882babaa678e109cefb779a81cdaa6deb3bde490
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
58
59 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
60 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
61 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
62
63 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
64 typecheck(unsigned long long, b) && \
65 ((long long)((a) - (b)) > 0))
66
67 typedef u32 block_t; /*
68 * should not change u32, since it is the on-disk block
69 * address format, __le32.
70 */
71 typedef u32 nid_t;
72
73 struct f2fs_mount_info {
74 unsigned int opt;
75 };
76
77 #define F2FS_FEATURE_ENCRYPT 0x0001
78
79 #define F2FS_HAS_FEATURE(sb, mask) \
80 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
81 #define F2FS_SET_FEATURE(sb, mask) \
82 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
83 #define F2FS_CLEAR_FEATURE(sb, mask) \
84 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
85
86 #define CRCPOLY_LE 0xedb88320
87
88 static inline __u32 f2fs_crc32(void *buf, size_t len)
89 {
90 unsigned char *p = (unsigned char *)buf;
91 __u32 crc = F2FS_SUPER_MAGIC;
92 int i;
93
94 while (len--) {
95 crc ^= *p++;
96 for (i = 0; i < 8; i++)
97 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
98 }
99 return crc;
100 }
101
102 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
103 {
104 return f2fs_crc32(buf, buf_size) == blk_crc;
105 }
106
107 /*
108 * For checkpoint manager
109 */
110 enum {
111 NAT_BITMAP,
112 SIT_BITMAP
113 };
114
115 enum {
116 CP_UMOUNT,
117 CP_FASTBOOT,
118 CP_SYNC,
119 CP_RECOVERY,
120 CP_DISCARD,
121 };
122
123 #define DEF_BATCHED_TRIM_SECTIONS 32
124 #define BATCHED_TRIM_SEGMENTS(sbi) \
125 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
126 #define BATCHED_TRIM_BLOCKS(sbi) \
127 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
128 #define DEF_CP_INTERVAL 60 /* 60 secs */
129
130 struct cp_control {
131 int reason;
132 __u64 trim_start;
133 __u64 trim_end;
134 __u64 trim_minlen;
135 __u64 trimmed;
136 };
137
138 /*
139 * For CP/NAT/SIT/SSA readahead
140 */
141 enum {
142 META_CP,
143 META_NAT,
144 META_SIT,
145 META_SSA,
146 META_POR,
147 };
148
149 /* for the list of ino */
150 enum {
151 ORPHAN_INO, /* for orphan ino list */
152 APPEND_INO, /* for append ino list */
153 UPDATE_INO, /* for update ino list */
154 MAX_INO_ENTRY, /* max. list */
155 };
156
157 struct ino_entry {
158 struct list_head list; /* list head */
159 nid_t ino; /* inode number */
160 };
161
162 /* for the list of inodes to be GCed */
163 struct inode_entry {
164 struct list_head list; /* list head */
165 struct inode *inode; /* vfs inode pointer */
166 };
167
168 /* for the list of blockaddresses to be discarded */
169 struct discard_entry {
170 struct list_head list; /* list head */
171 block_t blkaddr; /* block address to be discarded */
172 int len; /* # of consecutive blocks of the discard */
173 };
174
175 /* for the list of fsync inodes, used only during recovery */
176 struct fsync_inode_entry {
177 struct list_head list; /* list head */
178 struct inode *inode; /* vfs inode pointer */
179 block_t blkaddr; /* block address locating the last fsync */
180 block_t last_dentry; /* block address locating the last dentry */
181 block_t last_inode; /* block address locating the last inode */
182 };
183
184 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
185 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
186
187 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
188 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
189 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
190 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
191
192 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
193 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
194
195 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
196 {
197 int before = nats_in_cursum(rs);
198 rs->n_nats = cpu_to_le16(before + i);
199 return before;
200 }
201
202 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
203 {
204 int before = sits_in_cursum(rs);
205 rs->n_sits = cpu_to_le16(before + i);
206 return before;
207 }
208
209 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
210 int type)
211 {
212 if (type == NAT_JOURNAL)
213 return size <= MAX_NAT_JENTRIES(sum);
214 return size <= MAX_SIT_JENTRIES(sum);
215 }
216
217 /*
218 * ioctl commands
219 */
220 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
221 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
222 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
223
224 #define F2FS_IOCTL_MAGIC 0xf5
225 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
226 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
227 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
228 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
229 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
230 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
231 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
232 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
233
234 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
235 _IOR('f', 19, struct f2fs_encryption_policy)
236 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
237 _IOW('f', 20, __u8[16])
238 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
239 _IOW('f', 21, struct f2fs_encryption_policy)
240
241 /*
242 * should be same as XFS_IOC_GOINGDOWN.
243 * Flags for going down operation used by FS_IOC_GOINGDOWN
244 */
245 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
246 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
247 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
248 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
249 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
250
251 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
252 /*
253 * ioctl commands in 32 bit emulation
254 */
255 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
256 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
257 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
258 #endif
259
260 struct f2fs_defragment {
261 u64 start;
262 u64 len;
263 };
264
265 /*
266 * For INODE and NODE manager
267 */
268 /* for directory operations */
269 struct f2fs_str {
270 unsigned char *name;
271 u32 len;
272 };
273
274 struct f2fs_filename {
275 const struct qstr *usr_fname;
276 struct f2fs_str disk_name;
277 f2fs_hash_t hash;
278 #ifdef CONFIG_F2FS_FS_ENCRYPTION
279 struct f2fs_str crypto_buf;
280 #endif
281 };
282
283 #define FSTR_INIT(n, l) { .name = n, .len = l }
284 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
285 #define fname_name(p) ((p)->disk_name.name)
286 #define fname_len(p) ((p)->disk_name.len)
287
288 struct f2fs_dentry_ptr {
289 struct inode *inode;
290 const void *bitmap;
291 struct f2fs_dir_entry *dentry;
292 __u8 (*filename)[F2FS_SLOT_LEN];
293 int max;
294 };
295
296 static inline void make_dentry_ptr(struct inode *inode,
297 struct f2fs_dentry_ptr *d, void *src, int type)
298 {
299 d->inode = inode;
300
301 if (type == 1) {
302 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
303 d->max = NR_DENTRY_IN_BLOCK;
304 d->bitmap = &t->dentry_bitmap;
305 d->dentry = t->dentry;
306 d->filename = t->filename;
307 } else {
308 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
309 d->max = NR_INLINE_DENTRY;
310 d->bitmap = &t->dentry_bitmap;
311 d->dentry = t->dentry;
312 d->filename = t->filename;
313 }
314 }
315
316 /*
317 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
318 * as its node offset to distinguish from index node blocks.
319 * But some bits are used to mark the node block.
320 */
321 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
322 >> OFFSET_BIT_SHIFT)
323 enum {
324 ALLOC_NODE, /* allocate a new node page if needed */
325 LOOKUP_NODE, /* look up a node without readahead */
326 LOOKUP_NODE_RA, /*
327 * look up a node with readahead called
328 * by get_data_block.
329 */
330 };
331
332 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
333
334 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
335
336 /* vector size for gang look-up from extent cache that consists of radix tree */
337 #define EXT_TREE_VEC_SIZE 64
338
339 /* for in-memory extent cache entry */
340 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
341
342 /* number of extent info in extent cache we try to shrink */
343 #define EXTENT_CACHE_SHRINK_NUMBER 128
344
345 struct extent_info {
346 unsigned int fofs; /* start offset in a file */
347 u32 blk; /* start block address of the extent */
348 unsigned int len; /* length of the extent */
349 };
350
351 struct extent_node {
352 struct rb_node rb_node; /* rb node located in rb-tree */
353 struct list_head list; /* node in global extent list of sbi */
354 struct extent_info ei; /* extent info */
355 };
356
357 struct extent_tree {
358 nid_t ino; /* inode number */
359 struct rb_root root; /* root of extent info rb-tree */
360 struct extent_node *cached_en; /* recently accessed extent node */
361 struct extent_info largest; /* largested extent info */
362 struct list_head list; /* to be used by sbi->zombie_list */
363 rwlock_t lock; /* protect extent info rb-tree */
364 unsigned int count; /* # of extent node in rb-tree*/
365 };
366
367 /*
368 * This structure is taken from ext4_map_blocks.
369 *
370 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
371 */
372 #define F2FS_MAP_NEW (1 << BH_New)
373 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
374 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
375 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
376 F2FS_MAP_UNWRITTEN)
377
378 struct f2fs_map_blocks {
379 block_t m_pblk;
380 block_t m_lblk;
381 unsigned int m_len;
382 unsigned int m_flags;
383 };
384
385 /* for flag in get_data_block */
386 #define F2FS_GET_BLOCK_READ 0
387 #define F2FS_GET_BLOCK_DIO 1
388 #define F2FS_GET_BLOCK_FIEMAP 2
389 #define F2FS_GET_BLOCK_BMAP 3
390
391 /*
392 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
393 */
394 #define FADVISE_COLD_BIT 0x01
395 #define FADVISE_LOST_PINO_BIT 0x02
396 #define FADVISE_ENCRYPT_BIT 0x04
397 #define FADVISE_ENC_NAME_BIT 0x08
398
399 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
400 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
401 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
402 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
404 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
406 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
407 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
408 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
409 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
410
411 /* Encryption algorithms */
412 #define F2FS_ENCRYPTION_MODE_INVALID 0
413 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
414 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
415 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
416 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
417
418 #include "f2fs_crypto.h"
419
420 #define DEF_DIR_LEVEL 0
421
422 struct f2fs_inode_info {
423 struct inode vfs_inode; /* serve a vfs inode */
424 unsigned long i_flags; /* keep an inode flags for ioctl */
425 unsigned char i_advise; /* use to give file attribute hints */
426 unsigned char i_dir_level; /* use for dentry level for large dir */
427 unsigned int i_current_depth; /* use only in directory structure */
428 unsigned int i_pino; /* parent inode number */
429 umode_t i_acl_mode; /* keep file acl mode temporarily */
430
431 /* Use below internally in f2fs*/
432 unsigned long flags; /* use to pass per-file flags */
433 struct rw_semaphore i_sem; /* protect fi info */
434 atomic_t dirty_pages; /* # of dirty pages */
435 f2fs_hash_t chash; /* hash value of given file name */
436 unsigned int clevel; /* maximum level of given file name */
437 nid_t i_xattr_nid; /* node id that contains xattrs */
438 unsigned long long xattr_ver; /* cp version of xattr modification */
439
440 struct list_head dirty_list; /* linked in global dirty list */
441 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
442 struct mutex inmem_lock; /* lock for inmemory pages */
443
444 struct extent_tree *extent_tree; /* cached extent_tree entry */
445
446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
447 /* Encryption params */
448 struct f2fs_crypt_info *i_crypt_info;
449 #endif
450 };
451
452 static inline void get_extent_info(struct extent_info *ext,
453 struct f2fs_extent i_ext)
454 {
455 ext->fofs = le32_to_cpu(i_ext.fofs);
456 ext->blk = le32_to_cpu(i_ext.blk);
457 ext->len = le32_to_cpu(i_ext.len);
458 }
459
460 static inline void set_raw_extent(struct extent_info *ext,
461 struct f2fs_extent *i_ext)
462 {
463 i_ext->fofs = cpu_to_le32(ext->fofs);
464 i_ext->blk = cpu_to_le32(ext->blk);
465 i_ext->len = cpu_to_le32(ext->len);
466 }
467
468 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
469 u32 blk, unsigned int len)
470 {
471 ei->fofs = fofs;
472 ei->blk = blk;
473 ei->len = len;
474 }
475
476 static inline bool __is_extent_same(struct extent_info *ei1,
477 struct extent_info *ei2)
478 {
479 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
480 ei1->len == ei2->len);
481 }
482
483 static inline bool __is_extent_mergeable(struct extent_info *back,
484 struct extent_info *front)
485 {
486 return (back->fofs + back->len == front->fofs &&
487 back->blk + back->len == front->blk);
488 }
489
490 static inline bool __is_back_mergeable(struct extent_info *cur,
491 struct extent_info *back)
492 {
493 return __is_extent_mergeable(back, cur);
494 }
495
496 static inline bool __is_front_mergeable(struct extent_info *cur,
497 struct extent_info *front)
498 {
499 return __is_extent_mergeable(cur, front);
500 }
501
502 static inline void __try_update_largest_extent(struct extent_tree *et,
503 struct extent_node *en)
504 {
505 if (en->ei.len > et->largest.len)
506 et->largest = en->ei;
507 }
508
509 struct f2fs_nm_info {
510 block_t nat_blkaddr; /* base disk address of NAT */
511 nid_t max_nid; /* maximum possible node ids */
512 nid_t available_nids; /* maximum available node ids */
513 nid_t next_scan_nid; /* the next nid to be scanned */
514 unsigned int ram_thresh; /* control the memory footprint */
515 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
516
517 /* NAT cache management */
518 struct radix_tree_root nat_root;/* root of the nat entry cache */
519 struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
521 struct list_head nat_entries; /* cached nat entry list (clean) */
522 unsigned int nat_cnt; /* the # of cached nat entries */
523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
524
525 /* free node ids management */
526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 struct list_head free_nid_list; /* a list for free nids */
528 spinlock_t free_nid_list_lock; /* protect free nid list */
529 unsigned int fcnt; /* the number of free node id */
530 struct mutex build_lock; /* lock for build free nids */
531
532 /* for checkpoint */
533 char *nat_bitmap; /* NAT bitmap pointer */
534 int bitmap_size; /* bitmap size */
535 };
536
537 /*
538 * this structure is used as one of function parameters.
539 * all the information are dedicated to a given direct node block determined
540 * by the data offset in a file.
541 */
542 struct dnode_of_data {
543 struct inode *inode; /* vfs inode pointer */
544 struct page *inode_page; /* its inode page, NULL is possible */
545 struct page *node_page; /* cached direct node page */
546 nid_t nid; /* node id of the direct node block */
547 unsigned int ofs_in_node; /* data offset in the node page */
548 bool inode_page_locked; /* inode page is locked or not */
549 bool node_changed; /* is node block changed */
550 block_t data_blkaddr; /* block address of the node block */
551 };
552
553 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
554 struct page *ipage, struct page *npage, nid_t nid)
555 {
556 memset(dn, 0, sizeof(*dn));
557 dn->inode = inode;
558 dn->inode_page = ipage;
559 dn->node_page = npage;
560 dn->nid = nid;
561 }
562
563 /*
564 * For SIT manager
565 *
566 * By default, there are 6 active log areas across the whole main area.
567 * When considering hot and cold data separation to reduce cleaning overhead,
568 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
569 * respectively.
570 * In the current design, you should not change the numbers intentionally.
571 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
572 * logs individually according to the underlying devices. (default: 6)
573 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
574 * data and 8 for node logs.
575 */
576 #define NR_CURSEG_DATA_TYPE (3)
577 #define NR_CURSEG_NODE_TYPE (3)
578 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
579
580 enum {
581 CURSEG_HOT_DATA = 0, /* directory entry blocks */
582 CURSEG_WARM_DATA, /* data blocks */
583 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
584 CURSEG_HOT_NODE, /* direct node blocks of directory files */
585 CURSEG_WARM_NODE, /* direct node blocks of normal files */
586 CURSEG_COLD_NODE, /* indirect node blocks */
587 NO_CHECK_TYPE,
588 CURSEG_DIRECT_IO, /* to use for the direct IO path */
589 };
590
591 struct flush_cmd {
592 struct completion wait;
593 struct llist_node llnode;
594 int ret;
595 };
596
597 struct flush_cmd_control {
598 struct task_struct *f2fs_issue_flush; /* flush thread */
599 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
600 struct llist_head issue_list; /* list for command issue */
601 struct llist_node *dispatch_list; /* list for command dispatch */
602 };
603
604 struct f2fs_sm_info {
605 struct sit_info *sit_info; /* whole segment information */
606 struct free_segmap_info *free_info; /* free segment information */
607 struct dirty_seglist_info *dirty_info; /* dirty segment information */
608 struct curseg_info *curseg_array; /* active segment information */
609
610 block_t seg0_blkaddr; /* block address of 0'th segment */
611 block_t main_blkaddr; /* start block address of main area */
612 block_t ssa_blkaddr; /* start block address of SSA area */
613
614 unsigned int segment_count; /* total # of segments */
615 unsigned int main_segments; /* # of segments in main area */
616 unsigned int reserved_segments; /* # of reserved segments */
617 unsigned int ovp_segments; /* # of overprovision segments */
618
619 /* a threshold to reclaim prefree segments */
620 unsigned int rec_prefree_segments;
621
622 /* for small discard management */
623 struct list_head discard_list; /* 4KB discard list */
624 int nr_discards; /* # of discards in the list */
625 int max_discards; /* max. discards to be issued */
626
627 /* for batched trimming */
628 unsigned int trim_sections; /* # of sections to trim */
629
630 struct list_head sit_entry_set; /* sit entry set list */
631
632 unsigned int ipu_policy; /* in-place-update policy */
633 unsigned int min_ipu_util; /* in-place-update threshold */
634 unsigned int min_fsync_blocks; /* threshold for fsync */
635
636 /* for flush command control */
637 struct flush_cmd_control *cmd_control_info;
638
639 };
640
641 /*
642 * For superblock
643 */
644 /*
645 * COUNT_TYPE for monitoring
646 *
647 * f2fs monitors the number of several block types such as on-writeback,
648 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
649 */
650 enum count_type {
651 F2FS_WRITEBACK,
652 F2FS_DIRTY_DENTS,
653 F2FS_DIRTY_DATA,
654 F2FS_DIRTY_NODES,
655 F2FS_DIRTY_META,
656 F2FS_INMEM_PAGES,
657 NR_COUNT_TYPE,
658 };
659
660 /*
661 * The below are the page types of bios used in submit_bio().
662 * The available types are:
663 * DATA User data pages. It operates as async mode.
664 * NODE Node pages. It operates as async mode.
665 * META FS metadata pages such as SIT, NAT, CP.
666 * NR_PAGE_TYPE The number of page types.
667 * META_FLUSH Make sure the previous pages are written
668 * with waiting the bio's completion
669 * ... Only can be used with META.
670 */
671 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
672 enum page_type {
673 DATA,
674 NODE,
675 META,
676 NR_PAGE_TYPE,
677 META_FLUSH,
678 INMEM, /* the below types are used by tracepoints only. */
679 INMEM_DROP,
680 IPU,
681 OPU,
682 };
683
684 struct f2fs_io_info {
685 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
686 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
687 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
688 block_t blk_addr; /* block address to be written */
689 struct page *page; /* page to be written */
690 struct page *encrypted_page; /* encrypted page */
691 };
692
693 #define is_read_io(rw) (((rw) & 1) == READ)
694 struct f2fs_bio_info {
695 struct f2fs_sb_info *sbi; /* f2fs superblock */
696 struct bio *bio; /* bios to merge */
697 sector_t last_block_in_bio; /* last block number */
698 struct f2fs_io_info fio; /* store buffered io info. */
699 struct rw_semaphore io_rwsem; /* blocking op for bio */
700 };
701
702 enum inode_type {
703 DIR_INODE, /* for dirty dir inode */
704 FILE_INODE, /* for dirty regular/symlink inode */
705 NR_INODE_TYPE,
706 };
707
708 /* for inner inode cache management */
709 struct inode_management {
710 struct radix_tree_root ino_root; /* ino entry array */
711 spinlock_t ino_lock; /* for ino entry lock */
712 struct list_head ino_list; /* inode list head */
713 unsigned long ino_num; /* number of entries */
714 };
715
716 /* For s_flag in struct f2fs_sb_info */
717 enum {
718 SBI_IS_DIRTY, /* dirty flag for checkpoint */
719 SBI_IS_CLOSE, /* specify unmounting */
720 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
721 SBI_POR_DOING, /* recovery is doing or not */
722 };
723
724 struct f2fs_sb_info {
725 struct super_block *sb; /* pointer to VFS super block */
726 struct proc_dir_entry *s_proc; /* proc entry */
727 struct f2fs_super_block *raw_super; /* raw super block pointer */
728 int valid_super_block; /* valid super block no */
729 int s_flag; /* flags for sbi */
730
731 /* for node-related operations */
732 struct f2fs_nm_info *nm_info; /* node manager */
733 struct inode *node_inode; /* cache node blocks */
734
735 /* for segment-related operations */
736 struct f2fs_sm_info *sm_info; /* segment manager */
737
738 /* for bio operations */
739 struct f2fs_bio_info read_io; /* for read bios */
740 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
741
742 /* for checkpoint */
743 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
744 struct inode *meta_inode; /* cache meta blocks */
745 struct mutex cp_mutex; /* checkpoint procedure lock */
746 struct rw_semaphore cp_rwsem; /* blocking FS operations */
747 struct rw_semaphore node_write; /* locking node writes */
748 struct mutex writepages; /* mutex for writepages() */
749 wait_queue_head_t cp_wait;
750 long cp_expires, cp_interval; /* next expected periodic cp */
751
752 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
753
754 /* for orphan inode, use 0'th array */
755 unsigned int max_orphans; /* max orphan inodes */
756
757 /* for inode management */
758 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
759 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
760
761 /* for extent tree cache */
762 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
763 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
764 struct list_head extent_list; /* lru list for shrinker */
765 spinlock_t extent_lock; /* locking extent lru list */
766 atomic_t total_ext_tree; /* extent tree count */
767 struct list_head zombie_list; /* extent zombie tree list */
768 atomic_t total_zombie_tree; /* extent zombie tree count */
769 atomic_t total_ext_node; /* extent info count */
770
771 /* basic filesystem units */
772 unsigned int log_sectors_per_block; /* log2 sectors per block */
773 unsigned int log_blocksize; /* log2 block size */
774 unsigned int blocksize; /* block size */
775 unsigned int root_ino_num; /* root inode number*/
776 unsigned int node_ino_num; /* node inode number*/
777 unsigned int meta_ino_num; /* meta inode number*/
778 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
779 unsigned int blocks_per_seg; /* blocks per segment */
780 unsigned int segs_per_sec; /* segments per section */
781 unsigned int secs_per_zone; /* sections per zone */
782 unsigned int total_sections; /* total section count */
783 unsigned int total_node_count; /* total node block count */
784 unsigned int total_valid_node_count; /* valid node block count */
785 unsigned int total_valid_inode_count; /* valid inode count */
786 loff_t max_file_blocks; /* max block index of file */
787 int active_logs; /* # of active logs */
788 int dir_level; /* directory level */
789
790 block_t user_block_count; /* # of user blocks */
791 block_t total_valid_block_count; /* # of valid blocks */
792 block_t alloc_valid_block_count; /* # of allocated blocks */
793 block_t discard_blks; /* discard command candidats */
794 block_t last_valid_block_count; /* for recovery */
795 u32 s_next_generation; /* for NFS support */
796 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
797
798 struct f2fs_mount_info mount_opt; /* mount options */
799
800 /* for cleaning operations */
801 struct mutex gc_mutex; /* mutex for GC */
802 struct f2fs_gc_kthread *gc_thread; /* GC thread */
803 unsigned int cur_victim_sec; /* current victim section num */
804
805 /* maximum # of trials to find a victim segment for SSR and GC */
806 unsigned int max_victim_search;
807
808 /*
809 * for stat information.
810 * one is for the LFS mode, and the other is for the SSR mode.
811 */
812 #ifdef CONFIG_F2FS_STAT_FS
813 struct f2fs_stat_info *stat_info; /* FS status information */
814 unsigned int segment_count[2]; /* # of allocated segments */
815 unsigned int block_count[2]; /* # of allocated blocks */
816 atomic_t inplace_count; /* # of inplace update */
817 atomic64_t total_hit_ext; /* # of lookup extent cache */
818 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
819 atomic64_t read_hit_largest; /* # of hit largest extent node */
820 atomic64_t read_hit_cached; /* # of hit cached extent node */
821 atomic_t inline_xattr; /* # of inline_xattr inodes */
822 atomic_t inline_inode; /* # of inline_data inodes */
823 atomic_t inline_dir; /* # of inline_dentry inodes */
824 int bg_gc; /* background gc calls */
825 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
826 #endif
827 unsigned int last_victim[2]; /* last victim segment # */
828 spinlock_t stat_lock; /* lock for stat operations */
829
830 /* For sysfs suppport */
831 struct kobject s_kobj;
832 struct completion s_kobj_unregister;
833
834 /* For shrinker support */
835 struct list_head s_list;
836 struct mutex umount_mutex;
837 unsigned int shrinker_run_no;
838 };
839
840 /*
841 * Inline functions
842 */
843 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
844 {
845 return container_of(inode, struct f2fs_inode_info, vfs_inode);
846 }
847
848 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
849 {
850 return sb->s_fs_info;
851 }
852
853 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
854 {
855 return F2FS_SB(inode->i_sb);
856 }
857
858 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
859 {
860 return F2FS_I_SB(mapping->host);
861 }
862
863 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
864 {
865 return F2FS_M_SB(page->mapping);
866 }
867
868 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
869 {
870 return (struct f2fs_super_block *)(sbi->raw_super);
871 }
872
873 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
874 {
875 return (struct f2fs_checkpoint *)(sbi->ckpt);
876 }
877
878 static inline struct f2fs_node *F2FS_NODE(struct page *page)
879 {
880 return (struct f2fs_node *)page_address(page);
881 }
882
883 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
884 {
885 return &((struct f2fs_node *)page_address(page))->i;
886 }
887
888 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
889 {
890 return (struct f2fs_nm_info *)(sbi->nm_info);
891 }
892
893 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
894 {
895 return (struct f2fs_sm_info *)(sbi->sm_info);
896 }
897
898 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
899 {
900 return (struct sit_info *)(SM_I(sbi)->sit_info);
901 }
902
903 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
904 {
905 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
906 }
907
908 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
909 {
910 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
911 }
912
913 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
914 {
915 return sbi->meta_inode->i_mapping;
916 }
917
918 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
919 {
920 return sbi->node_inode->i_mapping;
921 }
922
923 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
924 {
925 return sbi->s_flag & (0x01 << type);
926 }
927
928 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
929 {
930 sbi->s_flag |= (0x01 << type);
931 }
932
933 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
934 {
935 sbi->s_flag &= ~(0x01 << type);
936 }
937
938 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
939 {
940 return le64_to_cpu(cp->checkpoint_ver);
941 }
942
943 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
944 {
945 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
946 return ckpt_flags & f;
947 }
948
949 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
950 {
951 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
952 ckpt_flags |= f;
953 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
954 }
955
956 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
957 {
958 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
959 ckpt_flags &= (~f);
960 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
961 }
962
963 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
964 {
965 down_read(&sbi->cp_rwsem);
966 }
967
968 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
969 {
970 up_read(&sbi->cp_rwsem);
971 }
972
973 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
974 {
975 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
976 }
977
978 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
979 {
980 up_write(&sbi->cp_rwsem);
981 }
982
983 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
984 {
985 int reason = CP_SYNC;
986
987 if (test_opt(sbi, FASTBOOT))
988 reason = CP_FASTBOOT;
989 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
990 reason = CP_UMOUNT;
991 return reason;
992 }
993
994 static inline bool __remain_node_summaries(int reason)
995 {
996 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
997 }
998
999 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1000 {
1001 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1002 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1003 }
1004
1005 /*
1006 * Check whether the given nid is within node id range.
1007 */
1008 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1009 {
1010 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1011 return -EINVAL;
1012 if (unlikely(nid >= NM_I(sbi)->max_nid))
1013 return -EINVAL;
1014 return 0;
1015 }
1016
1017 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1018
1019 /*
1020 * Check whether the inode has blocks or not
1021 */
1022 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1023 {
1024 if (F2FS_I(inode)->i_xattr_nid)
1025 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1026 else
1027 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1028 }
1029
1030 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1031 {
1032 return ofs == XATTR_NODE_OFFSET;
1033 }
1034
1035 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1036 struct inode *inode, blkcnt_t count)
1037 {
1038 block_t valid_block_count;
1039
1040 spin_lock(&sbi->stat_lock);
1041 valid_block_count =
1042 sbi->total_valid_block_count + (block_t)count;
1043 if (unlikely(valid_block_count > sbi->user_block_count)) {
1044 spin_unlock(&sbi->stat_lock);
1045 return false;
1046 }
1047 inode->i_blocks += count;
1048 sbi->total_valid_block_count = valid_block_count;
1049 sbi->alloc_valid_block_count += (block_t)count;
1050 spin_unlock(&sbi->stat_lock);
1051 return true;
1052 }
1053
1054 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1055 struct inode *inode,
1056 blkcnt_t count)
1057 {
1058 spin_lock(&sbi->stat_lock);
1059 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1060 f2fs_bug_on(sbi, inode->i_blocks < count);
1061 inode->i_blocks -= count;
1062 sbi->total_valid_block_count -= (block_t)count;
1063 spin_unlock(&sbi->stat_lock);
1064 }
1065
1066 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1067 {
1068 atomic_inc(&sbi->nr_pages[count_type]);
1069 set_sbi_flag(sbi, SBI_IS_DIRTY);
1070 }
1071
1072 static inline void inode_inc_dirty_pages(struct inode *inode)
1073 {
1074 atomic_inc(&F2FS_I(inode)->dirty_pages);
1075 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1076 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1077 }
1078
1079 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1080 {
1081 atomic_dec(&sbi->nr_pages[count_type]);
1082 }
1083
1084 static inline void inode_dec_dirty_pages(struct inode *inode)
1085 {
1086 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1087 !S_ISLNK(inode->i_mode))
1088 return;
1089
1090 atomic_dec(&F2FS_I(inode)->dirty_pages);
1091 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1092 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1093 }
1094
1095 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1096 {
1097 return atomic_read(&sbi->nr_pages[count_type]);
1098 }
1099
1100 static inline int get_dirty_pages(struct inode *inode)
1101 {
1102 return atomic_read(&F2FS_I(inode)->dirty_pages);
1103 }
1104
1105 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1106 {
1107 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1108 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1109 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1110 }
1111
1112 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1113 {
1114 return sbi->total_valid_block_count;
1115 }
1116
1117 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1118 {
1119 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1120
1121 /* return NAT or SIT bitmap */
1122 if (flag == NAT_BITMAP)
1123 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1124 else if (flag == SIT_BITMAP)
1125 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1126
1127 return 0;
1128 }
1129
1130 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1131 {
1132 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1133 }
1134
1135 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1136 {
1137 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1138 int offset;
1139
1140 if (__cp_payload(sbi) > 0) {
1141 if (flag == NAT_BITMAP)
1142 return &ckpt->sit_nat_version_bitmap;
1143 else
1144 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1145 } else {
1146 offset = (flag == NAT_BITMAP) ?
1147 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1148 return &ckpt->sit_nat_version_bitmap + offset;
1149 }
1150 }
1151
1152 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1153 {
1154 block_t start_addr;
1155 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1156 unsigned long long ckpt_version = cur_cp_version(ckpt);
1157
1158 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1159
1160 /*
1161 * odd numbered checkpoint should at cp segment 0
1162 * and even segment must be at cp segment 1
1163 */
1164 if (!(ckpt_version & 1))
1165 start_addr += sbi->blocks_per_seg;
1166
1167 return start_addr;
1168 }
1169
1170 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1171 {
1172 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1173 }
1174
1175 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1176 struct inode *inode)
1177 {
1178 block_t valid_block_count;
1179 unsigned int valid_node_count;
1180
1181 spin_lock(&sbi->stat_lock);
1182
1183 valid_block_count = sbi->total_valid_block_count + 1;
1184 if (unlikely(valid_block_count > sbi->user_block_count)) {
1185 spin_unlock(&sbi->stat_lock);
1186 return false;
1187 }
1188
1189 valid_node_count = sbi->total_valid_node_count + 1;
1190 if (unlikely(valid_node_count > sbi->total_node_count)) {
1191 spin_unlock(&sbi->stat_lock);
1192 return false;
1193 }
1194
1195 if (inode)
1196 inode->i_blocks++;
1197
1198 sbi->alloc_valid_block_count++;
1199 sbi->total_valid_node_count++;
1200 sbi->total_valid_block_count++;
1201 spin_unlock(&sbi->stat_lock);
1202
1203 return true;
1204 }
1205
1206 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1207 struct inode *inode)
1208 {
1209 spin_lock(&sbi->stat_lock);
1210
1211 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1212 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1213 f2fs_bug_on(sbi, !inode->i_blocks);
1214
1215 inode->i_blocks--;
1216 sbi->total_valid_node_count--;
1217 sbi->total_valid_block_count--;
1218
1219 spin_unlock(&sbi->stat_lock);
1220 }
1221
1222 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1223 {
1224 return sbi->total_valid_node_count;
1225 }
1226
1227 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1228 {
1229 spin_lock(&sbi->stat_lock);
1230 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1231 sbi->total_valid_inode_count++;
1232 spin_unlock(&sbi->stat_lock);
1233 }
1234
1235 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1236 {
1237 spin_lock(&sbi->stat_lock);
1238 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1239 sbi->total_valid_inode_count--;
1240 spin_unlock(&sbi->stat_lock);
1241 }
1242
1243 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1244 {
1245 return sbi->total_valid_inode_count;
1246 }
1247
1248 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1249 pgoff_t index, bool for_write)
1250 {
1251 if (!for_write)
1252 return grab_cache_page(mapping, index);
1253 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1254 }
1255
1256 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1257 {
1258 char *src_kaddr = kmap(src);
1259 char *dst_kaddr = kmap(dst);
1260
1261 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1262 kunmap(dst);
1263 kunmap(src);
1264 }
1265
1266 static inline void f2fs_put_page(struct page *page, int unlock)
1267 {
1268 if (!page)
1269 return;
1270
1271 if (unlock) {
1272 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1273 unlock_page(page);
1274 }
1275 page_cache_release(page);
1276 }
1277
1278 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1279 {
1280 if (dn->node_page)
1281 f2fs_put_page(dn->node_page, 1);
1282 if (dn->inode_page && dn->node_page != dn->inode_page)
1283 f2fs_put_page(dn->inode_page, 0);
1284 dn->node_page = NULL;
1285 dn->inode_page = NULL;
1286 }
1287
1288 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1289 size_t size)
1290 {
1291 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1292 }
1293
1294 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1295 gfp_t flags)
1296 {
1297 void *entry;
1298
1299 entry = kmem_cache_alloc(cachep, flags);
1300 if (!entry)
1301 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1302 return entry;
1303 }
1304
1305 static inline struct bio *f2fs_bio_alloc(int npages)
1306 {
1307 struct bio *bio;
1308
1309 /* No failure on bio allocation */
1310 bio = bio_alloc(GFP_NOIO, npages);
1311 if (!bio)
1312 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1313 return bio;
1314 }
1315
1316 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1317 unsigned long index, void *item)
1318 {
1319 while (radix_tree_insert(root, index, item))
1320 cond_resched();
1321 }
1322
1323 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1324
1325 static inline bool IS_INODE(struct page *page)
1326 {
1327 struct f2fs_node *p = F2FS_NODE(page);
1328 return RAW_IS_INODE(p);
1329 }
1330
1331 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1332 {
1333 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1334 }
1335
1336 static inline block_t datablock_addr(struct page *node_page,
1337 unsigned int offset)
1338 {
1339 struct f2fs_node *raw_node;
1340 __le32 *addr_array;
1341 raw_node = F2FS_NODE(node_page);
1342 addr_array = blkaddr_in_node(raw_node);
1343 return le32_to_cpu(addr_array[offset]);
1344 }
1345
1346 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1347 {
1348 int mask;
1349
1350 addr += (nr >> 3);
1351 mask = 1 << (7 - (nr & 0x07));
1352 return mask & *addr;
1353 }
1354
1355 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1356 {
1357 int mask;
1358
1359 addr += (nr >> 3);
1360 mask = 1 << (7 - (nr & 0x07));
1361 *addr |= mask;
1362 }
1363
1364 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1365 {
1366 int mask;
1367
1368 addr += (nr >> 3);
1369 mask = 1 << (7 - (nr & 0x07));
1370 *addr &= ~mask;
1371 }
1372
1373 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1374 {
1375 int mask;
1376 int ret;
1377
1378 addr += (nr >> 3);
1379 mask = 1 << (7 - (nr & 0x07));
1380 ret = mask & *addr;
1381 *addr |= mask;
1382 return ret;
1383 }
1384
1385 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1386 {
1387 int mask;
1388 int ret;
1389
1390 addr += (nr >> 3);
1391 mask = 1 << (7 - (nr & 0x07));
1392 ret = mask & *addr;
1393 *addr &= ~mask;
1394 return ret;
1395 }
1396
1397 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1398 {
1399 int mask;
1400
1401 addr += (nr >> 3);
1402 mask = 1 << (7 - (nr & 0x07));
1403 *addr ^= mask;
1404 }
1405
1406 /* used for f2fs_inode_info->flags */
1407 enum {
1408 FI_NEW_INODE, /* indicate newly allocated inode */
1409 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1410 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1411 FI_INC_LINK, /* need to increment i_nlink */
1412 FI_ACL_MODE, /* indicate acl mode */
1413 FI_NO_ALLOC, /* should not allocate any blocks */
1414 FI_FREE_NID, /* free allocated nide */
1415 FI_UPDATE_DIR, /* should update inode block for consistency */
1416 FI_DELAY_IPUT, /* used for the recovery */
1417 FI_NO_EXTENT, /* not to use the extent cache */
1418 FI_INLINE_XATTR, /* used for inline xattr */
1419 FI_INLINE_DATA, /* used for inline data*/
1420 FI_INLINE_DENTRY, /* used for inline dentry */
1421 FI_APPEND_WRITE, /* inode has appended data */
1422 FI_UPDATE_WRITE, /* inode has in-place-update data */
1423 FI_NEED_IPU, /* used for ipu per file */
1424 FI_ATOMIC_FILE, /* indicate atomic file */
1425 FI_VOLATILE_FILE, /* indicate volatile file */
1426 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1427 FI_DROP_CACHE, /* drop dirty page cache */
1428 FI_DATA_EXIST, /* indicate data exists */
1429 FI_INLINE_DOTS, /* indicate inline dot dentries */
1430 FI_DO_DEFRAG, /* indicate defragment is running */
1431 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1432 };
1433
1434 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1435 {
1436 if (!test_bit(flag, &fi->flags))
1437 set_bit(flag, &fi->flags);
1438 }
1439
1440 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1441 {
1442 return test_bit(flag, &fi->flags);
1443 }
1444
1445 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1446 {
1447 if (test_bit(flag, &fi->flags))
1448 clear_bit(flag, &fi->flags);
1449 }
1450
1451 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1452 {
1453 fi->i_acl_mode = mode;
1454 set_inode_flag(fi, FI_ACL_MODE);
1455 }
1456
1457 static inline void get_inline_info(struct f2fs_inode_info *fi,
1458 struct f2fs_inode *ri)
1459 {
1460 if (ri->i_inline & F2FS_INLINE_XATTR)
1461 set_inode_flag(fi, FI_INLINE_XATTR);
1462 if (ri->i_inline & F2FS_INLINE_DATA)
1463 set_inode_flag(fi, FI_INLINE_DATA);
1464 if (ri->i_inline & F2FS_INLINE_DENTRY)
1465 set_inode_flag(fi, FI_INLINE_DENTRY);
1466 if (ri->i_inline & F2FS_DATA_EXIST)
1467 set_inode_flag(fi, FI_DATA_EXIST);
1468 if (ri->i_inline & F2FS_INLINE_DOTS)
1469 set_inode_flag(fi, FI_INLINE_DOTS);
1470 }
1471
1472 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1473 struct f2fs_inode *ri)
1474 {
1475 ri->i_inline = 0;
1476
1477 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1478 ri->i_inline |= F2FS_INLINE_XATTR;
1479 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1480 ri->i_inline |= F2FS_INLINE_DATA;
1481 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1482 ri->i_inline |= F2FS_INLINE_DENTRY;
1483 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1484 ri->i_inline |= F2FS_DATA_EXIST;
1485 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1486 ri->i_inline |= F2FS_INLINE_DOTS;
1487 }
1488
1489 static inline int f2fs_has_inline_xattr(struct inode *inode)
1490 {
1491 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1492 }
1493
1494 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1495 {
1496 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1497 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1498 return DEF_ADDRS_PER_INODE;
1499 }
1500
1501 static inline void *inline_xattr_addr(struct page *page)
1502 {
1503 struct f2fs_inode *ri = F2FS_INODE(page);
1504 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1505 F2FS_INLINE_XATTR_ADDRS]);
1506 }
1507
1508 static inline int inline_xattr_size(struct inode *inode)
1509 {
1510 if (f2fs_has_inline_xattr(inode))
1511 return F2FS_INLINE_XATTR_ADDRS << 2;
1512 else
1513 return 0;
1514 }
1515
1516 static inline int f2fs_has_inline_data(struct inode *inode)
1517 {
1518 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1519 }
1520
1521 static inline void f2fs_clear_inline_inode(struct inode *inode)
1522 {
1523 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1524 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1525 }
1526
1527 static inline int f2fs_exist_data(struct inode *inode)
1528 {
1529 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1530 }
1531
1532 static inline int f2fs_has_inline_dots(struct inode *inode)
1533 {
1534 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1535 }
1536
1537 static inline bool f2fs_is_atomic_file(struct inode *inode)
1538 {
1539 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1540 }
1541
1542 static inline bool f2fs_is_volatile_file(struct inode *inode)
1543 {
1544 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1545 }
1546
1547 static inline bool f2fs_is_first_block_written(struct inode *inode)
1548 {
1549 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1550 }
1551
1552 static inline bool f2fs_is_drop_cache(struct inode *inode)
1553 {
1554 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1555 }
1556
1557 static inline void *inline_data_addr(struct page *page)
1558 {
1559 struct f2fs_inode *ri = F2FS_INODE(page);
1560 return (void *)&(ri->i_addr[1]);
1561 }
1562
1563 static inline int f2fs_has_inline_dentry(struct inode *inode)
1564 {
1565 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1566 }
1567
1568 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1569 {
1570 if (!f2fs_has_inline_dentry(dir))
1571 kunmap(page);
1572 }
1573
1574 static inline int is_file(struct inode *inode, int type)
1575 {
1576 return F2FS_I(inode)->i_advise & type;
1577 }
1578
1579 static inline void set_file(struct inode *inode, int type)
1580 {
1581 F2FS_I(inode)->i_advise |= type;
1582 }
1583
1584 static inline void clear_file(struct inode *inode, int type)
1585 {
1586 F2FS_I(inode)->i_advise &= ~type;
1587 }
1588
1589 static inline int f2fs_readonly(struct super_block *sb)
1590 {
1591 return sb->s_flags & MS_RDONLY;
1592 }
1593
1594 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1595 {
1596 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1597 }
1598
1599 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1600 {
1601 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1602 sbi->sb->s_flags |= MS_RDONLY;
1603 }
1604
1605 static inline bool is_dot_dotdot(const struct qstr *str)
1606 {
1607 if (str->len == 1 && str->name[0] == '.')
1608 return true;
1609
1610 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1611 return true;
1612
1613 return false;
1614 }
1615
1616 static inline bool f2fs_may_extent_tree(struct inode *inode)
1617 {
1618 mode_t mode = inode->i_mode;
1619
1620 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1621 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1622 return false;
1623
1624 return S_ISREG(mode);
1625 }
1626
1627 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1628 {
1629 void *ret;
1630
1631 ret = kmalloc(size, flags | __GFP_NOWARN);
1632 if (!ret)
1633 ret = __vmalloc(size, flags, PAGE_KERNEL);
1634 return ret;
1635 }
1636
1637 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1638 {
1639 void *ret;
1640
1641 ret = kzalloc(size, flags | __GFP_NOWARN);
1642 if (!ret)
1643 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1644 return ret;
1645 }
1646
1647 #define get_inode_mode(i) \
1648 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1649 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1650
1651 /* get offset of first page in next direct node */
1652 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1653 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1654 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1655 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1656
1657 /*
1658 * file.c
1659 */
1660 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1661 void truncate_data_blocks(struct dnode_of_data *);
1662 int truncate_blocks(struct inode *, u64, bool);
1663 int f2fs_truncate(struct inode *, bool);
1664 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1665 int f2fs_setattr(struct dentry *, struct iattr *);
1666 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1667 int truncate_data_blocks_range(struct dnode_of_data *, int);
1668 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1669 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1670
1671 /*
1672 * inode.c
1673 */
1674 void f2fs_set_inode_flags(struct inode *);
1675 struct inode *f2fs_iget(struct super_block *, unsigned long);
1676 int try_to_free_nats(struct f2fs_sb_info *, int);
1677 void update_inode(struct inode *, struct page *);
1678 void update_inode_page(struct inode *);
1679 int f2fs_write_inode(struct inode *, struct writeback_control *);
1680 void f2fs_evict_inode(struct inode *);
1681 void handle_failed_inode(struct inode *);
1682
1683 /*
1684 * namei.c
1685 */
1686 struct dentry *f2fs_get_parent(struct dentry *child);
1687
1688 /*
1689 * dir.c
1690 */
1691 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1692 void set_de_type(struct f2fs_dir_entry *, umode_t);
1693
1694 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1695 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1696 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1697 unsigned int, struct f2fs_str *);
1698 void do_make_empty_dir(struct inode *, struct inode *,
1699 struct f2fs_dentry_ptr *);
1700 struct page *init_inode_metadata(struct inode *, struct inode *,
1701 const struct qstr *, struct page *);
1702 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1703 int room_for_filename(const void *, int, int);
1704 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1705 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1706 struct page **);
1707 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1708 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1709 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1710 struct page *, struct inode *);
1711 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1712 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1713 const struct qstr *, f2fs_hash_t , unsigned int);
1714 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1715 umode_t);
1716 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1717 struct inode *);
1718 int f2fs_do_tmpfile(struct inode *, struct inode *);
1719 bool f2fs_empty_dir(struct inode *);
1720
1721 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1722 {
1723 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1724 inode, inode->i_ino, inode->i_mode);
1725 }
1726
1727 /*
1728 * super.c
1729 */
1730 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1731 int f2fs_sync_fs(struct super_block *, int);
1732 extern __printf(3, 4)
1733 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1734
1735 /*
1736 * hash.c
1737 */
1738 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1739
1740 /*
1741 * node.c
1742 */
1743 struct dnode_of_data;
1744 struct node_info;
1745
1746 bool available_free_memory(struct f2fs_sb_info *, int);
1747 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1748 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1749 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1750 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1751 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1752 int truncate_inode_blocks(struct inode *, pgoff_t);
1753 int truncate_xattr_node(struct inode *, struct page *);
1754 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1755 int remove_inode_page(struct inode *);
1756 struct page *new_inode_page(struct inode *);
1757 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1758 void ra_node_page(struct f2fs_sb_info *, nid_t);
1759 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1760 struct page *get_node_page_ra(struct page *, int);
1761 void sync_inode_page(struct dnode_of_data *);
1762 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1763 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1764 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1765 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1766 int try_to_free_nids(struct f2fs_sb_info *, int);
1767 void recover_inline_xattr(struct inode *, struct page *);
1768 void recover_xattr_data(struct inode *, struct page *, block_t);
1769 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1770 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1771 struct f2fs_summary_block *);
1772 void flush_nat_entries(struct f2fs_sb_info *);
1773 int build_node_manager(struct f2fs_sb_info *);
1774 void destroy_node_manager(struct f2fs_sb_info *);
1775 int __init create_node_manager_caches(void);
1776 void destroy_node_manager_caches(void);
1777
1778 /*
1779 * segment.c
1780 */
1781 void register_inmem_page(struct inode *, struct page *);
1782 int commit_inmem_pages(struct inode *, bool);
1783 void f2fs_balance_fs(struct f2fs_sb_info *);
1784 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1785 int f2fs_issue_flush(struct f2fs_sb_info *);
1786 int create_flush_cmd_control(struct f2fs_sb_info *);
1787 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1788 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1789 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1790 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1791 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1792 void release_discard_addrs(struct f2fs_sb_info *);
1793 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1794 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1795 void allocate_new_segments(struct f2fs_sb_info *);
1796 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1797 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1798 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1799 void write_meta_page(struct f2fs_sb_info *, struct page *);
1800 void write_node_page(unsigned int, struct f2fs_io_info *);
1801 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1802 void rewrite_data_page(struct f2fs_io_info *);
1803 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1804 block_t, block_t, unsigned char, bool);
1805 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1806 block_t, block_t *, struct f2fs_summary *, int);
1807 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1808 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1809 void write_data_summaries(struct f2fs_sb_info *, block_t);
1810 void write_node_summaries(struct f2fs_sb_info *, block_t);
1811 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1812 int, unsigned int, int);
1813 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1814 int build_segment_manager(struct f2fs_sb_info *);
1815 void destroy_segment_manager(struct f2fs_sb_info *);
1816 int __init create_segment_manager_caches(void);
1817 void destroy_segment_manager_caches(void);
1818
1819 /*
1820 * checkpoint.c
1821 */
1822 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1823 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1824 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1825 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1826 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1827 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1828 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1829 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1830 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1831 void release_ino_entry(struct f2fs_sb_info *);
1832 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1833 int acquire_orphan_inode(struct f2fs_sb_info *);
1834 void release_orphan_inode(struct f2fs_sb_info *);
1835 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1836 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1837 int recover_orphan_inodes(struct f2fs_sb_info *);
1838 int get_valid_checkpoint(struct f2fs_sb_info *);
1839 void update_dirty_page(struct inode *, struct page *);
1840 void add_dirty_dir_inode(struct inode *);
1841 void remove_dirty_inode(struct inode *);
1842 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1843 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1844 void init_ino_entry_info(struct f2fs_sb_info *);
1845 int __init create_checkpoint_caches(void);
1846 void destroy_checkpoint_caches(void);
1847
1848 /*
1849 * data.c
1850 */
1851 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1852 int f2fs_submit_page_bio(struct f2fs_io_info *);
1853 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1854 void set_data_blkaddr(struct dnode_of_data *);
1855 int reserve_new_block(struct dnode_of_data *);
1856 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1857 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1858 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1859 struct page *find_data_page(struct inode *, pgoff_t);
1860 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1861 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1862 int do_write_data_page(struct f2fs_io_info *);
1863 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1864 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1865 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1866 int f2fs_release_page(struct page *, gfp_t);
1867
1868 /*
1869 * gc.c
1870 */
1871 int start_gc_thread(struct f2fs_sb_info *);
1872 void stop_gc_thread(struct f2fs_sb_info *);
1873 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1874 int f2fs_gc(struct f2fs_sb_info *, bool);
1875 void build_gc_manager(struct f2fs_sb_info *);
1876
1877 /*
1878 * recovery.c
1879 */
1880 int recover_fsync_data(struct f2fs_sb_info *);
1881 bool space_for_roll_forward(struct f2fs_sb_info *);
1882
1883 /*
1884 * debug.c
1885 */
1886 #ifdef CONFIG_F2FS_STAT_FS
1887 struct f2fs_stat_info {
1888 struct list_head stat_list;
1889 struct f2fs_sb_info *sbi;
1890 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1891 int main_area_segs, main_area_sections, main_area_zones;
1892 unsigned long long hit_largest, hit_cached, hit_rbtree;
1893 unsigned long long hit_total, total_ext;
1894 int ext_tree, zombie_tree, ext_node;
1895 int ndirty_node, ndirty_meta;
1896 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1897 int nats, dirty_nats, sits, dirty_sits, fnids;
1898 int total_count, utilization;
1899 int bg_gc, inmem_pages, wb_pages;
1900 int inline_xattr, inline_inode, inline_dir;
1901 unsigned int valid_count, valid_node_count, valid_inode_count;
1902 unsigned int bimodal, avg_vblocks;
1903 int util_free, util_valid, util_invalid;
1904 int rsvd_segs, overp_segs;
1905 int dirty_count, node_pages, meta_pages;
1906 int prefree_count, call_count, cp_count;
1907 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1908 int bg_node_segs, bg_data_segs;
1909 int tot_blks, data_blks, node_blks;
1910 int bg_data_blks, bg_node_blks;
1911 int curseg[NR_CURSEG_TYPE];
1912 int cursec[NR_CURSEG_TYPE];
1913 int curzone[NR_CURSEG_TYPE];
1914
1915 unsigned int segment_count[2];
1916 unsigned int block_count[2];
1917 unsigned int inplace_count;
1918 unsigned long long base_mem, cache_mem, page_mem;
1919 };
1920
1921 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1922 {
1923 return (struct f2fs_stat_info *)sbi->stat_info;
1924 }
1925
1926 #define stat_inc_cp_count(si) ((si)->cp_count++)
1927 #define stat_inc_call_count(si) ((si)->call_count++)
1928 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1929 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1930 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1931 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1932 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1933 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1934 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1935 #define stat_inc_inline_xattr(inode) \
1936 do { \
1937 if (f2fs_has_inline_xattr(inode)) \
1938 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1939 } while (0)
1940 #define stat_dec_inline_xattr(inode) \
1941 do { \
1942 if (f2fs_has_inline_xattr(inode)) \
1943 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1944 } while (0)
1945 #define stat_inc_inline_inode(inode) \
1946 do { \
1947 if (f2fs_has_inline_data(inode)) \
1948 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1949 } while (0)
1950 #define stat_dec_inline_inode(inode) \
1951 do { \
1952 if (f2fs_has_inline_data(inode)) \
1953 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1954 } while (0)
1955 #define stat_inc_inline_dir(inode) \
1956 do { \
1957 if (f2fs_has_inline_dentry(inode)) \
1958 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1959 } while (0)
1960 #define stat_dec_inline_dir(inode) \
1961 do { \
1962 if (f2fs_has_inline_dentry(inode)) \
1963 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1964 } while (0)
1965 #define stat_inc_seg_type(sbi, curseg) \
1966 ((sbi)->segment_count[(curseg)->alloc_type]++)
1967 #define stat_inc_block_count(sbi, curseg) \
1968 ((sbi)->block_count[(curseg)->alloc_type]++)
1969 #define stat_inc_inplace_blocks(sbi) \
1970 (atomic_inc(&(sbi)->inplace_count))
1971 #define stat_inc_seg_count(sbi, type, gc_type) \
1972 do { \
1973 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1974 (si)->tot_segs++; \
1975 if (type == SUM_TYPE_DATA) { \
1976 si->data_segs++; \
1977 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1978 } else { \
1979 si->node_segs++; \
1980 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1981 } \
1982 } while (0)
1983
1984 #define stat_inc_tot_blk_count(si, blks) \
1985 (si->tot_blks += (blks))
1986
1987 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1988 do { \
1989 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1990 stat_inc_tot_blk_count(si, blks); \
1991 si->data_blks += (blks); \
1992 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1993 } while (0)
1994
1995 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1996 do { \
1997 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1998 stat_inc_tot_blk_count(si, blks); \
1999 si->node_blks += (blks); \
2000 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2001 } while (0)
2002
2003 int f2fs_build_stats(struct f2fs_sb_info *);
2004 void f2fs_destroy_stats(struct f2fs_sb_info *);
2005 int __init f2fs_create_root_stats(void);
2006 void f2fs_destroy_root_stats(void);
2007 #else
2008 #define stat_inc_cp_count(si)
2009 #define stat_inc_call_count(si)
2010 #define stat_inc_bggc_count(si)
2011 #define stat_inc_dirty_inode(sbi, type)
2012 #define stat_dec_dirty_inode(sbi, type)
2013 #define stat_inc_total_hit(sb)
2014 #define stat_inc_rbtree_node_hit(sb)
2015 #define stat_inc_largest_node_hit(sbi)
2016 #define stat_inc_cached_node_hit(sbi)
2017 #define stat_inc_inline_xattr(inode)
2018 #define stat_dec_inline_xattr(inode)
2019 #define stat_inc_inline_inode(inode)
2020 #define stat_dec_inline_inode(inode)
2021 #define stat_inc_inline_dir(inode)
2022 #define stat_dec_inline_dir(inode)
2023 #define stat_inc_seg_type(sbi, curseg)
2024 #define stat_inc_block_count(sbi, curseg)
2025 #define stat_inc_inplace_blocks(sbi)
2026 #define stat_inc_seg_count(sbi, type, gc_type)
2027 #define stat_inc_tot_blk_count(si, blks)
2028 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2029 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2030
2031 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2032 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2033 static inline int __init f2fs_create_root_stats(void) { return 0; }
2034 static inline void f2fs_destroy_root_stats(void) { }
2035 #endif
2036
2037 extern const struct file_operations f2fs_dir_operations;
2038 extern const struct file_operations f2fs_file_operations;
2039 extern const struct inode_operations f2fs_file_inode_operations;
2040 extern const struct address_space_operations f2fs_dblock_aops;
2041 extern const struct address_space_operations f2fs_node_aops;
2042 extern const struct address_space_operations f2fs_meta_aops;
2043 extern const struct inode_operations f2fs_dir_inode_operations;
2044 extern const struct inode_operations f2fs_symlink_inode_operations;
2045 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2046 extern const struct inode_operations f2fs_special_inode_operations;
2047 extern struct kmem_cache *inode_entry_slab;
2048
2049 /*
2050 * inline.c
2051 */
2052 bool f2fs_may_inline_data(struct inode *);
2053 bool f2fs_may_inline_dentry(struct inode *);
2054 void read_inline_data(struct page *, struct page *);
2055 bool truncate_inline_inode(struct page *, u64);
2056 int f2fs_read_inline_data(struct inode *, struct page *);
2057 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2058 int f2fs_convert_inline_inode(struct inode *);
2059 int f2fs_write_inline_data(struct inode *, struct page *);
2060 bool recover_inline_data(struct inode *, struct page *);
2061 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2062 struct f2fs_filename *, struct page **);
2063 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2064 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2065 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2066 nid_t, umode_t);
2067 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2068 struct inode *, struct inode *);
2069 bool f2fs_empty_inline_dir(struct inode *);
2070 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2071 struct f2fs_str *);
2072 int f2fs_inline_data_fiemap(struct inode *,
2073 struct fiemap_extent_info *, __u64, __u64);
2074
2075 /*
2076 * shrinker.c
2077 */
2078 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2079 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2080 void f2fs_join_shrinker(struct f2fs_sb_info *);
2081 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2082
2083 /*
2084 * extent_cache.c
2085 */
2086 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2087 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2088 unsigned int f2fs_destroy_extent_node(struct inode *);
2089 void f2fs_destroy_extent_tree(struct inode *);
2090 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2091 void f2fs_update_extent_cache(struct dnode_of_data *);
2092 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2093 pgoff_t, block_t, unsigned int);
2094 void init_extent_cache_info(struct f2fs_sb_info *);
2095 int __init create_extent_cache(void);
2096 void destroy_extent_cache(void);
2097
2098 /*
2099 * crypto support
2100 */
2101 static inline int f2fs_encrypted_inode(struct inode *inode)
2102 {
2103 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2104 return file_is_encrypt(inode);
2105 #else
2106 return 0;
2107 #endif
2108 }
2109
2110 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2111 {
2112 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2113 file_set_encrypt(inode);
2114 #endif
2115 }
2116
2117 static inline bool f2fs_bio_encrypted(struct bio *bio)
2118 {
2119 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2120 return unlikely(bio->bi_private != NULL);
2121 #else
2122 return false;
2123 #endif
2124 }
2125
2126 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2127 {
2128 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2129 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2130 #else
2131 return 0;
2132 #endif
2133 }
2134
2135 static inline bool f2fs_may_encrypt(struct inode *inode)
2136 {
2137 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2138 mode_t mode = inode->i_mode;
2139
2140 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2141 #else
2142 return 0;
2143 #endif
2144 }
2145
2146 /* crypto_policy.c */
2147 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2148 struct inode *);
2149 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2150 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2151 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2152
2153 /* crypt.c */
2154 extern struct kmem_cache *f2fs_crypt_info_cachep;
2155 bool f2fs_valid_contents_enc_mode(uint32_t);
2156 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2157 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2158 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2159 struct page *f2fs_encrypt(struct inode *, struct page *);
2160 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2161 int f2fs_decrypt_one(struct inode *, struct page *);
2162 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2163
2164 /* crypto_key.c */
2165 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2166 int _f2fs_get_encryption_info(struct inode *inode);
2167
2168 /* crypto_fname.c */
2169 bool f2fs_valid_filenames_enc_mode(uint32_t);
2170 u32 f2fs_fname_crypto_round_up(u32, u32);
2171 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2172 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2173 const struct f2fs_str *, struct f2fs_str *);
2174 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2175 struct f2fs_str *);
2176
2177 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2178 void f2fs_restore_and_release_control_page(struct page **);
2179 void f2fs_restore_control_page(struct page *);
2180
2181 int __init f2fs_init_crypto(void);
2182 int f2fs_crypto_initialize(void);
2183 void f2fs_exit_crypto(void);
2184
2185 int f2fs_has_encryption_key(struct inode *);
2186
2187 static inline int f2fs_get_encryption_info(struct inode *inode)
2188 {
2189 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2190
2191 if (!ci ||
2192 (ci->ci_keyring_key &&
2193 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2194 (1 << KEY_FLAG_REVOKED) |
2195 (1 << KEY_FLAG_DEAD)))))
2196 return _f2fs_get_encryption_info(inode);
2197 return 0;
2198 }
2199
2200 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2201 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2202 int lookup, struct f2fs_filename *);
2203 void f2fs_fname_free_filename(struct f2fs_filename *);
2204 #else
2205 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2206 static inline void f2fs_restore_control_page(struct page *p) { }
2207
2208 static inline int __init f2fs_init_crypto(void) { return 0; }
2209 static inline void f2fs_exit_crypto(void) { }
2210
2211 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2212 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2213 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2214
2215 static inline int f2fs_fname_setup_filename(struct inode *dir,
2216 const struct qstr *iname,
2217 int lookup, struct f2fs_filename *fname)
2218 {
2219 memset(fname, 0, sizeof(struct f2fs_filename));
2220 fname->usr_fname = iname;
2221 fname->disk_name.name = (unsigned char *)iname->name;
2222 fname->disk_name.len = iname->len;
2223 return 0;
2224 }
2225
2226 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2227 #endif
2228 #endif
This page took 0.075903 seconds and 5 git commands to generate.