f2fs: stat inline xattr inode number
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define F2FS_FEATURE_ENCRYPT 0x0001
74
75 #define F2FS_HAS_FEATURE(sb, mask) \
76 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
77 #define F2FS_SET_FEATURE(sb, mask) \
78 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
79 #define F2FS_CLEAR_FEATURE(sb, mask) \
80 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
81
82 #define CRCPOLY_LE 0xedb88320
83
84 static inline __u32 f2fs_crc32(void *buf, size_t len)
85 {
86 unsigned char *p = (unsigned char *)buf;
87 __u32 crc = F2FS_SUPER_MAGIC;
88 int i;
89
90 while (len--) {
91 crc ^= *p++;
92 for (i = 0; i < 8; i++)
93 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
94 }
95 return crc;
96 }
97
98 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
99 {
100 return f2fs_crc32(buf, buf_size) == blk_crc;
101 }
102
103 /*
104 * For checkpoint manager
105 */
106 enum {
107 NAT_BITMAP,
108 SIT_BITMAP
109 };
110
111 enum {
112 CP_UMOUNT,
113 CP_FASTBOOT,
114 CP_SYNC,
115 CP_RECOVERY,
116 CP_DISCARD,
117 };
118
119 #define DEF_BATCHED_TRIM_SECTIONS 32
120 #define BATCHED_TRIM_SEGMENTS(sbi) \
121 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
122 #define BATCHED_TRIM_BLOCKS(sbi) \
123 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
124
125 struct cp_control {
126 int reason;
127 __u64 trim_start;
128 __u64 trim_end;
129 __u64 trim_minlen;
130 __u64 trimmed;
131 };
132
133 /*
134 * For CP/NAT/SIT/SSA readahead
135 */
136 enum {
137 META_CP,
138 META_NAT,
139 META_SIT,
140 META_SSA,
141 META_POR,
142 };
143
144 /* for the list of ino */
145 enum {
146 ORPHAN_INO, /* for orphan ino list */
147 APPEND_INO, /* for append ino list */
148 UPDATE_INO, /* for update ino list */
149 MAX_INO_ENTRY, /* max. list */
150 };
151
152 struct ino_entry {
153 struct list_head list; /* list head */
154 nid_t ino; /* inode number */
155 };
156
157 /*
158 * for the list of directory inodes or gc inodes.
159 * NOTE: there are two slab users for this structure, if we add/modify/delete
160 * fields in structure for one of slab users, it may affect fields or size of
161 * other one, in this condition, it's better to split both of slab and related
162 * data structure.
163 */
164 struct inode_entry {
165 struct list_head list; /* list head */
166 struct inode *inode; /* vfs inode pointer */
167 };
168
169 /* for the list of blockaddresses to be discarded */
170 struct discard_entry {
171 struct list_head list; /* list head */
172 block_t blkaddr; /* block address to be discarded */
173 int len; /* # of consecutive blocks of the discard */
174 };
175
176 /* for the list of fsync inodes, used only during recovery */
177 struct fsync_inode_entry {
178 struct list_head list; /* list head */
179 struct inode *inode; /* vfs inode pointer */
180 block_t blkaddr; /* block address locating the last fsync */
181 block_t last_dentry; /* block address locating the last dentry */
182 block_t last_inode; /* block address locating the last inode */
183 };
184
185 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
186 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
187
188 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
189 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
190 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
191 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
192
193 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
194 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
195
196 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
197 {
198 int before = nats_in_cursum(rs);
199 rs->n_nats = cpu_to_le16(before + i);
200 return before;
201 }
202
203 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
204 {
205 int before = sits_in_cursum(rs);
206 rs->n_sits = cpu_to_le16(before + i);
207 return before;
208 }
209
210 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
211 int type)
212 {
213 if (type == NAT_JOURNAL)
214 return size <= MAX_NAT_JENTRIES(sum);
215 return size <= MAX_SIT_JENTRIES(sum);
216 }
217
218 /*
219 * ioctl commands
220 */
221 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
222 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
223 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
224
225 #define F2FS_IOCTL_MAGIC 0xf5
226 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
227 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
228 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
229 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
230 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
231 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
232
233 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
234 _IOR('f', 19, struct f2fs_encryption_policy)
235 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
236 _IOW('f', 20, __u8[16])
237 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
238 _IOW('f', 21, struct f2fs_encryption_policy)
239
240 /*
241 * should be same as XFS_IOC_GOINGDOWN.
242 * Flags for going down operation used by FS_IOC_GOINGDOWN
243 */
244 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
245 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
246 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
247 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
248
249 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
250 /*
251 * ioctl commands in 32 bit emulation
252 */
253 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
254 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
255 #endif
256
257 /*
258 * For INODE and NODE manager
259 */
260 /* for directory operations */
261 struct f2fs_str {
262 unsigned char *name;
263 u32 len;
264 };
265
266 struct f2fs_filename {
267 const struct qstr *usr_fname;
268 struct f2fs_str disk_name;
269 f2fs_hash_t hash;
270 #ifdef CONFIG_F2FS_FS_ENCRYPTION
271 struct f2fs_str crypto_buf;
272 #endif
273 };
274
275 #define FSTR_INIT(n, l) { .name = n, .len = l }
276 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
277 #define fname_name(p) ((p)->disk_name.name)
278 #define fname_len(p) ((p)->disk_name.len)
279
280 struct f2fs_dentry_ptr {
281 struct inode *inode;
282 const void *bitmap;
283 struct f2fs_dir_entry *dentry;
284 __u8 (*filename)[F2FS_SLOT_LEN];
285 int max;
286 };
287
288 static inline void make_dentry_ptr(struct inode *inode,
289 struct f2fs_dentry_ptr *d, void *src, int type)
290 {
291 d->inode = inode;
292
293 if (type == 1) {
294 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
295 d->max = NR_DENTRY_IN_BLOCK;
296 d->bitmap = &t->dentry_bitmap;
297 d->dentry = t->dentry;
298 d->filename = t->filename;
299 } else {
300 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
301 d->max = NR_INLINE_DENTRY;
302 d->bitmap = &t->dentry_bitmap;
303 d->dentry = t->dentry;
304 d->filename = t->filename;
305 }
306 }
307
308 /*
309 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
310 * as its node offset to distinguish from index node blocks.
311 * But some bits are used to mark the node block.
312 */
313 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
314 >> OFFSET_BIT_SHIFT)
315 enum {
316 ALLOC_NODE, /* allocate a new node page if needed */
317 LOOKUP_NODE, /* look up a node without readahead */
318 LOOKUP_NODE_RA, /*
319 * look up a node with readahead called
320 * by get_data_block.
321 */
322 };
323
324 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
325
326 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
327
328 /* vector size for gang look-up from extent cache that consists of radix tree */
329 #define EXT_TREE_VEC_SIZE 64
330
331 /* for in-memory extent cache entry */
332 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
333
334 /* number of extent info in extent cache we try to shrink */
335 #define EXTENT_CACHE_SHRINK_NUMBER 128
336
337 struct extent_info {
338 unsigned int fofs; /* start offset in a file */
339 u32 blk; /* start block address of the extent */
340 unsigned int len; /* length of the extent */
341 };
342
343 struct extent_node {
344 struct rb_node rb_node; /* rb node located in rb-tree */
345 struct list_head list; /* node in global extent list of sbi */
346 struct extent_info ei; /* extent info */
347 };
348
349 struct extent_tree {
350 nid_t ino; /* inode number */
351 struct rb_root root; /* root of extent info rb-tree */
352 struct extent_node *cached_en; /* recently accessed extent node */
353 struct extent_info largest; /* largested extent info */
354 rwlock_t lock; /* protect extent info rb-tree */
355 atomic_t refcount; /* reference count of rb-tree */
356 unsigned int count; /* # of extent node in rb-tree*/
357 };
358
359 /*
360 * This structure is taken from ext4_map_blocks.
361 *
362 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
363 */
364 #define F2FS_MAP_NEW (1 << BH_New)
365 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
366 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
367 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
368 F2FS_MAP_UNWRITTEN)
369
370 struct f2fs_map_blocks {
371 block_t m_pblk;
372 block_t m_lblk;
373 unsigned int m_len;
374 unsigned int m_flags;
375 };
376
377 /*
378 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
379 */
380 #define FADVISE_COLD_BIT 0x01
381 #define FADVISE_LOST_PINO_BIT 0x02
382 #define FADVISE_ENCRYPT_BIT 0x04
383 #define FADVISE_ENC_NAME_BIT 0x08
384
385 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
386 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
387 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
388 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
389 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
390 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
391 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
392 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
393 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
394 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
395 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
396
397 /* Encryption algorithms */
398 #define F2FS_ENCRYPTION_MODE_INVALID 0
399 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
400 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
401 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
402 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
403
404 #include "f2fs_crypto.h"
405
406 #define DEF_DIR_LEVEL 0
407
408 struct f2fs_inode_info {
409 struct inode vfs_inode; /* serve a vfs inode */
410 unsigned long i_flags; /* keep an inode flags for ioctl */
411 unsigned char i_advise; /* use to give file attribute hints */
412 unsigned char i_dir_level; /* use for dentry level for large dir */
413 unsigned int i_current_depth; /* use only in directory structure */
414 unsigned int i_pino; /* parent inode number */
415 umode_t i_acl_mode; /* keep file acl mode temporarily */
416
417 /* Use below internally in f2fs*/
418 unsigned long flags; /* use to pass per-file flags */
419 struct rw_semaphore i_sem; /* protect fi info */
420 atomic_t dirty_pages; /* # of dirty pages */
421 f2fs_hash_t chash; /* hash value of given file name */
422 unsigned int clevel; /* maximum level of given file name */
423 nid_t i_xattr_nid; /* node id that contains xattrs */
424 unsigned long long xattr_ver; /* cp version of xattr modification */
425 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
426
427 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
428 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
429 struct mutex inmem_lock; /* lock for inmemory pages */
430
431 struct extent_tree *extent_tree; /* cached extent_tree entry */
432
433 #ifdef CONFIG_F2FS_FS_ENCRYPTION
434 /* Encryption params */
435 struct f2fs_crypt_info *i_crypt_info;
436 #endif
437 };
438
439 static inline void get_extent_info(struct extent_info *ext,
440 struct f2fs_extent i_ext)
441 {
442 ext->fofs = le32_to_cpu(i_ext.fofs);
443 ext->blk = le32_to_cpu(i_ext.blk);
444 ext->len = le32_to_cpu(i_ext.len);
445 }
446
447 static inline void set_raw_extent(struct extent_info *ext,
448 struct f2fs_extent *i_ext)
449 {
450 i_ext->fofs = cpu_to_le32(ext->fofs);
451 i_ext->blk = cpu_to_le32(ext->blk);
452 i_ext->len = cpu_to_le32(ext->len);
453 }
454
455 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
456 u32 blk, unsigned int len)
457 {
458 ei->fofs = fofs;
459 ei->blk = blk;
460 ei->len = len;
461 }
462
463 static inline bool __is_extent_same(struct extent_info *ei1,
464 struct extent_info *ei2)
465 {
466 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
467 ei1->len == ei2->len);
468 }
469
470 static inline bool __is_extent_mergeable(struct extent_info *back,
471 struct extent_info *front)
472 {
473 return (back->fofs + back->len == front->fofs &&
474 back->blk + back->len == front->blk);
475 }
476
477 static inline bool __is_back_mergeable(struct extent_info *cur,
478 struct extent_info *back)
479 {
480 return __is_extent_mergeable(back, cur);
481 }
482
483 static inline bool __is_front_mergeable(struct extent_info *cur,
484 struct extent_info *front)
485 {
486 return __is_extent_mergeable(cur, front);
487 }
488
489 struct f2fs_nm_info {
490 block_t nat_blkaddr; /* base disk address of NAT */
491 nid_t max_nid; /* maximum possible node ids */
492 nid_t available_nids; /* maximum available node ids */
493 nid_t next_scan_nid; /* the next nid to be scanned */
494 unsigned int ram_thresh; /* control the memory footprint */
495
496 /* NAT cache management */
497 struct radix_tree_root nat_root;/* root of the nat entry cache */
498 struct radix_tree_root nat_set_root;/* root of the nat set cache */
499 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
500 struct list_head nat_entries; /* cached nat entry list (clean) */
501 unsigned int nat_cnt; /* the # of cached nat entries */
502 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
503
504 /* free node ids management */
505 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
506 struct list_head free_nid_list; /* a list for free nids */
507 spinlock_t free_nid_list_lock; /* protect free nid list */
508 unsigned int fcnt; /* the number of free node id */
509 struct mutex build_lock; /* lock for build free nids */
510
511 /* for checkpoint */
512 char *nat_bitmap; /* NAT bitmap pointer */
513 int bitmap_size; /* bitmap size */
514 };
515
516 /*
517 * this structure is used as one of function parameters.
518 * all the information are dedicated to a given direct node block determined
519 * by the data offset in a file.
520 */
521 struct dnode_of_data {
522 struct inode *inode; /* vfs inode pointer */
523 struct page *inode_page; /* its inode page, NULL is possible */
524 struct page *node_page; /* cached direct node page */
525 nid_t nid; /* node id of the direct node block */
526 unsigned int ofs_in_node; /* data offset in the node page */
527 bool inode_page_locked; /* inode page is locked or not */
528 block_t data_blkaddr; /* block address of the node block */
529 };
530
531 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
532 struct page *ipage, struct page *npage, nid_t nid)
533 {
534 memset(dn, 0, sizeof(*dn));
535 dn->inode = inode;
536 dn->inode_page = ipage;
537 dn->node_page = npage;
538 dn->nid = nid;
539 }
540
541 /*
542 * For SIT manager
543 *
544 * By default, there are 6 active log areas across the whole main area.
545 * When considering hot and cold data separation to reduce cleaning overhead,
546 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
547 * respectively.
548 * In the current design, you should not change the numbers intentionally.
549 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
550 * logs individually according to the underlying devices. (default: 6)
551 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
552 * data and 8 for node logs.
553 */
554 #define NR_CURSEG_DATA_TYPE (3)
555 #define NR_CURSEG_NODE_TYPE (3)
556 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
557
558 enum {
559 CURSEG_HOT_DATA = 0, /* directory entry blocks */
560 CURSEG_WARM_DATA, /* data blocks */
561 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
562 CURSEG_HOT_NODE, /* direct node blocks of directory files */
563 CURSEG_WARM_NODE, /* direct node blocks of normal files */
564 CURSEG_COLD_NODE, /* indirect node blocks */
565 NO_CHECK_TYPE,
566 CURSEG_DIRECT_IO, /* to use for the direct IO path */
567 };
568
569 struct flush_cmd {
570 struct completion wait;
571 struct llist_node llnode;
572 int ret;
573 };
574
575 struct flush_cmd_control {
576 struct task_struct *f2fs_issue_flush; /* flush thread */
577 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
578 struct llist_head issue_list; /* list for command issue */
579 struct llist_node *dispatch_list; /* list for command dispatch */
580 };
581
582 struct f2fs_sm_info {
583 struct sit_info *sit_info; /* whole segment information */
584 struct free_segmap_info *free_info; /* free segment information */
585 struct dirty_seglist_info *dirty_info; /* dirty segment information */
586 struct curseg_info *curseg_array; /* active segment information */
587
588 block_t seg0_blkaddr; /* block address of 0'th segment */
589 block_t main_blkaddr; /* start block address of main area */
590 block_t ssa_blkaddr; /* start block address of SSA area */
591
592 unsigned int segment_count; /* total # of segments */
593 unsigned int main_segments; /* # of segments in main area */
594 unsigned int reserved_segments; /* # of reserved segments */
595 unsigned int ovp_segments; /* # of overprovision segments */
596
597 /* a threshold to reclaim prefree segments */
598 unsigned int rec_prefree_segments;
599
600 /* for small discard management */
601 struct list_head discard_list; /* 4KB discard list */
602 int nr_discards; /* # of discards in the list */
603 int max_discards; /* max. discards to be issued */
604
605 /* for batched trimming */
606 unsigned int trim_sections; /* # of sections to trim */
607
608 struct list_head sit_entry_set; /* sit entry set list */
609
610 unsigned int ipu_policy; /* in-place-update policy */
611 unsigned int min_ipu_util; /* in-place-update threshold */
612 unsigned int min_fsync_blocks; /* threshold for fsync */
613
614 /* for flush command control */
615 struct flush_cmd_control *cmd_control_info;
616
617 };
618
619 /*
620 * For superblock
621 */
622 /*
623 * COUNT_TYPE for monitoring
624 *
625 * f2fs monitors the number of several block types such as on-writeback,
626 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
627 */
628 enum count_type {
629 F2FS_WRITEBACK,
630 F2FS_DIRTY_DENTS,
631 F2FS_DIRTY_NODES,
632 F2FS_DIRTY_META,
633 F2FS_INMEM_PAGES,
634 NR_COUNT_TYPE,
635 };
636
637 /*
638 * The below are the page types of bios used in submit_bio().
639 * The available types are:
640 * DATA User data pages. It operates as async mode.
641 * NODE Node pages. It operates as async mode.
642 * META FS metadata pages such as SIT, NAT, CP.
643 * NR_PAGE_TYPE The number of page types.
644 * META_FLUSH Make sure the previous pages are written
645 * with waiting the bio's completion
646 * ... Only can be used with META.
647 */
648 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
649 enum page_type {
650 DATA,
651 NODE,
652 META,
653 NR_PAGE_TYPE,
654 META_FLUSH,
655 INMEM, /* the below types are used by tracepoints only. */
656 INMEM_DROP,
657 IPU,
658 OPU,
659 };
660
661 struct f2fs_io_info {
662 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
663 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
664 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
665 block_t blk_addr; /* block address to be written */
666 struct page *page; /* page to be written */
667 struct page *encrypted_page; /* encrypted page */
668 };
669
670 #define is_read_io(rw) (((rw) & 1) == READ)
671 struct f2fs_bio_info {
672 struct f2fs_sb_info *sbi; /* f2fs superblock */
673 struct bio *bio; /* bios to merge */
674 sector_t last_block_in_bio; /* last block number */
675 struct f2fs_io_info fio; /* store buffered io info. */
676 struct rw_semaphore io_rwsem; /* blocking op for bio */
677 };
678
679 /* for inner inode cache management */
680 struct inode_management {
681 struct radix_tree_root ino_root; /* ino entry array */
682 spinlock_t ino_lock; /* for ino entry lock */
683 struct list_head ino_list; /* inode list head */
684 unsigned long ino_num; /* number of entries */
685 };
686
687 /* For s_flag in struct f2fs_sb_info */
688 enum {
689 SBI_IS_DIRTY, /* dirty flag for checkpoint */
690 SBI_IS_CLOSE, /* specify unmounting */
691 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
692 SBI_POR_DOING, /* recovery is doing or not */
693 };
694
695 struct f2fs_sb_info {
696 struct super_block *sb; /* pointer to VFS super block */
697 struct proc_dir_entry *s_proc; /* proc entry */
698 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
699 struct f2fs_super_block *raw_super; /* raw super block pointer */
700 int s_flag; /* flags for sbi */
701
702 /* for node-related operations */
703 struct f2fs_nm_info *nm_info; /* node manager */
704 struct inode *node_inode; /* cache node blocks */
705
706 /* for segment-related operations */
707 struct f2fs_sm_info *sm_info; /* segment manager */
708
709 /* for bio operations */
710 struct f2fs_bio_info read_io; /* for read bios */
711 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
712
713 /* for checkpoint */
714 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
715 struct inode *meta_inode; /* cache meta blocks */
716 struct mutex cp_mutex; /* checkpoint procedure lock */
717 struct rw_semaphore cp_rwsem; /* blocking FS operations */
718 struct rw_semaphore node_write; /* locking node writes */
719 struct mutex writepages; /* mutex for writepages() */
720 wait_queue_head_t cp_wait;
721
722 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
723
724 /* for orphan inode, use 0'th array */
725 unsigned int max_orphans; /* max orphan inodes */
726
727 /* for directory inode management */
728 struct list_head dir_inode_list; /* dir inode list */
729 spinlock_t dir_inode_lock; /* for dir inode list lock */
730
731 /* for extent tree cache */
732 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
733 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
734 struct list_head extent_list; /* lru list for shrinker */
735 spinlock_t extent_lock; /* locking extent lru list */
736 int total_ext_tree; /* extent tree count */
737 atomic_t total_ext_node; /* extent info count */
738
739 /* basic filesystem units */
740 unsigned int log_sectors_per_block; /* log2 sectors per block */
741 unsigned int log_blocksize; /* log2 block size */
742 unsigned int blocksize; /* block size */
743 unsigned int root_ino_num; /* root inode number*/
744 unsigned int node_ino_num; /* node inode number*/
745 unsigned int meta_ino_num; /* meta inode number*/
746 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
747 unsigned int blocks_per_seg; /* blocks per segment */
748 unsigned int segs_per_sec; /* segments per section */
749 unsigned int secs_per_zone; /* sections per zone */
750 unsigned int total_sections; /* total section count */
751 unsigned int total_node_count; /* total node block count */
752 unsigned int total_valid_node_count; /* valid node block count */
753 unsigned int total_valid_inode_count; /* valid inode count */
754 int active_logs; /* # of active logs */
755 int dir_level; /* directory level */
756
757 block_t user_block_count; /* # of user blocks */
758 block_t total_valid_block_count; /* # of valid blocks */
759 block_t alloc_valid_block_count; /* # of allocated blocks */
760 block_t discard_blks; /* discard command candidats */
761 block_t last_valid_block_count; /* for recovery */
762 u32 s_next_generation; /* for NFS support */
763 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
764
765 struct f2fs_mount_info mount_opt; /* mount options */
766
767 /* for cleaning operations */
768 struct mutex gc_mutex; /* mutex for GC */
769 struct f2fs_gc_kthread *gc_thread; /* GC thread */
770 unsigned int cur_victim_sec; /* current victim section num */
771
772 /* maximum # of trials to find a victim segment for SSR and GC */
773 unsigned int max_victim_search;
774
775 /*
776 * for stat information.
777 * one is for the LFS mode, and the other is for the SSR mode.
778 */
779 #ifdef CONFIG_F2FS_STAT_FS
780 struct f2fs_stat_info *stat_info; /* FS status information */
781 unsigned int segment_count[2]; /* # of allocated segments */
782 unsigned int block_count[2]; /* # of allocated blocks */
783 atomic_t inplace_count; /* # of inplace update */
784 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
785 atomic_t inline_xattr; /* # of inline_xattr inodes */
786 atomic_t inline_inode; /* # of inline_data inodes */
787 atomic_t inline_dir; /* # of inline_dentry inodes */
788 int bg_gc; /* background gc calls */
789 unsigned int n_dirty_dirs; /* # of dir inodes */
790 #endif
791 unsigned int last_victim[2]; /* last victim segment # */
792 spinlock_t stat_lock; /* lock for stat operations */
793
794 /* For sysfs suppport */
795 struct kobject s_kobj;
796 struct completion s_kobj_unregister;
797
798 /* For shrinker support */
799 struct list_head s_list;
800 struct mutex umount_mutex;
801 unsigned int shrinker_run_no;
802 };
803
804 /*
805 * Inline functions
806 */
807 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
808 {
809 return container_of(inode, struct f2fs_inode_info, vfs_inode);
810 }
811
812 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
813 {
814 return sb->s_fs_info;
815 }
816
817 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
818 {
819 return F2FS_SB(inode->i_sb);
820 }
821
822 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
823 {
824 return F2FS_I_SB(mapping->host);
825 }
826
827 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
828 {
829 return F2FS_M_SB(page->mapping);
830 }
831
832 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
833 {
834 return (struct f2fs_super_block *)(sbi->raw_super);
835 }
836
837 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
838 {
839 return (struct f2fs_checkpoint *)(sbi->ckpt);
840 }
841
842 static inline struct f2fs_node *F2FS_NODE(struct page *page)
843 {
844 return (struct f2fs_node *)page_address(page);
845 }
846
847 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
848 {
849 return &((struct f2fs_node *)page_address(page))->i;
850 }
851
852 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
853 {
854 return (struct f2fs_nm_info *)(sbi->nm_info);
855 }
856
857 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
858 {
859 return (struct f2fs_sm_info *)(sbi->sm_info);
860 }
861
862 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
863 {
864 return (struct sit_info *)(SM_I(sbi)->sit_info);
865 }
866
867 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
868 {
869 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
870 }
871
872 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
873 {
874 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
875 }
876
877 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
878 {
879 return sbi->meta_inode->i_mapping;
880 }
881
882 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
883 {
884 return sbi->node_inode->i_mapping;
885 }
886
887 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
888 {
889 return sbi->s_flag & (0x01 << type);
890 }
891
892 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
893 {
894 sbi->s_flag |= (0x01 << type);
895 }
896
897 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
898 {
899 sbi->s_flag &= ~(0x01 << type);
900 }
901
902 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
903 {
904 return le64_to_cpu(cp->checkpoint_ver);
905 }
906
907 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
908 {
909 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
910 return ckpt_flags & f;
911 }
912
913 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
914 {
915 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
916 ckpt_flags |= f;
917 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
918 }
919
920 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
921 {
922 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
923 ckpt_flags &= (~f);
924 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
925 }
926
927 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
928 {
929 down_read(&sbi->cp_rwsem);
930 }
931
932 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
933 {
934 up_read(&sbi->cp_rwsem);
935 }
936
937 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
938 {
939 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
940 }
941
942 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
943 {
944 up_write(&sbi->cp_rwsem);
945 }
946
947 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
948 {
949 int reason = CP_SYNC;
950
951 if (test_opt(sbi, FASTBOOT))
952 reason = CP_FASTBOOT;
953 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
954 reason = CP_UMOUNT;
955 return reason;
956 }
957
958 static inline bool __remain_node_summaries(int reason)
959 {
960 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
961 }
962
963 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
964 {
965 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
966 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
967 }
968
969 /*
970 * Check whether the given nid is within node id range.
971 */
972 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
973 {
974 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
975 return -EINVAL;
976 if (unlikely(nid >= NM_I(sbi)->max_nid))
977 return -EINVAL;
978 return 0;
979 }
980
981 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
982
983 /*
984 * Check whether the inode has blocks or not
985 */
986 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
987 {
988 if (F2FS_I(inode)->i_xattr_nid)
989 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
990 else
991 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
992 }
993
994 static inline bool f2fs_has_xattr_block(unsigned int ofs)
995 {
996 return ofs == XATTR_NODE_OFFSET;
997 }
998
999 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1000 struct inode *inode, blkcnt_t count)
1001 {
1002 block_t valid_block_count;
1003
1004 spin_lock(&sbi->stat_lock);
1005 valid_block_count =
1006 sbi->total_valid_block_count + (block_t)count;
1007 if (unlikely(valid_block_count > sbi->user_block_count)) {
1008 spin_unlock(&sbi->stat_lock);
1009 return false;
1010 }
1011 inode->i_blocks += count;
1012 sbi->total_valid_block_count = valid_block_count;
1013 sbi->alloc_valid_block_count += (block_t)count;
1014 spin_unlock(&sbi->stat_lock);
1015 return true;
1016 }
1017
1018 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1019 struct inode *inode,
1020 blkcnt_t count)
1021 {
1022 spin_lock(&sbi->stat_lock);
1023 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1024 f2fs_bug_on(sbi, inode->i_blocks < count);
1025 inode->i_blocks -= count;
1026 sbi->total_valid_block_count -= (block_t)count;
1027 spin_unlock(&sbi->stat_lock);
1028 }
1029
1030 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1031 {
1032 atomic_inc(&sbi->nr_pages[count_type]);
1033 set_sbi_flag(sbi, SBI_IS_DIRTY);
1034 }
1035
1036 static inline void inode_inc_dirty_pages(struct inode *inode)
1037 {
1038 atomic_inc(&F2FS_I(inode)->dirty_pages);
1039 if (S_ISDIR(inode->i_mode))
1040 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1041 }
1042
1043 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1044 {
1045 atomic_dec(&sbi->nr_pages[count_type]);
1046 }
1047
1048 static inline void inode_dec_dirty_pages(struct inode *inode)
1049 {
1050 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1051 !S_ISLNK(inode->i_mode))
1052 return;
1053
1054 atomic_dec(&F2FS_I(inode)->dirty_pages);
1055
1056 if (S_ISDIR(inode->i_mode))
1057 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
1058 }
1059
1060 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1061 {
1062 return atomic_read(&sbi->nr_pages[count_type]);
1063 }
1064
1065 static inline int get_dirty_pages(struct inode *inode)
1066 {
1067 return atomic_read(&F2FS_I(inode)->dirty_pages);
1068 }
1069
1070 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1071 {
1072 unsigned int pages_per_sec = sbi->segs_per_sec *
1073 (1 << sbi->log_blocks_per_seg);
1074 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1075 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1076 }
1077
1078 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1079 {
1080 return sbi->total_valid_block_count;
1081 }
1082
1083 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1084 {
1085 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1086
1087 /* return NAT or SIT bitmap */
1088 if (flag == NAT_BITMAP)
1089 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1090 else if (flag == SIT_BITMAP)
1091 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1092
1093 return 0;
1094 }
1095
1096 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1097 {
1098 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1099 }
1100
1101 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1102 {
1103 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1104 int offset;
1105
1106 if (__cp_payload(sbi) > 0) {
1107 if (flag == NAT_BITMAP)
1108 return &ckpt->sit_nat_version_bitmap;
1109 else
1110 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1111 } else {
1112 offset = (flag == NAT_BITMAP) ?
1113 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1114 return &ckpt->sit_nat_version_bitmap + offset;
1115 }
1116 }
1117
1118 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1119 {
1120 block_t start_addr;
1121 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1122 unsigned long long ckpt_version = cur_cp_version(ckpt);
1123
1124 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1125
1126 /*
1127 * odd numbered checkpoint should at cp segment 0
1128 * and even segment must be at cp segment 1
1129 */
1130 if (!(ckpt_version & 1))
1131 start_addr += sbi->blocks_per_seg;
1132
1133 return start_addr;
1134 }
1135
1136 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1137 {
1138 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1139 }
1140
1141 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1142 struct inode *inode)
1143 {
1144 block_t valid_block_count;
1145 unsigned int valid_node_count;
1146
1147 spin_lock(&sbi->stat_lock);
1148
1149 valid_block_count = sbi->total_valid_block_count + 1;
1150 if (unlikely(valid_block_count > sbi->user_block_count)) {
1151 spin_unlock(&sbi->stat_lock);
1152 return false;
1153 }
1154
1155 valid_node_count = sbi->total_valid_node_count + 1;
1156 if (unlikely(valid_node_count > sbi->total_node_count)) {
1157 spin_unlock(&sbi->stat_lock);
1158 return false;
1159 }
1160
1161 if (inode)
1162 inode->i_blocks++;
1163
1164 sbi->alloc_valid_block_count++;
1165 sbi->total_valid_node_count++;
1166 sbi->total_valid_block_count++;
1167 spin_unlock(&sbi->stat_lock);
1168
1169 return true;
1170 }
1171
1172 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1173 struct inode *inode)
1174 {
1175 spin_lock(&sbi->stat_lock);
1176
1177 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1178 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1179 f2fs_bug_on(sbi, !inode->i_blocks);
1180
1181 inode->i_blocks--;
1182 sbi->total_valid_node_count--;
1183 sbi->total_valid_block_count--;
1184
1185 spin_unlock(&sbi->stat_lock);
1186 }
1187
1188 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1189 {
1190 return sbi->total_valid_node_count;
1191 }
1192
1193 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1194 {
1195 spin_lock(&sbi->stat_lock);
1196 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1197 sbi->total_valid_inode_count++;
1198 spin_unlock(&sbi->stat_lock);
1199 }
1200
1201 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1202 {
1203 spin_lock(&sbi->stat_lock);
1204 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1205 sbi->total_valid_inode_count--;
1206 spin_unlock(&sbi->stat_lock);
1207 }
1208
1209 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1210 {
1211 return sbi->total_valid_inode_count;
1212 }
1213
1214 static inline void f2fs_put_page(struct page *page, int unlock)
1215 {
1216 if (!page)
1217 return;
1218
1219 if (unlock) {
1220 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1221 unlock_page(page);
1222 }
1223 page_cache_release(page);
1224 }
1225
1226 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1227 {
1228 if (dn->node_page)
1229 f2fs_put_page(dn->node_page, 1);
1230 if (dn->inode_page && dn->node_page != dn->inode_page)
1231 f2fs_put_page(dn->inode_page, 0);
1232 dn->node_page = NULL;
1233 dn->inode_page = NULL;
1234 }
1235
1236 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1237 size_t size)
1238 {
1239 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1240 }
1241
1242 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1243 gfp_t flags)
1244 {
1245 void *entry;
1246 retry:
1247 entry = kmem_cache_alloc(cachep, flags);
1248 if (!entry) {
1249 cond_resched();
1250 goto retry;
1251 }
1252
1253 return entry;
1254 }
1255
1256 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1257 unsigned long index, void *item)
1258 {
1259 while (radix_tree_insert(root, index, item))
1260 cond_resched();
1261 }
1262
1263 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1264
1265 static inline bool IS_INODE(struct page *page)
1266 {
1267 struct f2fs_node *p = F2FS_NODE(page);
1268 return RAW_IS_INODE(p);
1269 }
1270
1271 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1272 {
1273 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1274 }
1275
1276 static inline block_t datablock_addr(struct page *node_page,
1277 unsigned int offset)
1278 {
1279 struct f2fs_node *raw_node;
1280 __le32 *addr_array;
1281 raw_node = F2FS_NODE(node_page);
1282 addr_array = blkaddr_in_node(raw_node);
1283 return le32_to_cpu(addr_array[offset]);
1284 }
1285
1286 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1287 {
1288 int mask;
1289
1290 addr += (nr >> 3);
1291 mask = 1 << (7 - (nr & 0x07));
1292 return mask & *addr;
1293 }
1294
1295 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1296 {
1297 int mask;
1298
1299 addr += (nr >> 3);
1300 mask = 1 << (7 - (nr & 0x07));
1301 *addr |= mask;
1302 }
1303
1304 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1305 {
1306 int mask;
1307
1308 addr += (nr >> 3);
1309 mask = 1 << (7 - (nr & 0x07));
1310 *addr &= ~mask;
1311 }
1312
1313 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1314 {
1315 int mask;
1316 int ret;
1317
1318 addr += (nr >> 3);
1319 mask = 1 << (7 - (nr & 0x07));
1320 ret = mask & *addr;
1321 *addr |= mask;
1322 return ret;
1323 }
1324
1325 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1326 {
1327 int mask;
1328 int ret;
1329
1330 addr += (nr >> 3);
1331 mask = 1 << (7 - (nr & 0x07));
1332 ret = mask & *addr;
1333 *addr &= ~mask;
1334 return ret;
1335 }
1336
1337 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1338 {
1339 int mask;
1340
1341 addr += (nr >> 3);
1342 mask = 1 << (7 - (nr & 0x07));
1343 *addr ^= mask;
1344 }
1345
1346 /* used for f2fs_inode_info->flags */
1347 enum {
1348 FI_NEW_INODE, /* indicate newly allocated inode */
1349 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1350 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1351 FI_INC_LINK, /* need to increment i_nlink */
1352 FI_ACL_MODE, /* indicate acl mode */
1353 FI_NO_ALLOC, /* should not allocate any blocks */
1354 FI_FREE_NID, /* free allocated nide */
1355 FI_UPDATE_DIR, /* should update inode block for consistency */
1356 FI_DELAY_IPUT, /* used for the recovery */
1357 FI_NO_EXTENT, /* not to use the extent cache */
1358 FI_INLINE_XATTR, /* used for inline xattr */
1359 FI_INLINE_DATA, /* used for inline data*/
1360 FI_INLINE_DENTRY, /* used for inline dentry */
1361 FI_APPEND_WRITE, /* inode has appended data */
1362 FI_UPDATE_WRITE, /* inode has in-place-update data */
1363 FI_NEED_IPU, /* used for ipu per file */
1364 FI_ATOMIC_FILE, /* indicate atomic file */
1365 FI_VOLATILE_FILE, /* indicate volatile file */
1366 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1367 FI_DROP_CACHE, /* drop dirty page cache */
1368 FI_DATA_EXIST, /* indicate data exists */
1369 FI_INLINE_DOTS, /* indicate inline dot dentries */
1370 };
1371
1372 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1373 {
1374 if (!test_bit(flag, &fi->flags))
1375 set_bit(flag, &fi->flags);
1376 }
1377
1378 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1379 {
1380 return test_bit(flag, &fi->flags);
1381 }
1382
1383 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1384 {
1385 if (test_bit(flag, &fi->flags))
1386 clear_bit(flag, &fi->flags);
1387 }
1388
1389 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1390 {
1391 fi->i_acl_mode = mode;
1392 set_inode_flag(fi, FI_ACL_MODE);
1393 }
1394
1395 static inline void get_inline_info(struct f2fs_inode_info *fi,
1396 struct f2fs_inode *ri)
1397 {
1398 if (ri->i_inline & F2FS_INLINE_XATTR)
1399 set_inode_flag(fi, FI_INLINE_XATTR);
1400 if (ri->i_inline & F2FS_INLINE_DATA)
1401 set_inode_flag(fi, FI_INLINE_DATA);
1402 if (ri->i_inline & F2FS_INLINE_DENTRY)
1403 set_inode_flag(fi, FI_INLINE_DENTRY);
1404 if (ri->i_inline & F2FS_DATA_EXIST)
1405 set_inode_flag(fi, FI_DATA_EXIST);
1406 if (ri->i_inline & F2FS_INLINE_DOTS)
1407 set_inode_flag(fi, FI_INLINE_DOTS);
1408 }
1409
1410 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1411 struct f2fs_inode *ri)
1412 {
1413 ri->i_inline = 0;
1414
1415 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1416 ri->i_inline |= F2FS_INLINE_XATTR;
1417 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1418 ri->i_inline |= F2FS_INLINE_DATA;
1419 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1420 ri->i_inline |= F2FS_INLINE_DENTRY;
1421 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1422 ri->i_inline |= F2FS_DATA_EXIST;
1423 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1424 ri->i_inline |= F2FS_INLINE_DOTS;
1425 }
1426
1427 static inline int f2fs_has_inline_xattr(struct inode *inode)
1428 {
1429 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1430 }
1431
1432 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1433 {
1434 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1435 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1436 return DEF_ADDRS_PER_INODE;
1437 }
1438
1439 static inline void *inline_xattr_addr(struct page *page)
1440 {
1441 struct f2fs_inode *ri = F2FS_INODE(page);
1442 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1443 F2FS_INLINE_XATTR_ADDRS]);
1444 }
1445
1446 static inline int inline_xattr_size(struct inode *inode)
1447 {
1448 if (f2fs_has_inline_xattr(inode))
1449 return F2FS_INLINE_XATTR_ADDRS << 2;
1450 else
1451 return 0;
1452 }
1453
1454 static inline int f2fs_has_inline_data(struct inode *inode)
1455 {
1456 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1457 }
1458
1459 static inline void f2fs_clear_inline_inode(struct inode *inode)
1460 {
1461 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1462 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1463 }
1464
1465 static inline int f2fs_exist_data(struct inode *inode)
1466 {
1467 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1468 }
1469
1470 static inline int f2fs_has_inline_dots(struct inode *inode)
1471 {
1472 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1473 }
1474
1475 static inline bool f2fs_is_atomic_file(struct inode *inode)
1476 {
1477 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1478 }
1479
1480 static inline bool f2fs_is_volatile_file(struct inode *inode)
1481 {
1482 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1483 }
1484
1485 static inline bool f2fs_is_first_block_written(struct inode *inode)
1486 {
1487 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1488 }
1489
1490 static inline bool f2fs_is_drop_cache(struct inode *inode)
1491 {
1492 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1493 }
1494
1495 static inline void *inline_data_addr(struct page *page)
1496 {
1497 struct f2fs_inode *ri = F2FS_INODE(page);
1498 return (void *)&(ri->i_addr[1]);
1499 }
1500
1501 static inline int f2fs_has_inline_dentry(struct inode *inode)
1502 {
1503 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1504 }
1505
1506 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1507 {
1508 if (!f2fs_has_inline_dentry(dir))
1509 kunmap(page);
1510 }
1511
1512 static inline int is_file(struct inode *inode, int type)
1513 {
1514 return F2FS_I(inode)->i_advise & type;
1515 }
1516
1517 static inline void set_file(struct inode *inode, int type)
1518 {
1519 F2FS_I(inode)->i_advise |= type;
1520 }
1521
1522 static inline void clear_file(struct inode *inode, int type)
1523 {
1524 F2FS_I(inode)->i_advise &= ~type;
1525 }
1526
1527 static inline int f2fs_readonly(struct super_block *sb)
1528 {
1529 return sb->s_flags & MS_RDONLY;
1530 }
1531
1532 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1533 {
1534 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1535 }
1536
1537 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1538 {
1539 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1540 sbi->sb->s_flags |= MS_RDONLY;
1541 }
1542
1543 static inline bool is_dot_dotdot(const struct qstr *str)
1544 {
1545 if (str->len == 1 && str->name[0] == '.')
1546 return true;
1547
1548 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1549 return true;
1550
1551 return false;
1552 }
1553
1554 static inline bool f2fs_may_extent_tree(struct inode *inode)
1555 {
1556 mode_t mode = inode->i_mode;
1557
1558 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1559 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1560 return false;
1561
1562 return S_ISREG(mode);
1563 }
1564
1565 #define get_inode_mode(i) \
1566 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1567 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1568
1569 /* get offset of first page in next direct node */
1570 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1571 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1572 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1573 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1574
1575 /*
1576 * file.c
1577 */
1578 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1579 void truncate_data_blocks(struct dnode_of_data *);
1580 int truncate_blocks(struct inode *, u64, bool);
1581 void f2fs_truncate(struct inode *);
1582 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1583 int f2fs_setattr(struct dentry *, struct iattr *);
1584 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1585 int truncate_data_blocks_range(struct dnode_of_data *, int);
1586 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1587 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1588
1589 /*
1590 * inode.c
1591 */
1592 void f2fs_set_inode_flags(struct inode *);
1593 struct inode *f2fs_iget(struct super_block *, unsigned long);
1594 int try_to_free_nats(struct f2fs_sb_info *, int);
1595 void update_inode(struct inode *, struct page *);
1596 void update_inode_page(struct inode *);
1597 int f2fs_write_inode(struct inode *, struct writeback_control *);
1598 void f2fs_evict_inode(struct inode *);
1599 void handle_failed_inode(struct inode *);
1600
1601 /*
1602 * namei.c
1603 */
1604 struct dentry *f2fs_get_parent(struct dentry *child);
1605
1606 /*
1607 * dir.c
1608 */
1609 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1610 void set_de_type(struct f2fs_dir_entry *, umode_t);
1611
1612 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1613 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1614 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1615 unsigned int, struct f2fs_str *);
1616 void do_make_empty_dir(struct inode *, struct inode *,
1617 struct f2fs_dentry_ptr *);
1618 struct page *init_inode_metadata(struct inode *, struct inode *,
1619 const struct qstr *, struct page *);
1620 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1621 int room_for_filename(const void *, int, int);
1622 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1623 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1624 struct page **);
1625 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1626 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1627 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1628 struct page *, struct inode *);
1629 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1630 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1631 const struct qstr *, f2fs_hash_t , unsigned int);
1632 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1633 umode_t);
1634 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1635 struct inode *);
1636 int f2fs_do_tmpfile(struct inode *, struct inode *);
1637 bool f2fs_empty_dir(struct inode *);
1638
1639 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1640 {
1641 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1642 inode, inode->i_ino, inode->i_mode);
1643 }
1644
1645 /*
1646 * super.c
1647 */
1648 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1649 int f2fs_sync_fs(struct super_block *, int);
1650 extern __printf(3, 4)
1651 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1652
1653 /*
1654 * hash.c
1655 */
1656 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1657
1658 /*
1659 * node.c
1660 */
1661 struct dnode_of_data;
1662 struct node_info;
1663
1664 bool available_free_memory(struct f2fs_sb_info *, int);
1665 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1666 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1667 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1668 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1669 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1670 int truncate_inode_blocks(struct inode *, pgoff_t);
1671 int truncate_xattr_node(struct inode *, struct page *);
1672 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1673 void remove_inode_page(struct inode *);
1674 struct page *new_inode_page(struct inode *);
1675 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1676 void ra_node_page(struct f2fs_sb_info *, nid_t);
1677 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1678 struct page *get_node_page_ra(struct page *, int);
1679 void sync_inode_page(struct dnode_of_data *);
1680 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1681 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1682 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1683 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1684 void recover_inline_xattr(struct inode *, struct page *);
1685 void recover_xattr_data(struct inode *, struct page *, block_t);
1686 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1687 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1688 struct f2fs_summary_block *);
1689 void flush_nat_entries(struct f2fs_sb_info *);
1690 int build_node_manager(struct f2fs_sb_info *);
1691 void destroy_node_manager(struct f2fs_sb_info *);
1692 int __init create_node_manager_caches(void);
1693 void destroy_node_manager_caches(void);
1694
1695 /*
1696 * segment.c
1697 */
1698 void register_inmem_page(struct inode *, struct page *);
1699 void commit_inmem_pages(struct inode *, bool);
1700 void f2fs_balance_fs(struct f2fs_sb_info *);
1701 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1702 int f2fs_issue_flush(struct f2fs_sb_info *);
1703 int create_flush_cmd_control(struct f2fs_sb_info *);
1704 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1705 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1706 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1707 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1708 void release_discard_addrs(struct f2fs_sb_info *);
1709 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1710 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1711 void allocate_new_segments(struct f2fs_sb_info *);
1712 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1713 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1714 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1715 void write_meta_page(struct f2fs_sb_info *, struct page *);
1716 void write_node_page(unsigned int, struct f2fs_io_info *);
1717 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1718 void rewrite_data_page(struct f2fs_io_info *);
1719 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1720 block_t, block_t, unsigned char, bool);
1721 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1722 block_t, block_t *, struct f2fs_summary *, int);
1723 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1724 void write_data_summaries(struct f2fs_sb_info *, block_t);
1725 void write_node_summaries(struct f2fs_sb_info *, block_t);
1726 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1727 int, unsigned int, int);
1728 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1729 int build_segment_manager(struct f2fs_sb_info *);
1730 void destroy_segment_manager(struct f2fs_sb_info *);
1731 int __init create_segment_manager_caches(void);
1732 void destroy_segment_manager_caches(void);
1733
1734 /*
1735 * checkpoint.c
1736 */
1737 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1738 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1739 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1740 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1741 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1742 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1743 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1744 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1745 void release_dirty_inode(struct f2fs_sb_info *);
1746 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1747 int acquire_orphan_inode(struct f2fs_sb_info *);
1748 void release_orphan_inode(struct f2fs_sb_info *);
1749 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1750 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1751 void recover_orphan_inodes(struct f2fs_sb_info *);
1752 int get_valid_checkpoint(struct f2fs_sb_info *);
1753 void update_dirty_page(struct inode *, struct page *);
1754 void add_dirty_dir_inode(struct inode *);
1755 void remove_dirty_dir_inode(struct inode *);
1756 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1757 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1758 void init_ino_entry_info(struct f2fs_sb_info *);
1759 int __init create_checkpoint_caches(void);
1760 void destroy_checkpoint_caches(void);
1761
1762 /*
1763 * data.c
1764 */
1765 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1766 int f2fs_submit_page_bio(struct f2fs_io_info *);
1767 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1768 void set_data_blkaddr(struct dnode_of_data *);
1769 int reserve_new_block(struct dnode_of_data *);
1770 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1771 struct page *get_read_data_page(struct inode *, pgoff_t, int);
1772 struct page *find_data_page(struct inode *, pgoff_t);
1773 struct page *get_lock_data_page(struct inode *, pgoff_t);
1774 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1775 int do_write_data_page(struct f2fs_io_info *);
1776 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1777 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1778 int f2fs_release_page(struct page *, gfp_t);
1779
1780 /*
1781 * gc.c
1782 */
1783 int start_gc_thread(struct f2fs_sb_info *);
1784 void stop_gc_thread(struct f2fs_sb_info *);
1785 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1786 int f2fs_gc(struct f2fs_sb_info *);
1787 void build_gc_manager(struct f2fs_sb_info *);
1788
1789 /*
1790 * recovery.c
1791 */
1792 int recover_fsync_data(struct f2fs_sb_info *);
1793 bool space_for_roll_forward(struct f2fs_sb_info *);
1794
1795 /*
1796 * debug.c
1797 */
1798 #ifdef CONFIG_F2FS_STAT_FS
1799 struct f2fs_stat_info {
1800 struct list_head stat_list;
1801 struct f2fs_sb_info *sbi;
1802 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1803 int main_area_segs, main_area_sections, main_area_zones;
1804 int hit_ext, total_ext, ext_tree, ext_node;
1805 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1806 int nats, dirty_nats, sits, dirty_sits, fnids;
1807 int total_count, utilization;
1808 int bg_gc, inmem_pages, wb_pages;
1809 int inline_xattr, inline_inode, inline_dir;
1810 unsigned int valid_count, valid_node_count, valid_inode_count;
1811 unsigned int bimodal, avg_vblocks;
1812 int util_free, util_valid, util_invalid;
1813 int rsvd_segs, overp_segs;
1814 int dirty_count, node_pages, meta_pages;
1815 int prefree_count, call_count, cp_count;
1816 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1817 int bg_node_segs, bg_data_segs;
1818 int tot_blks, data_blks, node_blks;
1819 int bg_data_blks, bg_node_blks;
1820 int curseg[NR_CURSEG_TYPE];
1821 int cursec[NR_CURSEG_TYPE];
1822 int curzone[NR_CURSEG_TYPE];
1823
1824 unsigned int segment_count[2];
1825 unsigned int block_count[2];
1826 unsigned int inplace_count;
1827 unsigned base_mem, cache_mem, page_mem;
1828 };
1829
1830 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1831 {
1832 return (struct f2fs_stat_info *)sbi->stat_info;
1833 }
1834
1835 #define stat_inc_cp_count(si) ((si)->cp_count++)
1836 #define stat_inc_call_count(si) ((si)->call_count++)
1837 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1838 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1839 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1840 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1841 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1842 #define stat_inc_inline_xattr(inode) \
1843 do { \
1844 if (f2fs_has_inline_xattr(inode)) \
1845 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1846 } while (0)
1847 #define stat_dec_inline_xattr(inode) \
1848 do { \
1849 if (f2fs_has_inline_xattr(inode)) \
1850 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1851 } while (0)
1852 #define stat_inc_inline_inode(inode) \
1853 do { \
1854 if (f2fs_has_inline_data(inode)) \
1855 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1856 } while (0)
1857 #define stat_dec_inline_inode(inode) \
1858 do { \
1859 if (f2fs_has_inline_data(inode)) \
1860 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1861 } while (0)
1862 #define stat_inc_inline_dir(inode) \
1863 do { \
1864 if (f2fs_has_inline_dentry(inode)) \
1865 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1866 } while (0)
1867 #define stat_dec_inline_dir(inode) \
1868 do { \
1869 if (f2fs_has_inline_dentry(inode)) \
1870 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1871 } while (0)
1872 #define stat_inc_seg_type(sbi, curseg) \
1873 ((sbi)->segment_count[(curseg)->alloc_type]++)
1874 #define stat_inc_block_count(sbi, curseg) \
1875 ((sbi)->block_count[(curseg)->alloc_type]++)
1876 #define stat_inc_inplace_blocks(sbi) \
1877 (atomic_inc(&(sbi)->inplace_count))
1878 #define stat_inc_seg_count(sbi, type, gc_type) \
1879 do { \
1880 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1881 (si)->tot_segs++; \
1882 if (type == SUM_TYPE_DATA) { \
1883 si->data_segs++; \
1884 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1885 } else { \
1886 si->node_segs++; \
1887 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1888 } \
1889 } while (0)
1890
1891 #define stat_inc_tot_blk_count(si, blks) \
1892 (si->tot_blks += (blks))
1893
1894 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1895 do { \
1896 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1897 stat_inc_tot_blk_count(si, blks); \
1898 si->data_blks += (blks); \
1899 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1900 } while (0)
1901
1902 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1903 do { \
1904 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1905 stat_inc_tot_blk_count(si, blks); \
1906 si->node_blks += (blks); \
1907 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1908 } while (0)
1909
1910 int f2fs_build_stats(struct f2fs_sb_info *);
1911 void f2fs_destroy_stats(struct f2fs_sb_info *);
1912 void __init f2fs_create_root_stats(void);
1913 void f2fs_destroy_root_stats(void);
1914 #else
1915 #define stat_inc_cp_count(si)
1916 #define stat_inc_call_count(si)
1917 #define stat_inc_bggc_count(si)
1918 #define stat_inc_dirty_dir(sbi)
1919 #define stat_dec_dirty_dir(sbi)
1920 #define stat_inc_total_hit(sb)
1921 #define stat_inc_read_hit(sb)
1922 #define stat_inc_inline_xattr(inode)
1923 #define stat_dec_inline_xattr(inode)
1924 #define stat_inc_inline_inode(inode)
1925 #define stat_dec_inline_inode(inode)
1926 #define stat_inc_inline_dir(inode)
1927 #define stat_dec_inline_dir(inode)
1928 #define stat_inc_seg_type(sbi, curseg)
1929 #define stat_inc_block_count(sbi, curseg)
1930 #define stat_inc_inplace_blocks(sbi)
1931 #define stat_inc_seg_count(sbi, type, gc_type)
1932 #define stat_inc_tot_blk_count(si, blks)
1933 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1934 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1935
1936 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1937 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1938 static inline void __init f2fs_create_root_stats(void) { }
1939 static inline void f2fs_destroy_root_stats(void) { }
1940 #endif
1941
1942 extern const struct file_operations f2fs_dir_operations;
1943 extern const struct file_operations f2fs_file_operations;
1944 extern const struct inode_operations f2fs_file_inode_operations;
1945 extern const struct address_space_operations f2fs_dblock_aops;
1946 extern const struct address_space_operations f2fs_node_aops;
1947 extern const struct address_space_operations f2fs_meta_aops;
1948 extern const struct inode_operations f2fs_dir_inode_operations;
1949 extern const struct inode_operations f2fs_symlink_inode_operations;
1950 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
1951 extern const struct inode_operations f2fs_special_inode_operations;
1952 extern struct kmem_cache *inode_entry_slab;
1953
1954 /*
1955 * inline.c
1956 */
1957 bool f2fs_may_inline_data(struct inode *);
1958 bool f2fs_may_inline_dentry(struct inode *);
1959 void read_inline_data(struct page *, struct page *);
1960 bool truncate_inline_inode(struct page *, u64);
1961 int f2fs_read_inline_data(struct inode *, struct page *);
1962 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1963 int f2fs_convert_inline_inode(struct inode *);
1964 int f2fs_write_inline_data(struct inode *, struct page *);
1965 bool recover_inline_data(struct inode *, struct page *);
1966 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
1967 struct f2fs_filename *, struct page **);
1968 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1969 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1970 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1971 nid_t, umode_t);
1972 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1973 struct inode *, struct inode *);
1974 bool f2fs_empty_inline_dir(struct inode *);
1975 int f2fs_read_inline_dir(struct file *, struct dir_context *,
1976 struct f2fs_str *);
1977
1978 /*
1979 * shrinker.c
1980 */
1981 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
1982 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
1983 void f2fs_join_shrinker(struct f2fs_sb_info *);
1984 void f2fs_leave_shrinker(struct f2fs_sb_info *);
1985
1986 /*
1987 * extent_cache.c
1988 */
1989 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1990 void f2fs_drop_largest_extent(struct inode *, pgoff_t);
1991 void f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
1992 unsigned int f2fs_destroy_extent_node(struct inode *);
1993 void f2fs_destroy_extent_tree(struct inode *);
1994 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
1995 void f2fs_update_extent_cache(struct dnode_of_data *);
1996 void init_extent_cache_info(struct f2fs_sb_info *);
1997 int __init create_extent_cache(void);
1998 void destroy_extent_cache(void);
1999
2000 /*
2001 * crypto support
2002 */
2003 static inline int f2fs_encrypted_inode(struct inode *inode)
2004 {
2005 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2006 return file_is_encrypt(inode);
2007 #else
2008 return 0;
2009 #endif
2010 }
2011
2012 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2013 {
2014 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2015 file_set_encrypt(inode);
2016 #endif
2017 }
2018
2019 static inline bool f2fs_bio_encrypted(struct bio *bio)
2020 {
2021 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2022 return unlikely(bio->bi_private != NULL);
2023 #else
2024 return false;
2025 #endif
2026 }
2027
2028 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2029 {
2030 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2031 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2032 #else
2033 return 0;
2034 #endif
2035 }
2036
2037 static inline bool f2fs_may_encrypt(struct inode *inode)
2038 {
2039 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2040 mode_t mode = inode->i_mode;
2041
2042 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2043 #else
2044 return 0;
2045 #endif
2046 }
2047
2048 /* crypto_policy.c */
2049 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2050 struct inode *);
2051 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2052 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2053 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2054
2055 /* crypt.c */
2056 extern struct kmem_cache *f2fs_crypt_info_cachep;
2057 bool f2fs_valid_contents_enc_mode(uint32_t);
2058 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2059 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2060 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2061 struct page *f2fs_encrypt(struct inode *, struct page *);
2062 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2063 int f2fs_decrypt_one(struct inode *, struct page *);
2064 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2065
2066 /* crypto_key.c */
2067 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2068 int _f2fs_get_encryption_info(struct inode *inode);
2069
2070 /* crypto_fname.c */
2071 bool f2fs_valid_filenames_enc_mode(uint32_t);
2072 u32 f2fs_fname_crypto_round_up(u32, u32);
2073 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2074 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2075 const struct f2fs_str *, struct f2fs_str *);
2076 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2077 struct f2fs_str *);
2078
2079 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2080 void f2fs_restore_and_release_control_page(struct page **);
2081 void f2fs_restore_control_page(struct page *);
2082
2083 int __init f2fs_init_crypto(void);
2084 int f2fs_crypto_initialize(void);
2085 void f2fs_exit_crypto(void);
2086
2087 int f2fs_has_encryption_key(struct inode *);
2088
2089 static inline int f2fs_get_encryption_info(struct inode *inode)
2090 {
2091 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2092
2093 if (!ci ||
2094 (ci->ci_keyring_key &&
2095 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2096 (1 << KEY_FLAG_REVOKED) |
2097 (1 << KEY_FLAG_DEAD)))))
2098 return _f2fs_get_encryption_info(inode);
2099 return 0;
2100 }
2101
2102 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2103 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2104 int lookup, struct f2fs_filename *);
2105 void f2fs_fname_free_filename(struct f2fs_filename *);
2106 #else
2107 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2108 static inline void f2fs_restore_control_page(struct page *p) { }
2109
2110 static inline int __init f2fs_init_crypto(void) { return 0; }
2111 static inline void f2fs_exit_crypto(void) { }
2112
2113 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2114 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2115 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2116
2117 static inline int f2fs_fname_setup_filename(struct inode *dir,
2118 const struct qstr *iname,
2119 int lookup, struct f2fs_filename *fname)
2120 {
2121 memset(fname, 0, sizeof(struct f2fs_filename));
2122 fname->usr_fname = iname;
2123 fname->disk_name.name = (unsigned char *)iname->name;
2124 fname->disk_name.len = iname->len;
2125 return 0;
2126 }
2127
2128 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2129 #endif
2130 #endif
This page took 0.104557 seconds and 5 git commands to generate.