 * logs individually according to the underlying devices. (default: 6)
582 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
583 * data and 8 for node logs.
584 */
585 #define NR_CURSEG_DATA_TYPE (3)
586 #define NR_CURSEG_NODE_TYPE (3)
587 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
588
589 enum {
590 CURSEG_HOT_DATA = 0, /* directory entry blocks */
591 CURSEG_WARM_DATA, /* data blocks */
592 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
593 CURSEG_HOT_NODE, /* direct node blocks of directory files */
594 CURSEG_WARM_NODE, /* direct node blocks of normal files */
595 CURSEG_COLD_NODE, /* indirect node blocks */
596 NO_CHECK_TYPE,
597 CURSEG_DIRECT_IO, /* to use for the direct IO path */
598 };
599
600 struct flush_cmd {
601 struct completion wait;
602 struct llist_node llnode;
603 int ret;
604 };
605
606 struct flush_cmd_control {
607 struct task_struct *f2fs_issue_flush; /* flush thread */
608 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
609 struct llist_head issue_list; /* list for command issue */
610 struct llist_node *dispatch_list; /* list for command dispatch */
611 };
612
613 struct f2fs_sm_info {
614 struct sit_info *sit_info; /* whole segment information */
615 struct free_segmap_info *free_info; /* free segment information */
616 struct dirty_seglist_info *dirty_info; /* dirty segment information */
617 struct curseg_info *curseg_array; /* active segment information */
618
619 block_t seg0_blkaddr; /* block address of 0'th segment */
620 block_t main_blkaddr; /* start block address of main area */
621 block_t ssa_blkaddr; /* start block address of SSA area */
622
623 unsigned int segment_count; /* total # of segments */
624 unsigned int main_segments; /* # of segments in main area */
625 unsigned int reserved_segments; /* # of reserved segments */
626 unsigned int ovp_segments; /* # of overprovision segments */
627
628 /* a threshold to reclaim prefree segments */
629 unsigned int rec_prefree_segments;
630
631 /* for small discard management */
632 struct list_head discard_list; /* 4KB discard list */
633 int nr_discards; /* # of discards in the list */
634 int max_discards; /* max. discards to be issued */
635
636 /* for batched trimming */
637 unsigned int trim_sections; /* # of sections to trim */
638
639 struct list_head sit_entry_set; /* sit entry set list */
640
641 unsigned int ipu_policy; /* in-place-update policy */
642 unsigned int min_ipu_util; /* in-place-update threshold */
643 unsigned int min_fsync_blocks; /* threshold for fsync */
644
645 /* for flush command control */
646 struct flush_cmd_control *cmd_control_info;
647
648 };
649
650 /*
651 * For superblock
652 */
653 /*
654 * COUNT_TYPE for monitoring
655 *
656 * f2fs monitors the number of several block types such as on-writeback,
657 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
658 */
659 enum count_type {
660 F2FS_WRITEBACK,
661 F2FS_DIRTY_DENTS,
662 F2FS_DIRTY_DATA,
663 F2FS_DIRTY_NODES,
664 F2FS_DIRTY_META,
665 F2FS_INMEM_PAGES,
666 NR_COUNT_TYPE,
667 };
668
669 /*
670 * The below are the page types of bios used in submit_bio().
671 * The available types are:
672 * DATA User data pages. It operates as async mode.
673 * NODE Node pages. It operates as async mode.
674 * META FS metadata pages such as SIT, NAT, CP.
675 * NR_PAGE_TYPE The number of page types.
676 * META_FLUSH Make sure the previous pages are written
677 * with waiting the bio's completion
678 * ... Only can be used with META.
679 */
680 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
681 enum page_type {
682 DATA,
683 NODE,
684 META,
685 NR_PAGE_TYPE,
686 META_FLUSH,
687 INMEM, /* the below types are used by tracepoints only. */
688 INMEM_DROP,
689 INMEM_REVOKE,
690 IPU,
691 OPU,
692 };
693
694 struct f2fs_io_info {
695 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
696 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
697 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
698 block_t new_blkaddr; /* new block address to be written */
699 block_t old_blkaddr; /* old block address before Cow */
700 struct page *page; /* page to be written */
701 struct page *encrypted_page; /* encrypted page */
702 };
703
704 #define is_read_io(rw) (((rw) & 1) == READ)
705 struct f2fs_bio_info {
706 struct f2fs_sb_info *sbi; /* f2fs superblock */
707 struct bio *bio; /* bios to merge */
708 sector_t last_block_in_bio; /* last block number */
709 struct f2fs_io_info fio; /* store buffered io info. */
710 struct rw_semaphore io_rwsem; /* blocking op for bio */
711 };
712
713 enum inode_type {
714 DIR_INODE, /* for dirty dir inode */
715 FILE_INODE, /* for dirty regular/symlink inode */
716 NR_INODE_TYPE,
717 };
718
719 /* for inner inode cache management */
720 struct inode_management {
721 struct radix_tree_root ino_root; /* ino entry array */
722 spinlock_t ino_lock; /* for ino entry lock */
723 struct list_head ino_list; /* inode list head */
724 unsigned long ino_num; /* number of entries */
725 };
726
727 /* For s_flag in struct f2fs_sb_info */
728 enum {
729 SBI_IS_DIRTY, /* dirty flag for checkpoint */
730 SBI_IS_CLOSE, /* specify unmounting */
731 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
732 SBI_POR_DOING, /* recovery is doing or not */
733 };
734
735 enum {
736 CP_TIME,
737 REQ_TIME,
738 MAX_TIME,
739 };
740
741 struct f2fs_sb_info {
742 struct super_block *sb; /* pointer to VFS super block */
743 struct proc_dir_entry *s_proc; /* proc entry */
744 struct f2fs_super_block *raw_super; /* raw super block pointer */
745 int valid_super_block; /* valid super block no */
746 int s_flag; /* flags for sbi */
747
748 /* for node-related operations */
749 struct f2fs_nm_info *nm_info; /* node manager */
750 struct inode *node_inode; /* cache node blocks */
751
752 /* for segment-related operations */
753 struct f2fs_sm_info *sm_info; /* segment manager */
754
755 /* for bio operations */
756 struct f2fs_bio_info read_io; /* for read bios */
757 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
758
759 /* for checkpoint */
760 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
761 struct inode *meta_inode; /* cache meta blocks */
762 struct mutex cp_mutex; /* checkpoint procedure lock */
763 struct rw_semaphore cp_rwsem; /* blocking FS operations */
764 struct rw_semaphore node_write; /* locking node writes */
765 struct mutex writepages; /* mutex for writepages() */
766 wait_queue_head_t cp_wait;
767 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
768 long interval_time[MAX_TIME]; /* to store thresholds */
769
770 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
771
772 /* for orphan inode, use 0'th array */
773 unsigned int max_orphans; /* max orphan inodes */
774
775 /* for inode management */
776 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
777 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
778
779 /* for extent tree cache */
780 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
781 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
782 struct list_head extent_list; /* lru list for shrinker */
783 spinlock_t extent_lock; /* locking extent lru list */
784 atomic_t total_ext_tree; /* extent tree count */
785 struct list_head zombie_list; /* extent zombie tree list */
786 atomic_t total_zombie_tree; /* extent zombie tree count */
787 atomic_t total_ext_node; /* extent info count */
788
789 /* basic filesystem units */
790 unsigned int log_sectors_per_block; /* log2 sectors per block */
791 unsigned int log_blocksize; /* log2 block size */
792 unsigned int blocksize; /* block size */
793 unsigned int root_ino_num; /* root inode number*/
794 unsigned int node_ino_num; /* node inode number*/
795 unsigned int meta_ino_num; /* meta inode number*/
796 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
797 unsigned int blocks_per_seg; /* blocks per segment */
798 unsigned int segs_per_sec; /* segments per section */
799 unsigned int secs_per_zone; /* sections per zone */
800 unsigned int total_sections; /* total section count */
801 unsigned int total_node_count; /* total node block count */
802 unsigned int total_valid_node_count; /* valid node block count */
803 unsigned int total_valid_inode_count; /* valid inode count */
804 loff_t max_file_blocks; /* max block index of file */
805 int active_logs; /* # of active logs */
806 int dir_level; /* directory level */
807
808 block_t user_block_count; /* # of user blocks */
809 block_t total_valid_block_count; /* # of valid blocks */
810 block_t alloc_valid_block_count; /* # of allocated blocks */
811 block_t discard_blks; /* discard command candidats */
812 block_t last_valid_block_count; /* for recovery */
813 u32 s_next_generation; /* for NFS support */
814 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
815
816 struct f2fs_mount_info mount_opt; /* mount options */
817
818 /* for cleaning operations */
819 struct mutex gc_mutex; /* mutex for GC */
820 struct f2fs_gc_kthread *gc_thread; /* GC thread */
821 unsigned int cur_victim_sec; /* current victim section num */
822
823 /* maximum # of trials to find a victim segment for SSR and GC */
824 unsigned int max_victim_search;
825
826 /*
827 * for stat information.
828 * one is for the LFS mode, and the other is for the SSR mode.
829 */
830 #ifdef CONFIG_F2FS_STAT_FS
831 struct f2fs_stat_info *stat_info; /* FS status information */
832 unsigned int segment_count[2]; /* # of allocated segments */
833 unsigned int block_count[2]; /* # of allocated blocks */
834 atomic_t inplace_count; /* # of inplace update */
835 atomic64_t total_hit_ext; /* # of lookup extent cache */
836 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
837 atomic64_t read_hit_largest; /* # of hit largest extent node */
838 atomic64_t read_hit_cached; /* # of hit cached extent node */
839 atomic_t inline_xattr; /* # of inline_xattr inodes */
840 atomic_t inline_inode; /* # of inline_data inodes */
841 atomic_t inline_dir; /* # of inline_dentry inodes */
842 int bg_gc; /* background gc calls */
843 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
844 #endif
845 unsigned int last_victim[2]; /* last victim segment # */
846 spinlock_t stat_lock; /* lock for stat operations */
847
848 /* For sysfs suppport */
849 struct kobject s_kobj;
850 struct completion s_kobj_unregister;
851
852 /* For shrinker support */
853 struct list_head s_list;
854 struct mutex umount_mutex;
855 unsigned int shrinker_run_no;
856
857 /* For write statistics */
858 u64 sectors_written_start;
859 u64 kbytes_written;
860 };
861
862 /* For write statistics. Suppose sector size is 512 bytes,
863 * and the return value is in kbytes. s is of struct f2fs_sb_info.
864 */
865 #define BD_PART_WRITTEN(s) \
866 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
867 s->sectors_written_start) >> 1)
868
869 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
870 {
871 sbi->last_time[type] = jiffies;
872 }
873
874 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
875 {
876 struct timespec ts = {sbi->interval_time[type], 0};
877 unsigned long interval = timespec_to_jiffies(&ts);
878
879 return time_after(jiffies, sbi->last_time[type] + interval);
880 }
881
882 static inline bool is_idle(struct f2fs_sb_info *sbi)
883 {
884 struct block_device *bdev = sbi->sb->s_bdev;
885 struct request_queue *q = bdev_get_queue(bdev);
886 struct request_list *rl = &q->root_rl;
887
888 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
889 return 0;
890
891 return f2fs_time_over(sbi, REQ_TIME);
892 }
893
894 /*
895 * Inline functions
896 */
897 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
898 {
899 return container_of(inode, struct f2fs_inode_info, vfs_inode);
900 }
901
902 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
903 {
904 return sb->s_fs_info;
905 }
906
907 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
908 {
909 return F2FS_SB(inode->i_sb);
910 }
911
912 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
913 {
914 return F2FS_I_SB(mapping->host);
915 }
916
917 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
918 {
919 return F2FS_M_SB(page->mapping);
920 }
921
922 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
923 {
924 return (struct f2fs_super_block *)(sbi->raw_super);
925 }
926
927 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
928 {
929 return (struct f2fs_checkpoint *)(sbi->ckpt);
930 }
931
932 static inline struct f2fs_node *F2FS_NODE(struct page *page)
933 {
934 return (struct f2fs_node *)page_address(page);
935 }
936
937 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
938 {
939 return &((struct f2fs_node *)page_address(page))->i;
940 }
941
942 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
943 {
944 return (struct f2fs_nm_info *)(sbi->nm_info);
945 }
946
947 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
948 {
949 return (struct f2fs_sm_info *)(sbi->sm_info);
950 }
951
952 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
953 {
954 return (struct sit_info *)(SM_I(sbi)->sit_info);
955 }
956
957 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
958 {
959 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
960 }
961
962 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
963 {
964 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
965 }
966
967 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
968 {
969 return sbi->meta_inode->i_mapping;
970 }
971
972 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
973 {
974 return sbi->node_inode->i_mapping;
975 }
976
977 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
978 {
979 return sbi->s_flag & (0x01 << type);
980 }
981
982 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
983 {
984 sbi->s_flag |= (0x01 << type);
985 }
986
987 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
988 {
989 sbi->s_flag &= ~(0x01 << type);
990 }
991
992 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
993 {
994 return le64_to_cpu(cp->checkpoint_ver);
995 }
996
997 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
998 {
999 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1000 return ckpt_flags & f;
1001 }
1002
1003 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1004 {
1005 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1006 ckpt_flags |= f;
1007 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1008 }
1009
1010 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1011 {
1012 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1013 ckpt_flags &= (~f);
1014 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1015 }
1016
1017 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1018 {
1019 down_read(&sbi->cp_rwsem);
1020 }
1021
1022 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1023 {
1024 up_read(&sbi->cp_rwsem);
1025 }
1026
1027 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1028 {
1029 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1030 }
1031
1032 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1033 {
1034 up_write(&sbi->cp_rwsem);
1035 }
1036
1037 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1038 {
1039 int reason = CP_SYNC;
1040
1041 if (test_opt(sbi, FASTBOOT))
1042 reason = CP_FASTBOOT;
1043 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1044 reason = CP_UMOUNT;
1045 return reason;
1046 }
1047
1048 static inline bool __remain_node_summaries(int reason)
1049 {
1050 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1051 }
1052
1053 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1054 {
1055 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1056 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1057 }
1058
1059 /*
1060 * Check whether the given nid is within node id range.
1061 */
1062 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1063 {
1064 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1065 return -EINVAL;
1066 if (unlikely(nid >= NM_I(sbi)->max_nid))
1067 return -EINVAL;
1068 return 0;
1069 }
1070
1071 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1072
1073 /*
1074 * Check whether the inode has blocks or not
1075 */
1076 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1077 {
1078 if (F2FS_I(inode)->i_xattr_nid)
1079 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1080 else
1081 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1082 }
1083
1084 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1085 {
1086 return ofs == XATTR_NODE_OFFSET;
1087 }
1088
1089 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1090 struct inode *inode, blkcnt_t count)
1091 {
1092 block_t valid_block_count;
1093
1094 spin_lock(&sbi->stat_lock);
1095 valid_block_count =
1096 sbi->total_valid_block_count + (block_t)count;
1097 if (unlikely(valid_block_count > sbi->user_block_count)) {
1098 spin_unlock(&sbi->stat_lock);
1099 return false;
1100 }
1101 inode->i_blocks += count;
1102 sbi->total_valid_block_count = valid_block_count;
1103 sbi->alloc_valid_block_count += (block_t)count;
1104 spin_unlock(&sbi->stat_lock);
1105 return true;
1106 }
1107
1108 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1109 struct inode *inode,
1110 blkcnt_t count)
1111 {
1112 spin_lock(&sbi->stat_lock);
1113 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1114 f2fs_bug_on(sbi, inode->i_blocks < count);
1115 inode->i_blocks -= count;
1116 sbi->total_valid_block_count -= (block_t)count;
1117 spin_unlock(&sbi->stat_lock);
1118 }
1119
1120 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1121 {
1122 atomic_inc(&sbi->nr_pages[count_type]);
1123 set_sbi_flag(sbi, SBI_IS_DIRTY);
1124 }
1125
1126 static inline void inode_inc_dirty_pages(struct inode *inode)
1127 {
1128 atomic_inc(&F2FS_I(inode)->dirty_pages);
1129 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1130 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1131 }
1132
1133 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1134 {
1135 atomic_dec(&sbi->nr_pages[count_type]);
1136 }
1137
1138 static inline void inode_dec_dirty_pages(struct inode *inode)
1139 {
1140 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1141 !S_ISLNK(inode->i_mode))
1142 return;
1143
1144 atomic_dec(&F2FS_I(inode)->dirty_pages);
1145 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1146 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1147 }
1148
1149 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1150 {
1151 return atomic_read(&sbi->nr_pages[count_type]);
1152 }
1153
1154 static inline int get_dirty_pages(struct inode *inode)
1155 {
1156 return atomic_read(&F2FS_I(inode)->dirty_pages);
1157 }
1158
1159 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1160 {
1161 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1162 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1163 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1164 }
1165
1166 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1167 {
1168 return sbi->total_valid_block_count;
1169 }
1170
1171 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1172 {
1173 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1174
1175 /* return NAT or SIT bitmap */
1176 if (flag == NAT_BITMAP)
1177 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1178 else if (flag == SIT_BITMAP)
1179 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1180
1181 return 0;
1182 }
1183
1184 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1185 {
1186 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1187 }
1188
1189 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1190 {
1191 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1192 int offset;
1193
1194 if (__cp_payload(sbi) > 0) {
1195 if (flag == NAT_BITMAP)
1196 return &ckpt->sit_nat_version_bitmap;
1197 else
1198 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1199 } else {
1200 offset = (flag == NAT_BITMAP) ?
1201 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1202 return &ckpt->sit_nat_version_bitmap + offset;
1203 }
1204 }
1205
1206 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1207 {
1208 block_t start_addr;
1209 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1210 unsigned long long ckpt_version = cur_cp_version(ckpt);
1211
1212 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1213
1214 /*
1215 * odd numbered checkpoint should at cp segment 0
1216 * and even segment must be at cp segment 1
1217 */
1218 if (!(ckpt_version & 1))
1219 start_addr += sbi->blocks_per_seg;
1220
1221 return start_addr;
1222 }
1223
1224 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1225 {
1226 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1227 }
1228
1229 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1230 struct inode *inode)
1231 {
1232 block_t valid_block_count;
1233 unsigned int valid_node_count;
1234
1235 spin_lock(&sbi->stat_lock);
1236
1237 valid_block_count = sbi->total_valid_block_count + 1;
1238 if (unlikely(valid_block_count > sbi->user_block_count)) {
1239 spin_unlock(&sbi->stat_lock);
1240 return false;
1241 }
1242
1243 valid_node_count = sbi->total_valid_node_count + 1;
1244 if (unlikely(valid_node_count > sbi->total_node_count)) {
1245 spin_unlock(&sbi->stat_lock);
1246 return false;
1247 }
1248
1249 if (inode)
1250 inode->i_blocks++;
1251
1252 sbi->alloc_valid_block_count++;
1253 sbi->total_valid_node_count++;
1254 sbi->total_valid_block_count++;
1255 spin_unlock(&sbi->stat_lock);
1256
1257 return true;
1258 }
1259
1260 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1261 struct inode *inode)
1262 {
1263 spin_lock(&sbi->stat_lock);
1264
1265 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1266 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1267 f2fs_bug_on(sbi, !inode->i_blocks);
1268
1269 inode->i_blocks--;
1270 sbi->total_valid_node_count--;
1271 sbi->total_valid_block_count--;
1272
1273 spin_unlock(&sbi->stat_lock);
1274 }
1275
1276 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1277 {
1278 return sbi->total_valid_node_count;
1279 }
1280
1281 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1282 {
1283 spin_lock(&sbi->stat_lock);
1284 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1285 sbi->total_valid_inode_count++;
1286 spin_unlock(&sbi->stat_lock);
1287 }
1288
1289 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1290 {
1291 spin_lock(&sbi->stat_lock);
1292 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1293 sbi->total_valid_inode_count--;
1294 spin_unlock(&sbi->stat_lock);
1295 }
1296
1297 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1298 {
1299 return sbi->total_valid_inode_count;
1300 }
1301
1302 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1303 pgoff_t index, bool for_write)
1304 {
1305 if (!for_write)
1306 return grab_cache_page(mapping, index);
1307 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1308 }
1309
1310 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1311 {
1312 char *src_kaddr = kmap(src);
1313 char *dst_kaddr = kmap(dst);
1314
1315 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1316 kunmap(dst);
1317 kunmap(src);
1318 }
1319
1320 static inline void f2fs_put_page(struct page *page, int unlock)
1321 {
1322 if (!page)
1323 return;
1324
1325 if (unlock) {
1326 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1327 unlock_page(page);
1328 }
1329 page_cache_release(page);
1330 }
1331
1332 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1333 {
1334 if (dn->node_page)
1335 f2fs_put_page(dn->node_page, 1);
1336 if (dn->inode_page && dn->node_page != dn->inode_page)
1337 f2fs_put_page(dn->inode_page, 0);
1338 dn->node_page = NULL;
1339 dn->inode_page = NULL;
1340 }
1341
1342 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1343 size_t size)
1344 {
1345 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1346 }
1347
1348 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1349 gfp_t flags)
1350 {
1351 void *entry;
1352
1353 entry = kmem_cache_alloc(cachep, flags);
1354 if (!entry)
1355 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1356 return entry;
1357 }
1358
1359 static inline struct bio *f2fs_bio_alloc(int npages)
1360 {
1361 struct bio *bio;
1362
1363 /* No failure on bio allocation */
1364 bio = bio_alloc(GFP_NOIO, npages);
1365 if (!bio)
1366 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1367 return bio;
1368 }
1369
1370 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1371 unsigned long index, void *item)
1372 {
1373 while (radix_tree_insert(root, index, item))
1374 cond_resched();
1375 }
1376
1377 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1378
1379 static inline bool IS_INODE(struct page *page)
1380 {
1381 struct f2fs_node *p = F2FS_NODE(page);
1382 return RAW_IS_INODE(p);
1383 }
1384
1385 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1386 {
1387 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1388 }
1389
1390 static inline block_t datablock_addr(struct page *node_page,
1391 unsigned int offset)
1392 {
1393 struct f2fs_node *raw_node;
1394 __le32 *addr_array;
1395 raw_node = F2FS_NODE(node_page);
1396 addr_array = blkaddr_in_node(raw_node);
1397 return le32_to_cpu(addr_array[offset]);
1398 }
1399
1400 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1401 {
1402 int mask;
1403
1404 addr += (nr >> 3);
1405 mask = 1 << (7 - (nr & 0x07));
1406 return mask & *addr;
1407 }
1408
1409 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1410 {
1411 int mask;
1412
1413 addr += (nr >> 3);
1414 mask = 1 << (7 - (nr & 0x07));
1415 *addr |= mask;
1416 }
1417
1418 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1419 {
1420 int mask;
1421
1422 addr += (nr >> 3);
1423 mask = 1 << (7 - (nr & 0x07));
1424 *addr &= ~mask;
1425 }
1426
1427 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1428 {
1429 int mask;
1430 int ret;
1431
1432 addr += (nr >> 3);
1433 mask = 1 << (7 - (nr & 0x07));
1434 ret = mask & *addr;
1435 *addr |= mask;
1436 return ret;
1437 }
1438
1439 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1440 {
1441 int mask;
1442 int ret;
1443
1444 addr += (nr >> 3);
1445 mask = 1 << (7 - (nr & 0x07));
1446 ret = mask & *addr;
1447 *addr &= ~mask;
1448 return ret;
1449 }
1450
1451 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1452 {
1453 int mask;
1454
1455 addr += (nr >> 3);
1456 mask = 1 << (7 - (nr & 0x07));
1457 *addr ^= mask;
1458 }
1459
1460 /* used for f2fs_inode_info->flags */
1461 enum {
1462 FI_NEW_INODE, /* indicate newly allocated inode */
1463 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1464 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1465 FI_INC_LINK, /* need to increment i_nlink */
1466 FI_ACL_MODE, /* indicate acl mode */
1467 FI_NO_ALLOC, /* should not allocate any blocks */
1468 FI_FREE_NID, /* free allocated nide */
1469 FI_UPDATE_DIR, /* should update inode block for consistency */
1470 FI_DELAY_IPUT, /* used for the recovery */
1471 FI_NO_EXTENT, /* not to use the extent cache */
1472 FI_INLINE_XATTR, /* used for inline xattr */
1473 FI_INLINE_DATA, /* used for inline data*/
1474 FI_INLINE_DENTRY, /* used for inline dentry */
1475 FI_APPEND_WRITE, /* inode has appended data */
1476 FI_UPDATE_WRITE, /* inode has in-place-update data */
1477 FI_NEED_IPU, /* used for ipu per file */
1478 FI_ATOMIC_FILE, /* indicate atomic file */
1479 FI_VOLATILE_FILE, /* indicate volatile file */
1480 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1481 FI_DROP_CACHE, /* drop dirty page cache */
1482 FI_DATA_EXIST, /* indicate data exists */
1483 FI_INLINE_DOTS, /* indicate inline dot dentries */
1484 FI_DO_DEFRAG, /* indicate defragment is running */
1485 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1486 };
1487
1488 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1489 {
1490 if (!test_bit(flag, &fi->flags))
1491 set_bit(flag, &fi->flags);
1492 }
1493
1494 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1495 {
1496 return test_bit(flag, &fi->flags);
1497 }
1498
1499 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1500 {
1501 if (test_bit(flag, &fi->flags))
1502 clear_bit(flag, &fi->flags);
1503 }
1504
1505 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1506 {
1507 fi->i_acl_mode = mode;
1508 set_inode_flag(fi, FI_ACL_MODE);
1509 }
1510
1511 static inline void get_inline_info(struct f2fs_inode_info *fi,
1512 struct f2fs_inode *ri)
1513 {
1514 if (ri->i_inline & F2FS_INLINE_XATTR)
1515 set_inode_flag(fi, FI_INLINE_XATTR);
1516 if (ri->i_inline & F2FS_INLINE_DATA)
1517 set_inode_flag(fi, FI_INLINE_DATA);
1518 if (ri->i_inline & F2FS_INLINE_DENTRY)
1519 set_inode_flag(fi, FI_INLINE_DENTRY);
1520 if (ri->i_inline & F2FS_DATA_EXIST)
1521 set_inode_flag(fi, FI_DATA_EXIST);
1522 if (ri->i_inline & F2FS_INLINE_DOTS)
1523 set_inode_flag(fi, FI_INLINE_DOTS);
1524 }
1525
1526 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1527 struct f2fs_inode *ri)
1528 {
1529 ri->i_inline = 0;
1530
1531 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1532 ri->i_inline |= F2FS_INLINE_XATTR;
1533 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1534 ri->i_inline |= F2FS_INLINE_DATA;
1535 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1536 ri->i_inline |= F2FS_INLINE_DENTRY;
1537 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1538 ri->i_inline |= F2FS_DATA_EXIST;
1539 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1540 ri->i_inline |= F2FS_INLINE_DOTS;
1541 }
1542
1543 static inline int f2fs_has_inline_xattr(struct inode *inode)
1544 {
1545 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1546 }
1547
1548 static inline unsigned int addrs_per_inode(struct inode *inode)
1549 {
1550 if (f2fs_has_inline_xattr(inode))
1551 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1552 return DEF_ADDRS_PER_INODE;
1553 }
1554
1555 static inline void *inline_xattr_addr(struct page *page)
1556 {
1557 struct f2fs_inode *ri = F2FS_INODE(page);
1558 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1559 F2FS_INLINE_XATTR_ADDRS]);
1560 }
1561
1562 static inline int inline_xattr_size(struct inode *inode)
1563 {
1564 if (f2fs_has_inline_xattr(inode))
1565 return F2FS_INLINE_XATTR_ADDRS << 2;
1566 else
1567 return 0;
1568 }
1569
1570 static inline int f2fs_has_inline_data(struct inode *inode)
1571 {
1572 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1573 }
1574
1575 static inline void f2fs_clear_inline_inode(struct inode *inode)
1576 {
1577 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1578 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1579 }
1580
1581 static inline int f2fs_exist_data(struct inode *inode)
1582 {
1583 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1584 }
1585
1586 static inline int f2fs_has_inline_dots(struct inode *inode)
1587 {
1588 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1589 }
1590
1591 static inline bool f2fs_is_atomic_file(struct inode *inode)
1592 {
1593 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1594 }
1595
1596 static inline bool f2fs_is_volatile_file(struct inode *inode)
1597 {
1598 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1599 }
1600
1601 static inline bool f2fs_is_first_block_written(struct inode *inode)
1602 {
1603 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1604 }
1605
1606 static inline bool f2fs_is_drop_cache(struct inode *inode)
1607 {
1608 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1609 }
1610
1611 static inline void *inline_data_addr(struct page *page)
1612 {
1613 struct f2fs_inode *ri = F2FS_INODE(page);
1614 return (void *)&(ri->i_addr[1]);
1615 }
1616
1617 static inline int f2fs_has_inline_dentry(struct inode *inode)
1618 {
1619 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1620 }
1621
1622 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1623 {
1624 if (!f2fs_has_inline_dentry(dir))
1625 kunmap(page);
1626 }
1627
1628 static inline int is_file(struct inode *inode, int type)
1629 {
1630 return F2FS_I(inode)->i_advise & type;
1631 }
1632
1633 static inline void set_file(struct inode *inode, int type)
1634 {
1635 F2FS_I(inode)->i_advise |= type;
1636 }
1637
1638 static inline void clear_file(struct inode *inode, int type)
1639 {
1640 F2FS_I(inode)->i_advise &= ~type;
1641 }
1642
1643 static inline int f2fs_readonly(struct super_block *sb)
1644 {
1645 return sb->s_flags & MS_RDONLY;
1646 }
1647
1648 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1649 {
1650 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1651 }
1652
1653 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1654 {
1655 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1656 sbi->sb->s_flags |= MS_RDONLY;
1657 }
1658
1659 static inline bool is_dot_dotdot(const struct qstr *str)
1660 {
1661 if (str->len == 1 && str->name[0] == '.')
1662 return true;
1663
1664 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1665 return true;
1666
1667 return false;
1668 }
1669
1670 static inline bool f2fs_may_extent_tree(struct inode *inode)
1671 {
1672 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1673 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1674 return false;
1675
1676 return S_ISREG(inode->i_mode);
1677 }
1678
1679 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1680 {
1681 void *ret;
1682
1683 ret = kmalloc(size, flags | __GFP_NOWARN);
1684 if (!ret)
1685 ret = __vmalloc(size, flags, PAGE_KERNEL);
1686 return ret;
1687 }
1688
1689 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1690 {
1691 void *ret;
1692
1693 ret = kzalloc(size, flags | __GFP_NOWARN);
1694 if (!ret)
1695 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1696 return ret;
1697 }
1698
1699 #define get_inode_mode(i) \
1700 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1701 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1702
1703 /* get offset of first page in next direct node */
1704 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1705 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1706 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1707 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1708
1709 /*
1710 * file.c
1711 */
1712 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1713 void truncate_data_blocks(struct dnode_of_data *);
1714 int truncate_blocks(struct inode *, u64, bool);
1715 int f2fs_truncate(struct inode *, bool);
1716 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1717 int f2fs_setattr(struct dentry *, struct iattr *);
1718 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1719 int truncate_data_blocks_range(struct dnode_of_data *, int);
1720 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1721 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1722
1723 /*
1724 * inode.c
1725 */
1726 void f2fs_set_inode_flags(struct inode *);
1727 struct inode *f2fs_iget(struct super_block *, unsigned long);
1728 int try_to_free_nats(struct f2fs_sb_info *, int);
1729 int update_inode(struct inode *, struct page *);
1730 int update_inode_page(struct inode *);
1731 int f2fs_write_inode(struct inode *, struct writeback_control *);
1732 void f2fs_evict_inode(struct inode *);
1733 void handle_failed_inode(struct inode *);
1734
1735 /*
1736 * namei.c
1737 */
1738 struct dentry *f2fs_get_parent(struct dentry *child);
1739
1740 /*
1741 * dir.c
1742 */
1743 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1744 void set_de_type(struct f2fs_dir_entry *, umode_t);
1745
1746 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1747 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1748 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1749 unsigned int, struct f2fs_str *);
1750 void do_make_empty_dir(struct inode *, struct inode *,
1751 struct f2fs_dentry_ptr *);
1752 struct page *init_inode_metadata(struct inode *, struct inode *,
1753 const struct qstr *, struct page *);
1754 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1755 int room_for_filename(const void *, int, int);
1756 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1757 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1758 struct page **);
1759 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1760 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1761 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1762 struct page *, struct inode *);
1763 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1764 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1765 const struct qstr *, f2fs_hash_t , unsigned int);
1766 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1767 umode_t);
1768 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1769 struct inode *);
1770 int f2fs_do_tmpfile(struct inode *, struct inode *);
1771 bool f2fs_empty_dir(struct inode *);
1772
1773 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1774 {
1775 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1776 inode, inode->i_ino, inode->i_mode);
1777 }
1778
1779 /*
1780 * super.c
1781 */
1782 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1783 int f2fs_sync_fs(struct super_block *, int);
1784 extern __printf(3, 4)
1785 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1786 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1787
1788 /*
1789 * hash.c
1790 */
1791 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1792
1793 /*
1794 * node.c
1795 */
1796 struct dnode_of_data;
1797 struct node_info;
1798
1799 bool available_free_memory(struct f2fs_sb_info *, int);
1800 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1801 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1802 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1803 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1804 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1805 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1806 int truncate_inode_blocks(struct inode *, pgoff_t);
1807 int truncate_xattr_node(struct inode *, struct page *);
1808 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1809 int remove_inode_page(struct inode *);
1810 struct page *new_inode_page(struct inode *);
1811 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1812 void ra_node_page(struct f2fs_sb_info *, nid_t);
1813 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1814 struct page *get_node_page_ra(struct page *, int);
1815 void sync_inode_page(struct dnode_of_data *);
1816 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1817 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1818 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1819 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1820 int try_to_free_nids(struct f2fs_sb_info *, int);
1821 void recover_inline_xattr(struct inode *, struct page *);
1822 void recover_xattr_data(struct inode *, struct page *, block_t);
1823 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1824 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1825 struct f2fs_summary_block *);
1826 void flush_nat_entries(struct f2fs_sb_info *);
1827 int build_node_manager(struct f2fs_sb_info *);
1828 void destroy_node_manager(struct f2fs_sb_info *);
1829 int __init create_node_manager_caches(void);
1830 void destroy_node_manager_caches(void);
1831
1832 /*
1833 * segment.c
1834 */
1835 void register_inmem_page(struct inode *, struct page *);
1836 void drop_inmem_pages(struct inode *);
1837 int commit_inmem_pages(struct inode *);
1838 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1839 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1840 int f2fs_issue_flush(struct f2fs_sb_info *);
1841 int create_flush_cmd_control(struct f2fs_sb_info *);
1842 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1843 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1844 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1845 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1846 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1847 void release_discard_addrs(struct f2fs_sb_info *);
1848 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1849 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1850 void allocate_new_segments(struct f2fs_sb_info *);
1851 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1852 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1853 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1854 void write_meta_page(struct f2fs_sb_info *, struct page *);
1855 void write_node_page(unsigned int, struct f2fs_io_info *);
1856 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1857 void rewrite_data_page(struct f2fs_io_info *);
1858 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1859 block_t, block_t, bool, bool);
1860 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1861 block_t, block_t, unsigned char, bool, bool);
1862 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1863 block_t, block_t *, struct f2fs_summary *, int);
1864 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1865 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1866 void write_data_summaries(struct f2fs_sb_info *, block_t);
1867 void write_node_summaries(struct f2fs_sb_info *, block_t);
1868 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1869 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1870 int build_segment_manager(struct f2fs_sb_info *);
1871 void destroy_segment_manager(struct f2fs_sb_info *);
1872 int __init create_segment_manager_caches(void);
1873 void destroy_segment_manager_caches(void);
1874
1875 /*
1876 * checkpoint.c
1877 */
1878 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1879 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1880 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1881 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1882 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1883 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1884 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1885 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1886 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1887 void release_ino_entry(struct f2fs_sb_info *);
1888 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1889 int acquire_orphan_inode(struct f2fs_sb_info *);
1890 void release_orphan_inode(struct f2fs_sb_info *);
1891 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1892 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1893 int recover_orphan_inodes(struct f2fs_sb_info *);
1894 int get_valid_checkpoint(struct f2fs_sb_info *);
1895 void update_dirty_page(struct inode *, struct page *);
1896 void add_dirty_dir_inode(struct inode *);
1897 void remove_dirty_inode(struct inode *);
1898 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1899 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1900 void init_ino_entry_info(struct f2fs_sb_info *);
1901 int __init create_checkpoint_caches(void);
1902 void destroy_checkpoint_caches(void);
1903
1904 /*
1905 * data.c
1906 */
1907 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1908 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1909 struct page *, nid_t, enum page_type, int);
1910 int f2fs_submit_page_bio(struct f2fs_io_info *);
1911 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1912 void set_data_blkaddr(struct dnode_of_data *);
1913 int reserve_new_block(struct dnode_of_data *);
1914 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1915 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1916 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1917 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1918 struct page *find_data_page(struct inode *, pgoff_t);
1919 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1920 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1921 int do_write_data_page(struct f2fs_io_info *);
1922 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1923 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1924 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1925 int f2fs_release_page(struct page *, gfp_t);
1926
1927 /*
1928 * gc.c
1929 */
1930 int start_gc_thread(struct f2fs_sb_info *);
1931 void stop_gc_thread(struct f2fs_sb_info *);
1932 block_t start_bidx_of_node(unsigned int, struct inode *);
1933 int f2fs_gc(struct f2fs_sb_info *, bool);
1934 void build_gc_manager(struct f2fs_sb_info *);
1935
1936 /*
1937 * recovery.c
1938 */
1939 int recover_fsync_data(struct f2fs_sb_info *);
1940 bool space_for_roll_forward(struct f2fs_sb_info *);
1941
1942 /*
1943 * debug.c
1944 */
1945 #ifdef CONFIG_F2FS_STAT_FS
1946 struct f2fs_stat_info {
1947 struct list_head stat_list;
1948 struct f2fs_sb_info *sbi;
1949 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1950 int main_area_segs, main_area_sections, main_area_zones;
1951 unsigned long long hit_largest, hit_cached, hit_rbtree;
1952 unsigned long long hit_total, total_ext;
1953 int ext_tree, zombie_tree, ext_node;
1954 int ndirty_node, ndirty_meta;
1955 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1956 int nats, dirty_nats, sits, dirty_sits, fnids;
1957 int total_count, utilization;
1958 int bg_gc, inmem_pages, wb_pages;
1959 int inline_xattr, inline_inode, inline_dir;
1960 unsigned int valid_count, valid_node_count, valid_inode_count;
1961 unsigned int bimodal, avg_vblocks;
1962 int util_free, util_valid, util_invalid;
1963 int rsvd_segs, overp_segs;
1964 int dirty_count, node_pages, meta_pages;
1965 int prefree_count, call_count, cp_count, bg_cp_count;
1966 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1967 int bg_node_segs, bg_data_segs;
1968 int tot_blks, data_blks, node_blks;
1969 int bg_data_blks, bg_node_blks;
1970 int curseg[NR_CURSEG_TYPE];
1971 int cursec[NR_CURSEG_TYPE];
1972 int curzone[NR_CURSEG_TYPE];
1973
1974 unsigned int segment_count[2];
1975 unsigned int block_count[2];
1976 unsigned int inplace_count;
1977 unsigned long long base_mem, cache_mem, page_mem;
1978 };
1979
1980 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1981 {
1982 return (struct f2fs_stat_info *)sbi->stat_info;
1983 }
1984
1985 #define stat_inc_cp_count(si) ((si)->cp_count++)
1986 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1987 #define stat_inc_call_count(si) ((si)->call_count++)
1988 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1989 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1990 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1991 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1992 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1993 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1994 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1995 #define stat_inc_inline_xattr(inode) \
1996 do { \
1997 if (f2fs_has_inline_xattr(inode)) \
1998 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1999 } while (0)
2000 #define stat_dec_inline_xattr(inode) \
2001 do { \
2002 if (f2fs_has_inline_xattr(inode)) \
2003 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2004 } while (0)
2005 #define stat_inc_inline_inode(inode) \
2006 do { \
2007 if (f2fs_has_inline_data(inode)) \
2008 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2009 } while (0)
2010 #define stat_dec_inline_inode(inode) \
2011 do { \
2012 if (f2fs_has_inline_data(inode)) \
2013 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2014 } while (0)
2015 #define stat_inc_inline_dir(inode) \
2016 do { \
2017 if (f2fs_has_inline_dentry(inode)) \
2018 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2019 } while (0)
2020 #define stat_dec_inline_dir(inode) \
2021 do { \
2022 if (f2fs_has_inline_dentry(inode)) \
2023 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2024 } while (0)
2025 #define stat_inc_seg_type(sbi, curseg) \
2026 ((sbi)->segment_count[(curseg)->alloc_type]++)
2027 #define stat_inc_block_count(sbi, curseg) \
2028 ((sbi)->block_count[(curseg)->alloc_type]++)
2029 #define stat_inc_inplace_blocks(sbi) \
2030 (atomic_inc(&(sbi)->inplace_count))
2031 #define stat_inc_seg_count(sbi, type, gc_type) \
2032 do { \
2033 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2034 (si)->tot_segs++; \
2035 if (type == SUM_TYPE_DATA) { \
2036 si->data_segs++; \
2037 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2038 } else { \
2039 si->node_segs++; \
2040 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2041 } \
2042 } while (0)
2043
2044 #define stat_inc_tot_blk_count(si, blks) \
2045 (si->tot_blks += (blks))
2046
2047 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2048 do { \
2049 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2050 stat_inc_tot_blk_count(si, blks); \
2051 si->data_blks += (blks); \
2052 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2053 } while (0)
2054
2055 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2056 do { \
2057 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2058 stat_inc_tot_blk_count(si, blks); \
2059 si->node_blks += (blks); \
2060 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2061 } while (0)
2062
2063 int f2fs_build_stats(struct f2fs_sb_info *);
2064 void f2fs_destroy_stats(struct f2fs_sb_info *);
2065 int __init f2fs_create_root_stats(void);
2066 void f2fs_destroy_root_stats(void);
2067 #else
2068 #define stat_inc_cp_count(si)
2069 #define stat_inc_bg_cp_count(si)
2070 #define stat_inc_call_count(si)
2071 #define stat_inc_bggc_count(si)
2072 #define stat_inc_dirty_inode(sbi, type)
2073 #define stat_dec_dirty_inode(sbi, type)
2074 #define stat_inc_total_hit(sb)
2075 #define stat_inc_rbtree_node_hit(sb)
2076 #define stat_inc_largest_node_hit(sbi)
2077 #define stat_inc_cached_node_hit(sbi)
2078 #define stat_inc_inline_xattr(inode)
2079 #define stat_dec_inline_xattr(inode)
2080 #define stat_inc_inline_inode(inode)
2081 #define stat_dec_inline_inode(inode)
2082 #define stat_inc_inline_dir(inode)
2083 #define stat_dec_inline_dir(inode)
2084 #define stat_inc_seg_type(sbi, curseg)
2085 #define stat_inc_block_count(sbi, curseg)
2086 #define stat_inc_inplace_blocks(sbi)
2087 #define stat_inc_seg_count(sbi, type, gc_type)
2088 #define stat_inc_tot_blk_count(si, blks)
2089 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2090 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2091
2092 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2093 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2094 static inline int __init f2fs_create_root_stats(void) { return 0; }
2095 static inline void f2fs_destroy_root_stats(void) { }
2096 #endif
2097
2098 extern const struct file_operations f2fs_dir_operations;
2099 extern const struct file_operations f2fs_file_operations;
2100 extern const struct inode_operations f2fs_file_inode_operations;
2101 extern const struct address_space_operations f2fs_dblock_aops;
2102 extern const struct address_space_operations f2fs_node_aops;
2103 extern const struct address_space_operations f2fs_meta_aops;
2104 extern const struct inode_operations f2fs_dir_inode_operations;
2105 extern const struct inode_operations f2fs_symlink_inode_operations;
2106 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2107 extern const struct inode_operations f2fs_special_inode_operations;
2108 extern struct kmem_cache *inode_entry_slab;
2109
2110 /*
2111 * inline.c
2112 */
2113 bool f2fs_may_inline_data(struct inode *);
2114 bool f2fs_may_inline_dentry(struct inode *);
2115 void read_inline_data(struct page *, struct page *);
2116 bool truncate_inline_inode(struct page *, u64);
2117 int f2fs_read_inline_data(struct inode *, struct page *);
2118 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2119 int f2fs_convert_inline_inode(struct inode *);
2120 int f2fs_write_inline_data(struct inode *, struct page *);
2121 bool recover_inline_data(struct inode *, struct page *);
2122 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2123 struct f2fs_filename *, struct page **);
2124 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2125 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2126 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2127 nid_t, umode_t);
2128 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2129 struct inode *, struct inode *);
2130 bool f2fs_empty_inline_dir(struct inode *);
2131 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2132 struct f2fs_str *);
2133 int f2fs_inline_data_fiemap(struct inode *,
2134 struct fiemap_extent_info *, __u64, __u64);
2135
2136 /*
2137 * shrinker.c
2138 */
2139 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2140 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2141 void f2fs_join_shrinker(struct f2fs_sb_info *);
2142 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2143
2144 /*
2145 * extent_cache.c
2146 */
2147 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2148 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2149 unsigned int f2fs_destroy_extent_node(struct inode *);
2150 void f2fs_destroy_extent_tree(struct inode *);
2151 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2152 void f2fs_update_extent_cache(struct dnode_of_data *);
2153 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2154 pgoff_t, block_t, unsigned int);
2155 void init_extent_cache_info(struct f2fs_sb_info *);
2156 int __init create_extent_cache(void);
2157 void destroy_extent_cache(void);
2158
2159 /*
2160 * crypto support
2161 */
2162 static inline int f2fs_encrypted_inode(struct inode *inode)
2163 {
2164 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2165 return file_is_encrypt(inode);
2166 #else
2167 return 0;
2168 #endif
2169 }
2170
2171 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2172 {
2173 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2174 file_set_encrypt(inode);
2175 #endif
2176 }
2177
2178 static inline bool f2fs_bio_encrypted(struct bio *bio)
2179 {
2180 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2181 return unlikely(bio->bi_private != NULL);
2182 #else
2183 return false;
2184 #endif
2185 }
2186
2187 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2188 {
2189 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2190 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2191 #else
2192 return 0;
2193 #endif
2194 }
2195
2196 static inline bool f2fs_may_encrypt(struct inode *inode)
2197 {
2198 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2199 umode_t mode = inode->i_mode;
2200
2201 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2202 #else
2203 return 0;
2204 #endif
2205 }
2206
2207 /* crypto_policy.c */
2208 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2209 struct inode *);
2210 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2211 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2212 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2213
2214 /* crypt.c */
2215 extern struct kmem_cache *f2fs_crypt_info_cachep;
2216 bool f2fs_valid_contents_enc_mode(uint32_t);
2217 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2218 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2219 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2220 struct page *f2fs_encrypt(struct inode *, struct page *);
2221 int f2fs_decrypt(struct page *);
2222 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2223
2224 /* crypto_key.c */
2225 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2226 int _f2fs_get_encryption_info(struct inode *inode);
2227
2228 /* crypto_fname.c */
2229 bool f2fs_valid_filenames_enc_mode(uint32_t);
2230 u32 f2fs_fname_crypto_round_up(u32, u32);
2231 unsigned f2fs_fname_encrypted_size(struct inode *, u32);
2232 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2233 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2234 const struct f2fs_str *, struct f2fs_str *);
2235 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2236 struct f2fs_str *);
2237
2238 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2239 void f2fs_restore_and_release_control_page(struct page **);
2240 void f2fs_restore_control_page(struct page *);
2241
2242 int __init f2fs_init_crypto(void);
2243 int f2fs_crypto_initialize(void);
2244 void f2fs_exit_crypto(void);
2245
2246 int f2fs_has_encryption_key(struct inode *);
2247
2248 static inline int f2fs_get_encryption_info(struct inode *inode)
2249 {
2250 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2251
2252 if (!ci ||
2253 (ci->ci_keyring_key &&
2254 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2255 (1 << KEY_FLAG_REVOKED) |
2256 (1 << KEY_FLAG_DEAD)))))
2257 return _f2fs_get_encryption_info(inode);
2258 return 0;
2259 }
2260
2261 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2262 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2263 int lookup, struct f2fs_filename *);
2264 void f2fs_fname_free_filename(struct f2fs_filename *);
2265 #else
2266 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2267 static inline void f2fs_restore_control_page(struct page *p) { }
2268
2269 static inline int __init f2fs_init_crypto(void) { return 0; }
2270 static inline void f2fs_exit_crypto(void) { }
2271
2272 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2273 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2274 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2275
2276 static inline int f2fs_fname_setup_filename(struct inode *dir,
2277 const struct qstr *iname,
2278 int lookup, struct f2fs_filename *fname)
2279 {
2280 memset(fname, 0, sizeof(struct f2fs_filename));
2281 fname->usr_fname = iname;
2282 fname->disk_name.name = (unsigned char *)iname->name;
2283 fname->disk_name.len = iname->len;
2284 return 0;
2285 }
2286
2287 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2288 #endif
2289 #endif
This page took 0.081219 seconds and 5 git commands to generate.