ovl: pass dentry into ovl_dir_read_merged()
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
50 #define F2FS_MOUNT_NOBARRIER 0x00000400
51
52 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
53 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
54 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
55
56 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
57 typecheck(unsigned long long, b) && \
58 ((long long)((a) - (b)) > 0))
59
60 typedef u32 block_t; /*
61 * should not change u32, since it is the on-disk block
62 * address format, __le32.
63 */
64 typedef u32 nid_t;
65
66 struct f2fs_mount_info {
67 unsigned int opt;
68 };
69
70 #define CRCPOLY_LE 0xedb88320
71
72 static inline __u32 f2fs_crc32(void *buf, size_t len)
73 {
74 unsigned char *p = (unsigned char *)buf;
75 __u32 crc = F2FS_SUPER_MAGIC;
76 int i;
77
78 while (len--) {
79 crc ^= *p++;
80 for (i = 0; i < 8; i++)
81 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
82 }
83 return crc;
84 }
85
86 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
87 {
88 return f2fs_crc32(buf, buf_size) == blk_crc;
89 }
90
91 /*
92 * For checkpoint manager
93 */
94 enum {
95 NAT_BITMAP,
96 SIT_BITMAP
97 };
98
99 enum {
100 CP_UMOUNT,
101 CP_SYNC,
102 CP_DISCARD,
103 };
104
105 struct cp_control {
106 int reason;
107 __u64 trim_start;
108 __u64 trim_end;
109 __u64 trim_minlen;
110 __u64 trimmed;
111 };
112
113 /*
114 * For CP/NAT/SIT/SSA readahead
115 */
116 enum {
117 META_CP,
118 META_NAT,
119 META_SIT,
120 META_SSA,
121 META_POR,
122 };
123
124 /* for the list of ino */
125 enum {
126 ORPHAN_INO, /* for orphan ino list */
127 APPEND_INO, /* for append ino list */
128 UPDATE_INO, /* for update ino list */
129 MAX_INO_ENTRY, /* max. list */
130 };
131
132 struct ino_entry {
133 struct list_head list; /* list head */
134 nid_t ino; /* inode number */
135 };
136
137 /* for the list of directory inodes */
138 struct dir_inode_entry {
139 struct list_head list; /* list head */
140 struct inode *inode; /* vfs inode pointer */
141 };
142
143 /* for the list of blockaddresses to be discarded */
144 struct discard_entry {
145 struct list_head list; /* list head */
146 block_t blkaddr; /* block address to be discarded */
147 int len; /* # of consecutive blocks of the discard */
148 };
149
150 /* for the list of fsync inodes, used only during recovery */
151 struct fsync_inode_entry {
152 struct list_head list; /* list head */
153 struct inode *inode; /* vfs inode pointer */
154 block_t blkaddr; /* block address locating the last fsync */
155 block_t last_dentry; /* block address locating the last dentry */
156 block_t last_inode; /* block address locating the last inode */
157 };
158
159 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
160 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
161
162 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
163 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
164 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
165 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
166
167 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
168 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
169
170 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
171 {
172 int before = nats_in_cursum(rs);
173 rs->n_nats = cpu_to_le16(before + i);
174 return before;
175 }
176
177 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
178 {
179 int before = sits_in_cursum(rs);
180 rs->n_sits = cpu_to_le16(before + i);
181 return before;
182 }
183
184 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
185 int type)
186 {
187 if (type == NAT_JOURNAL)
188 return size <= MAX_NAT_JENTRIES(sum);
189 return size <= MAX_SIT_JENTRIES(sum);
190 }
191
192 /*
193 * ioctl commands
194 */
195 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
196 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
197
198 #define F2FS_IOCTL_MAGIC 0xf5
199 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
200 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
201 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
202
203 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
204 /*
205 * ioctl commands in 32 bit emulation
206 */
207 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
208 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
209 #endif
210
211 /*
212 * For INODE and NODE manager
213 */
214 /*
215 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
216 * as its node offset to distinguish from index node blocks.
217 * But some bits are used to mark the node block.
218 */
219 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
220 >> OFFSET_BIT_SHIFT)
221 enum {
222 ALLOC_NODE, /* allocate a new node page if needed */
223 LOOKUP_NODE, /* look up a node without readahead */
224 LOOKUP_NODE_RA, /*
225 * look up a node with readahead called
226 * by get_data_block.
227 */
228 };
229
230 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
231
232 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
233
234 /* for in-memory extent cache entry */
235 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
236
237 struct extent_info {
238 rwlock_t ext_lock; /* rwlock for consistency */
239 unsigned int fofs; /* start offset in a file */
240 u32 blk_addr; /* start block address of the extent */
241 unsigned int len; /* length of the extent */
242 };
243
244 /*
245 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
246 */
247 #define FADVISE_COLD_BIT 0x01
248 #define FADVISE_LOST_PINO_BIT 0x02
249
250 #define DEF_DIR_LEVEL 0
251
252 struct f2fs_inode_info {
253 struct inode vfs_inode; /* serve a vfs inode */
254 unsigned long i_flags; /* keep an inode flags for ioctl */
255 unsigned char i_advise; /* use to give file attribute hints */
256 unsigned char i_dir_level; /* use for dentry level for large dir */
257 unsigned int i_current_depth; /* use only in directory structure */
258 unsigned int i_pino; /* parent inode number */
259 umode_t i_acl_mode; /* keep file acl mode temporarily */
260
261 /* Use below internally in f2fs*/
262 unsigned long flags; /* use to pass per-file flags */
263 struct rw_semaphore i_sem; /* protect fi info */
264 atomic_t dirty_pages; /* # of dirty pages */
265 f2fs_hash_t chash; /* hash value of given file name */
266 unsigned int clevel; /* maximum level of given file name */
267 nid_t i_xattr_nid; /* node id that contains xattrs */
268 unsigned long long xattr_ver; /* cp version of xattr modification */
269 struct extent_info ext; /* in-memory extent cache entry */
270 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
271
272 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
273 struct mutex inmem_lock; /* lock for inmemory pages */
274 };
275
276 static inline void get_extent_info(struct extent_info *ext,
277 struct f2fs_extent i_ext)
278 {
279 write_lock(&ext->ext_lock);
280 ext->fofs = le32_to_cpu(i_ext.fofs);
281 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
282 ext->len = le32_to_cpu(i_ext.len);
283 write_unlock(&ext->ext_lock);
284 }
285
286 static inline void set_raw_extent(struct extent_info *ext,
287 struct f2fs_extent *i_ext)
288 {
289 read_lock(&ext->ext_lock);
290 i_ext->fofs = cpu_to_le32(ext->fofs);
291 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
292 i_ext->len = cpu_to_le32(ext->len);
293 read_unlock(&ext->ext_lock);
294 }
295
296 struct f2fs_nm_info {
297 block_t nat_blkaddr; /* base disk address of NAT */
298 nid_t max_nid; /* maximum possible node ids */
299 nid_t available_nids; /* maximum available node ids */
300 nid_t next_scan_nid; /* the next nid to be scanned */
301 unsigned int ram_thresh; /* control the memory footprint */
302
303 /* NAT cache management */
304 struct radix_tree_root nat_root;/* root of the nat entry cache */
305 struct radix_tree_root nat_set_root;/* root of the nat set cache */
306 rwlock_t nat_tree_lock; /* protect nat_tree_lock */
307 struct list_head nat_entries; /* cached nat entry list (clean) */
308 unsigned int nat_cnt; /* the # of cached nat entries */
309 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
310
311 /* free node ids management */
312 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
313 struct list_head free_nid_list; /* a list for free nids */
314 spinlock_t free_nid_list_lock; /* protect free nid list */
315 unsigned int fcnt; /* the number of free node id */
316 struct mutex build_lock; /* lock for build free nids */
317
318 /* for checkpoint */
319 char *nat_bitmap; /* NAT bitmap pointer */
320 int bitmap_size; /* bitmap size */
321 };
322
323 /*
324 * this structure is used as one of function parameters.
325 * all the information are dedicated to a given direct node block determined
326 * by the data offset in a file.
327 */
328 struct dnode_of_data {
329 struct inode *inode; /* vfs inode pointer */
330 struct page *inode_page; /* its inode page, NULL is possible */
331 struct page *node_page; /* cached direct node page */
332 nid_t nid; /* node id of the direct node block */
333 unsigned int ofs_in_node; /* data offset in the node page */
334 bool inode_page_locked; /* inode page is locked or not */
335 block_t data_blkaddr; /* block address of the node block */
336 };
337
338 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
339 struct page *ipage, struct page *npage, nid_t nid)
340 {
341 memset(dn, 0, sizeof(*dn));
342 dn->inode = inode;
343 dn->inode_page = ipage;
344 dn->node_page = npage;
345 dn->nid = nid;
346 }
347
348 /*
349 * For SIT manager
350 *
351 * By default, there are 6 active log areas across the whole main area.
352 * When considering hot and cold data separation to reduce cleaning overhead,
353 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
354 * respectively.
355 * In the current design, you should not change the numbers intentionally.
356 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
357 * logs individually according to the underlying devices. (default: 6)
358 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
359 * data and 8 for node logs.
360 */
361 #define NR_CURSEG_DATA_TYPE (3)
362 #define NR_CURSEG_NODE_TYPE (3)
363 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
364
365 enum {
366 CURSEG_HOT_DATA = 0, /* directory entry blocks */
367 CURSEG_WARM_DATA, /* data blocks */
368 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
369 CURSEG_HOT_NODE, /* direct node blocks of directory files */
370 CURSEG_WARM_NODE, /* direct node blocks of normal files */
371 CURSEG_COLD_NODE, /* indirect node blocks */
372 NO_CHECK_TYPE
373 };
374
375 struct flush_cmd {
376 struct completion wait;
377 struct llist_node llnode;
378 int ret;
379 };
380
381 struct flush_cmd_control {
382 struct task_struct *f2fs_issue_flush; /* flush thread */
383 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
384 struct llist_head issue_list; /* list for command issue */
385 struct llist_node *dispatch_list; /* list for command dispatch */
386 };
387
388 struct f2fs_sm_info {
389 struct sit_info *sit_info; /* whole segment information */
390 struct free_segmap_info *free_info; /* free segment information */
391 struct dirty_seglist_info *dirty_info; /* dirty segment information */
392 struct curseg_info *curseg_array; /* active segment information */
393
394 block_t seg0_blkaddr; /* block address of 0'th segment */
395 block_t main_blkaddr; /* start block address of main area */
396 block_t ssa_blkaddr; /* start block address of SSA area */
397
398 unsigned int segment_count; /* total # of segments */
399 unsigned int main_segments; /* # of segments in main area */
400 unsigned int reserved_segments; /* # of reserved segments */
401 unsigned int ovp_segments; /* # of overprovision segments */
402
403 /* a threshold to reclaim prefree segments */
404 unsigned int rec_prefree_segments;
405
406 /* for small discard management */
407 struct list_head discard_list; /* 4KB discard list */
408 int nr_discards; /* # of discards in the list */
409 int max_discards; /* max. discards to be issued */
410
411 struct list_head sit_entry_set; /* sit entry set list */
412
413 unsigned int ipu_policy; /* in-place-update policy */
414 unsigned int min_ipu_util; /* in-place-update threshold */
415 unsigned int min_fsync_blocks; /* threshold for fsync */
416
417 /* for flush command control */
418 struct flush_cmd_control *cmd_control_info;
419
420 };
421
422 /*
423 * For superblock
424 */
425 /*
426 * COUNT_TYPE for monitoring
427 *
428 * f2fs monitors the number of several block types such as on-writeback,
429 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
430 */
431 enum count_type {
432 F2FS_WRITEBACK,
433 F2FS_DIRTY_DENTS,
434 F2FS_DIRTY_NODES,
435 F2FS_DIRTY_META,
436 NR_COUNT_TYPE,
437 };
438
439 /*
440 * The below are the page types of bios used in submit_bio().
441 * The available types are:
442 * DATA User data pages. It operates as async mode.
443 * NODE Node pages. It operates as async mode.
444 * META FS metadata pages such as SIT, NAT, CP.
445 * NR_PAGE_TYPE The number of page types.
446 * META_FLUSH Make sure the previous pages are written
447 * with waiting the bio's completion
448 * ... Only can be used with META.
449 */
450 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
451 enum page_type {
452 DATA,
453 NODE,
454 META,
455 NR_PAGE_TYPE,
456 META_FLUSH,
457 };
458
459 struct f2fs_io_info {
460 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
461 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
462 };
463
464 #define is_read_io(rw) (((rw) & 1) == READ)
465 struct f2fs_bio_info {
466 struct f2fs_sb_info *sbi; /* f2fs superblock */
467 struct bio *bio; /* bios to merge */
468 sector_t last_block_in_bio; /* last block number */
469 struct f2fs_io_info fio; /* store buffered io info. */
470 struct rw_semaphore io_rwsem; /* blocking op for bio */
471 };
472
473 struct f2fs_sb_info {
474 struct super_block *sb; /* pointer to VFS super block */
475 struct proc_dir_entry *s_proc; /* proc entry */
476 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
477 struct f2fs_super_block *raw_super; /* raw super block pointer */
478 int s_dirty; /* dirty flag for checkpoint */
479 bool need_fsck; /* need fsck.f2fs to fix */
480
481 /* for node-related operations */
482 struct f2fs_nm_info *nm_info; /* node manager */
483 struct inode *node_inode; /* cache node blocks */
484
485 /* for segment-related operations */
486 struct f2fs_sm_info *sm_info; /* segment manager */
487
488 /* for bio operations */
489 struct f2fs_bio_info read_io; /* for read bios */
490 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
491 struct completion *wait_io; /* for completion bios */
492
493 /* for checkpoint */
494 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
495 struct inode *meta_inode; /* cache meta blocks */
496 struct mutex cp_mutex; /* checkpoint procedure lock */
497 struct rw_semaphore cp_rwsem; /* blocking FS operations */
498 struct rw_semaphore node_write; /* locking node writes */
499 struct mutex writepages; /* mutex for writepages() */
500 bool por_doing; /* recovery is doing or not */
501 wait_queue_head_t cp_wait;
502
503 /* for inode management */
504 struct radix_tree_root ino_root[MAX_INO_ENTRY]; /* ino entry array */
505 spinlock_t ino_lock[MAX_INO_ENTRY]; /* for ino entry lock */
506 struct list_head ino_list[MAX_INO_ENTRY]; /* inode list head */
507
508 /* for orphan inode, use 0'th array */
509 unsigned int n_orphans; /* # of orphan inodes */
510 unsigned int max_orphans; /* max orphan inodes */
511
512 /* for directory inode management */
513 struct list_head dir_inode_list; /* dir inode list */
514 spinlock_t dir_inode_lock; /* for dir inode list lock */
515
516 /* basic filesystem units */
517 unsigned int log_sectors_per_block; /* log2 sectors per block */
518 unsigned int log_blocksize; /* log2 block size */
519 unsigned int blocksize; /* block size */
520 unsigned int root_ino_num; /* root inode number*/
521 unsigned int node_ino_num; /* node inode number*/
522 unsigned int meta_ino_num; /* meta inode number*/
523 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
524 unsigned int blocks_per_seg; /* blocks per segment */
525 unsigned int segs_per_sec; /* segments per section */
526 unsigned int secs_per_zone; /* sections per zone */
527 unsigned int total_sections; /* total section count */
528 unsigned int total_node_count; /* total node block count */
529 unsigned int total_valid_node_count; /* valid node block count */
530 unsigned int total_valid_inode_count; /* valid inode count */
531 int active_logs; /* # of active logs */
532 int dir_level; /* directory level */
533
534 block_t user_block_count; /* # of user blocks */
535 block_t total_valid_block_count; /* # of valid blocks */
536 block_t alloc_valid_block_count; /* # of allocated blocks */
537 block_t last_valid_block_count; /* for recovery */
538 u32 s_next_generation; /* for NFS support */
539 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
540
541 struct f2fs_mount_info mount_opt; /* mount options */
542
543 /* for cleaning operations */
544 struct mutex gc_mutex; /* mutex for GC */
545 struct f2fs_gc_kthread *gc_thread; /* GC thread */
546 unsigned int cur_victim_sec; /* current victim section num */
547
548 /* maximum # of trials to find a victim segment for SSR and GC */
549 unsigned int max_victim_search;
550
551 /*
552 * for stat information.
553 * one is for the LFS mode, and the other is for the SSR mode.
554 */
555 #ifdef CONFIG_F2FS_STAT_FS
556 struct f2fs_stat_info *stat_info; /* FS status information */
557 unsigned int segment_count[2]; /* # of allocated segments */
558 unsigned int block_count[2]; /* # of allocated blocks */
559 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
560 int inline_inode; /* # of inline_data inodes */
561 int bg_gc; /* background gc calls */
562 unsigned int n_dirty_dirs; /* # of dir inodes */
563 #endif
564 unsigned int last_victim[2]; /* last victim segment # */
565 spinlock_t stat_lock; /* lock for stat operations */
566
567 /* For sysfs suppport */
568 struct kobject s_kobj;
569 struct completion s_kobj_unregister;
570 };
571
572 /*
573 * Inline functions
574 */
575 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
576 {
577 return container_of(inode, struct f2fs_inode_info, vfs_inode);
578 }
579
580 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
581 {
582 return sb->s_fs_info;
583 }
584
585 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
586 {
587 return F2FS_SB(inode->i_sb);
588 }
589
590 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
591 {
592 return F2FS_I_SB(mapping->host);
593 }
594
595 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
596 {
597 return F2FS_M_SB(page->mapping);
598 }
599
600 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
601 {
602 return (struct f2fs_super_block *)(sbi->raw_super);
603 }
604
605 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
606 {
607 return (struct f2fs_checkpoint *)(sbi->ckpt);
608 }
609
610 static inline struct f2fs_node *F2FS_NODE(struct page *page)
611 {
612 return (struct f2fs_node *)page_address(page);
613 }
614
615 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
616 {
617 return &((struct f2fs_node *)page_address(page))->i;
618 }
619
620 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
621 {
622 return (struct f2fs_nm_info *)(sbi->nm_info);
623 }
624
625 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
626 {
627 return (struct f2fs_sm_info *)(sbi->sm_info);
628 }
629
630 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
631 {
632 return (struct sit_info *)(SM_I(sbi)->sit_info);
633 }
634
635 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
636 {
637 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
638 }
639
640 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
641 {
642 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
643 }
644
645 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
646 {
647 return sbi->meta_inode->i_mapping;
648 }
649
650 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
651 {
652 return sbi->node_inode->i_mapping;
653 }
654
655 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
656 {
657 sbi->s_dirty = 1;
658 }
659
660 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
661 {
662 sbi->s_dirty = 0;
663 }
664
665 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
666 {
667 return le64_to_cpu(cp->checkpoint_ver);
668 }
669
670 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
671 {
672 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
673 return ckpt_flags & f;
674 }
675
676 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
677 {
678 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
679 ckpt_flags |= f;
680 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
681 }
682
683 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
684 {
685 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
686 ckpt_flags &= (~f);
687 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
688 }
689
690 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
691 {
692 down_read(&sbi->cp_rwsem);
693 }
694
695 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
696 {
697 up_read(&sbi->cp_rwsem);
698 }
699
700 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
701 {
702 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
703 }
704
705 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
706 {
707 up_write(&sbi->cp_rwsem);
708 }
709
710 /*
711 * Check whether the given nid is within node id range.
712 */
713 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
714 {
715 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
716 return -EINVAL;
717 if (unlikely(nid >= NM_I(sbi)->max_nid))
718 return -EINVAL;
719 return 0;
720 }
721
722 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
723
724 /*
725 * Check whether the inode has blocks or not
726 */
727 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
728 {
729 if (F2FS_I(inode)->i_xattr_nid)
730 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
731 else
732 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
733 }
734
735 static inline bool f2fs_has_xattr_block(unsigned int ofs)
736 {
737 return ofs == XATTR_NODE_OFFSET;
738 }
739
740 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
741 struct inode *inode, blkcnt_t count)
742 {
743 block_t valid_block_count;
744
745 spin_lock(&sbi->stat_lock);
746 valid_block_count =
747 sbi->total_valid_block_count + (block_t)count;
748 if (unlikely(valid_block_count > sbi->user_block_count)) {
749 spin_unlock(&sbi->stat_lock);
750 return false;
751 }
752 inode->i_blocks += count;
753 sbi->total_valid_block_count = valid_block_count;
754 sbi->alloc_valid_block_count += (block_t)count;
755 spin_unlock(&sbi->stat_lock);
756 return true;
757 }
758
759 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
760 struct inode *inode,
761 blkcnt_t count)
762 {
763 spin_lock(&sbi->stat_lock);
764 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
765 f2fs_bug_on(sbi, inode->i_blocks < count);
766 inode->i_blocks -= count;
767 sbi->total_valid_block_count -= (block_t)count;
768 spin_unlock(&sbi->stat_lock);
769 }
770
771 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
772 {
773 atomic_inc(&sbi->nr_pages[count_type]);
774 F2FS_SET_SB_DIRT(sbi);
775 }
776
777 static inline void inode_inc_dirty_pages(struct inode *inode)
778 {
779 atomic_inc(&F2FS_I(inode)->dirty_pages);
780 if (S_ISDIR(inode->i_mode))
781 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
782 }
783
784 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
785 {
786 atomic_dec(&sbi->nr_pages[count_type]);
787 }
788
789 static inline void inode_dec_dirty_pages(struct inode *inode)
790 {
791 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
792 return;
793
794 atomic_dec(&F2FS_I(inode)->dirty_pages);
795
796 if (S_ISDIR(inode->i_mode))
797 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
798 }
799
800 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
801 {
802 return atomic_read(&sbi->nr_pages[count_type]);
803 }
804
805 static inline int get_dirty_pages(struct inode *inode)
806 {
807 return atomic_read(&F2FS_I(inode)->dirty_pages);
808 }
809
810 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
811 {
812 unsigned int pages_per_sec = sbi->segs_per_sec *
813 (1 << sbi->log_blocks_per_seg);
814 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
815 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
816 }
817
818 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
819 {
820 return sbi->total_valid_block_count;
821 }
822
823 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
824 {
825 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
826
827 /* return NAT or SIT bitmap */
828 if (flag == NAT_BITMAP)
829 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
830 else if (flag == SIT_BITMAP)
831 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
832
833 return 0;
834 }
835
836 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
837 {
838 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
839 int offset;
840
841 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
842 if (flag == NAT_BITMAP)
843 return &ckpt->sit_nat_version_bitmap;
844 else
845 return (unsigned char *)ckpt + F2FS_BLKSIZE;
846 } else {
847 offset = (flag == NAT_BITMAP) ?
848 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
849 return &ckpt->sit_nat_version_bitmap + offset;
850 }
851 }
852
853 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
854 {
855 block_t start_addr;
856 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
857 unsigned long long ckpt_version = cur_cp_version(ckpt);
858
859 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
860
861 /*
862 * odd numbered checkpoint should at cp segment 0
863 * and even segment must be at cp segment 1
864 */
865 if (!(ckpt_version & 1))
866 start_addr += sbi->blocks_per_seg;
867
868 return start_addr;
869 }
870
871 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
872 {
873 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
874 }
875
876 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
877 struct inode *inode)
878 {
879 block_t valid_block_count;
880 unsigned int valid_node_count;
881
882 spin_lock(&sbi->stat_lock);
883
884 valid_block_count = sbi->total_valid_block_count + 1;
885 if (unlikely(valid_block_count > sbi->user_block_count)) {
886 spin_unlock(&sbi->stat_lock);
887 return false;
888 }
889
890 valid_node_count = sbi->total_valid_node_count + 1;
891 if (unlikely(valid_node_count > sbi->total_node_count)) {
892 spin_unlock(&sbi->stat_lock);
893 return false;
894 }
895
896 if (inode)
897 inode->i_blocks++;
898
899 sbi->alloc_valid_block_count++;
900 sbi->total_valid_node_count++;
901 sbi->total_valid_block_count++;
902 spin_unlock(&sbi->stat_lock);
903
904 return true;
905 }
906
907 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
908 struct inode *inode)
909 {
910 spin_lock(&sbi->stat_lock);
911
912 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
913 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
914 f2fs_bug_on(sbi, !inode->i_blocks);
915
916 inode->i_blocks--;
917 sbi->total_valid_node_count--;
918 sbi->total_valid_block_count--;
919
920 spin_unlock(&sbi->stat_lock);
921 }
922
923 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
924 {
925 return sbi->total_valid_node_count;
926 }
927
928 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
929 {
930 spin_lock(&sbi->stat_lock);
931 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
932 sbi->total_valid_inode_count++;
933 spin_unlock(&sbi->stat_lock);
934 }
935
936 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
937 {
938 spin_lock(&sbi->stat_lock);
939 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
940 sbi->total_valid_inode_count--;
941 spin_unlock(&sbi->stat_lock);
942 }
943
944 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
945 {
946 return sbi->total_valid_inode_count;
947 }
948
949 static inline void f2fs_put_page(struct page *page, int unlock)
950 {
951 if (!page)
952 return;
953
954 if (unlock) {
955 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
956 unlock_page(page);
957 }
958 page_cache_release(page);
959 }
960
961 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
962 {
963 if (dn->node_page)
964 f2fs_put_page(dn->node_page, 1);
965 if (dn->inode_page && dn->node_page != dn->inode_page)
966 f2fs_put_page(dn->inode_page, 0);
967 dn->node_page = NULL;
968 dn->inode_page = NULL;
969 }
970
971 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
972 size_t size)
973 {
974 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
975 }
976
977 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
978 gfp_t flags)
979 {
980 void *entry;
981 retry:
982 entry = kmem_cache_alloc(cachep, flags);
983 if (!entry) {
984 cond_resched();
985 goto retry;
986 }
987
988 return entry;
989 }
990
991 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
992
993 static inline bool IS_INODE(struct page *page)
994 {
995 struct f2fs_node *p = F2FS_NODE(page);
996 return RAW_IS_INODE(p);
997 }
998
999 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1000 {
1001 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1002 }
1003
1004 static inline block_t datablock_addr(struct page *node_page,
1005 unsigned int offset)
1006 {
1007 struct f2fs_node *raw_node;
1008 __le32 *addr_array;
1009 raw_node = F2FS_NODE(node_page);
1010 addr_array = blkaddr_in_node(raw_node);
1011 return le32_to_cpu(addr_array[offset]);
1012 }
1013
1014 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1015 {
1016 int mask;
1017
1018 addr += (nr >> 3);
1019 mask = 1 << (7 - (nr & 0x07));
1020 return mask & *addr;
1021 }
1022
1023 static inline int f2fs_set_bit(unsigned int nr, char *addr)
1024 {
1025 int mask;
1026 int ret;
1027
1028 addr += (nr >> 3);
1029 mask = 1 << (7 - (nr & 0x07));
1030 ret = mask & *addr;
1031 *addr |= mask;
1032 return ret;
1033 }
1034
1035 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
1036 {
1037 int mask;
1038 int ret;
1039
1040 addr += (nr >> 3);
1041 mask = 1 << (7 - (nr & 0x07));
1042 ret = mask & *addr;
1043 *addr &= ~mask;
1044 return ret;
1045 }
1046
1047 /* used for f2fs_inode_info->flags */
1048 enum {
1049 FI_NEW_INODE, /* indicate newly allocated inode */
1050 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1051 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1052 FI_INC_LINK, /* need to increment i_nlink */
1053 FI_ACL_MODE, /* indicate acl mode */
1054 FI_NO_ALLOC, /* should not allocate any blocks */
1055 FI_UPDATE_DIR, /* should update inode block for consistency */
1056 FI_DELAY_IPUT, /* used for the recovery */
1057 FI_NO_EXTENT, /* not to use the extent cache */
1058 FI_INLINE_XATTR, /* used for inline xattr */
1059 FI_INLINE_DATA, /* used for inline data*/
1060 FI_APPEND_WRITE, /* inode has appended data */
1061 FI_UPDATE_WRITE, /* inode has in-place-update data */
1062 FI_NEED_IPU, /* used for ipu per file */
1063 FI_ATOMIC_FILE, /* indicate atomic file */
1064 FI_VOLATILE_FILE, /* indicate volatile file */
1065 };
1066
1067 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1068 {
1069 if (!test_bit(flag, &fi->flags))
1070 set_bit(flag, &fi->flags);
1071 }
1072
1073 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1074 {
1075 return test_bit(flag, &fi->flags);
1076 }
1077
1078 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1079 {
1080 if (test_bit(flag, &fi->flags))
1081 clear_bit(flag, &fi->flags);
1082 }
1083
1084 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1085 {
1086 fi->i_acl_mode = mode;
1087 set_inode_flag(fi, FI_ACL_MODE);
1088 }
1089
1090 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1091 {
1092 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
1093 clear_inode_flag(fi, FI_ACL_MODE);
1094 return 1;
1095 }
1096 return 0;
1097 }
1098
1099 static inline void get_inline_info(struct f2fs_inode_info *fi,
1100 struct f2fs_inode *ri)
1101 {
1102 if (ri->i_inline & F2FS_INLINE_XATTR)
1103 set_inode_flag(fi, FI_INLINE_XATTR);
1104 if (ri->i_inline & F2FS_INLINE_DATA)
1105 set_inode_flag(fi, FI_INLINE_DATA);
1106 }
1107
1108 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1109 struct f2fs_inode *ri)
1110 {
1111 ri->i_inline = 0;
1112
1113 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1114 ri->i_inline |= F2FS_INLINE_XATTR;
1115 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1116 ri->i_inline |= F2FS_INLINE_DATA;
1117 }
1118
1119 static inline int f2fs_has_inline_xattr(struct inode *inode)
1120 {
1121 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1122 }
1123
1124 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1125 {
1126 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1127 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1128 return DEF_ADDRS_PER_INODE;
1129 }
1130
1131 static inline void *inline_xattr_addr(struct page *page)
1132 {
1133 struct f2fs_inode *ri = F2FS_INODE(page);
1134 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1135 F2FS_INLINE_XATTR_ADDRS]);
1136 }
1137
1138 static inline int inline_xattr_size(struct inode *inode)
1139 {
1140 if (f2fs_has_inline_xattr(inode))
1141 return F2FS_INLINE_XATTR_ADDRS << 2;
1142 else
1143 return 0;
1144 }
1145
1146 static inline int f2fs_has_inline_data(struct inode *inode)
1147 {
1148 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1149 }
1150
1151 static inline bool f2fs_is_atomic_file(struct inode *inode)
1152 {
1153 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1154 }
1155
1156 static inline bool f2fs_is_volatile_file(struct inode *inode)
1157 {
1158 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1159 }
1160
1161 static inline void *inline_data_addr(struct page *page)
1162 {
1163 struct f2fs_inode *ri = F2FS_INODE(page);
1164 return (void *)&(ri->i_addr[1]);
1165 }
1166
1167 static inline int f2fs_readonly(struct super_block *sb)
1168 {
1169 return sb->s_flags & MS_RDONLY;
1170 }
1171
1172 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1173 {
1174 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1175 }
1176
1177 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1178 {
1179 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1180 sbi->sb->s_flags |= MS_RDONLY;
1181 }
1182
1183 #define get_inode_mode(i) \
1184 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1185 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1186
1187 /* get offset of first page in next direct node */
1188 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1189 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1190 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1191 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1192
1193 /*
1194 * file.c
1195 */
1196 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1197 void truncate_data_blocks(struct dnode_of_data *);
1198 int truncate_blocks(struct inode *, u64, bool);
1199 void f2fs_truncate(struct inode *);
1200 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1201 int f2fs_setattr(struct dentry *, struct iattr *);
1202 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1203 int truncate_data_blocks_range(struct dnode_of_data *, int);
1204 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1205 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1206
1207 /*
1208 * inode.c
1209 */
1210 void f2fs_set_inode_flags(struct inode *);
1211 struct inode *f2fs_iget(struct super_block *, unsigned long);
1212 int try_to_free_nats(struct f2fs_sb_info *, int);
1213 void update_inode(struct inode *, struct page *);
1214 void update_inode_page(struct inode *);
1215 int f2fs_write_inode(struct inode *, struct writeback_control *);
1216 void f2fs_evict_inode(struct inode *);
1217 void handle_failed_inode(struct inode *);
1218
1219 /*
1220 * namei.c
1221 */
1222 struct dentry *f2fs_get_parent(struct dentry *child);
1223
1224 /*
1225 * dir.c
1226 */
1227 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1228 struct page **);
1229 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1230 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1231 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1232 struct page *, struct inode *);
1233 int update_dent_inode(struct inode *, const struct qstr *);
1234 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1235 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
1236 int f2fs_do_tmpfile(struct inode *, struct inode *);
1237 int f2fs_make_empty(struct inode *, struct inode *);
1238 bool f2fs_empty_dir(struct inode *);
1239
1240 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1241 {
1242 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1243 inode);
1244 }
1245
1246 /*
1247 * super.c
1248 */
1249 int f2fs_sync_fs(struct super_block *, int);
1250 extern __printf(3, 4)
1251 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1252
1253 /*
1254 * hash.c
1255 */
1256 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1257
1258 /*
1259 * node.c
1260 */
1261 struct dnode_of_data;
1262 struct node_info;
1263
1264 bool available_free_memory(struct f2fs_sb_info *, int);
1265 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1266 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1267 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1268 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1269 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1270 int truncate_inode_blocks(struct inode *, pgoff_t);
1271 int truncate_xattr_node(struct inode *, struct page *);
1272 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1273 void remove_inode_page(struct inode *);
1274 struct page *new_inode_page(struct inode *);
1275 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1276 void ra_node_page(struct f2fs_sb_info *, nid_t);
1277 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1278 struct page *get_node_page_ra(struct page *, int);
1279 void sync_inode_page(struct dnode_of_data *);
1280 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1281 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1282 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1283 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1284 void recover_inline_xattr(struct inode *, struct page *);
1285 void recover_xattr_data(struct inode *, struct page *, block_t);
1286 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1287 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1288 struct f2fs_summary_block *);
1289 void flush_nat_entries(struct f2fs_sb_info *);
1290 int build_node_manager(struct f2fs_sb_info *);
1291 void destroy_node_manager(struct f2fs_sb_info *);
1292 int __init create_node_manager_caches(void);
1293 void destroy_node_manager_caches(void);
1294
1295 /*
1296 * segment.c
1297 */
1298 void register_inmem_page(struct inode *, struct page *);
1299 void commit_inmem_pages(struct inode *, bool);
1300 void f2fs_balance_fs(struct f2fs_sb_info *);
1301 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1302 int f2fs_issue_flush(struct f2fs_sb_info *);
1303 int create_flush_cmd_control(struct f2fs_sb_info *);
1304 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1305 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1306 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1307 void clear_prefree_segments(struct f2fs_sb_info *);
1308 void release_discard_addrs(struct f2fs_sb_info *);
1309 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1310 int npages_for_summary_flush(struct f2fs_sb_info *);
1311 void allocate_new_segments(struct f2fs_sb_info *);
1312 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1313 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1314 void write_meta_page(struct f2fs_sb_info *, struct page *);
1315 void write_node_page(struct f2fs_sb_info *, struct page *,
1316 struct f2fs_io_info *, unsigned int, block_t, block_t *);
1317 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1318 struct f2fs_io_info *);
1319 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1320 void recover_data_page(struct f2fs_sb_info *, struct page *,
1321 struct f2fs_summary *, block_t, block_t);
1322 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1323 block_t, block_t *, struct f2fs_summary *, int);
1324 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1325 void write_data_summaries(struct f2fs_sb_info *, block_t);
1326 void write_node_summaries(struct f2fs_sb_info *, block_t);
1327 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1328 int, unsigned int, int);
1329 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1330 int build_segment_manager(struct f2fs_sb_info *);
1331 void destroy_segment_manager(struct f2fs_sb_info *);
1332 int __init create_segment_manager_caches(void);
1333 void destroy_segment_manager_caches(void);
1334
1335 /*
1336 * checkpoint.c
1337 */
1338 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1339 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1340 struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t);
1341 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1342 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1343 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1344 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1345 void release_dirty_inode(struct f2fs_sb_info *);
1346 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1347 int acquire_orphan_inode(struct f2fs_sb_info *);
1348 void release_orphan_inode(struct f2fs_sb_info *);
1349 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1350 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1351 void recover_orphan_inodes(struct f2fs_sb_info *);
1352 int get_valid_checkpoint(struct f2fs_sb_info *);
1353 void update_dirty_page(struct inode *, struct page *);
1354 void add_dirty_dir_inode(struct inode *);
1355 void remove_dirty_dir_inode(struct inode *);
1356 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1357 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1358 void init_ino_entry_info(struct f2fs_sb_info *);
1359 int __init create_checkpoint_caches(void);
1360 void destroy_checkpoint_caches(void);
1361
1362 /*
1363 * data.c
1364 */
1365 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1366 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1367 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1368 struct f2fs_io_info *);
1369 int reserve_new_block(struct dnode_of_data *);
1370 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1371 void update_extent_cache(block_t, struct dnode_of_data *);
1372 struct page *find_data_page(struct inode *, pgoff_t, bool);
1373 struct page *get_lock_data_page(struct inode *, pgoff_t);
1374 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1375 int do_write_data_page(struct page *, struct f2fs_io_info *);
1376 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1377
1378 /*
1379 * gc.c
1380 */
1381 int start_gc_thread(struct f2fs_sb_info *);
1382 void stop_gc_thread(struct f2fs_sb_info *);
1383 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1384 int f2fs_gc(struct f2fs_sb_info *);
1385 void build_gc_manager(struct f2fs_sb_info *);
1386 int __init create_gc_caches(void);
1387 void destroy_gc_caches(void);
1388
1389 /*
1390 * recovery.c
1391 */
1392 int recover_fsync_data(struct f2fs_sb_info *);
1393 bool space_for_roll_forward(struct f2fs_sb_info *);
1394
1395 /*
1396 * debug.c
1397 */
1398 #ifdef CONFIG_F2FS_STAT_FS
1399 struct f2fs_stat_info {
1400 struct list_head stat_list;
1401 struct f2fs_sb_info *sbi;
1402 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1403 int main_area_segs, main_area_sections, main_area_zones;
1404 int hit_ext, total_ext;
1405 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1406 int nats, sits, fnids;
1407 int total_count, utilization;
1408 int bg_gc, inline_inode;
1409 unsigned int valid_count, valid_node_count, valid_inode_count;
1410 unsigned int bimodal, avg_vblocks;
1411 int util_free, util_valid, util_invalid;
1412 int rsvd_segs, overp_segs;
1413 int dirty_count, node_pages, meta_pages;
1414 int prefree_count, call_count, cp_count;
1415 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1416 int tot_blks, data_blks, node_blks;
1417 int curseg[NR_CURSEG_TYPE];
1418 int cursec[NR_CURSEG_TYPE];
1419 int curzone[NR_CURSEG_TYPE];
1420
1421 unsigned int segment_count[2];
1422 unsigned int block_count[2];
1423 unsigned base_mem, cache_mem;
1424 };
1425
1426 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1427 {
1428 return (struct f2fs_stat_info *)sbi->stat_info;
1429 }
1430
1431 #define stat_inc_cp_count(si) ((si)->cp_count++)
1432 #define stat_inc_call_count(si) ((si)->call_count++)
1433 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1434 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1435 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1436 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1437 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1438 #define stat_inc_inline_inode(inode) \
1439 do { \
1440 if (f2fs_has_inline_data(inode)) \
1441 ((F2FS_I_SB(inode))->inline_inode++); \
1442 } while (0)
1443 #define stat_dec_inline_inode(inode) \
1444 do { \
1445 if (f2fs_has_inline_data(inode)) \
1446 ((F2FS_I_SB(inode))->inline_inode--); \
1447 } while (0)
1448
1449 #define stat_inc_seg_type(sbi, curseg) \
1450 ((sbi)->segment_count[(curseg)->alloc_type]++)
1451 #define stat_inc_block_count(sbi, curseg) \
1452 ((sbi)->block_count[(curseg)->alloc_type]++)
1453
1454 #define stat_inc_seg_count(sbi, type) \
1455 do { \
1456 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1457 (si)->tot_segs++; \
1458 if (type == SUM_TYPE_DATA) \
1459 si->data_segs++; \
1460 else \
1461 si->node_segs++; \
1462 } while (0)
1463
1464 #define stat_inc_tot_blk_count(si, blks) \
1465 (si->tot_blks += (blks))
1466
1467 #define stat_inc_data_blk_count(sbi, blks) \
1468 do { \
1469 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1470 stat_inc_tot_blk_count(si, blks); \
1471 si->data_blks += (blks); \
1472 } while (0)
1473
1474 #define stat_inc_node_blk_count(sbi, blks) \
1475 do { \
1476 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1477 stat_inc_tot_blk_count(si, blks); \
1478 si->node_blks += (blks); \
1479 } while (0)
1480
1481 int f2fs_build_stats(struct f2fs_sb_info *);
1482 void f2fs_destroy_stats(struct f2fs_sb_info *);
1483 void __init f2fs_create_root_stats(void);
1484 void f2fs_destroy_root_stats(void);
1485 #else
1486 #define stat_inc_cp_count(si)
1487 #define stat_inc_call_count(si)
1488 #define stat_inc_bggc_count(si)
1489 #define stat_inc_dirty_dir(sbi)
1490 #define stat_dec_dirty_dir(sbi)
1491 #define stat_inc_total_hit(sb)
1492 #define stat_inc_read_hit(sb)
1493 #define stat_inc_inline_inode(inode)
1494 #define stat_dec_inline_inode(inode)
1495 #define stat_inc_seg_type(sbi, curseg)
1496 #define stat_inc_block_count(sbi, curseg)
1497 #define stat_inc_seg_count(si, type)
1498 #define stat_inc_tot_blk_count(si, blks)
1499 #define stat_inc_data_blk_count(si, blks)
1500 #define stat_inc_node_blk_count(sbi, blks)
1501
1502 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1503 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1504 static inline void __init f2fs_create_root_stats(void) { }
1505 static inline void f2fs_destroy_root_stats(void) { }
1506 #endif
1507
1508 extern const struct file_operations f2fs_dir_operations;
1509 extern const struct file_operations f2fs_file_operations;
1510 extern const struct inode_operations f2fs_file_inode_operations;
1511 extern const struct address_space_operations f2fs_dblock_aops;
1512 extern const struct address_space_operations f2fs_node_aops;
1513 extern const struct address_space_operations f2fs_meta_aops;
1514 extern const struct inode_operations f2fs_dir_inode_operations;
1515 extern const struct inode_operations f2fs_symlink_inode_operations;
1516 extern const struct inode_operations f2fs_special_inode_operations;
1517
1518 /*
1519 * inline.c
1520 */
1521 bool f2fs_may_inline(struct inode *);
1522 int f2fs_read_inline_data(struct inode *, struct page *);
1523 int f2fs_convert_inline_data(struct inode *, pgoff_t, struct page *);
1524 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
1525 void truncate_inline_data(struct inode *, u64);
1526 bool recover_inline_data(struct inode *, struct page *);
1527 #endif
This page took 0.064007 seconds and 5 git commands to generate.