f2fs: support file defragment
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24
25 #ifdef CONFIG_F2FS_CHECK_FS
26 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
27 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
28 #else
29 #define f2fs_bug_on(sbi, condition) \
30 do { \
31 if (unlikely(condition)) { \
32 WARN_ON(1); \
33 set_sbi_flag(sbi, SBI_NEED_FSCK); \
34 } \
35 } while (0)
36 #define f2fs_down_write(x, y) down_write(x)
37 #endif
38
39 /*
40 * For mount options
41 */
42 #define F2FS_MOUNT_BG_GC 0x00000001
43 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
44 #define F2FS_MOUNT_DISCARD 0x00000004
45 #define F2FS_MOUNT_NOHEAP 0x00000008
46 #define F2FS_MOUNT_XATTR_USER 0x00000010
47 #define F2FS_MOUNT_POSIX_ACL 0x00000020
48 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
49 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
50 #define F2FS_MOUNT_INLINE_DATA 0x00000100
51 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
52 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
53 #define F2FS_MOUNT_NOBARRIER 0x00000800
54 #define F2FS_MOUNT_FASTBOOT 0x00001000
55 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
56 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
57
58 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
59 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
60 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
61
62 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
63 typecheck(unsigned long long, b) && \
64 ((long long)((a) - (b)) > 0))
65
66 typedef u32 block_t; /*
67 * should not change u32, since it is the on-disk block
68 * address format, __le32.
69 */
70 typedef u32 nid_t;
71
72 struct f2fs_mount_info {
73 unsigned int opt;
74 };
75
76 #define F2FS_FEATURE_ENCRYPT 0x0001
77
78 #define F2FS_HAS_FEATURE(sb, mask) \
79 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
80 #define F2FS_SET_FEATURE(sb, mask) \
81 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
82 #define F2FS_CLEAR_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
84
85 #define CRCPOLY_LE 0xedb88320
86
87 static inline __u32 f2fs_crc32(void *buf, size_t len)
88 {
89 unsigned char *p = (unsigned char *)buf;
90 __u32 crc = F2FS_SUPER_MAGIC;
91 int i;
92
93 while (len--) {
94 crc ^= *p++;
95 for (i = 0; i < 8; i++)
96 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
97 }
98 return crc;
99 }
100
101 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
102 {
103 return f2fs_crc32(buf, buf_size) == blk_crc;
104 }
105
106 /*
107 * For checkpoint manager
108 */
109 enum {
110 NAT_BITMAP,
111 SIT_BITMAP
112 };
113
114 enum {
115 CP_UMOUNT,
116 CP_FASTBOOT,
117 CP_SYNC,
118 CP_RECOVERY,
119 CP_DISCARD,
120 };
121
122 #define DEF_BATCHED_TRIM_SECTIONS 32
123 #define BATCHED_TRIM_SEGMENTS(sbi) \
124 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
125 #define BATCHED_TRIM_BLOCKS(sbi) \
126 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
127 #define DEF_CP_INTERVAL 60 /* 60 secs */
128
129 struct cp_control {
130 int reason;
131 __u64 trim_start;
132 __u64 trim_end;
133 __u64 trim_minlen;
134 __u64 trimmed;
135 };
136
137 /*
138 * For CP/NAT/SIT/SSA readahead
139 */
140 enum {
141 META_CP,
142 META_NAT,
143 META_SIT,
144 META_SSA,
145 META_POR,
146 };
147
148 /* for the list of ino */
149 enum {
150 ORPHAN_INO, /* for orphan ino list */
151 APPEND_INO, /* for append ino list */
152 UPDATE_INO, /* for update ino list */
153 MAX_INO_ENTRY, /* max. list */
154 };
155
156 struct ino_entry {
157 struct list_head list; /* list head */
158 nid_t ino; /* inode number */
159 };
160
161 /*
162 * for the list of directory inodes or gc inodes.
163 * NOTE: there are two slab users for this structure, if we add/modify/delete
164 * fields in structure for one of slab users, it may affect fields or size of
165 * other one, in this condition, it's better to split both of slab and related
166 * data structure.
167 */
168 struct inode_entry {
169 struct list_head list; /* list head */
170 struct inode *inode; /* vfs inode pointer */
171 };
172
173 /* for the list of blockaddresses to be discarded */
174 struct discard_entry {
175 struct list_head list; /* list head */
176 block_t blkaddr; /* block address to be discarded */
177 int len; /* # of consecutive blocks of the discard */
178 };
179
180 /* for the list of fsync inodes, used only during recovery */
181 struct fsync_inode_entry {
182 struct list_head list; /* list head */
183 struct inode *inode; /* vfs inode pointer */
184 block_t blkaddr; /* block address locating the last fsync */
185 block_t last_dentry; /* block address locating the last dentry */
186 block_t last_inode; /* block address locating the last inode */
187 };
188
189 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
190 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
191
192 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
193 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
194 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
195 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
196
197 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
198 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
199
200 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
201 {
202 int before = nats_in_cursum(rs);
203 rs->n_nats = cpu_to_le16(before + i);
204 return before;
205 }
206
207 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
208 {
209 int before = sits_in_cursum(rs);
210 rs->n_sits = cpu_to_le16(before + i);
211 return before;
212 }
213
214 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
215 int type)
216 {
217 if (type == NAT_JOURNAL)
218 return size <= MAX_NAT_JENTRIES(sum);
219 return size <= MAX_SIT_JENTRIES(sum);
220 }
221
222 /*
223 * ioctl commands
224 */
225 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
226 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
227 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
228
229 #define F2FS_IOCTL_MAGIC 0xf5
230 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
231 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
232 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
233 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
234 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
235 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
236 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
237 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
238
239 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
240 _IOR('f', 19, struct f2fs_encryption_policy)
241 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
242 _IOW('f', 20, __u8[16])
243 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
244 _IOW('f', 21, struct f2fs_encryption_policy)
245
246 /*
247 * should be same as XFS_IOC_GOINGDOWN.
248 * Flags for going down operation used by FS_IOC_GOINGDOWN
249 */
250 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
251 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
252 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
253 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
254 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
255
256 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
257 /*
258 * ioctl commands in 32 bit emulation
259 */
260 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
261 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
262 #endif
263
264 struct f2fs_defragment {
265 u64 start;
266 u64 len;
267 };
268
269 /*
270 * For INODE and NODE manager
271 */
272 /* for directory operations */
273 struct f2fs_str {
274 unsigned char *name;
275 u32 len;
276 };
277
278 struct f2fs_filename {
279 const struct qstr *usr_fname;
280 struct f2fs_str disk_name;
281 f2fs_hash_t hash;
282 #ifdef CONFIG_F2FS_FS_ENCRYPTION
283 struct f2fs_str crypto_buf;
284 #endif
285 };
286
287 #define FSTR_INIT(n, l) { .name = n, .len = l }
288 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
289 #define fname_name(p) ((p)->disk_name.name)
290 #define fname_len(p) ((p)->disk_name.len)
291
292 struct f2fs_dentry_ptr {
293 struct inode *inode;
294 const void *bitmap;
295 struct f2fs_dir_entry *dentry;
296 __u8 (*filename)[F2FS_SLOT_LEN];
297 int max;
298 };
299
300 static inline void make_dentry_ptr(struct inode *inode,
301 struct f2fs_dentry_ptr *d, void *src, int type)
302 {
303 d->inode = inode;
304
305 if (type == 1) {
306 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
307 d->max = NR_DENTRY_IN_BLOCK;
308 d->bitmap = &t->dentry_bitmap;
309 d->dentry = t->dentry;
310 d->filename = t->filename;
311 } else {
312 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
313 d->max = NR_INLINE_DENTRY;
314 d->bitmap = &t->dentry_bitmap;
315 d->dentry = t->dentry;
316 d->filename = t->filename;
317 }
318 }
319
320 /*
321 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
322 * as its node offset to distinguish from index node blocks.
323 * But some bits are used to mark the node block.
324 */
325 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
326 >> OFFSET_BIT_SHIFT)
327 enum {
328 ALLOC_NODE, /* allocate a new node page if needed */
329 LOOKUP_NODE, /* look up a node without readahead */
330 LOOKUP_NODE_RA, /*
331 * look up a node with readahead called
332 * by get_data_block.
333 */
334 };
335
336 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
337
338 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
339
340 /* vector size for gang look-up from extent cache that consists of radix tree */
341 #define EXT_TREE_VEC_SIZE 64
342
343 /* for in-memory extent cache entry */
344 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
345
346 /* number of extent info in extent cache we try to shrink */
347 #define EXTENT_CACHE_SHRINK_NUMBER 128
348
349 struct extent_info {
350 unsigned int fofs; /* start offset in a file */
351 u32 blk; /* start block address of the extent */
352 unsigned int len; /* length of the extent */
353 };
354
355 struct extent_node {
356 struct rb_node rb_node; /* rb node located in rb-tree */
357 struct list_head list; /* node in global extent list of sbi */
358 struct extent_info ei; /* extent info */
359 };
360
361 struct extent_tree {
362 nid_t ino; /* inode number */
363 struct rb_root root; /* root of extent info rb-tree */
364 struct extent_node *cached_en; /* recently accessed extent node */
365 struct extent_info largest; /* largested extent info */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t refcount; /* reference count of rb-tree */
368 unsigned int count; /* # of extent node in rb-tree*/
369 };
370
371 /*
372 * This structure is taken from ext4_map_blocks.
373 *
374 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
375 */
376 #define F2FS_MAP_NEW (1 << BH_New)
377 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
378 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
379 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
380 F2FS_MAP_UNWRITTEN)
381
382 struct f2fs_map_blocks {
383 block_t m_pblk;
384 block_t m_lblk;
385 unsigned int m_len;
386 unsigned int m_flags;
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394
395 /*
396 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
397 */
398 #define FADVISE_COLD_BIT 0x01
399 #define FADVISE_LOST_PINO_BIT 0x02
400 #define FADVISE_ENCRYPT_BIT 0x04
401 #define FADVISE_ENC_NAME_BIT 0x08
402
403 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
404 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
406 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
408 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
410 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
411 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
413 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
414
415 /* Encryption algorithms */
416 #define F2FS_ENCRYPTION_MODE_INVALID 0
417 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
418 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
419 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
420 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
421
422 #include "f2fs_crypto.h"
423
424 #define DEF_DIR_LEVEL 0
425
426 struct f2fs_inode_info {
427 struct inode vfs_inode; /* serve a vfs inode */
428 unsigned long i_flags; /* keep an inode flags for ioctl */
429 unsigned char i_advise; /* use to give file attribute hints */
430 unsigned char i_dir_level; /* use for dentry level for large dir */
431 unsigned int i_current_depth; /* use only in directory structure */
432 unsigned int i_pino; /* parent inode number */
433 umode_t i_acl_mode; /* keep file acl mode temporarily */
434
435 /* Use below internally in f2fs*/
436 unsigned long flags; /* use to pass per-file flags */
437 struct rw_semaphore i_sem; /* protect fi info */
438 atomic_t dirty_pages; /* # of dirty pages */
439 f2fs_hash_t chash; /* hash value of given file name */
440 unsigned int clevel; /* maximum level of given file name */
441 nid_t i_xattr_nid; /* node id that contains xattrs */
442 unsigned long long xattr_ver; /* cp version of xattr modification */
443 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
444
445 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
446 struct mutex inmem_lock; /* lock for inmemory pages */
447
448 struct extent_tree *extent_tree; /* cached extent_tree entry */
449
450 #ifdef CONFIG_F2FS_FS_ENCRYPTION
451 /* Encryption params */
452 struct f2fs_crypt_info *i_crypt_info;
453 #endif
454 };
455
456 static inline void get_extent_info(struct extent_info *ext,
457 struct f2fs_extent i_ext)
458 {
459 ext->fofs = le32_to_cpu(i_ext.fofs);
460 ext->blk = le32_to_cpu(i_ext.blk);
461 ext->len = le32_to_cpu(i_ext.len);
462 }
463
464 static inline void set_raw_extent(struct extent_info *ext,
465 struct f2fs_extent *i_ext)
466 {
467 i_ext->fofs = cpu_to_le32(ext->fofs);
468 i_ext->blk = cpu_to_le32(ext->blk);
469 i_ext->len = cpu_to_le32(ext->len);
470 }
471
472 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
473 u32 blk, unsigned int len)
474 {
475 ei->fofs = fofs;
476 ei->blk = blk;
477 ei->len = len;
478 }
479
480 static inline bool __is_extent_same(struct extent_info *ei1,
481 struct extent_info *ei2)
482 {
483 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
484 ei1->len == ei2->len);
485 }
486
487 static inline bool __is_extent_mergeable(struct extent_info *back,
488 struct extent_info *front)
489 {
490 return (back->fofs + back->len == front->fofs &&
491 back->blk + back->len == front->blk);
492 }
493
494 static inline bool __is_back_mergeable(struct extent_info *cur,
495 struct extent_info *back)
496 {
497 return __is_extent_mergeable(back, cur);
498 }
499
500 static inline bool __is_front_mergeable(struct extent_info *cur,
501 struct extent_info *front)
502 {
503 return __is_extent_mergeable(cur, front);
504 }
505
506 static inline void __try_update_largest_extent(struct extent_tree *et,
507 struct extent_node *en)
508 {
509 if (en->ei.len > et->largest.len)
510 et->largest = en->ei;
511 }
512
513 struct f2fs_nm_info {
514 block_t nat_blkaddr; /* base disk address of NAT */
515 nid_t max_nid; /* maximum possible node ids */
516 nid_t available_nids; /* maximum available node ids */
517 nid_t next_scan_nid; /* the next nid to be scanned */
518 unsigned int ram_thresh; /* control the memory footprint */
519 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
520
521 /* NAT cache management */
522 struct radix_tree_root nat_root;/* root of the nat entry cache */
523 struct radix_tree_root nat_set_root;/* root of the nat set cache */
524 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
525 struct list_head nat_entries; /* cached nat entry list (clean) */
526 unsigned int nat_cnt; /* the # of cached nat entries */
527 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
528
529 /* free node ids management */
530 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
531 struct list_head free_nid_list; /* a list for free nids */
532 spinlock_t free_nid_list_lock; /* protect free nid list */
533 unsigned int fcnt; /* the number of free node id */
534 struct mutex build_lock; /* lock for build free nids */
535
536 /* for checkpoint */
537 char *nat_bitmap; /* NAT bitmap pointer */
538 int bitmap_size; /* bitmap size */
539 };
540
541 /*
542 * this structure is used as one of function parameters.
543 * all the information are dedicated to a given direct node block determined
544 * by the data offset in a file.
545 */
546 struct dnode_of_data {
547 struct inode *inode; /* vfs inode pointer */
548 struct page *inode_page; /* its inode page, NULL is possible */
549 struct page *node_page; /* cached direct node page */
550 nid_t nid; /* node id of the direct node block */
551 unsigned int ofs_in_node; /* data offset in the node page */
552 bool inode_page_locked; /* inode page is locked or not */
553 block_t data_blkaddr; /* block address of the node block */
554 };
555
556 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
557 struct page *ipage, struct page *npage, nid_t nid)
558 {
559 memset(dn, 0, sizeof(*dn));
560 dn->inode = inode;
561 dn->inode_page = ipage;
562 dn->node_page = npage;
563 dn->nid = nid;
564 }
565
566 /*
567 * For SIT manager
568 *
569 * By default, there are 6 active log areas across the whole main area.
570 * When considering hot and cold data separation to reduce cleaning overhead,
571 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
572 * respectively.
573 * In the current design, you should not change the numbers intentionally.
574 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
575 * logs individually according to the underlying devices. (default: 6)
576 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
577 * data and 8 for node logs.
578 */
579 #define NR_CURSEG_DATA_TYPE (3)
580 #define NR_CURSEG_NODE_TYPE (3)
581 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
582
583 enum {
584 CURSEG_HOT_DATA = 0, /* directory entry blocks */
585 CURSEG_WARM_DATA, /* data blocks */
586 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
587 CURSEG_HOT_NODE, /* direct node blocks of directory files */
588 CURSEG_WARM_NODE, /* direct node blocks of normal files */
589 CURSEG_COLD_NODE, /* indirect node blocks */
590 NO_CHECK_TYPE,
591 CURSEG_DIRECT_IO, /* to use for the direct IO path */
592 };
593
594 struct flush_cmd {
595 struct completion wait;
596 struct llist_node llnode;
597 int ret;
598 };
599
600 struct flush_cmd_control {
601 struct task_struct *f2fs_issue_flush; /* flush thread */
602 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
603 struct llist_head issue_list; /* list for command issue */
604 struct llist_node *dispatch_list; /* list for command dispatch */
605 };
606
607 struct f2fs_sm_info {
608 struct sit_info *sit_info; /* whole segment information */
609 struct free_segmap_info *free_info; /* free segment information */
610 struct dirty_seglist_info *dirty_info; /* dirty segment information */
611 struct curseg_info *curseg_array; /* active segment information */
612
613 block_t seg0_blkaddr; /* block address of 0'th segment */
614 block_t main_blkaddr; /* start block address of main area */
615 block_t ssa_blkaddr; /* start block address of SSA area */
616
617 unsigned int segment_count; /* total # of segments */
618 unsigned int main_segments; /* # of segments in main area */
619 unsigned int reserved_segments; /* # of reserved segments */
620 unsigned int ovp_segments; /* # of overprovision segments */
621
622 /* a threshold to reclaim prefree segments */
623 unsigned int rec_prefree_segments;
624
625 /* for small discard management */
626 struct list_head discard_list; /* 4KB discard list */
627 int nr_discards; /* # of discards in the list */
628 int max_discards; /* max. discards to be issued */
629
630 /* for batched trimming */
631 unsigned int trim_sections; /* # of sections to trim */
632
633 struct list_head sit_entry_set; /* sit entry set list */
634
635 unsigned int ipu_policy; /* in-place-update policy */
636 unsigned int min_ipu_util; /* in-place-update threshold */
637 unsigned int min_fsync_blocks; /* threshold for fsync */
638
639 /* for flush command control */
640 struct flush_cmd_control *cmd_control_info;
641
642 };
643
644 /*
645 * For superblock
646 */
647 /*
648 * COUNT_TYPE for monitoring
649 *
650 * f2fs monitors the number of several block types such as on-writeback,
651 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
652 */
653 enum count_type {
654 F2FS_WRITEBACK,
655 F2FS_DIRTY_DENTS,
656 F2FS_DIRTY_NODES,
657 F2FS_DIRTY_META,
658 F2FS_INMEM_PAGES,
659 NR_COUNT_TYPE,
660 };
661
662 /*
663 * The below are the page types of bios used in submit_bio().
664 * The available types are:
665 * DATA User data pages. It operates as async mode.
666 * NODE Node pages. It operates as async mode.
667 * META FS metadata pages such as SIT, NAT, CP.
668 * NR_PAGE_TYPE The number of page types.
669 * META_FLUSH Make sure the previous pages are written
670 * with waiting the bio's completion
671 * ... Only can be used with META.
672 */
673 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
674 enum page_type {
675 DATA,
676 NODE,
677 META,
678 NR_PAGE_TYPE,
679 META_FLUSH,
680 INMEM, /* the below types are used by tracepoints only. */
681 INMEM_DROP,
682 IPU,
683 OPU,
684 };
685
686 struct f2fs_io_info {
687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
689 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
690 block_t blk_addr; /* block address to be written */
691 struct page *page; /* page to be written */
692 struct page *encrypted_page; /* encrypted page */
693 };
694
695 #define is_read_io(rw) (((rw) & 1) == READ)
696 struct f2fs_bio_info {
697 struct f2fs_sb_info *sbi; /* f2fs superblock */
698 struct bio *bio; /* bios to merge */
699 sector_t last_block_in_bio; /* last block number */
700 struct f2fs_io_info fio; /* store buffered io info. */
701 struct rw_semaphore io_rwsem; /* blocking op for bio */
702 };
703
704 /* for inner inode cache management */
705 struct inode_management {
706 struct radix_tree_root ino_root; /* ino entry array */
707 spinlock_t ino_lock; /* for ino entry lock */
708 struct list_head ino_list; /* inode list head */
709 unsigned long ino_num; /* number of entries */
710 };
711
712 /* For s_flag in struct f2fs_sb_info */
713 enum {
714 SBI_IS_DIRTY, /* dirty flag for checkpoint */
715 SBI_IS_CLOSE, /* specify unmounting */
716 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
717 SBI_POR_DOING, /* recovery is doing or not */
718 };
719
720 struct f2fs_sb_info {
721 struct super_block *sb; /* pointer to VFS super block */
722 struct proc_dir_entry *s_proc; /* proc entry */
723 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
724 struct f2fs_super_block *raw_super; /* raw super block pointer */
725 int s_flag; /* flags for sbi */
726
727 /* for node-related operations */
728 struct f2fs_nm_info *nm_info; /* node manager */
729 struct inode *node_inode; /* cache node blocks */
730
731 /* for segment-related operations */
732 struct f2fs_sm_info *sm_info; /* segment manager */
733
734 /* for bio operations */
735 struct f2fs_bio_info read_io; /* for read bios */
736 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
737
738 /* for checkpoint */
739 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
740 struct inode *meta_inode; /* cache meta blocks */
741 struct mutex cp_mutex; /* checkpoint procedure lock */
742 struct rw_semaphore cp_rwsem; /* blocking FS operations */
743 struct rw_semaphore node_write; /* locking node writes */
744 struct mutex writepages; /* mutex for writepages() */
745 wait_queue_head_t cp_wait;
746 long cp_expires, cp_interval; /* next expected periodic cp */
747
748 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
749
750 /* for orphan inode, use 0'th array */
751 unsigned int max_orphans; /* max orphan inodes */
752
753 /* for directory inode management */
754 struct list_head dir_inode_list; /* dir inode list */
755 spinlock_t dir_inode_lock; /* for dir inode list lock */
756
757 /* for extent tree cache */
758 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
759 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
760 struct list_head extent_list; /* lru list for shrinker */
761 spinlock_t extent_lock; /* locking extent lru list */
762 int total_ext_tree; /* extent tree count */
763 atomic_t total_ext_node; /* extent info count */
764
765 /* basic filesystem units */
766 unsigned int log_sectors_per_block; /* log2 sectors per block */
767 unsigned int log_blocksize; /* log2 block size */
768 unsigned int blocksize; /* block size */
769 unsigned int root_ino_num; /* root inode number*/
770 unsigned int node_ino_num; /* node inode number*/
771 unsigned int meta_ino_num; /* meta inode number*/
772 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
773 unsigned int blocks_per_seg; /* blocks per segment */
774 unsigned int segs_per_sec; /* segments per section */
775 unsigned int secs_per_zone; /* sections per zone */
776 unsigned int total_sections; /* total section count */
777 unsigned int total_node_count; /* total node block count */
778 unsigned int total_valid_node_count; /* valid node block count */
779 unsigned int total_valid_inode_count; /* valid inode count */
780 int active_logs; /* # of active logs */
781 int dir_level; /* directory level */
782
783 block_t user_block_count; /* # of user blocks */
784 block_t total_valid_block_count; /* # of valid blocks */
785 block_t alloc_valid_block_count; /* # of allocated blocks */
786 block_t discard_blks; /* discard command candidats */
787 block_t last_valid_block_count; /* for recovery */
788 u32 s_next_generation; /* for NFS support */
789 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
790
791 struct f2fs_mount_info mount_opt; /* mount options */
792
793 /* for cleaning operations */
794 struct mutex gc_mutex; /* mutex for GC */
795 struct f2fs_gc_kthread *gc_thread; /* GC thread */
796 unsigned int cur_victim_sec; /* current victim section num */
797
798 /* maximum # of trials to find a victim segment for SSR and GC */
799 unsigned int max_victim_search;
800
801 /*
802 * for stat information.
803 * one is for the LFS mode, and the other is for the SSR mode.
804 */
805 #ifdef CONFIG_F2FS_STAT_FS
806 struct f2fs_stat_info *stat_info; /* FS status information */
807 unsigned int segment_count[2]; /* # of allocated segments */
808 unsigned int block_count[2]; /* # of allocated blocks */
809 atomic_t inplace_count; /* # of inplace update */
810 atomic64_t total_hit_ext; /* # of lookup extent cache */
811 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
812 atomic64_t read_hit_largest; /* # of hit largest extent node */
813 atomic64_t read_hit_cached; /* # of hit cached extent node */
814 atomic_t inline_xattr; /* # of inline_xattr inodes */
815 atomic_t inline_inode; /* # of inline_data inodes */
816 atomic_t inline_dir; /* # of inline_dentry inodes */
817 int bg_gc; /* background gc calls */
818 unsigned int n_dirty_dirs; /* # of dir inodes */
819 #endif
820 unsigned int last_victim[2]; /* last victim segment # */
821 spinlock_t stat_lock; /* lock for stat operations */
822
823 /* For sysfs suppport */
824 struct kobject s_kobj;
825 struct completion s_kobj_unregister;
826
827 /* For shrinker support */
828 struct list_head s_list;
829 struct mutex umount_mutex;
830 unsigned int shrinker_run_no;
831 };
832
833 /*
834 * Inline functions
835 */
836 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
837 {
838 return container_of(inode, struct f2fs_inode_info, vfs_inode);
839 }
840
841 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
842 {
843 return sb->s_fs_info;
844 }
845
846 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
847 {
848 return F2FS_SB(inode->i_sb);
849 }
850
851 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
852 {
853 return F2FS_I_SB(mapping->host);
854 }
855
856 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
857 {
858 return F2FS_M_SB(page->mapping);
859 }
860
861 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
862 {
863 return (struct f2fs_super_block *)(sbi->raw_super);
864 }
865
866 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
867 {
868 return (struct f2fs_checkpoint *)(sbi->ckpt);
869 }
870
871 static inline struct f2fs_node *F2FS_NODE(struct page *page)
872 {
873 return (struct f2fs_node *)page_address(page);
874 }
875
876 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
877 {
878 return &((struct f2fs_node *)page_address(page))->i;
879 }
880
881 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
882 {
883 return (struct f2fs_nm_info *)(sbi->nm_info);
884 }
885
886 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
887 {
888 return (struct f2fs_sm_info *)(sbi->sm_info);
889 }
890
891 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
892 {
893 return (struct sit_info *)(SM_I(sbi)->sit_info);
894 }
895
896 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
897 {
898 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
899 }
900
901 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
902 {
903 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
904 }
905
906 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
907 {
908 return sbi->meta_inode->i_mapping;
909 }
910
911 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
912 {
913 return sbi->node_inode->i_mapping;
914 }
915
916 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
917 {
918 return sbi->s_flag & (0x01 << type);
919 }
920
921 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
922 {
923 sbi->s_flag |= (0x01 << type);
924 }
925
926 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
927 {
928 sbi->s_flag &= ~(0x01 << type);
929 }
930
931 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
932 {
933 return le64_to_cpu(cp->checkpoint_ver);
934 }
935
936 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
937 {
938 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
939 return ckpt_flags & f;
940 }
941
942 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
943 {
944 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
945 ckpt_flags |= f;
946 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
947 }
948
949 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
950 {
951 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
952 ckpt_flags &= (~f);
953 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
954 }
955
956 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
957 {
958 down_read(&sbi->cp_rwsem);
959 }
960
961 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
962 {
963 up_read(&sbi->cp_rwsem);
964 }
965
966 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
967 {
968 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
969 }
970
971 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
972 {
973 up_write(&sbi->cp_rwsem);
974 }
975
976 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
977 {
978 int reason = CP_SYNC;
979
980 if (test_opt(sbi, FASTBOOT))
981 reason = CP_FASTBOOT;
982 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
983 reason = CP_UMOUNT;
984 return reason;
985 }
986
987 static inline bool __remain_node_summaries(int reason)
988 {
989 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
990 }
991
992 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
993 {
994 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
995 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
996 }
997
998 /*
999 * Check whether the given nid is within node id range.
1000 */
1001 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1002 {
1003 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1004 return -EINVAL;
1005 if (unlikely(nid >= NM_I(sbi)->max_nid))
1006 return -EINVAL;
1007 return 0;
1008 }
1009
1010 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1011
1012 /*
1013 * Check whether the inode has blocks or not
1014 */
1015 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1016 {
1017 if (F2FS_I(inode)->i_xattr_nid)
1018 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1019 else
1020 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1021 }
1022
1023 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1024 {
1025 return ofs == XATTR_NODE_OFFSET;
1026 }
1027
1028 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1029 struct inode *inode, blkcnt_t count)
1030 {
1031 block_t valid_block_count;
1032
1033 spin_lock(&sbi->stat_lock);
1034 valid_block_count =
1035 sbi->total_valid_block_count + (block_t)count;
1036 if (unlikely(valid_block_count > sbi->user_block_count)) {
1037 spin_unlock(&sbi->stat_lock);
1038 return false;
1039 }
1040 inode->i_blocks += count;
1041 sbi->total_valid_block_count = valid_block_count;
1042 sbi->alloc_valid_block_count += (block_t)count;
1043 spin_unlock(&sbi->stat_lock);
1044 return true;
1045 }
1046
1047 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1048 struct inode *inode,
1049 blkcnt_t count)
1050 {
1051 spin_lock(&sbi->stat_lock);
1052 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1053 f2fs_bug_on(sbi, inode->i_blocks < count);
1054 inode->i_blocks -= count;
1055 sbi->total_valid_block_count -= (block_t)count;
1056 spin_unlock(&sbi->stat_lock);
1057 }
1058
1059 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1060 {
1061 atomic_inc(&sbi->nr_pages[count_type]);
1062 set_sbi_flag(sbi, SBI_IS_DIRTY);
1063 }
1064
1065 static inline void inode_inc_dirty_pages(struct inode *inode)
1066 {
1067 atomic_inc(&F2FS_I(inode)->dirty_pages);
1068 if (S_ISDIR(inode->i_mode))
1069 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1070 }
1071
1072 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1073 {
1074 atomic_dec(&sbi->nr_pages[count_type]);
1075 }
1076
1077 static inline void inode_dec_dirty_pages(struct inode *inode)
1078 {
1079 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1080 !S_ISLNK(inode->i_mode))
1081 return;
1082
1083 atomic_dec(&F2FS_I(inode)->dirty_pages);
1084
1085 if (S_ISDIR(inode->i_mode))
1086 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1087 }
1088
1089 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1090 {
1091 return atomic_read(&sbi->nr_pages[count_type]);
1092 }
1093
1094 static inline int get_dirty_pages(struct inode *inode)
1095 {
1096 return atomic_read(&F2FS_I(inode)->dirty_pages);
1097 }
1098
1099 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1100 {
1101 unsigned int pages_per_sec = sbi->segs_per_sec *
1102 (1 << sbi->log_blocks_per_seg);
1103 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1104 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1105 }
1106
1107 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1108 {
1109 return sbi->total_valid_block_count;
1110 }
1111
1112 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1113 {
1114 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1115
1116 /* return NAT or SIT bitmap */
1117 if (flag == NAT_BITMAP)
1118 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1119 else if (flag == SIT_BITMAP)
1120 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1121
1122 return 0;
1123 }
1124
1125 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1126 {
1127 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1128 }
1129
1130 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1131 {
1132 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1133 int offset;
1134
1135 if (__cp_payload(sbi) > 0) {
1136 if (flag == NAT_BITMAP)
1137 return &ckpt->sit_nat_version_bitmap;
1138 else
1139 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1140 } else {
1141 offset = (flag == NAT_BITMAP) ?
1142 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1143 return &ckpt->sit_nat_version_bitmap + offset;
1144 }
1145 }
1146
1147 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1148 {
1149 block_t start_addr;
1150 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1151 unsigned long long ckpt_version = cur_cp_version(ckpt);
1152
1153 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1154
1155 /*
1156 * odd numbered checkpoint should at cp segment 0
1157 * and even segment must be at cp segment 1
1158 */
1159 if (!(ckpt_version & 1))
1160 start_addr += sbi->blocks_per_seg;
1161
1162 return start_addr;
1163 }
1164
1165 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1166 {
1167 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1168 }
1169
1170 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1171 struct inode *inode)
1172 {
1173 block_t valid_block_count;
1174 unsigned int valid_node_count;
1175
1176 spin_lock(&sbi->stat_lock);
1177
1178 valid_block_count = sbi->total_valid_block_count + 1;
1179 if (unlikely(valid_block_count > sbi->user_block_count)) {
1180 spin_unlock(&sbi->stat_lock);
1181 return false;
1182 }
1183
1184 valid_node_count = sbi->total_valid_node_count + 1;
1185 if (unlikely(valid_node_count > sbi->total_node_count)) {
1186 spin_unlock(&sbi->stat_lock);
1187 return false;
1188 }
1189
1190 if (inode)
1191 inode->i_blocks++;
1192
1193 sbi->alloc_valid_block_count++;
1194 sbi->total_valid_node_count++;
1195 sbi->total_valid_block_count++;
1196 spin_unlock(&sbi->stat_lock);
1197
1198 return true;
1199 }
1200
1201 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1202 struct inode *inode)
1203 {
1204 spin_lock(&sbi->stat_lock);
1205
1206 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1207 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1208 f2fs_bug_on(sbi, !inode->i_blocks);
1209
1210 inode->i_blocks--;
1211 sbi->total_valid_node_count--;
1212 sbi->total_valid_block_count--;
1213
1214 spin_unlock(&sbi->stat_lock);
1215 }
1216
1217 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1218 {
1219 return sbi->total_valid_node_count;
1220 }
1221
1222 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1223 {
1224 spin_lock(&sbi->stat_lock);
1225 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1226 sbi->total_valid_inode_count++;
1227 spin_unlock(&sbi->stat_lock);
1228 }
1229
1230 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1231 {
1232 spin_lock(&sbi->stat_lock);
1233 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1234 sbi->total_valid_inode_count--;
1235 spin_unlock(&sbi->stat_lock);
1236 }
1237
1238 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1239 {
1240 return sbi->total_valid_inode_count;
1241 }
1242
1243 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1244 pgoff_t index, bool for_write)
1245 {
1246 if (!for_write)
1247 return grab_cache_page(mapping, index);
1248 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1249 }
1250
1251 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1252 {
1253 char *src_kaddr = kmap(src);
1254 char *dst_kaddr = kmap(dst);
1255
1256 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1257 kunmap(dst);
1258 kunmap(src);
1259 }
1260
1261 static inline void f2fs_put_page(struct page *page, int unlock)
1262 {
1263 if (!page)
1264 return;
1265
1266 if (unlock) {
1267 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1268 unlock_page(page);
1269 }
1270 page_cache_release(page);
1271 }
1272
1273 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1274 {
1275 if (dn->node_page)
1276 f2fs_put_page(dn->node_page, 1);
1277 if (dn->inode_page && dn->node_page != dn->inode_page)
1278 f2fs_put_page(dn->inode_page, 0);
1279 dn->node_page = NULL;
1280 dn->inode_page = NULL;
1281 }
1282
1283 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1284 size_t size)
1285 {
1286 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1287 }
1288
1289 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1290 gfp_t flags)
1291 {
1292 void *entry;
1293
1294 entry = kmem_cache_alloc(cachep, flags);
1295 if (!entry)
1296 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1297 return entry;
1298 }
1299
1300 static inline struct bio *f2fs_bio_alloc(int npages)
1301 {
1302 struct bio *bio;
1303
1304 /* No failure on bio allocation */
1305 bio = bio_alloc(GFP_NOIO, npages);
1306 if (!bio)
1307 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1308 return bio;
1309 }
1310
1311 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1312 unsigned long index, void *item)
1313 {
1314 while (radix_tree_insert(root, index, item))
1315 cond_resched();
1316 }
1317
1318 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1319
1320 static inline bool IS_INODE(struct page *page)
1321 {
1322 struct f2fs_node *p = F2FS_NODE(page);
1323 return RAW_IS_INODE(p);
1324 }
1325
1326 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1327 {
1328 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1329 }
1330
1331 static inline block_t datablock_addr(struct page *node_page,
1332 unsigned int offset)
1333 {
1334 struct f2fs_node *raw_node;
1335 __le32 *addr_array;
1336 raw_node = F2FS_NODE(node_page);
1337 addr_array = blkaddr_in_node(raw_node);
1338 return le32_to_cpu(addr_array[offset]);
1339 }
1340
1341 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1342 {
1343 int mask;
1344
1345 addr += (nr >> 3);
1346 mask = 1 << (7 - (nr & 0x07));
1347 return mask & *addr;
1348 }
1349
1350 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1351 {
1352 int mask;
1353
1354 addr += (nr >> 3);
1355 mask = 1 << (7 - (nr & 0x07));
1356 *addr |= mask;
1357 }
1358
1359 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1360 {
1361 int mask;
1362
1363 addr += (nr >> 3);
1364 mask = 1 << (7 - (nr & 0x07));
1365 *addr &= ~mask;
1366 }
1367
1368 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1369 {
1370 int mask;
1371 int ret;
1372
1373 addr += (nr >> 3);
1374 mask = 1 << (7 - (nr & 0x07));
1375 ret = mask & *addr;
1376 *addr |= mask;
1377 return ret;
1378 }
1379
1380 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1381 {
1382 int mask;
1383 int ret;
1384
1385 addr += (nr >> 3);
1386 mask = 1 << (7 - (nr & 0x07));
1387 ret = mask & *addr;
1388 *addr &= ~mask;
1389 return ret;
1390 }
1391
1392 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1393 {
1394 int mask;
1395
1396 addr += (nr >> 3);
1397 mask = 1 << (7 - (nr & 0x07));
1398 *addr ^= mask;
1399 }
1400
1401 /* used for f2fs_inode_info->flags */
1402 enum {
1403 FI_NEW_INODE, /* indicate newly allocated inode */
1404 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1405 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1406 FI_INC_LINK, /* need to increment i_nlink */
1407 FI_ACL_MODE, /* indicate acl mode */
1408 FI_NO_ALLOC, /* should not allocate any blocks */
1409 FI_FREE_NID, /* free allocated nide */
1410 FI_UPDATE_DIR, /* should update inode block for consistency */
1411 FI_DELAY_IPUT, /* used for the recovery */
1412 FI_NO_EXTENT, /* not to use the extent cache */
1413 FI_INLINE_XATTR, /* used for inline xattr */
1414 FI_INLINE_DATA, /* used for inline data*/
1415 FI_INLINE_DENTRY, /* used for inline dentry */
1416 FI_APPEND_WRITE, /* inode has appended data */
1417 FI_UPDATE_WRITE, /* inode has in-place-update data */
1418 FI_NEED_IPU, /* used for ipu per file */
1419 FI_ATOMIC_FILE, /* indicate atomic file */
1420 FI_VOLATILE_FILE, /* indicate volatile file */
1421 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1422 FI_DROP_CACHE, /* drop dirty page cache */
1423 FI_DATA_EXIST, /* indicate data exists */
1424 FI_INLINE_DOTS, /* indicate inline dot dentries */
1425 FI_DO_DEFRAG, /* indicate defragment is running */
1426 };
1427
1428 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1429 {
1430 if (!test_bit(flag, &fi->flags))
1431 set_bit(flag, &fi->flags);
1432 }
1433
1434 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1435 {
1436 return test_bit(flag, &fi->flags);
1437 }
1438
1439 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1440 {
1441 if (test_bit(flag, &fi->flags))
1442 clear_bit(flag, &fi->flags);
1443 }
1444
1445 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1446 {
1447 fi->i_acl_mode = mode;
1448 set_inode_flag(fi, FI_ACL_MODE);
1449 }
1450
1451 static inline void get_inline_info(struct f2fs_inode_info *fi,
1452 struct f2fs_inode *ri)
1453 {
1454 if (ri->i_inline & F2FS_INLINE_XATTR)
1455 set_inode_flag(fi, FI_INLINE_XATTR);
1456 if (ri->i_inline & F2FS_INLINE_DATA)
1457 set_inode_flag(fi, FI_INLINE_DATA);
1458 if (ri->i_inline & F2FS_INLINE_DENTRY)
1459 set_inode_flag(fi, FI_INLINE_DENTRY);
1460 if (ri->i_inline & F2FS_DATA_EXIST)
1461 set_inode_flag(fi, FI_DATA_EXIST);
1462 if (ri->i_inline & F2FS_INLINE_DOTS)
1463 set_inode_flag(fi, FI_INLINE_DOTS);
1464 }
1465
1466 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1467 struct f2fs_inode *ri)
1468 {
1469 ri->i_inline = 0;
1470
1471 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1472 ri->i_inline |= F2FS_INLINE_XATTR;
1473 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1474 ri->i_inline |= F2FS_INLINE_DATA;
1475 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1476 ri->i_inline |= F2FS_INLINE_DENTRY;
1477 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1478 ri->i_inline |= F2FS_DATA_EXIST;
1479 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1480 ri->i_inline |= F2FS_INLINE_DOTS;
1481 }
1482
1483 static inline int f2fs_has_inline_xattr(struct inode *inode)
1484 {
1485 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1486 }
1487
1488 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1489 {
1490 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1491 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1492 return DEF_ADDRS_PER_INODE;
1493 }
1494
1495 static inline void *inline_xattr_addr(struct page *page)
1496 {
1497 struct f2fs_inode *ri = F2FS_INODE(page);
1498 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1499 F2FS_INLINE_XATTR_ADDRS]);
1500 }
1501
1502 static inline int inline_xattr_size(struct inode *inode)
1503 {
1504 if (f2fs_has_inline_xattr(inode))
1505 return F2FS_INLINE_XATTR_ADDRS << 2;
1506 else
1507 return 0;
1508 }
1509
1510 static inline int f2fs_has_inline_data(struct inode *inode)
1511 {
1512 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1513 }
1514
1515 static inline void f2fs_clear_inline_inode(struct inode *inode)
1516 {
1517 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1518 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1519 }
1520
1521 static inline int f2fs_exist_data(struct inode *inode)
1522 {
1523 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1524 }
1525
1526 static inline int f2fs_has_inline_dots(struct inode *inode)
1527 {
1528 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1529 }
1530
1531 static inline bool f2fs_is_atomic_file(struct inode *inode)
1532 {
1533 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1534 }
1535
1536 static inline bool f2fs_is_volatile_file(struct inode *inode)
1537 {
1538 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1539 }
1540
1541 static inline bool f2fs_is_first_block_written(struct inode *inode)
1542 {
1543 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1544 }
1545
1546 static inline bool f2fs_is_drop_cache(struct inode *inode)
1547 {
1548 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1549 }
1550
1551 static inline void *inline_data_addr(struct page *page)
1552 {
1553 struct f2fs_inode *ri = F2FS_INODE(page);
1554 return (void *)&(ri->i_addr[1]);
1555 }
1556
1557 static inline int f2fs_has_inline_dentry(struct inode *inode)
1558 {
1559 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1560 }
1561
1562 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1563 {
1564 if (!f2fs_has_inline_dentry(dir))
1565 kunmap(page);
1566 }
1567
1568 static inline int is_file(struct inode *inode, int type)
1569 {
1570 return F2FS_I(inode)->i_advise & type;
1571 }
1572
1573 static inline void set_file(struct inode *inode, int type)
1574 {
1575 F2FS_I(inode)->i_advise |= type;
1576 }
1577
1578 static inline void clear_file(struct inode *inode, int type)
1579 {
1580 F2FS_I(inode)->i_advise &= ~type;
1581 }
1582
1583 static inline int f2fs_readonly(struct super_block *sb)
1584 {
1585 return sb->s_flags & MS_RDONLY;
1586 }
1587
1588 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1589 {
1590 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1591 }
1592
1593 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1594 {
1595 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1596 sbi->sb->s_flags |= MS_RDONLY;
1597 }
1598
1599 static inline bool is_dot_dotdot(const struct qstr *str)
1600 {
1601 if (str->len == 1 && str->name[0] == '.')
1602 return true;
1603
1604 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1605 return true;
1606
1607 return false;
1608 }
1609
1610 static inline bool f2fs_may_extent_tree(struct inode *inode)
1611 {
1612 mode_t mode = inode->i_mode;
1613
1614 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1615 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1616 return false;
1617
1618 return S_ISREG(mode);
1619 }
1620
1621 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1622 {
1623 void *ret;
1624
1625 ret = kmalloc(size, flags | __GFP_NOWARN);
1626 if (!ret)
1627 ret = __vmalloc(size, flags, PAGE_KERNEL);
1628 return ret;
1629 }
1630
1631 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1632 {
1633 void *ret;
1634
1635 ret = kzalloc(size, flags | __GFP_NOWARN);
1636 if (!ret)
1637 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1638 return ret;
1639 }
1640
1641 #define get_inode_mode(i) \
1642 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1643 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1644
1645 /* get offset of first page in next direct node */
1646 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1647 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1648 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1649 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1650
1651 /*
1652 * file.c
1653 */
1654 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1655 void truncate_data_blocks(struct dnode_of_data *);
1656 int truncate_blocks(struct inode *, u64, bool);
1657 int f2fs_truncate(struct inode *, bool);
1658 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1659 int f2fs_setattr(struct dentry *, struct iattr *);
1660 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1661 int truncate_data_blocks_range(struct dnode_of_data *, int);
1662 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1663 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1664
1665 /*
1666 * inode.c
1667 */
1668 void f2fs_set_inode_flags(struct inode *);
1669 struct inode *f2fs_iget(struct super_block *, unsigned long);
1670 int try_to_free_nats(struct f2fs_sb_info *, int);
1671 void update_inode(struct inode *, struct page *);
1672 void update_inode_page(struct inode *);
1673 int f2fs_write_inode(struct inode *, struct writeback_control *);
1674 void f2fs_evict_inode(struct inode *);
1675 void handle_failed_inode(struct inode *);
1676
1677 /*
1678 * namei.c
1679 */
1680 struct dentry *f2fs_get_parent(struct dentry *child);
1681
1682 /*
1683 * dir.c
1684 */
1685 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1686 void set_de_type(struct f2fs_dir_entry *, umode_t);
1687
1688 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1689 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1690 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1691 unsigned int, struct f2fs_str *);
1692 void do_make_empty_dir(struct inode *, struct inode *,
1693 struct f2fs_dentry_ptr *);
1694 struct page *init_inode_metadata(struct inode *, struct inode *,
1695 const struct qstr *, struct page *);
1696 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1697 int room_for_filename(const void *, int, int);
1698 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1699 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1700 struct page **);
1701 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1702 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1703 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1704 struct page *, struct inode *);
1705 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1706 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1707 const struct qstr *, f2fs_hash_t , unsigned int);
1708 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1709 umode_t);
1710 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1711 struct inode *);
1712 int f2fs_do_tmpfile(struct inode *, struct inode *);
1713 bool f2fs_empty_dir(struct inode *);
1714
1715 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1716 {
1717 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1718 inode, inode->i_ino, inode->i_mode);
1719 }
1720
1721 /*
1722 * super.c
1723 */
1724 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1725 int f2fs_sync_fs(struct super_block *, int);
1726 extern __printf(3, 4)
1727 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1728
1729 /*
1730 * hash.c
1731 */
1732 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1733
1734 /*
1735 * node.c
1736 */
1737 struct dnode_of_data;
1738 struct node_info;
1739
1740 bool available_free_memory(struct f2fs_sb_info *, int);
1741 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1742 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1743 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1744 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1745 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1746 int truncate_inode_blocks(struct inode *, pgoff_t);
1747 int truncate_xattr_node(struct inode *, struct page *);
1748 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1749 int remove_inode_page(struct inode *);
1750 struct page *new_inode_page(struct inode *);
1751 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1752 void ra_node_page(struct f2fs_sb_info *, nid_t);
1753 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1754 struct page *get_node_page_ra(struct page *, int);
1755 void sync_inode_page(struct dnode_of_data *);
1756 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1757 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1758 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1759 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1760 int try_to_free_nids(struct f2fs_sb_info *, int);
1761 void recover_inline_xattr(struct inode *, struct page *);
1762 void recover_xattr_data(struct inode *, struct page *, block_t);
1763 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1764 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1765 struct f2fs_summary_block *);
1766 void flush_nat_entries(struct f2fs_sb_info *);
1767 int build_node_manager(struct f2fs_sb_info *);
1768 void destroy_node_manager(struct f2fs_sb_info *);
1769 int __init create_node_manager_caches(void);
1770 void destroy_node_manager_caches(void);
1771
1772 /*
1773 * segment.c
1774 */
1775 void register_inmem_page(struct inode *, struct page *);
1776 int commit_inmem_pages(struct inode *, bool);
1777 void f2fs_balance_fs(struct f2fs_sb_info *);
1778 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1779 int f2fs_issue_flush(struct f2fs_sb_info *);
1780 int create_flush_cmd_control(struct f2fs_sb_info *);
1781 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1782 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1783 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1784 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1785 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1786 void release_discard_addrs(struct f2fs_sb_info *);
1787 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1788 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1789 void allocate_new_segments(struct f2fs_sb_info *);
1790 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1791 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1792 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1793 void write_meta_page(struct f2fs_sb_info *, struct page *);
1794 void write_node_page(unsigned int, struct f2fs_io_info *);
1795 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1796 void rewrite_data_page(struct f2fs_io_info *);
1797 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1798 block_t, block_t, unsigned char, bool);
1799 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1800 block_t, block_t *, struct f2fs_summary *, int);
1801 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1802 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1803 void write_data_summaries(struct f2fs_sb_info *, block_t);
1804 void write_node_summaries(struct f2fs_sb_info *, block_t);
1805 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1806 int, unsigned int, int);
1807 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1808 int build_segment_manager(struct f2fs_sb_info *);
1809 void destroy_segment_manager(struct f2fs_sb_info *);
1810 int __init create_segment_manager_caches(void);
1811 void destroy_segment_manager_caches(void);
1812
1813 /*
1814 * checkpoint.c
1815 */
1816 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1817 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1818 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1819 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1820 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1821 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1822 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1823 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1824 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1825 void release_dirty_inode(struct f2fs_sb_info *);
1826 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1827 int acquire_orphan_inode(struct f2fs_sb_info *);
1828 void release_orphan_inode(struct f2fs_sb_info *);
1829 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1830 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1831 int recover_orphan_inodes(struct f2fs_sb_info *);
1832 int get_valid_checkpoint(struct f2fs_sb_info *);
1833 void update_dirty_page(struct inode *, struct page *);
1834 void add_dirty_dir_inode(struct inode *);
1835 void remove_dirty_dir_inode(struct inode *);
1836 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1837 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1838 void init_ino_entry_info(struct f2fs_sb_info *);
1839 int __init create_checkpoint_caches(void);
1840 void destroy_checkpoint_caches(void);
1841
1842 /*
1843 * data.c
1844 */
1845 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1846 int f2fs_submit_page_bio(struct f2fs_io_info *);
1847 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1848 void set_data_blkaddr(struct dnode_of_data *);
1849 int reserve_new_block(struct dnode_of_data *);
1850 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1851 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1852 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1853 struct page *find_data_page(struct inode *, pgoff_t);
1854 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1855 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1856 int do_write_data_page(struct f2fs_io_info *);
1857 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1858 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1859 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1860 int f2fs_release_page(struct page *, gfp_t);
1861
1862 /*
1863 * gc.c
1864 */
1865 int start_gc_thread(struct f2fs_sb_info *);
1866 void stop_gc_thread(struct f2fs_sb_info *);
1867 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1868 int f2fs_gc(struct f2fs_sb_info *, bool);
1869 void build_gc_manager(struct f2fs_sb_info *);
1870
1871 /*
1872 * recovery.c
1873 */
1874 int recover_fsync_data(struct f2fs_sb_info *);
1875 bool space_for_roll_forward(struct f2fs_sb_info *);
1876
1877 /*
1878 * debug.c
1879 */
1880 #ifdef CONFIG_F2FS_STAT_FS
1881 struct f2fs_stat_info {
1882 struct list_head stat_list;
1883 struct f2fs_sb_info *sbi;
1884 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1885 int main_area_segs, main_area_sections, main_area_zones;
1886 unsigned long long hit_largest, hit_cached, hit_rbtree;
1887 unsigned long long hit_total, total_ext;
1888 int ext_tree, ext_node;
1889 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1890 int nats, dirty_nats, sits, dirty_sits, fnids;
1891 int total_count, utilization;
1892 int bg_gc, inmem_pages, wb_pages;
1893 int inline_xattr, inline_inode, inline_dir;
1894 unsigned int valid_count, valid_node_count, valid_inode_count;
1895 unsigned int bimodal, avg_vblocks;
1896 int util_free, util_valid, util_invalid;
1897 int rsvd_segs, overp_segs;
1898 int dirty_count, node_pages, meta_pages;
1899 int prefree_count, call_count, cp_count;
1900 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1901 int bg_node_segs, bg_data_segs;
1902 int tot_blks, data_blks, node_blks;
1903 int bg_data_blks, bg_node_blks;
1904 int curseg[NR_CURSEG_TYPE];
1905 int cursec[NR_CURSEG_TYPE];
1906 int curzone[NR_CURSEG_TYPE];
1907
1908 unsigned int segment_count[2];
1909 unsigned int block_count[2];
1910 unsigned int inplace_count;
1911 unsigned long long base_mem, cache_mem, page_mem;
1912 };
1913
1914 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1915 {
1916 return (struct f2fs_stat_info *)sbi->stat_info;
1917 }
1918
1919 #define stat_inc_cp_count(si) ((si)->cp_count++)
1920 #define stat_inc_call_count(si) ((si)->call_count++)
1921 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1922 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1923 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1924 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1925 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1926 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1927 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1928 #define stat_inc_inline_xattr(inode) \
1929 do { \
1930 if (f2fs_has_inline_xattr(inode)) \
1931 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1932 } while (0)
1933 #define stat_dec_inline_xattr(inode) \
1934 do { \
1935 if (f2fs_has_inline_xattr(inode)) \
1936 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1937 } while (0)
1938 #define stat_inc_inline_inode(inode) \
1939 do { \
1940 if (f2fs_has_inline_data(inode)) \
1941 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1942 } while (0)
1943 #define stat_dec_inline_inode(inode) \
1944 do { \
1945 if (f2fs_has_inline_data(inode)) \
1946 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1947 } while (0)
1948 #define stat_inc_inline_dir(inode) \
1949 do { \
1950 if (f2fs_has_inline_dentry(inode)) \
1951 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1952 } while (0)
1953 #define stat_dec_inline_dir(inode) \
1954 do { \
1955 if (f2fs_has_inline_dentry(inode)) \
1956 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1957 } while (0)
1958 #define stat_inc_seg_type(sbi, curseg) \
1959 ((sbi)->segment_count[(curseg)->alloc_type]++)
1960 #define stat_inc_block_count(sbi, curseg) \
1961 ((sbi)->block_count[(curseg)->alloc_type]++)
1962 #define stat_inc_inplace_blocks(sbi) \
1963 (atomic_inc(&(sbi)->inplace_count))
1964 #define stat_inc_seg_count(sbi, type, gc_type) \
1965 do { \
1966 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1967 (si)->tot_segs++; \
1968 if (type == SUM_TYPE_DATA) { \
1969 si->data_segs++; \
1970 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1971 } else { \
1972 si->node_segs++; \
1973 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1974 } \
1975 } while (0)
1976
1977 #define stat_inc_tot_blk_count(si, blks) \
1978 (si->tot_blks += (blks))
1979
1980 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1981 do { \
1982 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1983 stat_inc_tot_blk_count(si, blks); \
1984 si->data_blks += (blks); \
1985 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1986 } while (0)
1987
1988 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1989 do { \
1990 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1991 stat_inc_tot_blk_count(si, blks); \
1992 si->node_blks += (blks); \
1993 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1994 } while (0)
1995
1996 int f2fs_build_stats(struct f2fs_sb_info *);
1997 void f2fs_destroy_stats(struct f2fs_sb_info *);
1998 int __init f2fs_create_root_stats(void);
1999 void f2fs_destroy_root_stats(void);
2000 #else
2001 #define stat_inc_cp_count(si)
2002 #define stat_inc_call_count(si)
2003 #define stat_inc_bggc_count(si)
2004 #define stat_inc_dirty_dir(sbi)
2005 #define stat_dec_dirty_dir(sbi)
2006 #define stat_inc_total_hit(sb)
2007 #define stat_inc_rbtree_node_hit(sb)
2008 #define stat_inc_largest_node_hit(sbi)
2009 #define stat_inc_cached_node_hit(sbi)
2010 #define stat_inc_inline_xattr(inode)
2011 #define stat_dec_inline_xattr(inode)
2012 #define stat_inc_inline_inode(inode)
2013 #define stat_dec_inline_inode(inode)
2014 #define stat_inc_inline_dir(inode)
2015 #define stat_dec_inline_dir(inode)
2016 #define stat_inc_seg_type(sbi, curseg)
2017 #define stat_inc_block_count(sbi, curseg)
2018 #define stat_inc_inplace_blocks(sbi)
2019 #define stat_inc_seg_count(sbi, type, gc_type)
2020 #define stat_inc_tot_blk_count(si, blks)
2021 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2022 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2023
2024 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2025 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2026 static inline int __init f2fs_create_root_stats(void) { return 0; }
2027 static inline void f2fs_destroy_root_stats(void) { }
2028 #endif
2029
2030 extern const struct file_operations f2fs_dir_operations;
2031 extern const struct file_operations f2fs_file_operations;
2032 extern const struct inode_operations f2fs_file_inode_operations;
2033 extern const struct address_space_operations f2fs_dblock_aops;
2034 extern const struct address_space_operations f2fs_node_aops;
2035 extern const struct address_space_operations f2fs_meta_aops;
2036 extern const struct inode_operations f2fs_dir_inode_operations;
2037 extern const struct inode_operations f2fs_symlink_inode_operations;
2038 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2039 extern const struct inode_operations f2fs_special_inode_operations;
2040 extern struct kmem_cache *inode_entry_slab;
2041
2042 /*
2043 * inline.c
2044 */
2045 bool f2fs_may_inline_data(struct inode *);
2046 bool f2fs_may_inline_dentry(struct inode *);
2047 void read_inline_data(struct page *, struct page *);
2048 bool truncate_inline_inode(struct page *, u64);
2049 int f2fs_read_inline_data(struct inode *, struct page *);
2050 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2051 int f2fs_convert_inline_inode(struct inode *);
2052 int f2fs_write_inline_data(struct inode *, struct page *);
2053 bool recover_inline_data(struct inode *, struct page *);
2054 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2055 struct f2fs_filename *, struct page **);
2056 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2057 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2058 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2059 nid_t, umode_t);
2060 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2061 struct inode *, struct inode *);
2062 bool f2fs_empty_inline_dir(struct inode *);
2063 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2064 struct f2fs_str *);
2065 int f2fs_inline_data_fiemap(struct inode *,
2066 struct fiemap_extent_info *, __u64, __u64);
2067
2068 /*
2069 * shrinker.c
2070 */
2071 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2072 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2073 void f2fs_join_shrinker(struct f2fs_sb_info *);
2074 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2075
2076 /*
2077 * extent_cache.c
2078 */
2079 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2080 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
2081 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2082 unsigned int f2fs_destroy_extent_node(struct inode *);
2083 void f2fs_destroy_extent_tree(struct inode *);
2084 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2085 void f2fs_update_extent_cache(struct dnode_of_data *);
2086 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2087 pgoff_t, block_t, unsigned int);
2088 void init_extent_cache_info(struct f2fs_sb_info *);
2089 int __init create_extent_cache(void);
2090 void destroy_extent_cache(void);
2091
2092 /*
2093 * crypto support
2094 */
2095 static inline int f2fs_encrypted_inode(struct inode *inode)
2096 {
2097 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2098 return file_is_encrypt(inode);
2099 #else
2100 return 0;
2101 #endif
2102 }
2103
2104 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2105 {
2106 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2107 file_set_encrypt(inode);
2108 #endif
2109 }
2110
2111 static inline bool f2fs_bio_encrypted(struct bio *bio)
2112 {
2113 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2114 return unlikely(bio->bi_private != NULL);
2115 #else
2116 return false;
2117 #endif
2118 }
2119
2120 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2121 {
2122 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2123 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 static inline bool f2fs_may_encrypt(struct inode *inode)
2130 {
2131 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2132 mode_t mode = inode->i_mode;
2133
2134 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2135 #else
2136 return 0;
2137 #endif
2138 }
2139
2140 /* crypto_policy.c */
2141 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2142 struct inode *);
2143 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2144 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2145 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2146
2147 /* crypt.c */
2148 extern struct kmem_cache *f2fs_crypt_info_cachep;
2149 bool f2fs_valid_contents_enc_mode(uint32_t);
2150 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2151 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2152 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2153 struct page *f2fs_encrypt(struct inode *, struct page *);
2154 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2155 int f2fs_decrypt_one(struct inode *, struct page *);
2156 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2157
2158 /* crypto_key.c */
2159 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2160 int _f2fs_get_encryption_info(struct inode *inode);
2161
2162 /* crypto_fname.c */
2163 bool f2fs_valid_filenames_enc_mode(uint32_t);
2164 u32 f2fs_fname_crypto_round_up(u32, u32);
2165 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2166 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2167 const struct f2fs_str *, struct f2fs_str *);
2168 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2169 struct f2fs_str *);
2170
2171 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2172 void f2fs_restore_and_release_control_page(struct page **);
2173 void f2fs_restore_control_page(struct page *);
2174
2175 int __init f2fs_init_crypto(void);
2176 int f2fs_crypto_initialize(void);
2177 void f2fs_exit_crypto(void);
2178
2179 int f2fs_has_encryption_key(struct inode *);
2180
2181 static inline int f2fs_get_encryption_info(struct inode *inode)
2182 {
2183 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2184
2185 if (!ci ||
2186 (ci->ci_keyring_key &&
2187 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2188 (1 << KEY_FLAG_REVOKED) |
2189 (1 << KEY_FLAG_DEAD)))))
2190 return _f2fs_get_encryption_info(inode);
2191 return 0;
2192 }
2193
2194 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2195 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2196 int lookup, struct f2fs_filename *);
2197 void f2fs_fname_free_filename(struct f2fs_filename *);
2198 #else
2199 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2200 static inline void f2fs_restore_control_page(struct page *p) { }
2201
2202 static inline int __init f2fs_init_crypto(void) { return 0; }
2203 static inline void f2fs_exit_crypto(void) { }
2204
2205 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2206 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2207 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2208
2209 static inline int f2fs_fname_setup_filename(struct inode *dir,
2210 const struct qstr *iname,
2211 int lookup, struct f2fs_filename *fname)
2212 {
2213 memset(fname, 0, sizeof(struct f2fs_filename));
2214 fname->usr_fname = iname;
2215 fname->disk_name.name = (unsigned char *)iname->name;
2216 fname->disk_name.len = iname->len;
2217 return 0;
2218 }
2219
2220 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2221 #endif
2222 #endif
This page took 0.076641 seconds and 5 git commands to generate.