f2fs: use percpu_rw_semaphore
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50 };
51
52 struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56 };
57
58 extern struct f2fs_fault_info f2fs_fault;
59 extern char *fault_name[FAULT_MAX];
60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62 static inline bool time_to_inject(int type)
63 {
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91 }
92 #endif
93
94 /*
95 * For mount options
96 */
97 #define F2FS_MOUNT_BG_GC 0x00000001
98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99 #define F2FS_MOUNT_DISCARD 0x00000004
100 #define F2FS_MOUNT_NOHEAP 0x00000008
101 #define F2FS_MOUNT_XATTR_USER 0x00000010
102 #define F2FS_MOUNT_POSIX_ACL 0x00000020
103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
105 #define F2FS_MOUNT_INLINE_DATA 0x00000100
106 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108 #define F2FS_MOUNT_NOBARRIER 0x00000800
109 #define F2FS_MOUNT_FASTBOOT 0x00001000
110 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114 #define F2FS_MOUNT_ADAPTIVE 0x00020000
115 #define F2FS_MOUNT_LFS 0x00040000
116
117 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
120
121 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
122 typecheck(unsigned long long, b) && \
123 ((long long)((a) - (b)) > 0))
124
125 typedef u32 block_t; /*
126 * should not change u32, since it is the on-disk block
127 * address format, __le32.
128 */
129 typedef u32 nid_t;
130
131 struct f2fs_mount_info {
132 unsigned int opt;
133 };
134
135 #define F2FS_FEATURE_ENCRYPT 0x0001
136 #define F2FS_FEATURE_HMSMR 0x0002
137
138 #define F2FS_HAS_FEATURE(sb, mask) \
139 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
140 #define F2FS_SET_FEATURE(sb, mask) \
141 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
142 #define F2FS_CLEAR_FEATURE(sb, mask) \
143 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
144
145 /*
146 * For checkpoint manager
147 */
148 enum {
149 NAT_BITMAP,
150 SIT_BITMAP
151 };
152
153 enum {
154 CP_UMOUNT,
155 CP_FASTBOOT,
156 CP_SYNC,
157 CP_RECOVERY,
158 CP_DISCARD,
159 };
160
161 #define DEF_BATCHED_TRIM_SECTIONS 32
162 #define BATCHED_TRIM_SEGMENTS(sbi) \
163 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
164 #define BATCHED_TRIM_BLOCKS(sbi) \
165 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
166 #define DEF_CP_INTERVAL 60 /* 60 secs */
167 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
168
169 struct cp_control {
170 int reason;
171 __u64 trim_start;
172 __u64 trim_end;
173 __u64 trim_minlen;
174 __u64 trimmed;
175 };
176
177 /*
178 * For CP/NAT/SIT/SSA readahead
179 */
180 enum {
181 META_CP,
182 META_NAT,
183 META_SIT,
184 META_SSA,
185 META_POR,
186 };
187
188 /* for the list of ino */
189 enum {
190 ORPHAN_INO, /* for orphan ino list */
191 APPEND_INO, /* for append ino list */
192 UPDATE_INO, /* for update ino list */
193 MAX_INO_ENTRY, /* max. list */
194 };
195
196 struct ino_entry {
197 struct list_head list; /* list head */
198 nid_t ino; /* inode number */
199 };
200
201 /* for the list of inodes to be GCed */
202 struct inode_entry {
203 struct list_head list; /* list head */
204 struct inode *inode; /* vfs inode pointer */
205 };
206
207 /* for the list of blockaddresses to be discarded */
208 struct discard_entry {
209 struct list_head list; /* list head */
210 block_t blkaddr; /* block address to be discarded */
211 int len; /* # of consecutive blocks of the discard */
212 };
213
214 /* for the list of fsync inodes, used only during recovery */
215 struct fsync_inode_entry {
216 struct list_head list; /* list head */
217 struct inode *inode; /* vfs inode pointer */
218 block_t blkaddr; /* block address locating the last fsync */
219 block_t last_dentry; /* block address locating the last dentry */
220 };
221
222 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
223 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
224
225 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
226 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
227 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
228 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
229
230 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
231 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
232
233 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
234 {
235 int before = nats_in_cursum(journal);
236 journal->n_nats = cpu_to_le16(before + i);
237 return before;
238 }
239
240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
241 {
242 int before = sits_in_cursum(journal);
243 journal->n_sits = cpu_to_le16(before + i);
244 return before;
245 }
246
247 static inline bool __has_cursum_space(struct f2fs_journal *journal,
248 int size, int type)
249 {
250 if (type == NAT_JOURNAL)
251 return size <= MAX_NAT_JENTRIES(journal);
252 return size <= MAX_SIT_JENTRIES(journal);
253 }
254
255 /*
256 * ioctl commands
257 */
258 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
259 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
260 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
261
262 #define F2FS_IOCTL_MAGIC 0xf5
263 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
264 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
265 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
266 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
267 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
268 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
269 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
270 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
271
272 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
273 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
274 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
275
276 /*
277 * should be same as XFS_IOC_GOINGDOWN.
278 * Flags for going down operation used by FS_IOC_GOINGDOWN
279 */
280 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
281 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
282 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
283 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
284 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
285
286 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
287 /*
288 * ioctl commands in 32 bit emulation
289 */
290 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
291 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
292 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
293 #endif
294
295 struct f2fs_defragment {
296 u64 start;
297 u64 len;
298 };
299
300 /*
301 * For INODE and NODE manager
302 */
303 /* for directory operations */
304 struct f2fs_dentry_ptr {
305 struct inode *inode;
306 const void *bitmap;
307 struct f2fs_dir_entry *dentry;
308 __u8 (*filename)[F2FS_SLOT_LEN];
309 int max;
310 };
311
312 static inline void make_dentry_ptr(struct inode *inode,
313 struct f2fs_dentry_ptr *d, void *src, int type)
314 {
315 d->inode = inode;
316
317 if (type == 1) {
318 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
319 d->max = NR_DENTRY_IN_BLOCK;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 } else {
324 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
325 d->max = NR_INLINE_DENTRY;
326 d->bitmap = &t->dentry_bitmap;
327 d->dentry = t->dentry;
328 d->filename = t->filename;
329 }
330 }
331
332 /*
333 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
334 * as its node offset to distinguish from index node blocks.
335 * But some bits are used to mark the node block.
336 */
337 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
338 >> OFFSET_BIT_SHIFT)
339 enum {
340 ALLOC_NODE, /* allocate a new node page if needed */
341 LOOKUP_NODE, /* look up a node without readahead */
342 LOOKUP_NODE_RA, /*
343 * look up a node with readahead called
344 * by get_data_block.
345 */
346 };
347
348 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
349
350 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
351
352 /* vector size for gang look-up from extent cache that consists of radix tree */
353 #define EXT_TREE_VEC_SIZE 64
354
355 /* for in-memory extent cache entry */
356 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
357
358 /* number of extent info in extent cache we try to shrink */
359 #define EXTENT_CACHE_SHRINK_NUMBER 128
360
361 struct extent_info {
362 unsigned int fofs; /* start offset in a file */
363 u32 blk; /* start block address of the extent */
364 unsigned int len; /* length of the extent */
365 };
366
367 struct extent_node {
368 struct rb_node rb_node; /* rb node located in rb-tree */
369 struct list_head list; /* node in global extent list of sbi */
370 struct extent_info ei; /* extent info */
371 struct extent_tree *et; /* extent tree pointer */
372 };
373
374 struct extent_tree {
375 nid_t ino; /* inode number */
376 struct rb_root root; /* root of extent info rb-tree */
377 struct extent_node *cached_en; /* recently accessed extent node */
378 struct extent_info largest; /* largested extent info */
379 struct list_head list; /* to be used by sbi->zombie_list */
380 rwlock_t lock; /* protect extent info rb-tree */
381 atomic_t node_cnt; /* # of extent node in rb-tree*/
382 };
383
384 /*
385 * This structure is taken from ext4_map_blocks.
386 *
387 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
388 */
389 #define F2FS_MAP_NEW (1 << BH_New)
390 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
391 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
392 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
393 F2FS_MAP_UNWRITTEN)
394
395 struct f2fs_map_blocks {
396 block_t m_pblk;
397 block_t m_lblk;
398 unsigned int m_len;
399 unsigned int m_flags;
400 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
401 };
402
403 /* for flag in get_data_block */
404 #define F2FS_GET_BLOCK_READ 0
405 #define F2FS_GET_BLOCK_DIO 1
406 #define F2FS_GET_BLOCK_FIEMAP 2
407 #define F2FS_GET_BLOCK_BMAP 3
408 #define F2FS_GET_BLOCK_PRE_DIO 4
409 #define F2FS_GET_BLOCK_PRE_AIO 5
410
411 /*
412 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
413 */
414 #define FADVISE_COLD_BIT 0x01
415 #define FADVISE_LOST_PINO_BIT 0x02
416 #define FADVISE_ENCRYPT_BIT 0x04
417 #define FADVISE_ENC_NAME_BIT 0x08
418
419 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
420 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
421 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
422 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
423 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
424 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
425 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
426 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
427 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
428 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
429 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
430
431 #define DEF_DIR_LEVEL 0
432
433 struct f2fs_inode_info {
434 struct inode vfs_inode; /* serve a vfs inode */
435 unsigned long i_flags; /* keep an inode flags for ioctl */
436 unsigned char i_advise; /* use to give file attribute hints */
437 unsigned char i_dir_level; /* use for dentry level for large dir */
438 unsigned int i_current_depth; /* use only in directory structure */
439 unsigned int i_pino; /* parent inode number */
440 umode_t i_acl_mode; /* keep file acl mode temporarily */
441
442 /* Use below internally in f2fs*/
443 unsigned long flags; /* use to pass per-file flags */
444 struct rw_semaphore i_sem; /* protect fi info */
445 struct percpu_counter dirty_pages; /* # of dirty pages */
446 f2fs_hash_t chash; /* hash value of given file name */
447 unsigned int clevel; /* maximum level of given file name */
448 nid_t i_xattr_nid; /* node id that contains xattrs */
449 unsigned long long xattr_ver; /* cp version of xattr modification */
450 loff_t last_disk_size; /* lastly written file size */
451
452 struct list_head dirty_list; /* dirty list for dirs and files */
453 struct list_head gdirty_list; /* linked in global dirty list */
454 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
455 struct mutex inmem_lock; /* lock for inmemory pages */
456 struct extent_tree *extent_tree; /* cached extent_tree entry */
457 };
458
459 static inline void get_extent_info(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 ext->fofs = le32_to_cpu(i_ext->fofs);
463 ext->blk = le32_to_cpu(i_ext->blk);
464 ext->len = le32_to_cpu(i_ext->len);
465 }
466
467 static inline void set_raw_extent(struct extent_info *ext,
468 struct f2fs_extent *i_ext)
469 {
470 i_ext->fofs = cpu_to_le32(ext->fofs);
471 i_ext->blk = cpu_to_le32(ext->blk);
472 i_ext->len = cpu_to_le32(ext->len);
473 }
474
475 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
476 u32 blk, unsigned int len)
477 {
478 ei->fofs = fofs;
479 ei->blk = blk;
480 ei->len = len;
481 }
482
483 static inline bool __is_extent_same(struct extent_info *ei1,
484 struct extent_info *ei2)
485 {
486 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
487 ei1->len == ei2->len);
488 }
489
490 static inline bool __is_extent_mergeable(struct extent_info *back,
491 struct extent_info *front)
492 {
493 return (back->fofs + back->len == front->fofs &&
494 back->blk + back->len == front->blk);
495 }
496
497 static inline bool __is_back_mergeable(struct extent_info *cur,
498 struct extent_info *back)
499 {
500 return __is_extent_mergeable(back, cur);
501 }
502
503 static inline bool __is_front_mergeable(struct extent_info *cur,
504 struct extent_info *front)
505 {
506 return __is_extent_mergeable(cur, front);
507 }
508
509 static inline void __try_update_largest_extent(struct inode *inode,
510 struct extent_tree *et, struct extent_node *en)
511 {
512 if (en->ei.len > et->largest.len) {
513 et->largest = en->ei;
514 mark_inode_dirty_sync(inode);
515 }
516 }
517
518 struct f2fs_nm_info {
519 block_t nat_blkaddr; /* base disk address of NAT */
520 nid_t max_nid; /* maximum possible node ids */
521 nid_t available_nids; /* maximum available node ids */
522 nid_t next_scan_nid; /* the next nid to be scanned */
523 unsigned int ram_thresh; /* control the memory footprint */
524 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
525 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
526
527 /* NAT cache management */
528 struct radix_tree_root nat_root;/* root of the nat entry cache */
529 struct radix_tree_root nat_set_root;/* root of the nat set cache */
530 struct percpu_rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
531 struct list_head nat_entries; /* cached nat entry list (clean) */
532 unsigned int nat_cnt; /* the # of cached nat entries */
533 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
534
535 /* free node ids management */
536 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
537 struct list_head free_nid_list; /* a list for free nids */
538 spinlock_t free_nid_list_lock; /* protect free nid list */
539 unsigned int fcnt; /* the number of free node id */
540 struct mutex build_lock; /* lock for build free nids */
541
542 /* for checkpoint */
543 char *nat_bitmap; /* NAT bitmap pointer */
544 int bitmap_size; /* bitmap size */
545 };
546
547 /*
548 * this structure is used as one of function parameters.
549 * all the information are dedicated to a given direct node block determined
550 * by the data offset in a file.
551 */
552 struct dnode_of_data {
553 struct inode *inode; /* vfs inode pointer */
554 struct page *inode_page; /* its inode page, NULL is possible */
555 struct page *node_page; /* cached direct node page */
556 nid_t nid; /* node id of the direct node block */
557 unsigned int ofs_in_node; /* data offset in the node page */
558 bool inode_page_locked; /* inode page is locked or not */
559 bool node_changed; /* is node block changed */
560 char cur_level; /* level of hole node page */
561 char max_level; /* level of current page located */
562 block_t data_blkaddr; /* block address of the node block */
563 };
564
565 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
566 struct page *ipage, struct page *npage, nid_t nid)
567 {
568 memset(dn, 0, sizeof(*dn));
569 dn->inode = inode;
570 dn->inode_page = ipage;
571 dn->node_page = npage;
572 dn->nid = nid;
573 }
574
575 /*
576 * For SIT manager
577 *
578 * By default, there are 6 active log areas across the whole main area.
579 * When considering hot and cold data separation to reduce cleaning overhead,
580 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
581 * respectively.
582 * In the current design, you should not change the numbers intentionally.
583 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
584 * logs individually according to the underlying devices. (default: 6)
585 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
586 * data and 8 for node logs.
587 */
588 #define NR_CURSEG_DATA_TYPE (3)
589 #define NR_CURSEG_NODE_TYPE (3)
590 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
591
592 enum {
593 CURSEG_HOT_DATA = 0, /* directory entry blocks */
594 CURSEG_WARM_DATA, /* data blocks */
595 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
596 CURSEG_HOT_NODE, /* direct node blocks of directory files */
597 CURSEG_WARM_NODE, /* direct node blocks of normal files */
598 CURSEG_COLD_NODE, /* indirect node blocks */
599 NO_CHECK_TYPE,
600 CURSEG_DIRECT_IO, /* to use for the direct IO path */
601 };
602
603 struct flush_cmd {
604 struct completion wait;
605 struct llist_node llnode;
606 int ret;
607 };
608
609 struct flush_cmd_control {
610 struct task_struct *f2fs_issue_flush; /* flush thread */
611 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
612 atomic_t submit_flush; /* # of issued flushes */
613 struct llist_head issue_list; /* list for command issue */
614 struct llist_node *dispatch_list; /* list for command dispatch */
615 };
616
617 struct f2fs_sm_info {
618 struct sit_info *sit_info; /* whole segment information */
619 struct free_segmap_info *free_info; /* free segment information */
620 struct dirty_seglist_info *dirty_info; /* dirty segment information */
621 struct curseg_info *curseg_array; /* active segment information */
622
623 block_t seg0_blkaddr; /* block address of 0'th segment */
624 block_t main_blkaddr; /* start block address of main area */
625 block_t ssa_blkaddr; /* start block address of SSA area */
626
627 unsigned int segment_count; /* total # of segments */
628 unsigned int main_segments; /* # of segments in main area */
629 unsigned int reserved_segments; /* # of reserved segments */
630 unsigned int ovp_segments; /* # of overprovision segments */
631
632 /* a threshold to reclaim prefree segments */
633 unsigned int rec_prefree_segments;
634
635 /* for small discard management */
636 struct list_head discard_list; /* 4KB discard list */
637 int nr_discards; /* # of discards in the list */
638 int max_discards; /* max. discards to be issued */
639
640 /* for batched trimming */
641 unsigned int trim_sections; /* # of sections to trim */
642
643 struct list_head sit_entry_set; /* sit entry set list */
644
645 unsigned int ipu_policy; /* in-place-update policy */
646 unsigned int min_ipu_util; /* in-place-update threshold */
647 unsigned int min_fsync_blocks; /* threshold for fsync */
648
649 /* for flush command control */
650 struct flush_cmd_control *cmd_control_info;
651
652 };
653
654 /*
655 * For superblock
656 */
657 /*
658 * COUNT_TYPE for monitoring
659 *
660 * f2fs monitors the number of several block types such as on-writeback,
661 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
662 */
663 enum count_type {
664 F2FS_DIRTY_DENTS,
665 F2FS_DIRTY_DATA,
666 F2FS_DIRTY_NODES,
667 F2FS_DIRTY_META,
668 F2FS_INMEM_PAGES,
669 F2FS_DIRTY_IMETA,
670 NR_COUNT_TYPE,
671 };
672
673 /*
674 * The below are the page types of bios used in submit_bio().
675 * The available types are:
676 * DATA User data pages. It operates as async mode.
677 * NODE Node pages. It operates as async mode.
678 * META FS metadata pages such as SIT, NAT, CP.
679 * NR_PAGE_TYPE The number of page types.
680 * META_FLUSH Make sure the previous pages are written
681 * with waiting the bio's completion
682 * ... Only can be used with META.
683 */
684 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
685 enum page_type {
686 DATA,
687 NODE,
688 META,
689 NR_PAGE_TYPE,
690 META_FLUSH,
691 INMEM, /* the below types are used by tracepoints only. */
692 INMEM_DROP,
693 INMEM_REVOKE,
694 IPU,
695 OPU,
696 };
697
698 struct f2fs_io_info {
699 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
700 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
701 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
702 block_t new_blkaddr; /* new block address to be written */
703 block_t old_blkaddr; /* old block address before Cow */
704 struct page *page; /* page to be written */
705 struct page *encrypted_page; /* encrypted page */
706 };
707
708 #define is_read_io(rw) (((rw) & 1) == READ)
709 struct f2fs_bio_info {
710 struct f2fs_sb_info *sbi; /* f2fs superblock */
711 struct bio *bio; /* bios to merge */
712 sector_t last_block_in_bio; /* last block number */
713 struct f2fs_io_info fio; /* store buffered io info. */
714 struct rw_semaphore io_rwsem; /* blocking op for bio */
715 };
716
717 enum inode_type {
718 DIR_INODE, /* for dirty dir inode */
719 FILE_INODE, /* for dirty regular/symlink inode */
720 DIRTY_META, /* for all dirtied inode metadata */
721 NR_INODE_TYPE,
722 };
723
724 /* for inner inode cache management */
725 struct inode_management {
726 struct radix_tree_root ino_root; /* ino entry array */
727 spinlock_t ino_lock; /* for ino entry lock */
728 struct list_head ino_list; /* inode list head */
729 unsigned long ino_num; /* number of entries */
730 };
731
732 /* For s_flag in struct f2fs_sb_info */
733 enum {
734 SBI_IS_DIRTY, /* dirty flag for checkpoint */
735 SBI_IS_CLOSE, /* specify unmounting */
736 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
737 SBI_POR_DOING, /* recovery is doing or not */
738 SBI_NEED_SB_WRITE, /* need to recover superblock */
739 };
740
741 enum {
742 CP_TIME,
743 REQ_TIME,
744 MAX_TIME,
745 };
746
747 #ifdef CONFIG_F2FS_FS_ENCRYPTION
748 #define F2FS_KEY_DESC_PREFIX "f2fs:"
749 #define F2FS_KEY_DESC_PREFIX_SIZE 5
750 #endif
751 struct f2fs_sb_info {
752 struct super_block *sb; /* pointer to VFS super block */
753 struct proc_dir_entry *s_proc; /* proc entry */
754 struct f2fs_super_block *raw_super; /* raw super block pointer */
755 int valid_super_block; /* valid super block no */
756 int s_flag; /* flags for sbi */
757
758 #ifdef CONFIG_F2FS_FS_ENCRYPTION
759 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
760 u8 key_prefix_size;
761 #endif
762 /* for node-related operations */
763 struct f2fs_nm_info *nm_info; /* node manager */
764 struct inode *node_inode; /* cache node blocks */
765
766 /* for segment-related operations */
767 struct f2fs_sm_info *sm_info; /* segment manager */
768
769 /* for bio operations */
770 struct f2fs_bio_info read_io; /* for read bios */
771 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
772 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
773
774 /* for checkpoint */
775 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
776 struct inode *meta_inode; /* cache meta blocks */
777 struct mutex cp_mutex; /* checkpoint procedure lock */
778 struct percpu_rw_semaphore cp_rwsem; /* blocking FS operations */
779 struct rw_semaphore node_write; /* locking node writes */
780 wait_queue_head_t cp_wait;
781 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
782 long interval_time[MAX_TIME]; /* to store thresholds */
783
784 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
785
786 /* for orphan inode, use 0'th array */
787 unsigned int max_orphans; /* max orphan inodes */
788
789 /* for inode management */
790 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
791 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
792
793 /* for extent tree cache */
794 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
795 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
796 struct list_head extent_list; /* lru list for shrinker */
797 spinlock_t extent_lock; /* locking extent lru list */
798 atomic_t total_ext_tree; /* extent tree count */
799 struct list_head zombie_list; /* extent zombie tree list */
800 atomic_t total_zombie_tree; /* extent zombie tree count */
801 atomic_t total_ext_node; /* extent info count */
802
803 /* basic filesystem units */
804 unsigned int log_sectors_per_block; /* log2 sectors per block */
805 unsigned int log_blocksize; /* log2 block size */
806 unsigned int blocksize; /* block size */
807 unsigned int root_ino_num; /* root inode number*/
808 unsigned int node_ino_num; /* node inode number*/
809 unsigned int meta_ino_num; /* meta inode number*/
810 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
811 unsigned int blocks_per_seg; /* blocks per segment */
812 unsigned int segs_per_sec; /* segments per section */
813 unsigned int secs_per_zone; /* sections per zone */
814 unsigned int total_sections; /* total section count */
815 unsigned int total_node_count; /* total node block count */
816 unsigned int total_valid_node_count; /* valid node block count */
817 loff_t max_file_blocks; /* max block index of file */
818 int active_logs; /* # of active logs */
819 int dir_level; /* directory level */
820
821 block_t user_block_count; /* # of user blocks */
822 block_t total_valid_block_count; /* # of valid blocks */
823 block_t discard_blks; /* discard command candidats */
824 block_t last_valid_block_count; /* for recovery */
825 u32 s_next_generation; /* for NFS support */
826 atomic_t nr_wb_bios; /* # of writeback bios */
827
828 /* # of pages, see count_type */
829 struct percpu_counter nr_pages[NR_COUNT_TYPE];
830 /* # of allocated blocks */
831 struct percpu_counter alloc_valid_block_count;
832
833 /* valid inode count */
834 struct percpu_counter total_valid_inode_count;
835
836 struct f2fs_mount_info mount_opt; /* mount options */
837
838 /* for cleaning operations */
839 struct mutex gc_mutex; /* mutex for GC */
840 struct f2fs_gc_kthread *gc_thread; /* GC thread */
841 unsigned int cur_victim_sec; /* current victim section num */
842
843 /* maximum # of trials to find a victim segment for SSR and GC */
844 unsigned int max_victim_search;
845
846 /*
847 * for stat information.
848 * one is for the LFS mode, and the other is for the SSR mode.
849 */
850 #ifdef CONFIG_F2FS_STAT_FS
851 struct f2fs_stat_info *stat_info; /* FS status information */
852 unsigned int segment_count[2]; /* # of allocated segments */
853 unsigned int block_count[2]; /* # of allocated blocks */
854 atomic_t inplace_count; /* # of inplace update */
855 atomic64_t total_hit_ext; /* # of lookup extent cache */
856 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
857 atomic64_t read_hit_largest; /* # of hit largest extent node */
858 atomic64_t read_hit_cached; /* # of hit cached extent node */
859 atomic_t inline_xattr; /* # of inline_xattr inodes */
860 atomic_t inline_inode; /* # of inline_data inodes */
861 atomic_t inline_dir; /* # of inline_dentry inodes */
862 int bg_gc; /* background gc calls */
863 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
864 #endif
865 unsigned int last_victim[2]; /* last victim segment # */
866 spinlock_t stat_lock; /* lock for stat operations */
867
868 /* For sysfs suppport */
869 struct kobject s_kobj;
870 struct completion s_kobj_unregister;
871
872 /* For shrinker support */
873 struct list_head s_list;
874 struct mutex umount_mutex;
875 unsigned int shrinker_run_no;
876
877 /* For write statistics */
878 u64 sectors_written_start;
879 u64 kbytes_written;
880
881 /* Reference to checksum algorithm driver via cryptoapi */
882 struct crypto_shash *s_chksum_driver;
883 };
884
885 /* For write statistics. Suppose sector size is 512 bytes,
886 * and the return value is in kbytes. s is of struct f2fs_sb_info.
887 */
888 #define BD_PART_WRITTEN(s) \
889 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
890 s->sectors_written_start) >> 1)
891
892 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
893 {
894 sbi->last_time[type] = jiffies;
895 }
896
897 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
898 {
899 struct timespec ts = {sbi->interval_time[type], 0};
900 unsigned long interval = timespec_to_jiffies(&ts);
901
902 return time_after(jiffies, sbi->last_time[type] + interval);
903 }
904
905 static inline bool is_idle(struct f2fs_sb_info *sbi)
906 {
907 struct block_device *bdev = sbi->sb->s_bdev;
908 struct request_queue *q = bdev_get_queue(bdev);
909 struct request_list *rl = &q->root_rl;
910
911 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
912 return 0;
913
914 return f2fs_time_over(sbi, REQ_TIME);
915 }
916
917 /*
918 * Inline functions
919 */
920 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
921 unsigned int length)
922 {
923 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
924 u32 *ctx = (u32 *)shash_desc_ctx(shash);
925 int err;
926
927 shash->tfm = sbi->s_chksum_driver;
928 shash->flags = 0;
929 *ctx = F2FS_SUPER_MAGIC;
930
931 err = crypto_shash_update(shash, address, length);
932 BUG_ON(err);
933
934 return *ctx;
935 }
936
937 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
938 void *buf, size_t buf_size)
939 {
940 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
941 }
942
943 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
944 {
945 return container_of(inode, struct f2fs_inode_info, vfs_inode);
946 }
947
948 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
949 {
950 return sb->s_fs_info;
951 }
952
953 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
954 {
955 return F2FS_SB(inode->i_sb);
956 }
957
958 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
959 {
960 return F2FS_I_SB(mapping->host);
961 }
962
963 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
964 {
965 return F2FS_M_SB(page->mapping);
966 }
967
968 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
969 {
970 return (struct f2fs_super_block *)(sbi->raw_super);
971 }
972
973 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
974 {
975 return (struct f2fs_checkpoint *)(sbi->ckpt);
976 }
977
978 static inline struct f2fs_node *F2FS_NODE(struct page *page)
979 {
980 return (struct f2fs_node *)page_address(page);
981 }
982
983 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
984 {
985 return &((struct f2fs_node *)page_address(page))->i;
986 }
987
988 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
989 {
990 return (struct f2fs_nm_info *)(sbi->nm_info);
991 }
992
993 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
994 {
995 return (struct f2fs_sm_info *)(sbi->sm_info);
996 }
997
998 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
999 {
1000 return (struct sit_info *)(SM_I(sbi)->sit_info);
1001 }
1002
1003 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1004 {
1005 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1006 }
1007
1008 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1009 {
1010 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1011 }
1012
1013 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1014 {
1015 return sbi->meta_inode->i_mapping;
1016 }
1017
1018 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1019 {
1020 return sbi->node_inode->i_mapping;
1021 }
1022
1023 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1024 {
1025 return sbi->s_flag & (0x01 << type);
1026 }
1027
1028 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1029 {
1030 sbi->s_flag |= (0x01 << type);
1031 }
1032
1033 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1034 {
1035 sbi->s_flag &= ~(0x01 << type);
1036 }
1037
1038 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1039 {
1040 return le64_to_cpu(cp->checkpoint_ver);
1041 }
1042
1043 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1044 {
1045 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1046 return ckpt_flags & f;
1047 }
1048
1049 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1050 {
1051 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1052 ckpt_flags |= f;
1053 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1054 }
1055
1056 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1057 {
1058 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1059 ckpt_flags &= (~f);
1060 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1061 }
1062
1063 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1064 {
1065 percpu_down_read(&sbi->cp_rwsem);
1066 }
1067
1068 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1069 {
1070 percpu_up_read(&sbi->cp_rwsem);
1071 }
1072
1073 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1074 {
1075 percpu_down_write(&sbi->cp_rwsem);
1076 }
1077
1078 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1079 {
1080 percpu_up_write(&sbi->cp_rwsem);
1081 }
1082
1083 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1084 {
1085 int reason = CP_SYNC;
1086
1087 if (test_opt(sbi, FASTBOOT))
1088 reason = CP_FASTBOOT;
1089 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1090 reason = CP_UMOUNT;
1091 return reason;
1092 }
1093
1094 static inline bool __remain_node_summaries(int reason)
1095 {
1096 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1097 }
1098
1099 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1100 {
1101 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1102 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1103 }
1104
1105 /*
1106 * Check whether the given nid is within node id range.
1107 */
1108 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1109 {
1110 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1111 return -EINVAL;
1112 if (unlikely(nid >= NM_I(sbi)->max_nid))
1113 return -EINVAL;
1114 return 0;
1115 }
1116
1117 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1118
1119 /*
1120 * Check whether the inode has blocks or not
1121 */
1122 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1123 {
1124 if (F2FS_I(inode)->i_xattr_nid)
1125 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1126 else
1127 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1128 }
1129
1130 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1131 {
1132 return ofs == XATTR_NODE_OFFSET;
1133 }
1134
1135 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1136 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1137 struct inode *inode, blkcnt_t *count)
1138 {
1139 #ifdef CONFIG_F2FS_FAULT_INJECTION
1140 if (time_to_inject(FAULT_BLOCK))
1141 return false;
1142 #endif
1143 spin_lock(&sbi->stat_lock);
1144 sbi->total_valid_block_count += (block_t)(*count);
1145 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1146 *count -= sbi->total_valid_block_count - sbi->user_block_count;
1147 sbi->total_valid_block_count = sbi->user_block_count;
1148 if (!*count) {
1149 spin_unlock(&sbi->stat_lock);
1150 return false;
1151 }
1152 }
1153 spin_unlock(&sbi->stat_lock);
1154
1155 f2fs_i_blocks_write(inode, *count, true);
1156 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1157 return true;
1158 }
1159
1160 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1161 struct inode *inode,
1162 blkcnt_t count)
1163 {
1164 spin_lock(&sbi->stat_lock);
1165 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1166 f2fs_bug_on(sbi, inode->i_blocks < count);
1167 sbi->total_valid_block_count -= (block_t)count;
1168 spin_unlock(&sbi->stat_lock);
1169 f2fs_i_blocks_write(inode, count, false);
1170 }
1171
1172 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1173 {
1174 percpu_counter_inc(&sbi->nr_pages[count_type]);
1175 set_sbi_flag(sbi, SBI_IS_DIRTY);
1176 }
1177
1178 static inline void inode_inc_dirty_pages(struct inode *inode)
1179 {
1180 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1181 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1182 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1183 }
1184
1185 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1186 {
1187 percpu_counter_dec(&sbi->nr_pages[count_type]);
1188 }
1189
1190 static inline void inode_dec_dirty_pages(struct inode *inode)
1191 {
1192 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1193 !S_ISLNK(inode->i_mode))
1194 return;
1195
1196 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1197 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1198 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1199 }
1200
1201 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1202 {
1203 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1204 }
1205
1206 static inline s64 get_dirty_pages(struct inode *inode)
1207 {
1208 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1209 }
1210
1211 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1212 {
1213 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1214 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1215 sbi->log_blocks_per_seg;
1216
1217 return segs / sbi->segs_per_sec;
1218 }
1219
1220 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1221 {
1222 return sbi->total_valid_block_count;
1223 }
1224
1225 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1226 {
1227 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1228
1229 /* return NAT or SIT bitmap */
1230 if (flag == NAT_BITMAP)
1231 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1232 else if (flag == SIT_BITMAP)
1233 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1234
1235 return 0;
1236 }
1237
1238 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1239 {
1240 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1241 }
1242
1243 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1244 {
1245 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1246 int offset;
1247
1248 if (__cp_payload(sbi) > 0) {
1249 if (flag == NAT_BITMAP)
1250 return &ckpt->sit_nat_version_bitmap;
1251 else
1252 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1253 } else {
1254 offset = (flag == NAT_BITMAP) ?
1255 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1256 return &ckpt->sit_nat_version_bitmap + offset;
1257 }
1258 }
1259
1260 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1261 {
1262 block_t start_addr;
1263 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1264 unsigned long long ckpt_version = cur_cp_version(ckpt);
1265
1266 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1267
1268 /*
1269 * odd numbered checkpoint should at cp segment 0
1270 * and even segment must be at cp segment 1
1271 */
1272 if (!(ckpt_version & 1))
1273 start_addr += sbi->blocks_per_seg;
1274
1275 return start_addr;
1276 }
1277
1278 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1279 {
1280 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1281 }
1282
1283 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1284 struct inode *inode)
1285 {
1286 block_t valid_block_count;
1287 unsigned int valid_node_count;
1288
1289 spin_lock(&sbi->stat_lock);
1290
1291 valid_block_count = sbi->total_valid_block_count + 1;
1292 if (unlikely(valid_block_count > sbi->user_block_count)) {
1293 spin_unlock(&sbi->stat_lock);
1294 return false;
1295 }
1296
1297 valid_node_count = sbi->total_valid_node_count + 1;
1298 if (unlikely(valid_node_count > sbi->total_node_count)) {
1299 spin_unlock(&sbi->stat_lock);
1300 return false;
1301 }
1302
1303 if (inode)
1304 f2fs_i_blocks_write(inode, 1, true);
1305
1306 sbi->total_valid_node_count++;
1307 sbi->total_valid_block_count++;
1308 spin_unlock(&sbi->stat_lock);
1309
1310 percpu_counter_inc(&sbi->alloc_valid_block_count);
1311 return true;
1312 }
1313
1314 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1315 struct inode *inode)
1316 {
1317 spin_lock(&sbi->stat_lock);
1318
1319 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1320 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1321 f2fs_bug_on(sbi, !inode->i_blocks);
1322
1323 f2fs_i_blocks_write(inode, 1, false);
1324 sbi->total_valid_node_count--;
1325 sbi->total_valid_block_count--;
1326
1327 spin_unlock(&sbi->stat_lock);
1328 }
1329
1330 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1331 {
1332 return sbi->total_valid_node_count;
1333 }
1334
1335 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1336 {
1337 percpu_counter_inc(&sbi->total_valid_inode_count);
1338 }
1339
1340 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1341 {
1342 percpu_counter_dec(&sbi->total_valid_inode_count);
1343 }
1344
1345 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1346 {
1347 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1348 }
1349
1350 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1351 pgoff_t index, bool for_write)
1352 {
1353 #ifdef CONFIG_F2FS_FAULT_INJECTION
1354 struct page *page = find_lock_page(mapping, index);
1355 if (page)
1356 return page;
1357
1358 if (time_to_inject(FAULT_PAGE_ALLOC))
1359 return NULL;
1360 #endif
1361 if (!for_write)
1362 return grab_cache_page(mapping, index);
1363 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1364 }
1365
1366 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1367 {
1368 char *src_kaddr = kmap(src);
1369 char *dst_kaddr = kmap(dst);
1370
1371 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1372 kunmap(dst);
1373 kunmap(src);
1374 }
1375
1376 static inline void f2fs_put_page(struct page *page, int unlock)
1377 {
1378 if (!page)
1379 return;
1380
1381 if (unlock) {
1382 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1383 unlock_page(page);
1384 }
1385 put_page(page);
1386 }
1387
1388 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1389 {
1390 if (dn->node_page)
1391 f2fs_put_page(dn->node_page, 1);
1392 if (dn->inode_page && dn->node_page != dn->inode_page)
1393 f2fs_put_page(dn->inode_page, 0);
1394 dn->node_page = NULL;
1395 dn->inode_page = NULL;
1396 }
1397
1398 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1399 size_t size)
1400 {
1401 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1402 }
1403
1404 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1405 gfp_t flags)
1406 {
1407 void *entry;
1408
1409 entry = kmem_cache_alloc(cachep, flags);
1410 if (!entry)
1411 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1412 return entry;
1413 }
1414
1415 static inline struct bio *f2fs_bio_alloc(int npages)
1416 {
1417 struct bio *bio;
1418
1419 /* No failure on bio allocation */
1420 bio = bio_alloc(GFP_NOIO, npages);
1421 if (!bio)
1422 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1423 return bio;
1424 }
1425
1426 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1427 unsigned long index, void *item)
1428 {
1429 while (radix_tree_insert(root, index, item))
1430 cond_resched();
1431 }
1432
1433 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1434
1435 static inline bool IS_INODE(struct page *page)
1436 {
1437 struct f2fs_node *p = F2FS_NODE(page);
1438 return RAW_IS_INODE(p);
1439 }
1440
1441 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1442 {
1443 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1444 }
1445
1446 static inline block_t datablock_addr(struct page *node_page,
1447 unsigned int offset)
1448 {
1449 struct f2fs_node *raw_node;
1450 __le32 *addr_array;
1451 raw_node = F2FS_NODE(node_page);
1452 addr_array = blkaddr_in_node(raw_node);
1453 return le32_to_cpu(addr_array[offset]);
1454 }
1455
1456 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1457 {
1458 int mask;
1459
1460 addr += (nr >> 3);
1461 mask = 1 << (7 - (nr & 0x07));
1462 return mask & *addr;
1463 }
1464
1465 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1466 {
1467 int mask;
1468
1469 addr += (nr >> 3);
1470 mask = 1 << (7 - (nr & 0x07));
1471 *addr |= mask;
1472 }
1473
1474 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1475 {
1476 int mask;
1477
1478 addr += (nr >> 3);
1479 mask = 1 << (7 - (nr & 0x07));
1480 *addr &= ~mask;
1481 }
1482
1483 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1484 {
1485 int mask;
1486 int ret;
1487
1488 addr += (nr >> 3);
1489 mask = 1 << (7 - (nr & 0x07));
1490 ret = mask & *addr;
1491 *addr |= mask;
1492 return ret;
1493 }
1494
1495 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1496 {
1497 int mask;
1498 int ret;
1499
1500 addr += (nr >> 3);
1501 mask = 1 << (7 - (nr & 0x07));
1502 ret = mask & *addr;
1503 *addr &= ~mask;
1504 return ret;
1505 }
1506
1507 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1508 {
1509 int mask;
1510
1511 addr += (nr >> 3);
1512 mask = 1 << (7 - (nr & 0x07));
1513 *addr ^= mask;
1514 }
1515
1516 /* used for f2fs_inode_info->flags */
1517 enum {
1518 FI_NEW_INODE, /* indicate newly allocated inode */
1519 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1520 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1521 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1522 FI_INC_LINK, /* need to increment i_nlink */
1523 FI_ACL_MODE, /* indicate acl mode */
1524 FI_NO_ALLOC, /* should not allocate any blocks */
1525 FI_FREE_NID, /* free allocated nide */
1526 FI_NO_EXTENT, /* not to use the extent cache */
1527 FI_INLINE_XATTR, /* used for inline xattr */
1528 FI_INLINE_DATA, /* used for inline data*/
1529 FI_INLINE_DENTRY, /* used for inline dentry */
1530 FI_APPEND_WRITE, /* inode has appended data */
1531 FI_UPDATE_WRITE, /* inode has in-place-update data */
1532 FI_NEED_IPU, /* used for ipu per file */
1533 FI_ATOMIC_FILE, /* indicate atomic file */
1534 FI_VOLATILE_FILE, /* indicate volatile file */
1535 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1536 FI_DROP_CACHE, /* drop dirty page cache */
1537 FI_DATA_EXIST, /* indicate data exists */
1538 FI_INLINE_DOTS, /* indicate inline dot dentries */
1539 FI_DO_DEFRAG, /* indicate defragment is running */
1540 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1541 };
1542
1543 static inline void __mark_inode_dirty_flag(struct inode *inode,
1544 int flag, bool set)
1545 {
1546 switch (flag) {
1547 case FI_INLINE_XATTR:
1548 case FI_INLINE_DATA:
1549 case FI_INLINE_DENTRY:
1550 if (set)
1551 return;
1552 case FI_DATA_EXIST:
1553 case FI_INLINE_DOTS:
1554 mark_inode_dirty_sync(inode);
1555 }
1556 }
1557
1558 static inline void set_inode_flag(struct inode *inode, int flag)
1559 {
1560 if (!test_bit(flag, &F2FS_I(inode)->flags))
1561 set_bit(flag, &F2FS_I(inode)->flags);
1562 __mark_inode_dirty_flag(inode, flag, true);
1563 }
1564
1565 static inline int is_inode_flag_set(struct inode *inode, int flag)
1566 {
1567 return test_bit(flag, &F2FS_I(inode)->flags);
1568 }
1569
1570 static inline void clear_inode_flag(struct inode *inode, int flag)
1571 {
1572 if (test_bit(flag, &F2FS_I(inode)->flags))
1573 clear_bit(flag, &F2FS_I(inode)->flags);
1574 __mark_inode_dirty_flag(inode, flag, false);
1575 }
1576
1577 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1578 {
1579 F2FS_I(inode)->i_acl_mode = mode;
1580 set_inode_flag(inode, FI_ACL_MODE);
1581 mark_inode_dirty_sync(inode);
1582 }
1583
1584 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1585 {
1586 if (inc)
1587 inc_nlink(inode);
1588 else
1589 drop_nlink(inode);
1590 mark_inode_dirty_sync(inode);
1591 }
1592
1593 static inline void f2fs_i_blocks_write(struct inode *inode,
1594 blkcnt_t diff, bool add)
1595 {
1596 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1597 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1598
1599 inode->i_blocks = add ? inode->i_blocks + diff :
1600 inode->i_blocks - diff;
1601 mark_inode_dirty_sync(inode);
1602 if (clean || recover)
1603 set_inode_flag(inode, FI_AUTO_RECOVER);
1604 }
1605
1606 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1607 {
1608 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1609 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1610
1611 if (i_size_read(inode) == i_size)
1612 return;
1613
1614 i_size_write(inode, i_size);
1615 mark_inode_dirty_sync(inode);
1616 if (clean || recover)
1617 set_inode_flag(inode, FI_AUTO_RECOVER);
1618 }
1619
1620 static inline bool f2fs_skip_inode_update(struct inode *inode)
1621 {
1622 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1623 return false;
1624 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1625 }
1626
1627 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1628 {
1629 F2FS_I(inode)->i_current_depth = depth;
1630 mark_inode_dirty_sync(inode);
1631 }
1632
1633 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1634 {
1635 F2FS_I(inode)->i_xattr_nid = xnid;
1636 mark_inode_dirty_sync(inode);
1637 }
1638
1639 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1640 {
1641 F2FS_I(inode)->i_pino = pino;
1642 mark_inode_dirty_sync(inode);
1643 }
1644
1645 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1646 {
1647 struct f2fs_inode_info *fi = F2FS_I(inode);
1648
1649 if (ri->i_inline & F2FS_INLINE_XATTR)
1650 set_bit(FI_INLINE_XATTR, &fi->flags);
1651 if (ri->i_inline & F2FS_INLINE_DATA)
1652 set_bit(FI_INLINE_DATA, &fi->flags);
1653 if (ri->i_inline & F2FS_INLINE_DENTRY)
1654 set_bit(FI_INLINE_DENTRY, &fi->flags);
1655 if (ri->i_inline & F2FS_DATA_EXIST)
1656 set_bit(FI_DATA_EXIST, &fi->flags);
1657 if (ri->i_inline & F2FS_INLINE_DOTS)
1658 set_bit(FI_INLINE_DOTS, &fi->flags);
1659 }
1660
1661 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1662 {
1663 ri->i_inline = 0;
1664
1665 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1666 ri->i_inline |= F2FS_INLINE_XATTR;
1667 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1668 ri->i_inline |= F2FS_INLINE_DATA;
1669 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1670 ri->i_inline |= F2FS_INLINE_DENTRY;
1671 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1672 ri->i_inline |= F2FS_DATA_EXIST;
1673 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1674 ri->i_inline |= F2FS_INLINE_DOTS;
1675 }
1676
1677 static inline int f2fs_has_inline_xattr(struct inode *inode)
1678 {
1679 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1680 }
1681
1682 static inline unsigned int addrs_per_inode(struct inode *inode)
1683 {
1684 if (f2fs_has_inline_xattr(inode))
1685 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1686 return DEF_ADDRS_PER_INODE;
1687 }
1688
1689 static inline void *inline_xattr_addr(struct page *page)
1690 {
1691 struct f2fs_inode *ri = F2FS_INODE(page);
1692 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1693 F2FS_INLINE_XATTR_ADDRS]);
1694 }
1695
1696 static inline int inline_xattr_size(struct inode *inode)
1697 {
1698 if (f2fs_has_inline_xattr(inode))
1699 return F2FS_INLINE_XATTR_ADDRS << 2;
1700 else
1701 return 0;
1702 }
1703
1704 static inline int f2fs_has_inline_data(struct inode *inode)
1705 {
1706 return is_inode_flag_set(inode, FI_INLINE_DATA);
1707 }
1708
1709 static inline void f2fs_clear_inline_inode(struct inode *inode)
1710 {
1711 clear_inode_flag(inode, FI_INLINE_DATA);
1712 clear_inode_flag(inode, FI_DATA_EXIST);
1713 }
1714
1715 static inline int f2fs_exist_data(struct inode *inode)
1716 {
1717 return is_inode_flag_set(inode, FI_DATA_EXIST);
1718 }
1719
1720 static inline int f2fs_has_inline_dots(struct inode *inode)
1721 {
1722 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1723 }
1724
1725 static inline bool f2fs_is_atomic_file(struct inode *inode)
1726 {
1727 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1728 }
1729
1730 static inline bool f2fs_is_volatile_file(struct inode *inode)
1731 {
1732 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1733 }
1734
1735 static inline bool f2fs_is_first_block_written(struct inode *inode)
1736 {
1737 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1738 }
1739
1740 static inline bool f2fs_is_drop_cache(struct inode *inode)
1741 {
1742 return is_inode_flag_set(inode, FI_DROP_CACHE);
1743 }
1744
1745 static inline void *inline_data_addr(struct page *page)
1746 {
1747 struct f2fs_inode *ri = F2FS_INODE(page);
1748 return (void *)&(ri->i_addr[1]);
1749 }
1750
1751 static inline int f2fs_has_inline_dentry(struct inode *inode)
1752 {
1753 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1754 }
1755
1756 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1757 {
1758 if (!f2fs_has_inline_dentry(dir))
1759 kunmap(page);
1760 }
1761
1762 static inline int is_file(struct inode *inode, int type)
1763 {
1764 return F2FS_I(inode)->i_advise & type;
1765 }
1766
1767 static inline void set_file(struct inode *inode, int type)
1768 {
1769 F2FS_I(inode)->i_advise |= type;
1770 mark_inode_dirty_sync(inode);
1771 }
1772
1773 static inline void clear_file(struct inode *inode, int type)
1774 {
1775 F2FS_I(inode)->i_advise &= ~type;
1776 mark_inode_dirty_sync(inode);
1777 }
1778
1779 static inline int f2fs_readonly(struct super_block *sb)
1780 {
1781 return sb->s_flags & MS_RDONLY;
1782 }
1783
1784 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1785 {
1786 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1787 }
1788
1789 static inline bool is_dot_dotdot(const struct qstr *str)
1790 {
1791 if (str->len == 1 && str->name[0] == '.')
1792 return true;
1793
1794 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1795 return true;
1796
1797 return false;
1798 }
1799
1800 static inline bool f2fs_may_extent_tree(struct inode *inode)
1801 {
1802 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1803 is_inode_flag_set(inode, FI_NO_EXTENT))
1804 return false;
1805
1806 return S_ISREG(inode->i_mode);
1807 }
1808
1809 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1810 {
1811 #ifdef CONFIG_F2FS_FAULT_INJECTION
1812 if (time_to_inject(FAULT_KMALLOC))
1813 return NULL;
1814 #endif
1815 return kmalloc(size, flags);
1816 }
1817
1818 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1819 {
1820 void *ret;
1821
1822 ret = kmalloc(size, flags | __GFP_NOWARN);
1823 if (!ret)
1824 ret = __vmalloc(size, flags, PAGE_KERNEL);
1825 return ret;
1826 }
1827
1828 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1829 {
1830 void *ret;
1831
1832 ret = kzalloc(size, flags | __GFP_NOWARN);
1833 if (!ret)
1834 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1835 return ret;
1836 }
1837
1838 #define get_inode_mode(i) \
1839 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1840 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1841
1842 /* get offset of first page in next direct node */
1843 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1844 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1845 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1846 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1847
1848 /*
1849 * file.c
1850 */
1851 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1852 void truncate_data_blocks(struct dnode_of_data *);
1853 int truncate_blocks(struct inode *, u64, bool);
1854 int f2fs_truncate(struct inode *);
1855 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1856 int f2fs_setattr(struct dentry *, struct iattr *);
1857 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1858 int truncate_data_blocks_range(struct dnode_of_data *, int);
1859 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1860 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1861
1862 /*
1863 * inode.c
1864 */
1865 void f2fs_set_inode_flags(struct inode *);
1866 struct inode *f2fs_iget(struct super_block *, unsigned long);
1867 int try_to_free_nats(struct f2fs_sb_info *, int);
1868 int update_inode(struct inode *, struct page *);
1869 int update_inode_page(struct inode *);
1870 int f2fs_write_inode(struct inode *, struct writeback_control *);
1871 void f2fs_evict_inode(struct inode *);
1872 void handle_failed_inode(struct inode *);
1873
1874 /*
1875 * namei.c
1876 */
1877 struct dentry *f2fs_get_parent(struct dentry *child);
1878
1879 /*
1880 * dir.c
1881 */
1882 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1883 void set_de_type(struct f2fs_dir_entry *, umode_t);
1884 unsigned char get_de_type(struct f2fs_dir_entry *);
1885 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1886 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1887 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1888 unsigned int, struct fscrypt_str *);
1889 void do_make_empty_dir(struct inode *, struct inode *,
1890 struct f2fs_dentry_ptr *);
1891 struct page *init_inode_metadata(struct inode *, struct inode *,
1892 const struct qstr *, struct page *);
1893 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1894 int room_for_filename(const void *, int, int);
1895 void f2fs_drop_nlink(struct inode *, struct inode *);
1896 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1897 struct page **);
1898 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1899 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1900 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1901 struct page *, struct inode *);
1902 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1903 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1904 const struct qstr *, f2fs_hash_t , unsigned int);
1905 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1906 struct inode *, nid_t, umode_t);
1907 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1908 umode_t);
1909 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1910 struct inode *);
1911 int f2fs_do_tmpfile(struct inode *, struct inode *);
1912 bool f2fs_empty_dir(struct inode *);
1913
1914 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1915 {
1916 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1917 inode, inode->i_ino, inode->i_mode);
1918 }
1919
1920 /*
1921 * super.c
1922 */
1923 void f2fs_inode_synced(struct inode *);
1924 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1925 int f2fs_sync_fs(struct super_block *, int);
1926 extern __printf(3, 4)
1927 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1928 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1929
1930 /*
1931 * hash.c
1932 */
1933 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1934
1935 /*
1936 * node.c
1937 */
1938 struct dnode_of_data;
1939 struct node_info;
1940
1941 bool available_free_memory(struct f2fs_sb_info *, int);
1942 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1943 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1944 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1945 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1946 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1947 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1948 int truncate_inode_blocks(struct inode *, pgoff_t);
1949 int truncate_xattr_node(struct inode *, struct page *);
1950 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1951 int remove_inode_page(struct inode *);
1952 struct page *new_inode_page(struct inode *);
1953 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1954 void ra_node_page(struct f2fs_sb_info *, nid_t);
1955 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1956 struct page *get_node_page_ra(struct page *, int);
1957 void move_node_page(struct page *, int);
1958 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1959 struct writeback_control *, bool);
1960 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1961 void build_free_nids(struct f2fs_sb_info *);
1962 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1963 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1964 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1965 int try_to_free_nids(struct f2fs_sb_info *, int);
1966 void recover_inline_xattr(struct inode *, struct page *);
1967 void recover_xattr_data(struct inode *, struct page *, block_t);
1968 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1969 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1970 struct f2fs_summary_block *);
1971 void flush_nat_entries(struct f2fs_sb_info *);
1972 int build_node_manager(struct f2fs_sb_info *);
1973 void destroy_node_manager(struct f2fs_sb_info *);
1974 int __init create_node_manager_caches(void);
1975 void destroy_node_manager_caches(void);
1976
1977 /*
1978 * segment.c
1979 */
1980 void register_inmem_page(struct inode *, struct page *);
1981 void drop_inmem_pages(struct inode *);
1982 int commit_inmem_pages(struct inode *);
1983 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1984 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1985 int f2fs_issue_flush(struct f2fs_sb_info *);
1986 int create_flush_cmd_control(struct f2fs_sb_info *);
1987 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1988 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1989 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1990 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1991 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1992 void release_discard_addrs(struct f2fs_sb_info *);
1993 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1994 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1995 void allocate_new_segments(struct f2fs_sb_info *);
1996 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1997 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1998 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1999 void write_meta_page(struct f2fs_sb_info *, struct page *);
2000 void write_node_page(unsigned int, struct f2fs_io_info *);
2001 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2002 void rewrite_data_page(struct f2fs_io_info *);
2003 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2004 block_t, block_t, bool, bool);
2005 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2006 block_t, block_t, unsigned char, bool, bool);
2007 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2008 block_t, block_t *, struct f2fs_summary *, int);
2009 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2010 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2011 void write_data_summaries(struct f2fs_sb_info *, block_t);
2012 void write_node_summaries(struct f2fs_sb_info *, block_t);
2013 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2014 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2015 int build_segment_manager(struct f2fs_sb_info *);
2016 void destroy_segment_manager(struct f2fs_sb_info *);
2017 int __init create_segment_manager_caches(void);
2018 void destroy_segment_manager_caches(void);
2019
2020 /*
2021 * checkpoint.c
2022 */
2023 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2024 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2025 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2026 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2027 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2028 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2029 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2030 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2031 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2032 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2033 void release_ino_entry(struct f2fs_sb_info *, bool);
2034 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2035 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2036 int acquire_orphan_inode(struct f2fs_sb_info *);
2037 void release_orphan_inode(struct f2fs_sb_info *);
2038 void add_orphan_inode(struct inode *);
2039 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2040 int recover_orphan_inodes(struct f2fs_sb_info *);
2041 int get_valid_checkpoint(struct f2fs_sb_info *);
2042 void update_dirty_page(struct inode *, struct page *);
2043 void remove_dirty_inode(struct inode *);
2044 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2045 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2046 void init_ino_entry_info(struct f2fs_sb_info *);
2047 int __init create_checkpoint_caches(void);
2048 void destroy_checkpoint_caches(void);
2049
2050 /*
2051 * data.c
2052 */
2053 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2054 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2055 struct page *, nid_t, enum page_type, int);
2056 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2057 int f2fs_submit_page_bio(struct f2fs_io_info *);
2058 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2059 void set_data_blkaddr(struct dnode_of_data *);
2060 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2061 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2062 int reserve_new_block(struct dnode_of_data *);
2063 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2064 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2065 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2066 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2067 struct page *find_data_page(struct inode *, pgoff_t);
2068 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2069 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2070 int do_write_data_page(struct f2fs_io_info *);
2071 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2072 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2073 void f2fs_set_page_dirty_nobuffers(struct page *);
2074 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2075 int f2fs_release_page(struct page *, gfp_t);
2076
2077 /*
2078 * gc.c
2079 */
2080 int start_gc_thread(struct f2fs_sb_info *);
2081 void stop_gc_thread(struct f2fs_sb_info *);
2082 block_t start_bidx_of_node(unsigned int, struct inode *);
2083 int f2fs_gc(struct f2fs_sb_info *, bool);
2084 void build_gc_manager(struct f2fs_sb_info *);
2085
2086 /*
2087 * recovery.c
2088 */
2089 int recover_fsync_data(struct f2fs_sb_info *, bool);
2090 bool space_for_roll_forward(struct f2fs_sb_info *);
2091
2092 /*
2093 * debug.c
2094 */
2095 #ifdef CONFIG_F2FS_STAT_FS
2096 struct f2fs_stat_info {
2097 struct list_head stat_list;
2098 struct f2fs_sb_info *sbi;
2099 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2100 int main_area_segs, main_area_sections, main_area_zones;
2101 unsigned long long hit_largest, hit_cached, hit_rbtree;
2102 unsigned long long hit_total, total_ext;
2103 int ext_tree, zombie_tree, ext_node;
2104 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2105 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2106 int nats, dirty_nats, sits, dirty_sits, fnids;
2107 int total_count, utilization;
2108 int bg_gc, wb_bios;
2109 int inline_xattr, inline_inode, inline_dir, orphans;
2110 unsigned int valid_count, valid_node_count, valid_inode_count;
2111 unsigned int bimodal, avg_vblocks;
2112 int util_free, util_valid, util_invalid;
2113 int rsvd_segs, overp_segs;
2114 int dirty_count, node_pages, meta_pages;
2115 int prefree_count, call_count, cp_count, bg_cp_count;
2116 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2117 int bg_node_segs, bg_data_segs;
2118 int tot_blks, data_blks, node_blks;
2119 int bg_data_blks, bg_node_blks;
2120 int curseg[NR_CURSEG_TYPE];
2121 int cursec[NR_CURSEG_TYPE];
2122 int curzone[NR_CURSEG_TYPE];
2123
2124 unsigned int segment_count[2];
2125 unsigned int block_count[2];
2126 unsigned int inplace_count;
2127 unsigned long long base_mem, cache_mem, page_mem;
2128 };
2129
2130 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2131 {
2132 return (struct f2fs_stat_info *)sbi->stat_info;
2133 }
2134
2135 #define stat_inc_cp_count(si) ((si)->cp_count++)
2136 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2137 #define stat_inc_call_count(si) ((si)->call_count++)
2138 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2139 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2140 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2141 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2142 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2143 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2144 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2145 #define stat_inc_inline_xattr(inode) \
2146 do { \
2147 if (f2fs_has_inline_xattr(inode)) \
2148 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2149 } while (0)
2150 #define stat_dec_inline_xattr(inode) \
2151 do { \
2152 if (f2fs_has_inline_xattr(inode)) \
2153 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2154 } while (0)
2155 #define stat_inc_inline_inode(inode) \
2156 do { \
2157 if (f2fs_has_inline_data(inode)) \
2158 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2159 } while (0)
2160 #define stat_dec_inline_inode(inode) \
2161 do { \
2162 if (f2fs_has_inline_data(inode)) \
2163 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2164 } while (0)
2165 #define stat_inc_inline_dir(inode) \
2166 do { \
2167 if (f2fs_has_inline_dentry(inode)) \
2168 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2169 } while (0)
2170 #define stat_dec_inline_dir(inode) \
2171 do { \
2172 if (f2fs_has_inline_dentry(inode)) \
2173 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2174 } while (0)
2175 #define stat_inc_seg_type(sbi, curseg) \
2176 ((sbi)->segment_count[(curseg)->alloc_type]++)
2177 #define stat_inc_block_count(sbi, curseg) \
2178 ((sbi)->block_count[(curseg)->alloc_type]++)
2179 #define stat_inc_inplace_blocks(sbi) \
2180 (atomic_inc(&(sbi)->inplace_count))
2181 #define stat_inc_seg_count(sbi, type, gc_type) \
2182 do { \
2183 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2184 (si)->tot_segs++; \
2185 if (type == SUM_TYPE_DATA) { \
2186 si->data_segs++; \
2187 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2188 } else { \
2189 si->node_segs++; \
2190 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2191 } \
2192 } while (0)
2193
2194 #define stat_inc_tot_blk_count(si, blks) \
2195 (si->tot_blks += (blks))
2196
2197 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2198 do { \
2199 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2200 stat_inc_tot_blk_count(si, blks); \
2201 si->data_blks += (blks); \
2202 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2203 } while (0)
2204
2205 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2206 do { \
2207 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2208 stat_inc_tot_blk_count(si, blks); \
2209 si->node_blks += (blks); \
2210 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2211 } while (0)
2212
2213 int f2fs_build_stats(struct f2fs_sb_info *);
2214 void f2fs_destroy_stats(struct f2fs_sb_info *);
2215 int __init f2fs_create_root_stats(void);
2216 void f2fs_destroy_root_stats(void);
2217 #else
2218 #define stat_inc_cp_count(si)
2219 #define stat_inc_bg_cp_count(si)
2220 #define stat_inc_call_count(si)
2221 #define stat_inc_bggc_count(si)
2222 #define stat_inc_dirty_inode(sbi, type)
2223 #define stat_dec_dirty_inode(sbi, type)
2224 #define stat_inc_total_hit(sb)
2225 #define stat_inc_rbtree_node_hit(sb)
2226 #define stat_inc_largest_node_hit(sbi)
2227 #define stat_inc_cached_node_hit(sbi)
2228 #define stat_inc_inline_xattr(inode)
2229 #define stat_dec_inline_xattr(inode)
2230 #define stat_inc_inline_inode(inode)
2231 #define stat_dec_inline_inode(inode)
2232 #define stat_inc_inline_dir(inode)
2233 #define stat_dec_inline_dir(inode)
2234 #define stat_inc_seg_type(sbi, curseg)
2235 #define stat_inc_block_count(sbi, curseg)
2236 #define stat_inc_inplace_blocks(sbi)
2237 #define stat_inc_seg_count(sbi, type, gc_type)
2238 #define stat_inc_tot_blk_count(si, blks)
2239 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2240 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2241
2242 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2243 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2244 static inline int __init f2fs_create_root_stats(void) { return 0; }
2245 static inline void f2fs_destroy_root_stats(void) { }
2246 #endif
2247
2248 extern const struct file_operations f2fs_dir_operations;
2249 extern const struct file_operations f2fs_file_operations;
2250 extern const struct inode_operations f2fs_file_inode_operations;
2251 extern const struct address_space_operations f2fs_dblock_aops;
2252 extern const struct address_space_operations f2fs_node_aops;
2253 extern const struct address_space_operations f2fs_meta_aops;
2254 extern const struct inode_operations f2fs_dir_inode_operations;
2255 extern const struct inode_operations f2fs_symlink_inode_operations;
2256 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2257 extern const struct inode_operations f2fs_special_inode_operations;
2258 extern struct kmem_cache *inode_entry_slab;
2259
2260 /*
2261 * inline.c
2262 */
2263 bool f2fs_may_inline_data(struct inode *);
2264 bool f2fs_may_inline_dentry(struct inode *);
2265 void read_inline_data(struct page *, struct page *);
2266 bool truncate_inline_inode(struct page *, u64);
2267 int f2fs_read_inline_data(struct inode *, struct page *);
2268 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2269 int f2fs_convert_inline_inode(struct inode *);
2270 int f2fs_write_inline_data(struct inode *, struct page *);
2271 bool recover_inline_data(struct inode *, struct page *);
2272 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2273 struct fscrypt_name *, struct page **);
2274 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2275 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2276 nid_t, umode_t);
2277 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2278 struct inode *, struct inode *);
2279 bool f2fs_empty_inline_dir(struct inode *);
2280 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2281 struct fscrypt_str *);
2282 int f2fs_inline_data_fiemap(struct inode *,
2283 struct fiemap_extent_info *, __u64, __u64);
2284
2285 /*
2286 * shrinker.c
2287 */
2288 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2289 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2290 void f2fs_join_shrinker(struct f2fs_sb_info *);
2291 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2292
2293 /*
2294 * extent_cache.c
2295 */
2296 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2297 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2298 unsigned int f2fs_destroy_extent_node(struct inode *);
2299 void f2fs_destroy_extent_tree(struct inode *);
2300 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2301 void f2fs_update_extent_cache(struct dnode_of_data *);
2302 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2303 pgoff_t, block_t, unsigned int);
2304 void init_extent_cache_info(struct f2fs_sb_info *);
2305 int __init create_extent_cache(void);
2306 void destroy_extent_cache(void);
2307
2308 /*
2309 * crypto support
2310 */
2311 static inline bool f2fs_encrypted_inode(struct inode *inode)
2312 {
2313 return file_is_encrypt(inode);
2314 }
2315
2316 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2317 {
2318 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2319 file_set_encrypt(inode);
2320 #endif
2321 }
2322
2323 static inline bool f2fs_bio_encrypted(struct bio *bio)
2324 {
2325 return bio->bi_private != NULL;
2326 }
2327
2328 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2329 {
2330 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2331 }
2332
2333 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2334 {
2335 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2336 }
2337
2338 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2339 {
2340 clear_opt(sbi, ADAPTIVE);
2341 clear_opt(sbi, LFS);
2342
2343 switch (mt) {
2344 case F2FS_MOUNT_ADAPTIVE:
2345 set_opt(sbi, ADAPTIVE);
2346 break;
2347 case F2FS_MOUNT_LFS:
2348 set_opt(sbi, LFS);
2349 break;
2350 }
2351 }
2352
2353 static inline bool f2fs_may_encrypt(struct inode *inode)
2354 {
2355 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2356 umode_t mode = inode->i_mode;
2357
2358 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2359 #else
2360 return 0;
2361 #endif
2362 }
2363
2364 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2365 #define fscrypt_set_d_op(i)
2366 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2367 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2368 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2369 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2370 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2371 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2372 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2373 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2374 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2375 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2376 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2377 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2378 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2379 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2380 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2381 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2382 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2383 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2384 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2385 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2386 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2387 #endif
2388 #endif
This page took 0.101212 seconds and 5 git commands to generate.