f2fs crypto: filename encryption facilities
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define F2FS_FEATURE_ENCRYPT 0x0001
74
75 #define F2FS_HAS_FEATURE(sb, mask) \
76 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
77 #define F2FS_SET_FEATURE(sb, mask) \
78 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
79 #define F2FS_CLEAR_FEATURE(sb, mask) \
80 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
81
82 #define CRCPOLY_LE 0xedb88320
83
84 static inline __u32 f2fs_crc32(void *buf, size_t len)
85 {
86 unsigned char *p = (unsigned char *)buf;
87 __u32 crc = F2FS_SUPER_MAGIC;
88 int i;
89
90 while (len--) {
91 crc ^= *p++;
92 for (i = 0; i < 8; i++)
93 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
94 }
95 return crc;
96 }
97
98 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
99 {
100 return f2fs_crc32(buf, buf_size) == blk_crc;
101 }
102
103 /*
104 * For checkpoint manager
105 */
106 enum {
107 NAT_BITMAP,
108 SIT_BITMAP
109 };
110
111 enum {
112 CP_UMOUNT,
113 CP_FASTBOOT,
114 CP_SYNC,
115 CP_RECOVERY,
116 CP_DISCARD,
117 };
118
119 #define DEF_BATCHED_TRIM_SECTIONS 32
120 #define BATCHED_TRIM_SEGMENTS(sbi) \
121 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
122 #define BATCHED_TRIM_BLOCKS(sbi) \
123 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
124
125 struct cp_control {
126 int reason;
127 __u64 trim_start;
128 __u64 trim_end;
129 __u64 trim_minlen;
130 __u64 trimmed;
131 };
132
133 /*
134 * For CP/NAT/SIT/SSA readahead
135 */
136 enum {
137 META_CP,
138 META_NAT,
139 META_SIT,
140 META_SSA,
141 META_POR,
142 };
143
144 /* for the list of ino */
145 enum {
146 ORPHAN_INO, /* for orphan ino list */
147 APPEND_INO, /* for append ino list */
148 UPDATE_INO, /* for update ino list */
149 MAX_INO_ENTRY, /* max. list */
150 };
151
152 struct ino_entry {
153 struct list_head list; /* list head */
154 nid_t ino; /* inode number */
155 };
156
157 /*
158 * for the list of directory inodes or gc inodes.
159 * NOTE: there are two slab users for this structure, if we add/modify/delete
160 * fields in structure for one of slab users, it may affect fields or size of
161 * other one, in this condition, it's better to split both of slab and related
162 * data structure.
163 */
164 struct inode_entry {
165 struct list_head list; /* list head */
166 struct inode *inode; /* vfs inode pointer */
167 };
168
169 /* for the list of blockaddresses to be discarded */
170 struct discard_entry {
171 struct list_head list; /* list head */
172 block_t blkaddr; /* block address to be discarded */
173 int len; /* # of consecutive blocks of the discard */
174 };
175
176 /* for the list of fsync inodes, used only during recovery */
177 struct fsync_inode_entry {
178 struct list_head list; /* list head */
179 struct inode *inode; /* vfs inode pointer */
180 block_t blkaddr; /* block address locating the last fsync */
181 block_t last_dentry; /* block address locating the last dentry */
182 block_t last_inode; /* block address locating the last inode */
183 };
184
185 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
186 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
187
188 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
189 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
190 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
191 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
192
193 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
194 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
195
196 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
197 {
198 int before = nats_in_cursum(rs);
199 rs->n_nats = cpu_to_le16(before + i);
200 return before;
201 }
202
203 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
204 {
205 int before = sits_in_cursum(rs);
206 rs->n_sits = cpu_to_le16(before + i);
207 return before;
208 }
209
210 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
211 int type)
212 {
213 if (type == NAT_JOURNAL)
214 return size <= MAX_NAT_JENTRIES(sum);
215 return size <= MAX_SIT_JENTRIES(sum);
216 }
217
218 /*
219 * ioctl commands
220 */
221 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
222 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
223 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
224
225 #define F2FS_IOCTL_MAGIC 0xf5
226 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
227 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
228 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
229 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
230 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
231
232 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
233 _IOR('f', 19, struct f2fs_encryption_policy)
234 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
235 _IOW('f', 20, __u8[16])
236 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
237 _IOW('f', 21, struct f2fs_encryption_policy)
238
239 /*
240 * should be same as XFS_IOC_GOINGDOWN.
241 * Flags for going down operation used by FS_IOC_GOINGDOWN
242 */
243 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
244 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
245 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
246 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
247
248 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
249 /*
250 * ioctl commands in 32 bit emulation
251 */
252 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
253 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
254 #endif
255
256 /*
257 * For INODE and NODE manager
258 */
259 /* for directory operations */
260 struct f2fs_str {
261 unsigned char *name;
262 u32 len;
263 };
264
265 struct f2fs_filename {
266 const struct qstr *usr_fname;
267 struct f2fs_str disk_name;
268 f2fs_hash_t hash;
269 #ifdef CONFIG_F2FS_FS_ENCRYPTION
270 struct f2fs_str crypto_buf;
271 #endif
272 };
273
274 #define FSTR_INIT(n, l) { .name = n, .len = l }
275 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
276 #define fname_name(p) ((p)->disk_name.name)
277 #define fname_len(p) ((p)->disk_name.len)
278
279 struct f2fs_dentry_ptr {
280 const void *bitmap;
281 struct f2fs_dir_entry *dentry;
282 __u8 (*filename)[F2FS_SLOT_LEN];
283 int max;
284 };
285
286 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
287 void *src, int type)
288 {
289 if (type == 1) {
290 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
291 d->max = NR_DENTRY_IN_BLOCK;
292 d->bitmap = &t->dentry_bitmap;
293 d->dentry = t->dentry;
294 d->filename = t->filename;
295 } else {
296 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
297 d->max = NR_INLINE_DENTRY;
298 d->bitmap = &t->dentry_bitmap;
299 d->dentry = t->dentry;
300 d->filename = t->filename;
301 }
302 }
303
304 /*
305 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
306 * as its node offset to distinguish from index node blocks.
307 * But some bits are used to mark the node block.
308 */
309 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
310 >> OFFSET_BIT_SHIFT)
311 enum {
312 ALLOC_NODE, /* allocate a new node page if needed */
313 LOOKUP_NODE, /* look up a node without readahead */
314 LOOKUP_NODE_RA, /*
315 * look up a node with readahead called
316 * by get_data_block.
317 */
318 };
319
320 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
321
322 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
323
324 /* vector size for gang look-up from extent cache that consists of radix tree */
325 #define EXT_TREE_VEC_SIZE 64
326
327 /* for in-memory extent cache entry */
328 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
329
330 /* number of extent info in extent cache we try to shrink */
331 #define EXTENT_CACHE_SHRINK_NUMBER 128
332
333 struct extent_info {
334 unsigned int fofs; /* start offset in a file */
335 u32 blk; /* start block address of the extent */
336 unsigned int len; /* length of the extent */
337 };
338
339 struct extent_node {
340 struct rb_node rb_node; /* rb node located in rb-tree */
341 struct list_head list; /* node in global extent list of sbi */
342 struct extent_info ei; /* extent info */
343 };
344
345 struct extent_tree {
346 nid_t ino; /* inode number */
347 struct rb_root root; /* root of extent info rb-tree */
348 struct extent_node *cached_en; /* recently accessed extent node */
349 rwlock_t lock; /* protect extent info rb-tree */
350 atomic_t refcount; /* reference count of rb-tree */
351 unsigned int count; /* # of extent node in rb-tree*/
352 };
353
354 /*
355 * This structure is taken from ext4_map_blocks.
356 *
357 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
358 */
359 #define F2FS_MAP_NEW (1 << BH_New)
360 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
361 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
362 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
363 F2FS_MAP_UNWRITTEN)
364
365 struct f2fs_map_blocks {
366 block_t m_pblk;
367 block_t m_lblk;
368 unsigned int m_len;
369 unsigned int m_flags;
370 };
371
372 /*
373 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
374 */
375 #define FADVISE_COLD_BIT 0x01
376 #define FADVISE_LOST_PINO_BIT 0x02
377 #define FADVISE_ENCRYPT_BIT 0x04
378
379 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
380 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
381 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
382 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
383 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
384 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
385 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
386 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
387 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
388
389 /* Encryption algorithms */
390 #define F2FS_ENCRYPTION_MODE_INVALID 0
391 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
392 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
393 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
394 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
395
396 #include "f2fs_crypto.h"
397
398 #define DEF_DIR_LEVEL 0
399
400 struct f2fs_inode_info {
401 struct inode vfs_inode; /* serve a vfs inode */
402 unsigned long i_flags; /* keep an inode flags for ioctl */
403 unsigned char i_advise; /* use to give file attribute hints */
404 unsigned char i_dir_level; /* use for dentry level for large dir */
405 unsigned int i_current_depth; /* use only in directory structure */
406 unsigned int i_pino; /* parent inode number */
407 umode_t i_acl_mode; /* keep file acl mode temporarily */
408
409 /* Use below internally in f2fs*/
410 unsigned long flags; /* use to pass per-file flags */
411 struct rw_semaphore i_sem; /* protect fi info */
412 atomic_t dirty_pages; /* # of dirty pages */
413 f2fs_hash_t chash; /* hash value of given file name */
414 unsigned int clevel; /* maximum level of given file name */
415 nid_t i_xattr_nid; /* node id that contains xattrs */
416 unsigned long long xattr_ver; /* cp version of xattr modification */
417 struct extent_info ext; /* in-memory extent cache entry */
418 rwlock_t ext_lock; /* rwlock for single extent cache */
419 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
420
421 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
422 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
423 struct mutex inmem_lock; /* lock for inmemory pages */
424
425 #ifdef CONFIG_F2FS_FS_ENCRYPTION
426 /* Encryption params */
427 struct f2fs_crypt_info *i_crypt_info;
428 #endif
429 };
430
431 static inline void get_extent_info(struct extent_info *ext,
432 struct f2fs_extent i_ext)
433 {
434 ext->fofs = le32_to_cpu(i_ext.fofs);
435 ext->blk = le32_to_cpu(i_ext.blk);
436 ext->len = le32_to_cpu(i_ext.len);
437 }
438
439 static inline void set_raw_extent(struct extent_info *ext,
440 struct f2fs_extent *i_ext)
441 {
442 i_ext->fofs = cpu_to_le32(ext->fofs);
443 i_ext->blk = cpu_to_le32(ext->blk);
444 i_ext->len = cpu_to_le32(ext->len);
445 }
446
447 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
448 u32 blk, unsigned int len)
449 {
450 ei->fofs = fofs;
451 ei->blk = blk;
452 ei->len = len;
453 }
454
455 static inline bool __is_extent_same(struct extent_info *ei1,
456 struct extent_info *ei2)
457 {
458 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
459 ei1->len == ei2->len);
460 }
461
462 static inline bool __is_extent_mergeable(struct extent_info *back,
463 struct extent_info *front)
464 {
465 return (back->fofs + back->len == front->fofs &&
466 back->blk + back->len == front->blk);
467 }
468
469 static inline bool __is_back_mergeable(struct extent_info *cur,
470 struct extent_info *back)
471 {
472 return __is_extent_mergeable(back, cur);
473 }
474
475 static inline bool __is_front_mergeable(struct extent_info *cur,
476 struct extent_info *front)
477 {
478 return __is_extent_mergeable(cur, front);
479 }
480
481 struct f2fs_nm_info {
482 block_t nat_blkaddr; /* base disk address of NAT */
483 nid_t max_nid; /* maximum possible node ids */
484 nid_t available_nids; /* maximum available node ids */
485 nid_t next_scan_nid; /* the next nid to be scanned */
486 unsigned int ram_thresh; /* control the memory footprint */
487
488 /* NAT cache management */
489 struct radix_tree_root nat_root;/* root of the nat entry cache */
490 struct radix_tree_root nat_set_root;/* root of the nat set cache */
491 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
492 struct list_head nat_entries; /* cached nat entry list (clean) */
493 unsigned int nat_cnt; /* the # of cached nat entries */
494 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
495
496 /* free node ids management */
497 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
498 struct list_head free_nid_list; /* a list for free nids */
499 spinlock_t free_nid_list_lock; /* protect free nid list */
500 unsigned int fcnt; /* the number of free node id */
501 struct mutex build_lock; /* lock for build free nids */
502
503 /* for checkpoint */
504 char *nat_bitmap; /* NAT bitmap pointer */
505 int bitmap_size; /* bitmap size */
506 };
507
508 /*
509 * this structure is used as one of function parameters.
510 * all the information are dedicated to a given direct node block determined
511 * by the data offset in a file.
512 */
513 struct dnode_of_data {
514 struct inode *inode; /* vfs inode pointer */
515 struct page *inode_page; /* its inode page, NULL is possible */
516 struct page *node_page; /* cached direct node page */
517 nid_t nid; /* node id of the direct node block */
518 unsigned int ofs_in_node; /* data offset in the node page */
519 bool inode_page_locked; /* inode page is locked or not */
520 block_t data_blkaddr; /* block address of the node block */
521 };
522
523 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
524 struct page *ipage, struct page *npage, nid_t nid)
525 {
526 memset(dn, 0, sizeof(*dn));
527 dn->inode = inode;
528 dn->inode_page = ipage;
529 dn->node_page = npage;
530 dn->nid = nid;
531 }
532
533 /*
534 * For SIT manager
535 *
536 * By default, there are 6 active log areas across the whole main area.
537 * When considering hot and cold data separation to reduce cleaning overhead,
538 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
539 * respectively.
540 * In the current design, you should not change the numbers intentionally.
541 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
542 * logs individually according to the underlying devices. (default: 6)
543 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
544 * data and 8 for node logs.
545 */
546 #define NR_CURSEG_DATA_TYPE (3)
547 #define NR_CURSEG_NODE_TYPE (3)
548 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
549
550 enum {
551 CURSEG_HOT_DATA = 0, /* directory entry blocks */
552 CURSEG_WARM_DATA, /* data blocks */
553 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
554 CURSEG_HOT_NODE, /* direct node blocks of directory files */
555 CURSEG_WARM_NODE, /* direct node blocks of normal files */
556 CURSEG_COLD_NODE, /* indirect node blocks */
557 NO_CHECK_TYPE,
558 CURSEG_DIRECT_IO, /* to use for the direct IO path */
559 };
560
561 struct flush_cmd {
562 struct completion wait;
563 struct llist_node llnode;
564 int ret;
565 };
566
567 struct flush_cmd_control {
568 struct task_struct *f2fs_issue_flush; /* flush thread */
569 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
570 struct llist_head issue_list; /* list for command issue */
571 struct llist_node *dispatch_list; /* list for command dispatch */
572 };
573
574 struct f2fs_sm_info {
575 struct sit_info *sit_info; /* whole segment information */
576 struct free_segmap_info *free_info; /* free segment information */
577 struct dirty_seglist_info *dirty_info; /* dirty segment information */
578 struct curseg_info *curseg_array; /* active segment information */
579
580 block_t seg0_blkaddr; /* block address of 0'th segment */
581 block_t main_blkaddr; /* start block address of main area */
582 block_t ssa_blkaddr; /* start block address of SSA area */
583
584 unsigned int segment_count; /* total # of segments */
585 unsigned int main_segments; /* # of segments in main area */
586 unsigned int reserved_segments; /* # of reserved segments */
587 unsigned int ovp_segments; /* # of overprovision segments */
588
589 /* a threshold to reclaim prefree segments */
590 unsigned int rec_prefree_segments;
591
592 /* for small discard management */
593 struct list_head discard_list; /* 4KB discard list */
594 int nr_discards; /* # of discards in the list */
595 int max_discards; /* max. discards to be issued */
596
597 /* for batched trimming */
598 unsigned int trim_sections; /* # of sections to trim */
599
600 struct list_head sit_entry_set; /* sit entry set list */
601
602 unsigned int ipu_policy; /* in-place-update policy */
603 unsigned int min_ipu_util; /* in-place-update threshold */
604 unsigned int min_fsync_blocks; /* threshold for fsync */
605
606 /* for flush command control */
607 struct flush_cmd_control *cmd_control_info;
608
609 };
610
611 /*
612 * For superblock
613 */
614 /*
615 * COUNT_TYPE for monitoring
616 *
617 * f2fs monitors the number of several block types such as on-writeback,
618 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
619 */
620 enum count_type {
621 F2FS_WRITEBACK,
622 F2FS_DIRTY_DENTS,
623 F2FS_DIRTY_NODES,
624 F2FS_DIRTY_META,
625 F2FS_INMEM_PAGES,
626 NR_COUNT_TYPE,
627 };
628
629 /*
630 * The below are the page types of bios used in submit_bio().
631 * The available types are:
632 * DATA User data pages. It operates as async mode.
633 * NODE Node pages. It operates as async mode.
634 * META FS metadata pages such as SIT, NAT, CP.
635 * NR_PAGE_TYPE The number of page types.
636 * META_FLUSH Make sure the previous pages are written
637 * with waiting the bio's completion
638 * ... Only can be used with META.
639 */
640 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
641 enum page_type {
642 DATA,
643 NODE,
644 META,
645 NR_PAGE_TYPE,
646 META_FLUSH,
647 INMEM, /* the below types are used by tracepoints only. */
648 INMEM_DROP,
649 IPU,
650 OPU,
651 };
652
653 struct f2fs_io_info {
654 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
655 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
656 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
657 block_t blk_addr; /* block address to be written */
658 struct page *page; /* page to be written */
659 };
660
661 #define is_read_io(rw) (((rw) & 1) == READ)
662 struct f2fs_bio_info {
663 struct f2fs_sb_info *sbi; /* f2fs superblock */
664 struct bio *bio; /* bios to merge */
665 sector_t last_block_in_bio; /* last block number */
666 struct f2fs_io_info fio; /* store buffered io info. */
667 struct rw_semaphore io_rwsem; /* blocking op for bio */
668 };
669
670 /* for inner inode cache management */
671 struct inode_management {
672 struct radix_tree_root ino_root; /* ino entry array */
673 spinlock_t ino_lock; /* for ino entry lock */
674 struct list_head ino_list; /* inode list head */
675 unsigned long ino_num; /* number of entries */
676 };
677
678 /* For s_flag in struct f2fs_sb_info */
679 enum {
680 SBI_IS_DIRTY, /* dirty flag for checkpoint */
681 SBI_IS_CLOSE, /* specify unmounting */
682 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
683 SBI_POR_DOING, /* recovery is doing or not */
684 };
685
686 struct f2fs_sb_info {
687 struct super_block *sb; /* pointer to VFS super block */
688 struct proc_dir_entry *s_proc; /* proc entry */
689 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
690 struct f2fs_super_block *raw_super; /* raw super block pointer */
691 int s_flag; /* flags for sbi */
692
693 /* for node-related operations */
694 struct f2fs_nm_info *nm_info; /* node manager */
695 struct inode *node_inode; /* cache node blocks */
696
697 /* for segment-related operations */
698 struct f2fs_sm_info *sm_info; /* segment manager */
699
700 /* for bio operations */
701 struct f2fs_bio_info read_io; /* for read bios */
702 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
703
704 /* for checkpoint */
705 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
706 struct inode *meta_inode; /* cache meta blocks */
707 struct mutex cp_mutex; /* checkpoint procedure lock */
708 struct rw_semaphore cp_rwsem; /* blocking FS operations */
709 struct rw_semaphore node_write; /* locking node writes */
710 struct mutex writepages; /* mutex for writepages() */
711 wait_queue_head_t cp_wait;
712
713 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
714
715 /* for orphan inode, use 0'th array */
716 unsigned int max_orphans; /* max orphan inodes */
717
718 /* for directory inode management */
719 struct list_head dir_inode_list; /* dir inode list */
720 spinlock_t dir_inode_lock; /* for dir inode list lock */
721
722 /* for extent tree cache */
723 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
724 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
725 struct list_head extent_list; /* lru list for shrinker */
726 spinlock_t extent_lock; /* locking extent lru list */
727 int total_ext_tree; /* extent tree count */
728 atomic_t total_ext_node; /* extent info count */
729
730 /* basic filesystem units */
731 unsigned int log_sectors_per_block; /* log2 sectors per block */
732 unsigned int log_blocksize; /* log2 block size */
733 unsigned int blocksize; /* block size */
734 unsigned int root_ino_num; /* root inode number*/
735 unsigned int node_ino_num; /* node inode number*/
736 unsigned int meta_ino_num; /* meta inode number*/
737 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
738 unsigned int blocks_per_seg; /* blocks per segment */
739 unsigned int segs_per_sec; /* segments per section */
740 unsigned int secs_per_zone; /* sections per zone */
741 unsigned int total_sections; /* total section count */
742 unsigned int total_node_count; /* total node block count */
743 unsigned int total_valid_node_count; /* valid node block count */
744 unsigned int total_valid_inode_count; /* valid inode count */
745 int active_logs; /* # of active logs */
746 int dir_level; /* directory level */
747
748 block_t user_block_count; /* # of user blocks */
749 block_t total_valid_block_count; /* # of valid blocks */
750 block_t alloc_valid_block_count; /* # of allocated blocks */
751 block_t discard_blks; /* discard command candidats */
752 block_t last_valid_block_count; /* for recovery */
753 u32 s_next_generation; /* for NFS support */
754 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
755
756 struct f2fs_mount_info mount_opt; /* mount options */
757
758 /* for cleaning operations */
759 struct mutex gc_mutex; /* mutex for GC */
760 struct f2fs_gc_kthread *gc_thread; /* GC thread */
761 unsigned int cur_victim_sec; /* current victim section num */
762
763 /* maximum # of trials to find a victim segment for SSR and GC */
764 unsigned int max_victim_search;
765
766 /*
767 * for stat information.
768 * one is for the LFS mode, and the other is for the SSR mode.
769 */
770 #ifdef CONFIG_F2FS_STAT_FS
771 struct f2fs_stat_info *stat_info; /* FS status information */
772 unsigned int segment_count[2]; /* # of allocated segments */
773 unsigned int block_count[2]; /* # of allocated blocks */
774 atomic_t inplace_count; /* # of inplace update */
775 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
776 atomic_t inline_inode; /* # of inline_data inodes */
777 atomic_t inline_dir; /* # of inline_dentry inodes */
778 int bg_gc; /* background gc calls */
779 unsigned int n_dirty_dirs; /* # of dir inodes */
780 #endif
781 unsigned int last_victim[2]; /* last victim segment # */
782 spinlock_t stat_lock; /* lock for stat operations */
783
784 /* For sysfs suppport */
785 struct kobject s_kobj;
786 struct completion s_kobj_unregister;
787 };
788
789 /*
790 * Inline functions
791 */
792 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
793 {
794 return container_of(inode, struct f2fs_inode_info, vfs_inode);
795 }
796
797 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
798 {
799 return sb->s_fs_info;
800 }
801
802 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
803 {
804 return F2FS_SB(inode->i_sb);
805 }
806
807 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
808 {
809 return F2FS_I_SB(mapping->host);
810 }
811
812 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
813 {
814 return F2FS_M_SB(page->mapping);
815 }
816
817 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
818 {
819 return (struct f2fs_super_block *)(sbi->raw_super);
820 }
821
822 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
823 {
824 return (struct f2fs_checkpoint *)(sbi->ckpt);
825 }
826
827 static inline struct f2fs_node *F2FS_NODE(struct page *page)
828 {
829 return (struct f2fs_node *)page_address(page);
830 }
831
832 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
833 {
834 return &((struct f2fs_node *)page_address(page))->i;
835 }
836
837 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
838 {
839 return (struct f2fs_nm_info *)(sbi->nm_info);
840 }
841
842 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
843 {
844 return (struct f2fs_sm_info *)(sbi->sm_info);
845 }
846
847 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
848 {
849 return (struct sit_info *)(SM_I(sbi)->sit_info);
850 }
851
852 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
853 {
854 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
855 }
856
857 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
858 {
859 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
860 }
861
862 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
863 {
864 return sbi->meta_inode->i_mapping;
865 }
866
867 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
868 {
869 return sbi->node_inode->i_mapping;
870 }
871
872 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
873 {
874 return sbi->s_flag & (0x01 << type);
875 }
876
877 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
878 {
879 sbi->s_flag |= (0x01 << type);
880 }
881
882 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
883 {
884 sbi->s_flag &= ~(0x01 << type);
885 }
886
887 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
888 {
889 return le64_to_cpu(cp->checkpoint_ver);
890 }
891
892 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
893 {
894 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
895 return ckpt_flags & f;
896 }
897
898 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
899 {
900 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
901 ckpt_flags |= f;
902 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
903 }
904
905 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
906 {
907 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
908 ckpt_flags &= (~f);
909 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
910 }
911
912 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
913 {
914 down_read(&sbi->cp_rwsem);
915 }
916
917 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
918 {
919 up_read(&sbi->cp_rwsem);
920 }
921
922 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
923 {
924 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
925 }
926
927 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
928 {
929 up_write(&sbi->cp_rwsem);
930 }
931
932 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
933 {
934 int reason = CP_SYNC;
935
936 if (test_opt(sbi, FASTBOOT))
937 reason = CP_FASTBOOT;
938 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
939 reason = CP_UMOUNT;
940 return reason;
941 }
942
943 static inline bool __remain_node_summaries(int reason)
944 {
945 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
946 }
947
948 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
949 {
950 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
951 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
952 }
953
954 /*
955 * Check whether the given nid is within node id range.
956 */
957 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
958 {
959 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
960 return -EINVAL;
961 if (unlikely(nid >= NM_I(sbi)->max_nid))
962 return -EINVAL;
963 return 0;
964 }
965
966 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
967
968 /*
969 * Check whether the inode has blocks or not
970 */
971 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
972 {
973 if (F2FS_I(inode)->i_xattr_nid)
974 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
975 else
976 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
977 }
978
979 static inline bool f2fs_has_xattr_block(unsigned int ofs)
980 {
981 return ofs == XATTR_NODE_OFFSET;
982 }
983
984 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
985 struct inode *inode, blkcnt_t count)
986 {
987 block_t valid_block_count;
988
989 spin_lock(&sbi->stat_lock);
990 valid_block_count =
991 sbi->total_valid_block_count + (block_t)count;
992 if (unlikely(valid_block_count > sbi->user_block_count)) {
993 spin_unlock(&sbi->stat_lock);
994 return false;
995 }
996 inode->i_blocks += count;
997 sbi->total_valid_block_count = valid_block_count;
998 sbi->alloc_valid_block_count += (block_t)count;
999 spin_unlock(&sbi->stat_lock);
1000 return true;
1001 }
1002
1003 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1004 struct inode *inode,
1005 blkcnt_t count)
1006 {
1007 spin_lock(&sbi->stat_lock);
1008 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1009 f2fs_bug_on(sbi, inode->i_blocks < count);
1010 inode->i_blocks -= count;
1011 sbi->total_valid_block_count -= (block_t)count;
1012 spin_unlock(&sbi->stat_lock);
1013 }
1014
1015 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1016 {
1017 atomic_inc(&sbi->nr_pages[count_type]);
1018 set_sbi_flag(sbi, SBI_IS_DIRTY);
1019 }
1020
1021 static inline void inode_inc_dirty_pages(struct inode *inode)
1022 {
1023 atomic_inc(&F2FS_I(inode)->dirty_pages);
1024 if (S_ISDIR(inode->i_mode))
1025 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1026 }
1027
1028 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1029 {
1030 atomic_dec(&sbi->nr_pages[count_type]);
1031 }
1032
1033 static inline void inode_dec_dirty_pages(struct inode *inode)
1034 {
1035 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
1036 return;
1037
1038 atomic_dec(&F2FS_I(inode)->dirty_pages);
1039
1040 if (S_ISDIR(inode->i_mode))
1041 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1042 }
1043
1044 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1045 {
1046 return atomic_read(&sbi->nr_pages[count_type]);
1047 }
1048
1049 static inline int get_dirty_pages(struct inode *inode)
1050 {
1051 return atomic_read(&F2FS_I(inode)->dirty_pages);
1052 }
1053
1054 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1055 {
1056 unsigned int pages_per_sec = sbi->segs_per_sec *
1057 (1 << sbi->log_blocks_per_seg);
1058 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1059 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1060 }
1061
1062 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1063 {
1064 return sbi->total_valid_block_count;
1065 }
1066
1067 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1068 {
1069 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1070
1071 /* return NAT or SIT bitmap */
1072 if (flag == NAT_BITMAP)
1073 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1074 else if (flag == SIT_BITMAP)
1075 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1076
1077 return 0;
1078 }
1079
1080 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1081 {
1082 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1083 }
1084
1085 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1086 {
1087 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1088 int offset;
1089
1090 if (__cp_payload(sbi) > 0) {
1091 if (flag == NAT_BITMAP)
1092 return &ckpt->sit_nat_version_bitmap;
1093 else
1094 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1095 } else {
1096 offset = (flag == NAT_BITMAP) ?
1097 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1098 return &ckpt->sit_nat_version_bitmap + offset;
1099 }
1100 }
1101
1102 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1103 {
1104 block_t start_addr;
1105 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1106 unsigned long long ckpt_version = cur_cp_version(ckpt);
1107
1108 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1109
1110 /*
1111 * odd numbered checkpoint should at cp segment 0
1112 * and even segment must be at cp segment 1
1113 */
1114 if (!(ckpt_version & 1))
1115 start_addr += sbi->blocks_per_seg;
1116
1117 return start_addr;
1118 }
1119
1120 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1121 {
1122 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1123 }
1124
1125 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1126 struct inode *inode)
1127 {
1128 block_t valid_block_count;
1129 unsigned int valid_node_count;
1130
1131 spin_lock(&sbi->stat_lock);
1132
1133 valid_block_count = sbi->total_valid_block_count + 1;
1134 if (unlikely(valid_block_count > sbi->user_block_count)) {
1135 spin_unlock(&sbi->stat_lock);
1136 return false;
1137 }
1138
1139 valid_node_count = sbi->total_valid_node_count + 1;
1140 if (unlikely(valid_node_count > sbi->total_node_count)) {
1141 spin_unlock(&sbi->stat_lock);
1142 return false;
1143 }
1144
1145 if (inode)
1146 inode->i_blocks++;
1147
1148 sbi->alloc_valid_block_count++;
1149 sbi->total_valid_node_count++;
1150 sbi->total_valid_block_count++;
1151 spin_unlock(&sbi->stat_lock);
1152
1153 return true;
1154 }
1155
1156 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1157 struct inode *inode)
1158 {
1159 spin_lock(&sbi->stat_lock);
1160
1161 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1162 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1163 f2fs_bug_on(sbi, !inode->i_blocks);
1164
1165 inode->i_blocks--;
1166 sbi->total_valid_node_count--;
1167 sbi->total_valid_block_count--;
1168
1169 spin_unlock(&sbi->stat_lock);
1170 }
1171
1172 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1173 {
1174 return sbi->total_valid_node_count;
1175 }
1176
1177 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1178 {
1179 spin_lock(&sbi->stat_lock);
1180 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1181 sbi->total_valid_inode_count++;
1182 spin_unlock(&sbi->stat_lock);
1183 }
1184
1185 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1186 {
1187 spin_lock(&sbi->stat_lock);
1188 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1189 sbi->total_valid_inode_count--;
1190 spin_unlock(&sbi->stat_lock);
1191 }
1192
1193 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1194 {
1195 return sbi->total_valid_inode_count;
1196 }
1197
1198 static inline void f2fs_put_page(struct page *page, int unlock)
1199 {
1200 if (!page)
1201 return;
1202
1203 if (unlock) {
1204 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1205 unlock_page(page);
1206 }
1207 page_cache_release(page);
1208 }
1209
1210 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1211 {
1212 if (dn->node_page)
1213 f2fs_put_page(dn->node_page, 1);
1214 if (dn->inode_page && dn->node_page != dn->inode_page)
1215 f2fs_put_page(dn->inode_page, 0);
1216 dn->node_page = NULL;
1217 dn->inode_page = NULL;
1218 }
1219
1220 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1221 size_t size)
1222 {
1223 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1224 }
1225
1226 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1227 gfp_t flags)
1228 {
1229 void *entry;
1230 retry:
1231 entry = kmem_cache_alloc(cachep, flags);
1232 if (!entry) {
1233 cond_resched();
1234 goto retry;
1235 }
1236
1237 return entry;
1238 }
1239
1240 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1241 unsigned long index, void *item)
1242 {
1243 while (radix_tree_insert(root, index, item))
1244 cond_resched();
1245 }
1246
1247 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1248
1249 static inline bool IS_INODE(struct page *page)
1250 {
1251 struct f2fs_node *p = F2FS_NODE(page);
1252 return RAW_IS_INODE(p);
1253 }
1254
1255 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1256 {
1257 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1258 }
1259
1260 static inline block_t datablock_addr(struct page *node_page,
1261 unsigned int offset)
1262 {
1263 struct f2fs_node *raw_node;
1264 __le32 *addr_array;
1265 raw_node = F2FS_NODE(node_page);
1266 addr_array = blkaddr_in_node(raw_node);
1267 return le32_to_cpu(addr_array[offset]);
1268 }
1269
1270 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1271 {
1272 int mask;
1273
1274 addr += (nr >> 3);
1275 mask = 1 << (7 - (nr & 0x07));
1276 return mask & *addr;
1277 }
1278
1279 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1280 {
1281 int mask;
1282
1283 addr += (nr >> 3);
1284 mask = 1 << (7 - (nr & 0x07));
1285 *addr |= mask;
1286 }
1287
1288 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1289 {
1290 int mask;
1291
1292 addr += (nr >> 3);
1293 mask = 1 << (7 - (nr & 0x07));
1294 *addr &= ~mask;
1295 }
1296
1297 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1298 {
1299 int mask;
1300 int ret;
1301
1302 addr += (nr >> 3);
1303 mask = 1 << (7 - (nr & 0x07));
1304 ret = mask & *addr;
1305 *addr |= mask;
1306 return ret;
1307 }
1308
1309 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1310 {
1311 int mask;
1312 int ret;
1313
1314 addr += (nr >> 3);
1315 mask = 1 << (7 - (nr & 0x07));
1316 ret = mask & *addr;
1317 *addr &= ~mask;
1318 return ret;
1319 }
1320
1321 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1322 {
1323 int mask;
1324
1325 addr += (nr >> 3);
1326 mask = 1 << (7 - (nr & 0x07));
1327 *addr ^= mask;
1328 }
1329
1330 /* used for f2fs_inode_info->flags */
1331 enum {
1332 FI_NEW_INODE, /* indicate newly allocated inode */
1333 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1334 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1335 FI_INC_LINK, /* need to increment i_nlink */
1336 FI_ACL_MODE, /* indicate acl mode */
1337 FI_NO_ALLOC, /* should not allocate any blocks */
1338 FI_UPDATE_DIR, /* should update inode block for consistency */
1339 FI_DELAY_IPUT, /* used for the recovery */
1340 FI_NO_EXTENT, /* not to use the extent cache */
1341 FI_INLINE_XATTR, /* used for inline xattr */
1342 FI_INLINE_DATA, /* used for inline data*/
1343 FI_INLINE_DENTRY, /* used for inline dentry */
1344 FI_APPEND_WRITE, /* inode has appended data */
1345 FI_UPDATE_WRITE, /* inode has in-place-update data */
1346 FI_NEED_IPU, /* used for ipu per file */
1347 FI_ATOMIC_FILE, /* indicate atomic file */
1348 FI_VOLATILE_FILE, /* indicate volatile file */
1349 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1350 FI_DROP_CACHE, /* drop dirty page cache */
1351 FI_DATA_EXIST, /* indicate data exists */
1352 FI_INLINE_DOTS, /* indicate inline dot dentries */
1353 };
1354
1355 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1356 {
1357 if (!test_bit(flag, &fi->flags))
1358 set_bit(flag, &fi->flags);
1359 }
1360
1361 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1362 {
1363 return test_bit(flag, &fi->flags);
1364 }
1365
1366 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1367 {
1368 if (test_bit(flag, &fi->flags))
1369 clear_bit(flag, &fi->flags);
1370 }
1371
1372 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1373 {
1374 fi->i_acl_mode = mode;
1375 set_inode_flag(fi, FI_ACL_MODE);
1376 }
1377
1378 static inline void get_inline_info(struct f2fs_inode_info *fi,
1379 struct f2fs_inode *ri)
1380 {
1381 if (ri->i_inline & F2FS_INLINE_XATTR)
1382 set_inode_flag(fi, FI_INLINE_XATTR);
1383 if (ri->i_inline & F2FS_INLINE_DATA)
1384 set_inode_flag(fi, FI_INLINE_DATA);
1385 if (ri->i_inline & F2FS_INLINE_DENTRY)
1386 set_inode_flag(fi, FI_INLINE_DENTRY);
1387 if (ri->i_inline & F2FS_DATA_EXIST)
1388 set_inode_flag(fi, FI_DATA_EXIST);
1389 if (ri->i_inline & F2FS_INLINE_DOTS)
1390 set_inode_flag(fi, FI_INLINE_DOTS);
1391 }
1392
1393 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1394 struct f2fs_inode *ri)
1395 {
1396 ri->i_inline = 0;
1397
1398 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1399 ri->i_inline |= F2FS_INLINE_XATTR;
1400 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1401 ri->i_inline |= F2FS_INLINE_DATA;
1402 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1403 ri->i_inline |= F2FS_INLINE_DENTRY;
1404 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1405 ri->i_inline |= F2FS_DATA_EXIST;
1406 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1407 ri->i_inline |= F2FS_INLINE_DOTS;
1408 }
1409
1410 static inline int f2fs_has_inline_xattr(struct inode *inode)
1411 {
1412 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1413 }
1414
1415 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1416 {
1417 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1418 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1419 return DEF_ADDRS_PER_INODE;
1420 }
1421
1422 static inline void *inline_xattr_addr(struct page *page)
1423 {
1424 struct f2fs_inode *ri = F2FS_INODE(page);
1425 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1426 F2FS_INLINE_XATTR_ADDRS]);
1427 }
1428
1429 static inline int inline_xattr_size(struct inode *inode)
1430 {
1431 if (f2fs_has_inline_xattr(inode))
1432 return F2FS_INLINE_XATTR_ADDRS << 2;
1433 else
1434 return 0;
1435 }
1436
1437 static inline int f2fs_has_inline_data(struct inode *inode)
1438 {
1439 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1440 }
1441
1442 static inline void f2fs_clear_inline_inode(struct inode *inode)
1443 {
1444 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1445 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1446 }
1447
1448 static inline int f2fs_exist_data(struct inode *inode)
1449 {
1450 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1451 }
1452
1453 static inline int f2fs_has_inline_dots(struct inode *inode)
1454 {
1455 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1456 }
1457
1458 static inline bool f2fs_is_atomic_file(struct inode *inode)
1459 {
1460 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1461 }
1462
1463 static inline bool f2fs_is_volatile_file(struct inode *inode)
1464 {
1465 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1466 }
1467
1468 static inline bool f2fs_is_first_block_written(struct inode *inode)
1469 {
1470 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1471 }
1472
1473 static inline bool f2fs_is_drop_cache(struct inode *inode)
1474 {
1475 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1476 }
1477
1478 static inline void *inline_data_addr(struct page *page)
1479 {
1480 struct f2fs_inode *ri = F2FS_INODE(page);
1481 return (void *)&(ri->i_addr[1]);
1482 }
1483
1484 static inline int f2fs_has_inline_dentry(struct inode *inode)
1485 {
1486 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1487 }
1488
1489 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1490 {
1491 if (!f2fs_has_inline_dentry(dir))
1492 kunmap(page);
1493 }
1494
1495 static inline int is_file(struct inode *inode, int type)
1496 {
1497 return F2FS_I(inode)->i_advise & type;
1498 }
1499
1500 static inline void set_file(struct inode *inode, int type)
1501 {
1502 F2FS_I(inode)->i_advise |= type;
1503 }
1504
1505 static inline void clear_file(struct inode *inode, int type)
1506 {
1507 F2FS_I(inode)->i_advise &= ~type;
1508 }
1509
1510 static inline int f2fs_readonly(struct super_block *sb)
1511 {
1512 return sb->s_flags & MS_RDONLY;
1513 }
1514
1515 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1516 {
1517 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1518 }
1519
1520 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1521 {
1522 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1523 sbi->sb->s_flags |= MS_RDONLY;
1524 }
1525
1526 static inline bool is_dot_dotdot(const struct qstr *str)
1527 {
1528 if (str->len == 1 && str->name[0] == '.')
1529 return true;
1530
1531 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1532 return true;
1533
1534 return false;
1535 }
1536
1537 #define get_inode_mode(i) \
1538 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1539 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1540
1541 /* get offset of first page in next direct node */
1542 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1543 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1544 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1545 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1546
1547 /*
1548 * file.c
1549 */
1550 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1551 void truncate_data_blocks(struct dnode_of_data *);
1552 int truncate_blocks(struct inode *, u64, bool);
1553 void f2fs_truncate(struct inode *);
1554 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1555 int f2fs_setattr(struct dentry *, struct iattr *);
1556 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1557 int truncate_data_blocks_range(struct dnode_of_data *, int);
1558 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1559 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1560
1561 /*
1562 * inode.c
1563 */
1564 void f2fs_set_inode_flags(struct inode *);
1565 struct inode *f2fs_iget(struct super_block *, unsigned long);
1566 int try_to_free_nats(struct f2fs_sb_info *, int);
1567 void update_inode(struct inode *, struct page *);
1568 void update_inode_page(struct inode *);
1569 int f2fs_write_inode(struct inode *, struct writeback_control *);
1570 void f2fs_evict_inode(struct inode *);
1571 void handle_failed_inode(struct inode *);
1572
1573 /*
1574 * namei.c
1575 */
1576 struct dentry *f2fs_get_parent(struct dentry *child);
1577
1578 /*
1579 * dir.c
1580 */
1581 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1582 void set_de_type(struct f2fs_dir_entry *, umode_t);
1583 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1584 struct f2fs_dentry_ptr *);
1585 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1586 unsigned int);
1587 void do_make_empty_dir(struct inode *, struct inode *,
1588 struct f2fs_dentry_ptr *);
1589 struct page *init_inode_metadata(struct inode *, struct inode *,
1590 const struct qstr *, struct page *);
1591 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1592 int room_for_filename(const void *, int, int);
1593 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1594 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1595 struct page **);
1596 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1597 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1598 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1599 struct page *, struct inode *);
1600 int update_dent_inode(struct inode *, const struct qstr *);
1601 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1602 const struct qstr *, f2fs_hash_t , unsigned int);
1603 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1604 umode_t);
1605 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1606 struct inode *);
1607 int f2fs_do_tmpfile(struct inode *, struct inode *);
1608 bool f2fs_empty_dir(struct inode *);
1609
1610 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1611 {
1612 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1613 inode, inode->i_ino, inode->i_mode);
1614 }
1615
1616 /*
1617 * super.c
1618 */
1619 int f2fs_commit_super(struct f2fs_sb_info *);
1620 int f2fs_sync_fs(struct super_block *, int);
1621 extern __printf(3, 4)
1622 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1623
1624 /*
1625 * hash.c
1626 */
1627 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1628
1629 /*
1630 * node.c
1631 */
1632 struct dnode_of_data;
1633 struct node_info;
1634
1635 bool available_free_memory(struct f2fs_sb_info *, int);
1636 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1637 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1638 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1639 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1640 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1641 int truncate_inode_blocks(struct inode *, pgoff_t);
1642 int truncate_xattr_node(struct inode *, struct page *);
1643 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1644 void remove_inode_page(struct inode *);
1645 struct page *new_inode_page(struct inode *);
1646 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1647 void ra_node_page(struct f2fs_sb_info *, nid_t);
1648 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1649 struct page *get_node_page_ra(struct page *, int);
1650 void sync_inode_page(struct dnode_of_data *);
1651 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1652 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1653 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1654 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1655 void recover_inline_xattr(struct inode *, struct page *);
1656 void recover_xattr_data(struct inode *, struct page *, block_t);
1657 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1658 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1659 struct f2fs_summary_block *);
1660 void flush_nat_entries(struct f2fs_sb_info *);
1661 int build_node_manager(struct f2fs_sb_info *);
1662 void destroy_node_manager(struct f2fs_sb_info *);
1663 int __init create_node_manager_caches(void);
1664 void destroy_node_manager_caches(void);
1665
1666 /*
1667 * segment.c
1668 */
1669 void register_inmem_page(struct inode *, struct page *);
1670 void commit_inmem_pages(struct inode *, bool);
1671 void f2fs_balance_fs(struct f2fs_sb_info *);
1672 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1673 int f2fs_issue_flush(struct f2fs_sb_info *);
1674 int create_flush_cmd_control(struct f2fs_sb_info *);
1675 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1676 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1677 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1678 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1679 void release_discard_addrs(struct f2fs_sb_info *);
1680 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1681 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1682 void allocate_new_segments(struct f2fs_sb_info *);
1683 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1684 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1685 void write_meta_page(struct f2fs_sb_info *, struct page *);
1686 void write_node_page(unsigned int, struct f2fs_io_info *);
1687 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1688 void rewrite_data_page(struct f2fs_io_info *);
1689 void f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1690 block_t, block_t, bool);
1691 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1692 block_t, block_t *, struct f2fs_summary *, int);
1693 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1694 void write_data_summaries(struct f2fs_sb_info *, block_t);
1695 void write_node_summaries(struct f2fs_sb_info *, block_t);
1696 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1697 int, unsigned int, int);
1698 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1699 int build_segment_manager(struct f2fs_sb_info *);
1700 void destroy_segment_manager(struct f2fs_sb_info *);
1701 int __init create_segment_manager_caches(void);
1702 void destroy_segment_manager_caches(void);
1703
1704 /*
1705 * checkpoint.c
1706 */
1707 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1708 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1709 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1710 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1711 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1712 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1713 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1714 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1715 void release_dirty_inode(struct f2fs_sb_info *);
1716 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1717 int acquire_orphan_inode(struct f2fs_sb_info *);
1718 void release_orphan_inode(struct f2fs_sb_info *);
1719 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1720 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1721 void recover_orphan_inodes(struct f2fs_sb_info *);
1722 int get_valid_checkpoint(struct f2fs_sb_info *);
1723 void update_dirty_page(struct inode *, struct page *);
1724 void add_dirty_dir_inode(struct inode *);
1725 void remove_dirty_dir_inode(struct inode *);
1726 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1727 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1728 void init_ino_entry_info(struct f2fs_sb_info *);
1729 int __init create_checkpoint_caches(void);
1730 void destroy_checkpoint_caches(void);
1731
1732 /*
1733 * data.c
1734 */
1735 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1736 int f2fs_submit_page_bio(struct f2fs_io_info *);
1737 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1738 void set_data_blkaddr(struct dnode_of_data *);
1739 int reserve_new_block(struct dnode_of_data *);
1740 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1741 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1742 void f2fs_destroy_extent_tree(struct inode *);
1743 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1744 void f2fs_update_extent_cache(struct dnode_of_data *);
1745 void f2fs_preserve_extent_tree(struct inode *);
1746 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1747 struct page *find_data_page(struct inode *, pgoff_t);
1748 struct page *get_lock_data_page(struct inode *, pgoff_t);
1749 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1750 int do_write_data_page(struct f2fs_io_info *);
1751 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1752 void init_extent_cache_info(struct f2fs_sb_info *);
1753 int __init create_extent_cache(void);
1754 void destroy_extent_cache(void);
1755 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1756 int f2fs_release_page(struct page *, gfp_t);
1757
1758 /*
1759 * gc.c
1760 */
1761 int start_gc_thread(struct f2fs_sb_info *);
1762 void stop_gc_thread(struct f2fs_sb_info *);
1763 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1764 int f2fs_gc(struct f2fs_sb_info *);
1765 void build_gc_manager(struct f2fs_sb_info *);
1766
1767 /*
1768 * recovery.c
1769 */
1770 int recover_fsync_data(struct f2fs_sb_info *);
1771 bool space_for_roll_forward(struct f2fs_sb_info *);
1772
1773 /*
1774 * debug.c
1775 */
1776 #ifdef CONFIG_F2FS_STAT_FS
1777 struct f2fs_stat_info {
1778 struct list_head stat_list;
1779 struct f2fs_sb_info *sbi;
1780 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1781 int main_area_segs, main_area_sections, main_area_zones;
1782 int hit_ext, total_ext, ext_tree, ext_node;
1783 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1784 int nats, dirty_nats, sits, dirty_sits, fnids;
1785 int total_count, utilization;
1786 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1787 unsigned int valid_count, valid_node_count, valid_inode_count;
1788 unsigned int bimodal, avg_vblocks;
1789 int util_free, util_valid, util_invalid;
1790 int rsvd_segs, overp_segs;
1791 int dirty_count, node_pages, meta_pages;
1792 int prefree_count, call_count, cp_count;
1793 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1794 int bg_node_segs, bg_data_segs;
1795 int tot_blks, data_blks, node_blks;
1796 int bg_data_blks, bg_node_blks;
1797 int curseg[NR_CURSEG_TYPE];
1798 int cursec[NR_CURSEG_TYPE];
1799 int curzone[NR_CURSEG_TYPE];
1800
1801 unsigned int segment_count[2];
1802 unsigned int block_count[2];
1803 unsigned int inplace_count;
1804 unsigned base_mem, cache_mem, page_mem;
1805 };
1806
1807 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1808 {
1809 return (struct f2fs_stat_info *)sbi->stat_info;
1810 }
1811
1812 #define stat_inc_cp_count(si) ((si)->cp_count++)
1813 #define stat_inc_call_count(si) ((si)->call_count++)
1814 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1815 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1816 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1817 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1818 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1819 #define stat_inc_inline_inode(inode) \
1820 do { \
1821 if (f2fs_has_inline_data(inode)) \
1822 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1823 } while (0)
1824 #define stat_dec_inline_inode(inode) \
1825 do { \
1826 if (f2fs_has_inline_data(inode)) \
1827 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1828 } while (0)
1829 #define stat_inc_inline_dir(inode) \
1830 do { \
1831 if (f2fs_has_inline_dentry(inode)) \
1832 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1833 } while (0)
1834 #define stat_dec_inline_dir(inode) \
1835 do { \
1836 if (f2fs_has_inline_dentry(inode)) \
1837 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1838 } while (0)
1839 #define stat_inc_seg_type(sbi, curseg) \
1840 ((sbi)->segment_count[(curseg)->alloc_type]++)
1841 #define stat_inc_block_count(sbi, curseg) \
1842 ((sbi)->block_count[(curseg)->alloc_type]++)
1843 #define stat_inc_inplace_blocks(sbi) \
1844 (atomic_inc(&(sbi)->inplace_count))
1845 #define stat_inc_seg_count(sbi, type, gc_type) \
1846 do { \
1847 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1848 (si)->tot_segs++; \
1849 if (type == SUM_TYPE_DATA) { \
1850 si->data_segs++; \
1851 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1852 } else { \
1853 si->node_segs++; \
1854 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1855 } \
1856 } while (0)
1857
1858 #define stat_inc_tot_blk_count(si, blks) \
1859 (si->tot_blks += (blks))
1860
1861 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1862 do { \
1863 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1864 stat_inc_tot_blk_count(si, blks); \
1865 si->data_blks += (blks); \
1866 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1867 } while (0)
1868
1869 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1870 do { \
1871 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1872 stat_inc_tot_blk_count(si, blks); \
1873 si->node_blks += (blks); \
1874 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1875 } while (0)
1876
1877 int f2fs_build_stats(struct f2fs_sb_info *);
1878 void f2fs_destroy_stats(struct f2fs_sb_info *);
1879 void __init f2fs_create_root_stats(void);
1880 void f2fs_destroy_root_stats(void);
1881 #else
1882 #define stat_inc_cp_count(si)
1883 #define stat_inc_call_count(si)
1884 #define stat_inc_bggc_count(si)
1885 #define stat_inc_dirty_dir(sbi)
1886 #define stat_dec_dirty_dir(sbi)
1887 #define stat_inc_total_hit(sb)
1888 #define stat_inc_read_hit(sb)
1889 #define stat_inc_inline_inode(inode)
1890 #define stat_dec_inline_inode(inode)
1891 #define stat_inc_inline_dir(inode)
1892 #define stat_dec_inline_dir(inode)
1893 #define stat_inc_seg_type(sbi, curseg)
1894 #define stat_inc_block_count(sbi, curseg)
1895 #define stat_inc_inplace_blocks(sbi)
1896 #define stat_inc_seg_count(sbi, type, gc_type)
1897 #define stat_inc_tot_blk_count(si, blks)
1898 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1899 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1900
1901 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1902 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1903 static inline void __init f2fs_create_root_stats(void) { }
1904 static inline void f2fs_destroy_root_stats(void) { }
1905 #endif
1906
1907 extern const struct file_operations f2fs_dir_operations;
1908 extern const struct file_operations f2fs_file_operations;
1909 extern const struct inode_operations f2fs_file_inode_operations;
1910 extern const struct address_space_operations f2fs_dblock_aops;
1911 extern const struct address_space_operations f2fs_node_aops;
1912 extern const struct address_space_operations f2fs_meta_aops;
1913 extern const struct inode_operations f2fs_dir_inode_operations;
1914 extern const struct inode_operations f2fs_symlink_inode_operations;
1915 extern const struct inode_operations f2fs_special_inode_operations;
1916 extern struct kmem_cache *inode_entry_slab;
1917
1918 /*
1919 * inline.c
1920 */
1921 bool f2fs_may_inline_data(struct inode *);
1922 bool f2fs_may_inline_dentry(struct inode *);
1923 void read_inline_data(struct page *, struct page *);
1924 bool truncate_inline_inode(struct page *, u64);
1925 int f2fs_read_inline_data(struct inode *, struct page *);
1926 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1927 int f2fs_convert_inline_inode(struct inode *);
1928 int f2fs_write_inline_data(struct inode *, struct page *);
1929 bool recover_inline_data(struct inode *, struct page *);
1930 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1931 struct page **);
1932 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1933 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1934 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1935 nid_t, umode_t);
1936 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1937 struct inode *, struct inode *);
1938 bool f2fs_empty_inline_dir(struct inode *);
1939 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1940
1941 /*
1942 * crypto support
1943 */
1944 static inline int f2fs_encrypted_inode(struct inode *inode)
1945 {
1946 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1947 return file_is_encrypt(inode);
1948 #else
1949 return 0;
1950 #endif
1951 }
1952
1953 static inline void f2fs_set_encrypted_inode(struct inode *inode)
1954 {
1955 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1956 file_set_encrypt(inode);
1957 #endif
1958 }
1959
1960 static inline bool f2fs_bio_encrypted(struct bio *bio)
1961 {
1962 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1963 return unlikely(bio->bi_private != NULL);
1964 #else
1965 return false;
1966 #endif
1967 }
1968
1969 static inline int f2fs_sb_has_crypto(struct super_block *sb)
1970 {
1971 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1972 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
1973 #else
1974 return 0;
1975 #endif
1976 }
1977
1978 /* crypto_policy.c */
1979 int f2fs_is_child_context_consistent_with_parent(struct inode *,
1980 struct inode *);
1981 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
1982 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
1983 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
1984
1985 /* crypt.c */
1986 extern struct workqueue_struct *f2fs_read_workqueue;
1987 bool f2fs_valid_contents_enc_mode(uint32_t);
1988 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
1989 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
1990 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
1991 struct page *f2fs_encrypt(struct inode *, struct page *);
1992 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
1993 int f2fs_decrypt_one(struct inode *, struct page *);
1994 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
1995
1996 /* crypto_key.c */
1997 void f2fs_free_encryption_info(struct inode *);
1998 int _f2fs_get_encryption_info(struct inode *inode);
1999
2000 /* crypto_fname.c */
2001 bool f2fs_valid_filenames_enc_mode(uint32_t);
2002 u32 f2fs_fname_crypto_round_up(u32, u32);
2003 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2004 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2005 const struct f2fs_str *, struct f2fs_str *);
2006 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2007 struct f2fs_str *);
2008
2009 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2010 void f2fs_restore_and_release_control_page(struct page **);
2011 void f2fs_restore_control_page(struct page *);
2012
2013 int f2fs_init_crypto(void);
2014 void f2fs_exit_crypto(void);
2015
2016 int f2fs_has_encryption_key(struct inode *);
2017
2018 static inline int f2fs_get_encryption_info(struct inode *inode)
2019 {
2020 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2021
2022 if (!ci ||
2023 (ci->ci_keyring_key &&
2024 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2025 (1 << KEY_FLAG_REVOKED) |
2026 (1 << KEY_FLAG_DEAD)))))
2027 return _f2fs_get_encryption_info(inode);
2028 return 0;
2029 }
2030
2031 int f2fs_setup_fname_crypto(struct inode *);
2032 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2033 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2034 int lookup, struct f2fs_filename *);
2035 void f2fs_fname_free_filename(struct f2fs_filename *);
2036 #else
2037 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2038 static inline void f2fs_restore_control_page(struct page *p) { }
2039
2040 static inline int f2fs_init_crypto(void) { return 0; }
2041 static inline void f2fs_exit_crypto(void) { }
2042
2043 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2044 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2045
2046 static inline int f2fs_setup_fname_crypto(struct inode *i) { return 0; }
2047 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2048
2049 static inline int f2fs_fname_setup_filename(struct inode *dir,
2050 const struct qstr *iname,
2051 int lookup, struct f2fs_filename *fname)
2052 {
2053 memset(fname, 0, sizeof(struct f2fs_filename));
2054 fname->usr_fname = iname;
2055 fname->disk_name.name = (unsigned char *)iname->name;
2056 fname->disk_name.len = iname->len;
2057 return 0;
2058 }
2059
2060 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2061 #endif
2062 #endif
This page took 0.119996 seconds and 5 git commands to generate.