f2fs: introduce cp_control structure
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
50 #define F2FS_MOUNT_NOBARRIER 0x00000400
51
52 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
53 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
54 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
55
56 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
57 typecheck(unsigned long long, b) && \
58 ((long long)((a) - (b)) > 0))
59
60 typedef u32 block_t; /*
61 * should not change u32, since it is the on-disk block
62 * address format, __le32.
63 */
64 typedef u32 nid_t;
65
66 struct f2fs_mount_info {
67 unsigned int opt;
68 };
69
70 #define CRCPOLY_LE 0xedb88320
71
72 static inline __u32 f2fs_crc32(void *buf, size_t len)
73 {
74 unsigned char *p = (unsigned char *)buf;
75 __u32 crc = F2FS_SUPER_MAGIC;
76 int i;
77
78 while (len--) {
79 crc ^= *p++;
80 for (i = 0; i < 8; i++)
81 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
82 }
83 return crc;
84 }
85
86 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
87 {
88 return f2fs_crc32(buf, buf_size) == blk_crc;
89 }
90
91 /*
92 * For checkpoint manager
93 */
94 enum {
95 NAT_BITMAP,
96 SIT_BITMAP
97 };
98
99 enum {
100 CP_UMOUNT,
101 CP_SYNC,
102 };
103
104 struct cp_control {
105 int reason;
106 };
107
108 /*
109 * For CP/NAT/SIT/SSA readahead
110 */
111 enum {
112 META_CP,
113 META_NAT,
114 META_SIT,
115 META_SSA,
116 META_POR,
117 };
118
119 /* for the list of ino */
120 enum {
121 ORPHAN_INO, /* for orphan ino list */
122 APPEND_INO, /* for append ino list */
123 UPDATE_INO, /* for update ino list */
124 MAX_INO_ENTRY, /* max. list */
125 };
126
127 struct ino_entry {
128 struct list_head list; /* list head */
129 nid_t ino; /* inode number */
130 };
131
132 /* for the list of directory inodes */
133 struct dir_inode_entry {
134 struct list_head list; /* list head */
135 struct inode *inode; /* vfs inode pointer */
136 };
137
138 /* for the list of blockaddresses to be discarded */
139 struct discard_entry {
140 struct list_head list; /* list head */
141 block_t blkaddr; /* block address to be discarded */
142 int len; /* # of consecutive blocks of the discard */
143 };
144
145 /* for the list of fsync inodes, used only during recovery */
146 struct fsync_inode_entry {
147 struct list_head list; /* list head */
148 struct inode *inode; /* vfs inode pointer */
149 block_t blkaddr; /* block address locating the last fsync */
150 block_t last_dentry; /* block address locating the last dentry */
151 block_t last_inode; /* block address locating the last inode */
152 };
153
154 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
155 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
156
157 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
158 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
159 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
160 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
161
162 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
163 {
164 int before = nats_in_cursum(rs);
165 rs->n_nats = cpu_to_le16(before + i);
166 return before;
167 }
168
169 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
170 {
171 int before = sits_in_cursum(rs);
172 rs->n_sits = cpu_to_le16(before + i);
173 return before;
174 }
175
176 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
177 int type)
178 {
179 if (type == NAT_JOURNAL)
180 return nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES;
181
182 return sits_in_cursum(sum) + size <= SIT_JOURNAL_ENTRIES;
183 }
184
185 /*
186 * ioctl commands
187 */
188 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
189 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
190
191 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
192 /*
193 * ioctl commands in 32 bit emulation
194 */
195 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
196 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
197 #endif
198
199 /*
200 * For INODE and NODE manager
201 */
202 /*
203 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
204 * as its node offset to distinguish from index node blocks.
205 * But some bits are used to mark the node block.
206 */
207 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
208 >> OFFSET_BIT_SHIFT)
209 enum {
210 ALLOC_NODE, /* allocate a new node page if needed */
211 LOOKUP_NODE, /* look up a node without readahead */
212 LOOKUP_NODE_RA, /*
213 * look up a node with readahead called
214 * by get_data_block.
215 */
216 };
217
218 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
219
220 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
221
222 /* for in-memory extent cache entry */
223 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
224
225 struct extent_info {
226 rwlock_t ext_lock; /* rwlock for consistency */
227 unsigned int fofs; /* start offset in a file */
228 u32 blk_addr; /* start block address of the extent */
229 unsigned int len; /* length of the extent */
230 };
231
232 /*
233 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
234 */
235 #define FADVISE_COLD_BIT 0x01
236 #define FADVISE_LOST_PINO_BIT 0x02
237
238 #define DEF_DIR_LEVEL 0
239
240 struct f2fs_inode_info {
241 struct inode vfs_inode; /* serve a vfs inode */
242 unsigned long i_flags; /* keep an inode flags for ioctl */
243 unsigned char i_advise; /* use to give file attribute hints */
244 unsigned char i_dir_level; /* use for dentry level for large dir */
245 unsigned int i_current_depth; /* use only in directory structure */
246 unsigned int i_pino; /* parent inode number */
247 umode_t i_acl_mode; /* keep file acl mode temporarily */
248
249 /* Use below internally in f2fs*/
250 unsigned long flags; /* use to pass per-file flags */
251 struct rw_semaphore i_sem; /* protect fi info */
252 atomic_t dirty_pages; /* # of dirty pages */
253 f2fs_hash_t chash; /* hash value of given file name */
254 unsigned int clevel; /* maximum level of given file name */
255 nid_t i_xattr_nid; /* node id that contains xattrs */
256 unsigned long long xattr_ver; /* cp version of xattr modification */
257 struct extent_info ext; /* in-memory extent cache entry */
258 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
259 };
260
261 static inline void get_extent_info(struct extent_info *ext,
262 struct f2fs_extent i_ext)
263 {
264 write_lock(&ext->ext_lock);
265 ext->fofs = le32_to_cpu(i_ext.fofs);
266 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
267 ext->len = le32_to_cpu(i_ext.len);
268 write_unlock(&ext->ext_lock);
269 }
270
271 static inline void set_raw_extent(struct extent_info *ext,
272 struct f2fs_extent *i_ext)
273 {
274 read_lock(&ext->ext_lock);
275 i_ext->fofs = cpu_to_le32(ext->fofs);
276 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
277 i_ext->len = cpu_to_le32(ext->len);
278 read_unlock(&ext->ext_lock);
279 }
280
281 struct f2fs_nm_info {
282 block_t nat_blkaddr; /* base disk address of NAT */
283 nid_t max_nid; /* maximum possible node ids */
284 nid_t available_nids; /* maximum available node ids */
285 nid_t next_scan_nid; /* the next nid to be scanned */
286 unsigned int ram_thresh; /* control the memory footprint */
287
288 /* NAT cache management */
289 struct radix_tree_root nat_root;/* root of the nat entry cache */
290 rwlock_t nat_tree_lock; /* protect nat_tree_lock */
291 unsigned int nat_cnt; /* the # of cached nat entries */
292 struct list_head nat_entries; /* cached nat entry list (clean) */
293 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
294 struct list_head nat_entry_set; /* nat entry set list */
295 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
296
297 /* free node ids management */
298 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
299 struct list_head free_nid_list; /* a list for free nids */
300 spinlock_t free_nid_list_lock; /* protect free nid list */
301 unsigned int fcnt; /* the number of free node id */
302 struct mutex build_lock; /* lock for build free nids */
303
304 /* for checkpoint */
305 char *nat_bitmap; /* NAT bitmap pointer */
306 int bitmap_size; /* bitmap size */
307 };
308
309 /*
310 * this structure is used as one of function parameters.
311 * all the information are dedicated to a given direct node block determined
312 * by the data offset in a file.
313 */
314 struct dnode_of_data {
315 struct inode *inode; /* vfs inode pointer */
316 struct page *inode_page; /* its inode page, NULL is possible */
317 struct page *node_page; /* cached direct node page */
318 nid_t nid; /* node id of the direct node block */
319 unsigned int ofs_in_node; /* data offset in the node page */
320 bool inode_page_locked; /* inode page is locked or not */
321 block_t data_blkaddr; /* block address of the node block */
322 };
323
324 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
325 struct page *ipage, struct page *npage, nid_t nid)
326 {
327 memset(dn, 0, sizeof(*dn));
328 dn->inode = inode;
329 dn->inode_page = ipage;
330 dn->node_page = npage;
331 dn->nid = nid;
332 }
333
334 /*
335 * For SIT manager
336 *
337 * By default, there are 6 active log areas across the whole main area.
338 * When considering hot and cold data separation to reduce cleaning overhead,
339 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
340 * respectively.
341 * In the current design, you should not change the numbers intentionally.
342 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
343 * logs individually according to the underlying devices. (default: 6)
344 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
345 * data and 8 for node logs.
346 */
347 #define NR_CURSEG_DATA_TYPE (3)
348 #define NR_CURSEG_NODE_TYPE (3)
349 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
350
351 enum {
352 CURSEG_HOT_DATA = 0, /* directory entry blocks */
353 CURSEG_WARM_DATA, /* data blocks */
354 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
355 CURSEG_HOT_NODE, /* direct node blocks of directory files */
356 CURSEG_WARM_NODE, /* direct node blocks of normal files */
357 CURSEG_COLD_NODE, /* indirect node blocks */
358 NO_CHECK_TYPE
359 };
360
361 struct flush_cmd {
362 struct completion wait;
363 struct llist_node llnode;
364 int ret;
365 };
366
367 struct flush_cmd_control {
368 struct task_struct *f2fs_issue_flush; /* flush thread */
369 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
370 struct llist_head issue_list; /* list for command issue */
371 struct llist_node *dispatch_list; /* list for command dispatch */
372 };
373
374 struct f2fs_sm_info {
375 struct sit_info *sit_info; /* whole segment information */
376 struct free_segmap_info *free_info; /* free segment information */
377 struct dirty_seglist_info *dirty_info; /* dirty segment information */
378 struct curseg_info *curseg_array; /* active segment information */
379
380 block_t seg0_blkaddr; /* block address of 0'th segment */
381 block_t main_blkaddr; /* start block address of main area */
382 block_t ssa_blkaddr; /* start block address of SSA area */
383
384 unsigned int segment_count; /* total # of segments */
385 unsigned int main_segments; /* # of segments in main area */
386 unsigned int reserved_segments; /* # of reserved segments */
387 unsigned int ovp_segments; /* # of overprovision segments */
388
389 /* a threshold to reclaim prefree segments */
390 unsigned int rec_prefree_segments;
391
392 /* for small discard management */
393 struct list_head discard_list; /* 4KB discard list */
394 int nr_discards; /* # of discards in the list */
395 int max_discards; /* max. discards to be issued */
396
397 struct list_head sit_entry_set; /* sit entry set list */
398
399 unsigned int ipu_policy; /* in-place-update policy */
400 unsigned int min_ipu_util; /* in-place-update threshold */
401 unsigned int min_fsync_blocks; /* threshold for fsync */
402
403 /* for flush command control */
404 struct flush_cmd_control *cmd_control_info;
405
406 };
407
408 /*
409 * For superblock
410 */
411 /*
412 * COUNT_TYPE for monitoring
413 *
414 * f2fs monitors the number of several block types such as on-writeback,
415 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
416 */
417 enum count_type {
418 F2FS_WRITEBACK,
419 F2FS_DIRTY_DENTS,
420 F2FS_DIRTY_NODES,
421 F2FS_DIRTY_META,
422 NR_COUNT_TYPE,
423 };
424
425 /*
426 * The below are the page types of bios used in submit_bio().
427 * The available types are:
428 * DATA User data pages. It operates as async mode.
429 * NODE Node pages. It operates as async mode.
430 * META FS metadata pages such as SIT, NAT, CP.
431 * NR_PAGE_TYPE The number of page types.
432 * META_FLUSH Make sure the previous pages are written
433 * with waiting the bio's completion
434 * ... Only can be used with META.
435 */
436 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
437 enum page_type {
438 DATA,
439 NODE,
440 META,
441 NR_PAGE_TYPE,
442 META_FLUSH,
443 };
444
445 struct f2fs_io_info {
446 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
447 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
448 };
449
450 #define is_read_io(rw) (((rw) & 1) == READ)
451 struct f2fs_bio_info {
452 struct f2fs_sb_info *sbi; /* f2fs superblock */
453 struct bio *bio; /* bios to merge */
454 sector_t last_block_in_bio; /* last block number */
455 struct f2fs_io_info fio; /* store buffered io info. */
456 struct rw_semaphore io_rwsem; /* blocking op for bio */
457 };
458
459 struct f2fs_sb_info {
460 struct super_block *sb; /* pointer to VFS super block */
461 struct proc_dir_entry *s_proc; /* proc entry */
462 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
463 struct f2fs_super_block *raw_super; /* raw super block pointer */
464 int s_dirty; /* dirty flag for checkpoint */
465 bool need_fsck; /* need fsck.f2fs to fix */
466
467 /* for node-related operations */
468 struct f2fs_nm_info *nm_info; /* node manager */
469 struct inode *node_inode; /* cache node blocks */
470
471 /* for segment-related operations */
472 struct f2fs_sm_info *sm_info; /* segment manager */
473
474 /* for bio operations */
475 struct f2fs_bio_info read_io; /* for read bios */
476 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
477 struct completion *wait_io; /* for completion bios */
478
479 /* for checkpoint */
480 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
481 struct inode *meta_inode; /* cache meta blocks */
482 struct mutex cp_mutex; /* checkpoint procedure lock */
483 struct rw_semaphore cp_rwsem; /* blocking FS operations */
484 struct rw_semaphore node_write; /* locking node writes */
485 struct mutex writepages; /* mutex for writepages() */
486 bool por_doing; /* recovery is doing or not */
487 wait_queue_head_t cp_wait;
488
489 /* for inode management */
490 struct radix_tree_root ino_root[MAX_INO_ENTRY]; /* ino entry array */
491 spinlock_t ino_lock[MAX_INO_ENTRY]; /* for ino entry lock */
492 struct list_head ino_list[MAX_INO_ENTRY]; /* inode list head */
493
494 /* for orphan inode, use 0'th array */
495 unsigned int n_orphans; /* # of orphan inodes */
496 unsigned int max_orphans; /* max orphan inodes */
497
498 /* for directory inode management */
499 struct list_head dir_inode_list; /* dir inode list */
500 spinlock_t dir_inode_lock; /* for dir inode list lock */
501
502 /* basic filesystem units */
503 unsigned int log_sectors_per_block; /* log2 sectors per block */
504 unsigned int log_blocksize; /* log2 block size */
505 unsigned int blocksize; /* block size */
506 unsigned int root_ino_num; /* root inode number*/
507 unsigned int node_ino_num; /* node inode number*/
508 unsigned int meta_ino_num; /* meta inode number*/
509 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
510 unsigned int blocks_per_seg; /* blocks per segment */
511 unsigned int segs_per_sec; /* segments per section */
512 unsigned int secs_per_zone; /* sections per zone */
513 unsigned int total_sections; /* total section count */
514 unsigned int total_node_count; /* total node block count */
515 unsigned int total_valid_node_count; /* valid node block count */
516 unsigned int total_valid_inode_count; /* valid inode count */
517 int active_logs; /* # of active logs */
518 int dir_level; /* directory level */
519
520 block_t user_block_count; /* # of user blocks */
521 block_t total_valid_block_count; /* # of valid blocks */
522 block_t alloc_valid_block_count; /* # of allocated blocks */
523 block_t last_valid_block_count; /* for recovery */
524 u32 s_next_generation; /* for NFS support */
525 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
526
527 struct f2fs_mount_info mount_opt; /* mount options */
528
529 /* for cleaning operations */
530 struct mutex gc_mutex; /* mutex for GC */
531 struct f2fs_gc_kthread *gc_thread; /* GC thread */
532 unsigned int cur_victim_sec; /* current victim section num */
533
534 /* maximum # of trials to find a victim segment for SSR and GC */
535 unsigned int max_victim_search;
536
537 /*
538 * for stat information.
539 * one is for the LFS mode, and the other is for the SSR mode.
540 */
541 #ifdef CONFIG_F2FS_STAT_FS
542 struct f2fs_stat_info *stat_info; /* FS status information */
543 unsigned int segment_count[2]; /* # of allocated segments */
544 unsigned int block_count[2]; /* # of allocated blocks */
545 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
546 int inline_inode; /* # of inline_data inodes */
547 int bg_gc; /* background gc calls */
548 unsigned int n_dirty_dirs; /* # of dir inodes */
549 #endif
550 unsigned int last_victim[2]; /* last victim segment # */
551 spinlock_t stat_lock; /* lock for stat operations */
552
553 /* For sysfs suppport */
554 struct kobject s_kobj;
555 struct completion s_kobj_unregister;
556 };
557
558 /*
559 * Inline functions
560 */
561 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
562 {
563 return container_of(inode, struct f2fs_inode_info, vfs_inode);
564 }
565
566 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
567 {
568 return sb->s_fs_info;
569 }
570
571 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
572 {
573 return F2FS_SB(inode->i_sb);
574 }
575
576 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
577 {
578 return F2FS_I_SB(mapping->host);
579 }
580
581 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
582 {
583 return F2FS_M_SB(page->mapping);
584 }
585
586 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
587 {
588 return (struct f2fs_super_block *)(sbi->raw_super);
589 }
590
591 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
592 {
593 return (struct f2fs_checkpoint *)(sbi->ckpt);
594 }
595
596 static inline struct f2fs_node *F2FS_NODE(struct page *page)
597 {
598 return (struct f2fs_node *)page_address(page);
599 }
600
601 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
602 {
603 return &((struct f2fs_node *)page_address(page))->i;
604 }
605
606 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
607 {
608 return (struct f2fs_nm_info *)(sbi->nm_info);
609 }
610
611 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
612 {
613 return (struct f2fs_sm_info *)(sbi->sm_info);
614 }
615
616 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
617 {
618 return (struct sit_info *)(SM_I(sbi)->sit_info);
619 }
620
621 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
622 {
623 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
624 }
625
626 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
627 {
628 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
629 }
630
631 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
632 {
633 return sbi->meta_inode->i_mapping;
634 }
635
636 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
637 {
638 return sbi->node_inode->i_mapping;
639 }
640
641 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
642 {
643 sbi->s_dirty = 1;
644 }
645
646 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
647 {
648 sbi->s_dirty = 0;
649 }
650
651 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
652 {
653 return le64_to_cpu(cp->checkpoint_ver);
654 }
655
656 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
657 {
658 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
659 return ckpt_flags & f;
660 }
661
662 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
663 {
664 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
665 ckpt_flags |= f;
666 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
667 }
668
669 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
670 {
671 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
672 ckpt_flags &= (~f);
673 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
674 }
675
676 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
677 {
678 down_read(&sbi->cp_rwsem);
679 }
680
681 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
682 {
683 up_read(&sbi->cp_rwsem);
684 }
685
686 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
687 {
688 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
689 }
690
691 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
692 {
693 up_write(&sbi->cp_rwsem);
694 }
695
696 /*
697 * Check whether the given nid is within node id range.
698 */
699 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
700 {
701 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
702 return -EINVAL;
703 if (unlikely(nid >= NM_I(sbi)->max_nid))
704 return -EINVAL;
705 return 0;
706 }
707
708 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
709
710 /*
711 * Check whether the inode has blocks or not
712 */
713 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
714 {
715 if (F2FS_I(inode)->i_xattr_nid)
716 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
717 else
718 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
719 }
720
721 static inline bool f2fs_has_xattr_block(unsigned int ofs)
722 {
723 return ofs == XATTR_NODE_OFFSET;
724 }
725
726 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
727 struct inode *inode, blkcnt_t count)
728 {
729 block_t valid_block_count;
730
731 spin_lock(&sbi->stat_lock);
732 valid_block_count =
733 sbi->total_valid_block_count + (block_t)count;
734 if (unlikely(valid_block_count > sbi->user_block_count)) {
735 spin_unlock(&sbi->stat_lock);
736 return false;
737 }
738 inode->i_blocks += count;
739 sbi->total_valid_block_count = valid_block_count;
740 sbi->alloc_valid_block_count += (block_t)count;
741 spin_unlock(&sbi->stat_lock);
742 return true;
743 }
744
745 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
746 struct inode *inode,
747 blkcnt_t count)
748 {
749 spin_lock(&sbi->stat_lock);
750 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
751 f2fs_bug_on(sbi, inode->i_blocks < count);
752 inode->i_blocks -= count;
753 sbi->total_valid_block_count -= (block_t)count;
754 spin_unlock(&sbi->stat_lock);
755 }
756
757 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
758 {
759 atomic_inc(&sbi->nr_pages[count_type]);
760 F2FS_SET_SB_DIRT(sbi);
761 }
762
763 static inline void inode_inc_dirty_pages(struct inode *inode)
764 {
765 atomic_inc(&F2FS_I(inode)->dirty_pages);
766 if (S_ISDIR(inode->i_mode))
767 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
768 }
769
770 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
771 {
772 atomic_dec(&sbi->nr_pages[count_type]);
773 }
774
775 static inline void inode_dec_dirty_pages(struct inode *inode)
776 {
777 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
778 return;
779
780 atomic_dec(&F2FS_I(inode)->dirty_pages);
781
782 if (S_ISDIR(inode->i_mode))
783 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
784 }
785
786 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
787 {
788 return atomic_read(&sbi->nr_pages[count_type]);
789 }
790
791 static inline int get_dirty_pages(struct inode *inode)
792 {
793 return atomic_read(&F2FS_I(inode)->dirty_pages);
794 }
795
796 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
797 {
798 unsigned int pages_per_sec = sbi->segs_per_sec *
799 (1 << sbi->log_blocks_per_seg);
800 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
801 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
802 }
803
804 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
805 {
806 return sbi->total_valid_block_count;
807 }
808
809 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
810 {
811 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
812
813 /* return NAT or SIT bitmap */
814 if (flag == NAT_BITMAP)
815 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
816 else if (flag == SIT_BITMAP)
817 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
818
819 return 0;
820 }
821
822 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
823 {
824 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
825 int offset;
826
827 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
828 if (flag == NAT_BITMAP)
829 return &ckpt->sit_nat_version_bitmap;
830 else
831 return (unsigned char *)ckpt + F2FS_BLKSIZE;
832 } else {
833 offset = (flag == NAT_BITMAP) ?
834 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
835 return &ckpt->sit_nat_version_bitmap + offset;
836 }
837 }
838
839 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
840 {
841 block_t start_addr;
842 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
843 unsigned long long ckpt_version = cur_cp_version(ckpt);
844
845 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
846
847 /*
848 * odd numbered checkpoint should at cp segment 0
849 * and even segment must be at cp segment 1
850 */
851 if (!(ckpt_version & 1))
852 start_addr += sbi->blocks_per_seg;
853
854 return start_addr;
855 }
856
857 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
858 {
859 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
860 }
861
862 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
863 struct inode *inode)
864 {
865 block_t valid_block_count;
866 unsigned int valid_node_count;
867
868 spin_lock(&sbi->stat_lock);
869
870 valid_block_count = sbi->total_valid_block_count + 1;
871 if (unlikely(valid_block_count > sbi->user_block_count)) {
872 spin_unlock(&sbi->stat_lock);
873 return false;
874 }
875
876 valid_node_count = sbi->total_valid_node_count + 1;
877 if (unlikely(valid_node_count > sbi->total_node_count)) {
878 spin_unlock(&sbi->stat_lock);
879 return false;
880 }
881
882 if (inode)
883 inode->i_blocks++;
884
885 sbi->alloc_valid_block_count++;
886 sbi->total_valid_node_count++;
887 sbi->total_valid_block_count++;
888 spin_unlock(&sbi->stat_lock);
889
890 return true;
891 }
892
893 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
894 struct inode *inode)
895 {
896 spin_lock(&sbi->stat_lock);
897
898 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
899 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
900 f2fs_bug_on(sbi, !inode->i_blocks);
901
902 inode->i_blocks--;
903 sbi->total_valid_node_count--;
904 sbi->total_valid_block_count--;
905
906 spin_unlock(&sbi->stat_lock);
907 }
908
909 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
910 {
911 return sbi->total_valid_node_count;
912 }
913
914 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
915 {
916 spin_lock(&sbi->stat_lock);
917 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
918 sbi->total_valid_inode_count++;
919 spin_unlock(&sbi->stat_lock);
920 }
921
922 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
923 {
924 spin_lock(&sbi->stat_lock);
925 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
926 sbi->total_valid_inode_count--;
927 spin_unlock(&sbi->stat_lock);
928 }
929
930 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
931 {
932 return sbi->total_valid_inode_count;
933 }
934
935 static inline void f2fs_put_page(struct page *page, int unlock)
936 {
937 if (!page)
938 return;
939
940 if (unlock) {
941 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
942 unlock_page(page);
943 }
944 page_cache_release(page);
945 }
946
947 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
948 {
949 if (dn->node_page)
950 f2fs_put_page(dn->node_page, 1);
951 if (dn->inode_page && dn->node_page != dn->inode_page)
952 f2fs_put_page(dn->inode_page, 0);
953 dn->node_page = NULL;
954 dn->inode_page = NULL;
955 }
956
957 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
958 size_t size)
959 {
960 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
961 }
962
963 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
964 gfp_t flags)
965 {
966 void *entry;
967 retry:
968 entry = kmem_cache_alloc(cachep, flags);
969 if (!entry) {
970 cond_resched();
971 goto retry;
972 }
973
974 return entry;
975 }
976
977 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
978
979 static inline bool IS_INODE(struct page *page)
980 {
981 struct f2fs_node *p = F2FS_NODE(page);
982 return RAW_IS_INODE(p);
983 }
984
985 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
986 {
987 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
988 }
989
990 static inline block_t datablock_addr(struct page *node_page,
991 unsigned int offset)
992 {
993 struct f2fs_node *raw_node;
994 __le32 *addr_array;
995 raw_node = F2FS_NODE(node_page);
996 addr_array = blkaddr_in_node(raw_node);
997 return le32_to_cpu(addr_array[offset]);
998 }
999
1000 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1001 {
1002 int mask;
1003
1004 addr += (nr >> 3);
1005 mask = 1 << (7 - (nr & 0x07));
1006 return mask & *addr;
1007 }
1008
1009 static inline int f2fs_set_bit(unsigned int nr, char *addr)
1010 {
1011 int mask;
1012 int ret;
1013
1014 addr += (nr >> 3);
1015 mask = 1 << (7 - (nr & 0x07));
1016 ret = mask & *addr;
1017 *addr |= mask;
1018 return ret;
1019 }
1020
1021 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
1022 {
1023 int mask;
1024 int ret;
1025
1026 addr += (nr >> 3);
1027 mask = 1 << (7 - (nr & 0x07));
1028 ret = mask & *addr;
1029 *addr &= ~mask;
1030 return ret;
1031 }
1032
1033 /* used for f2fs_inode_info->flags */
1034 enum {
1035 FI_NEW_INODE, /* indicate newly allocated inode */
1036 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1037 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1038 FI_INC_LINK, /* need to increment i_nlink */
1039 FI_ACL_MODE, /* indicate acl mode */
1040 FI_NO_ALLOC, /* should not allocate any blocks */
1041 FI_UPDATE_DIR, /* should update inode block for consistency */
1042 FI_DELAY_IPUT, /* used for the recovery */
1043 FI_NO_EXTENT, /* not to use the extent cache */
1044 FI_INLINE_XATTR, /* used for inline xattr */
1045 FI_INLINE_DATA, /* used for inline data*/
1046 FI_APPEND_WRITE, /* inode has appended data */
1047 FI_UPDATE_WRITE, /* inode has in-place-update data */
1048 FI_NEED_IPU, /* used fo ipu for fdatasync */
1049 };
1050
1051 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1052 {
1053 if (!test_bit(flag, &fi->flags))
1054 set_bit(flag, &fi->flags);
1055 }
1056
1057 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1058 {
1059 return test_bit(flag, &fi->flags);
1060 }
1061
1062 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1063 {
1064 if (test_bit(flag, &fi->flags))
1065 clear_bit(flag, &fi->flags);
1066 }
1067
1068 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1069 {
1070 fi->i_acl_mode = mode;
1071 set_inode_flag(fi, FI_ACL_MODE);
1072 }
1073
1074 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1075 {
1076 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
1077 clear_inode_flag(fi, FI_ACL_MODE);
1078 return 1;
1079 }
1080 return 0;
1081 }
1082
1083 static inline void get_inline_info(struct f2fs_inode_info *fi,
1084 struct f2fs_inode *ri)
1085 {
1086 if (ri->i_inline & F2FS_INLINE_XATTR)
1087 set_inode_flag(fi, FI_INLINE_XATTR);
1088 if (ri->i_inline & F2FS_INLINE_DATA)
1089 set_inode_flag(fi, FI_INLINE_DATA);
1090 }
1091
1092 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1093 struct f2fs_inode *ri)
1094 {
1095 ri->i_inline = 0;
1096
1097 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1098 ri->i_inline |= F2FS_INLINE_XATTR;
1099 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1100 ri->i_inline |= F2FS_INLINE_DATA;
1101 }
1102
1103 static inline int f2fs_has_inline_xattr(struct inode *inode)
1104 {
1105 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1106 }
1107
1108 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1109 {
1110 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1111 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1112 return DEF_ADDRS_PER_INODE;
1113 }
1114
1115 static inline void *inline_xattr_addr(struct page *page)
1116 {
1117 struct f2fs_inode *ri = F2FS_INODE(page);
1118 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1119 F2FS_INLINE_XATTR_ADDRS]);
1120 }
1121
1122 static inline int inline_xattr_size(struct inode *inode)
1123 {
1124 if (f2fs_has_inline_xattr(inode))
1125 return F2FS_INLINE_XATTR_ADDRS << 2;
1126 else
1127 return 0;
1128 }
1129
1130 static inline int f2fs_has_inline_data(struct inode *inode)
1131 {
1132 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1133 }
1134
1135 static inline void *inline_data_addr(struct page *page)
1136 {
1137 struct f2fs_inode *ri = F2FS_INODE(page);
1138 return (void *)&(ri->i_addr[1]);
1139 }
1140
1141 static inline int f2fs_readonly(struct super_block *sb)
1142 {
1143 return sb->s_flags & MS_RDONLY;
1144 }
1145
1146 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1147 {
1148 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1149 }
1150
1151 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1152 {
1153 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1154 sbi->sb->s_flags |= MS_RDONLY;
1155 }
1156
1157 #define get_inode_mode(i) \
1158 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1159 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1160
1161 /* get offset of first page in next direct node */
1162 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1163 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1164 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1165 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1166
1167 /*
1168 * file.c
1169 */
1170 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1171 void truncate_data_blocks(struct dnode_of_data *);
1172 int truncate_blocks(struct inode *, u64, bool);
1173 void f2fs_truncate(struct inode *);
1174 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1175 int f2fs_setattr(struct dentry *, struct iattr *);
1176 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1177 int truncate_data_blocks_range(struct dnode_of_data *, int);
1178 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1179 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1180
1181 /*
1182 * inode.c
1183 */
1184 void f2fs_set_inode_flags(struct inode *);
1185 struct inode *f2fs_iget(struct super_block *, unsigned long);
1186 int try_to_free_nats(struct f2fs_sb_info *, int);
1187 void update_inode(struct inode *, struct page *);
1188 void update_inode_page(struct inode *);
1189 int f2fs_write_inode(struct inode *, struct writeback_control *);
1190 void f2fs_evict_inode(struct inode *);
1191
1192 /*
1193 * namei.c
1194 */
1195 struct dentry *f2fs_get_parent(struct dentry *child);
1196
1197 /*
1198 * dir.c
1199 */
1200 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1201 struct page **);
1202 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1203 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1204 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1205 struct page *, struct inode *);
1206 int update_dent_inode(struct inode *, const struct qstr *);
1207 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1208 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
1209 int f2fs_do_tmpfile(struct inode *, struct inode *);
1210 int f2fs_make_empty(struct inode *, struct inode *);
1211 bool f2fs_empty_dir(struct inode *);
1212
1213 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1214 {
1215 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1216 inode);
1217 }
1218
1219 /*
1220 * super.c
1221 */
1222 int f2fs_sync_fs(struct super_block *, int);
1223 extern __printf(3, 4)
1224 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1225
1226 /*
1227 * hash.c
1228 */
1229 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1230
1231 /*
1232 * node.c
1233 */
1234 struct dnode_of_data;
1235 struct node_info;
1236
1237 bool available_free_memory(struct f2fs_sb_info *, int);
1238 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1239 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1240 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1241 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1242 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1243 int truncate_inode_blocks(struct inode *, pgoff_t);
1244 int truncate_xattr_node(struct inode *, struct page *);
1245 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1246 void remove_inode_page(struct inode *);
1247 struct page *new_inode_page(struct inode *);
1248 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1249 void ra_node_page(struct f2fs_sb_info *, nid_t);
1250 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1251 struct page *get_node_page_ra(struct page *, int);
1252 void sync_inode_page(struct dnode_of_data *);
1253 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1254 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1255 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1256 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1257 void recover_inline_xattr(struct inode *, struct page *);
1258 void recover_xattr_data(struct inode *, struct page *, block_t);
1259 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1260 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1261 struct f2fs_summary_block *);
1262 void flush_nat_entries(struct f2fs_sb_info *);
1263 int build_node_manager(struct f2fs_sb_info *);
1264 void destroy_node_manager(struct f2fs_sb_info *);
1265 int __init create_node_manager_caches(void);
1266 void destroy_node_manager_caches(void);
1267
1268 /*
1269 * segment.c
1270 */
1271 void f2fs_balance_fs(struct f2fs_sb_info *);
1272 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1273 int f2fs_issue_flush(struct f2fs_sb_info *);
1274 int create_flush_cmd_control(struct f2fs_sb_info *);
1275 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1276 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1277 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1278 void clear_prefree_segments(struct f2fs_sb_info *);
1279 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1280 int npages_for_summary_flush(struct f2fs_sb_info *);
1281 void allocate_new_segments(struct f2fs_sb_info *);
1282 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1283 void write_meta_page(struct f2fs_sb_info *, struct page *);
1284 void write_node_page(struct f2fs_sb_info *, struct page *,
1285 struct f2fs_io_info *, unsigned int, block_t, block_t *);
1286 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1287 struct f2fs_io_info *);
1288 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1289 void recover_data_page(struct f2fs_sb_info *, struct page *,
1290 struct f2fs_summary *, block_t, block_t);
1291 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1292 block_t, block_t *, struct f2fs_summary *, int);
1293 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1294 void write_data_summaries(struct f2fs_sb_info *, block_t);
1295 void write_node_summaries(struct f2fs_sb_info *, block_t);
1296 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1297 int, unsigned int, int);
1298 void flush_sit_entries(struct f2fs_sb_info *);
1299 int build_segment_manager(struct f2fs_sb_info *);
1300 void destroy_segment_manager(struct f2fs_sb_info *);
1301 int __init create_segment_manager_caches(void);
1302 void destroy_segment_manager_caches(void);
1303
1304 /*
1305 * checkpoint.c
1306 */
1307 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1308 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1309 struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t);
1310 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1311 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1312 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1313 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1314 void release_dirty_inode(struct f2fs_sb_info *);
1315 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1316 int acquire_orphan_inode(struct f2fs_sb_info *);
1317 void release_orphan_inode(struct f2fs_sb_info *);
1318 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1319 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1320 void recover_orphan_inodes(struct f2fs_sb_info *);
1321 int get_valid_checkpoint(struct f2fs_sb_info *);
1322 void update_dirty_page(struct inode *, struct page *);
1323 void add_dirty_dir_inode(struct inode *);
1324 void remove_dirty_dir_inode(struct inode *);
1325 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1326 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1327 void init_ino_entry_info(struct f2fs_sb_info *);
1328 int __init create_checkpoint_caches(void);
1329 void destroy_checkpoint_caches(void);
1330
1331 /*
1332 * data.c
1333 */
1334 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1335 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1336 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1337 struct f2fs_io_info *);
1338 int reserve_new_block(struct dnode_of_data *);
1339 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1340 void update_extent_cache(block_t, struct dnode_of_data *);
1341 struct page *find_data_page(struct inode *, pgoff_t, bool);
1342 struct page *get_lock_data_page(struct inode *, pgoff_t);
1343 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1344 int do_write_data_page(struct page *, struct f2fs_io_info *);
1345 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1346
1347 /*
1348 * gc.c
1349 */
1350 int start_gc_thread(struct f2fs_sb_info *);
1351 void stop_gc_thread(struct f2fs_sb_info *);
1352 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1353 int f2fs_gc(struct f2fs_sb_info *);
1354 void build_gc_manager(struct f2fs_sb_info *);
1355 int __init create_gc_caches(void);
1356 void destroy_gc_caches(void);
1357
1358 /*
1359 * recovery.c
1360 */
1361 int recover_fsync_data(struct f2fs_sb_info *);
1362 bool space_for_roll_forward(struct f2fs_sb_info *);
1363
1364 /*
1365 * debug.c
1366 */
1367 #ifdef CONFIG_F2FS_STAT_FS
1368 struct f2fs_stat_info {
1369 struct list_head stat_list;
1370 struct f2fs_sb_info *sbi;
1371 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1372 int main_area_segs, main_area_sections, main_area_zones;
1373 int hit_ext, total_ext;
1374 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1375 int nats, sits, fnids;
1376 int total_count, utilization;
1377 int bg_gc, inline_inode;
1378 unsigned int valid_count, valid_node_count, valid_inode_count;
1379 unsigned int bimodal, avg_vblocks;
1380 int util_free, util_valid, util_invalid;
1381 int rsvd_segs, overp_segs;
1382 int dirty_count, node_pages, meta_pages;
1383 int prefree_count, call_count, cp_count;
1384 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1385 int tot_blks, data_blks, node_blks;
1386 int curseg[NR_CURSEG_TYPE];
1387 int cursec[NR_CURSEG_TYPE];
1388 int curzone[NR_CURSEG_TYPE];
1389
1390 unsigned int segment_count[2];
1391 unsigned int block_count[2];
1392 unsigned base_mem, cache_mem;
1393 };
1394
1395 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1396 {
1397 return (struct f2fs_stat_info *)sbi->stat_info;
1398 }
1399
1400 #define stat_inc_cp_count(si) ((si)->cp_count++)
1401 #define stat_inc_call_count(si) ((si)->call_count++)
1402 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1403 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1404 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1405 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1406 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1407 #define stat_inc_inline_inode(inode) \
1408 do { \
1409 if (f2fs_has_inline_data(inode)) \
1410 ((F2FS_I_SB(inode))->inline_inode++); \
1411 } while (0)
1412 #define stat_dec_inline_inode(inode) \
1413 do { \
1414 if (f2fs_has_inline_data(inode)) \
1415 ((F2FS_I_SB(inode))->inline_inode--); \
1416 } while (0)
1417
1418 #define stat_inc_seg_type(sbi, curseg) \
1419 ((sbi)->segment_count[(curseg)->alloc_type]++)
1420 #define stat_inc_block_count(sbi, curseg) \
1421 ((sbi)->block_count[(curseg)->alloc_type]++)
1422
1423 #define stat_inc_seg_count(sbi, type) \
1424 do { \
1425 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1426 (si)->tot_segs++; \
1427 if (type == SUM_TYPE_DATA) \
1428 si->data_segs++; \
1429 else \
1430 si->node_segs++; \
1431 } while (0)
1432
1433 #define stat_inc_tot_blk_count(si, blks) \
1434 (si->tot_blks += (blks))
1435
1436 #define stat_inc_data_blk_count(sbi, blks) \
1437 do { \
1438 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1439 stat_inc_tot_blk_count(si, blks); \
1440 si->data_blks += (blks); \
1441 } while (0)
1442
1443 #define stat_inc_node_blk_count(sbi, blks) \
1444 do { \
1445 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1446 stat_inc_tot_blk_count(si, blks); \
1447 si->node_blks += (blks); \
1448 } while (0)
1449
1450 int f2fs_build_stats(struct f2fs_sb_info *);
1451 void f2fs_destroy_stats(struct f2fs_sb_info *);
1452 void __init f2fs_create_root_stats(void);
1453 void f2fs_destroy_root_stats(void);
1454 #else
1455 #define stat_inc_cp_count(si)
1456 #define stat_inc_call_count(si)
1457 #define stat_inc_bggc_count(si)
1458 #define stat_inc_dirty_dir(sbi)
1459 #define stat_dec_dirty_dir(sbi)
1460 #define stat_inc_total_hit(sb)
1461 #define stat_inc_read_hit(sb)
1462 #define stat_inc_inline_inode(inode)
1463 #define stat_dec_inline_inode(inode)
1464 #define stat_inc_seg_type(sbi, curseg)
1465 #define stat_inc_block_count(sbi, curseg)
1466 #define stat_inc_seg_count(si, type)
1467 #define stat_inc_tot_blk_count(si, blks)
1468 #define stat_inc_data_blk_count(si, blks)
1469 #define stat_inc_node_blk_count(sbi, blks)
1470
1471 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1472 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1473 static inline void __init f2fs_create_root_stats(void) { }
1474 static inline void f2fs_destroy_root_stats(void) { }
1475 #endif
1476
1477 extern const struct file_operations f2fs_dir_operations;
1478 extern const struct file_operations f2fs_file_operations;
1479 extern const struct inode_operations f2fs_file_inode_operations;
1480 extern const struct address_space_operations f2fs_dblock_aops;
1481 extern const struct address_space_operations f2fs_node_aops;
1482 extern const struct address_space_operations f2fs_meta_aops;
1483 extern const struct inode_operations f2fs_dir_inode_operations;
1484 extern const struct inode_operations f2fs_symlink_inode_operations;
1485 extern const struct inode_operations f2fs_special_inode_operations;
1486
1487 /*
1488 * inline.c
1489 */
1490 bool f2fs_may_inline(struct inode *);
1491 int f2fs_read_inline_data(struct inode *, struct page *);
1492 int f2fs_convert_inline_data(struct inode *, pgoff_t, struct page *);
1493 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
1494 void truncate_inline_data(struct inode *, u64);
1495 bool recover_inline_data(struct inode *, struct page *);
1496 #endif
This page took 0.062062 seconds and 5 git commands to generate.