f2fs: use meta_inode cache to improve roll-forward speed
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_FLUSH_MERGE 0x00000200
50 #define F2FS_MOUNT_NOBARRIER 0x00000400
51
52 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
53 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
54 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
55
56 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
57 typecheck(unsigned long long, b) && \
58 ((long long)((a) - (b)) > 0))
59
60 typedef u32 block_t; /*
61 * should not change u32, since it is the on-disk block
62 * address format, __le32.
63 */
64 typedef u32 nid_t;
65
66 struct f2fs_mount_info {
67 unsigned int opt;
68 };
69
70 #define CRCPOLY_LE 0xedb88320
71
72 static inline __u32 f2fs_crc32(void *buf, size_t len)
73 {
74 unsigned char *p = (unsigned char *)buf;
75 __u32 crc = F2FS_SUPER_MAGIC;
76 int i;
77
78 while (len--) {
79 crc ^= *p++;
80 for (i = 0; i < 8; i++)
81 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
82 }
83 return crc;
84 }
85
86 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
87 {
88 return f2fs_crc32(buf, buf_size) == blk_crc;
89 }
90
91 /*
92 * For checkpoint manager
93 */
94 enum {
95 NAT_BITMAP,
96 SIT_BITMAP
97 };
98
99 /*
100 * For CP/NAT/SIT/SSA readahead
101 */
102 enum {
103 META_CP,
104 META_NAT,
105 META_SIT,
106 META_SSA,
107 META_POR,
108 };
109
110 /* for the list of ino */
111 enum {
112 ORPHAN_INO, /* for orphan ino list */
113 APPEND_INO, /* for append ino list */
114 UPDATE_INO, /* for update ino list */
115 MAX_INO_ENTRY, /* max. list */
116 };
117
118 struct ino_entry {
119 struct list_head list; /* list head */
120 nid_t ino; /* inode number */
121 };
122
123 /* for the list of directory inodes */
124 struct dir_inode_entry {
125 struct list_head list; /* list head */
126 struct inode *inode; /* vfs inode pointer */
127 };
128
129 /* for the list of blockaddresses to be discarded */
130 struct discard_entry {
131 struct list_head list; /* list head */
132 block_t blkaddr; /* block address to be discarded */
133 int len; /* # of consecutive blocks of the discard */
134 };
135
136 /* for the list of fsync inodes, used only during recovery */
137 struct fsync_inode_entry {
138 struct list_head list; /* list head */
139 struct inode *inode; /* vfs inode pointer */
140 block_t blkaddr; /* block address locating the last inode */
141 };
142
143 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
144 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
145
146 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
147 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
148 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
149 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
150
151 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
152 {
153 int before = nats_in_cursum(rs);
154 rs->n_nats = cpu_to_le16(before + i);
155 return before;
156 }
157
158 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
159 {
160 int before = sits_in_cursum(rs);
161 rs->n_sits = cpu_to_le16(before + i);
162 return before;
163 }
164
165 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
166 int type)
167 {
168 if (type == NAT_JOURNAL)
169 return nats_in_cursum(sum) + size <= NAT_JOURNAL_ENTRIES;
170
171 return sits_in_cursum(sum) + size <= SIT_JOURNAL_ENTRIES;
172 }
173
174 /*
175 * ioctl commands
176 */
177 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
178 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
179
180 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
181 /*
182 * ioctl commands in 32 bit emulation
183 */
184 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
185 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
186 #endif
187
188 /*
189 * For INODE and NODE manager
190 */
191 /*
192 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
193 * as its node offset to distinguish from index node blocks.
194 * But some bits are used to mark the node block.
195 */
196 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
197 >> OFFSET_BIT_SHIFT)
198 enum {
199 ALLOC_NODE, /* allocate a new node page if needed */
200 LOOKUP_NODE, /* look up a node without readahead */
201 LOOKUP_NODE_RA, /*
202 * look up a node with readahead called
203 * by get_data_block.
204 */
205 };
206
207 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
208
209 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
210
211 /* for in-memory extent cache entry */
212 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
213
214 struct extent_info {
215 rwlock_t ext_lock; /* rwlock for consistency */
216 unsigned int fofs; /* start offset in a file */
217 u32 blk_addr; /* start block address of the extent */
218 unsigned int len; /* length of the extent */
219 };
220
221 /*
222 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
223 */
224 #define FADVISE_COLD_BIT 0x01
225 #define FADVISE_LOST_PINO_BIT 0x02
226
227 #define DEF_DIR_LEVEL 0
228
229 struct f2fs_inode_info {
230 struct inode vfs_inode; /* serve a vfs inode */
231 unsigned long i_flags; /* keep an inode flags for ioctl */
232 unsigned char i_advise; /* use to give file attribute hints */
233 unsigned char i_dir_level; /* use for dentry level for large dir */
234 unsigned int i_current_depth; /* use only in directory structure */
235 unsigned int i_pino; /* parent inode number */
236 umode_t i_acl_mode; /* keep file acl mode temporarily */
237
238 /* Use below internally in f2fs*/
239 unsigned long flags; /* use to pass per-file flags */
240 struct rw_semaphore i_sem; /* protect fi info */
241 atomic_t dirty_pages; /* # of dirty pages */
242 f2fs_hash_t chash; /* hash value of given file name */
243 unsigned int clevel; /* maximum level of given file name */
244 nid_t i_xattr_nid; /* node id that contains xattrs */
245 unsigned long long xattr_ver; /* cp version of xattr modification */
246 struct extent_info ext; /* in-memory extent cache entry */
247 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
248 };
249
250 static inline void get_extent_info(struct extent_info *ext,
251 struct f2fs_extent i_ext)
252 {
253 write_lock(&ext->ext_lock);
254 ext->fofs = le32_to_cpu(i_ext.fofs);
255 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
256 ext->len = le32_to_cpu(i_ext.len);
257 write_unlock(&ext->ext_lock);
258 }
259
260 static inline void set_raw_extent(struct extent_info *ext,
261 struct f2fs_extent *i_ext)
262 {
263 read_lock(&ext->ext_lock);
264 i_ext->fofs = cpu_to_le32(ext->fofs);
265 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
266 i_ext->len = cpu_to_le32(ext->len);
267 read_unlock(&ext->ext_lock);
268 }
269
270 struct f2fs_nm_info {
271 block_t nat_blkaddr; /* base disk address of NAT */
272 nid_t max_nid; /* maximum possible node ids */
273 nid_t available_nids; /* maximum available node ids */
274 nid_t next_scan_nid; /* the next nid to be scanned */
275 unsigned int ram_thresh; /* control the memory footprint */
276
277 /* NAT cache management */
278 struct radix_tree_root nat_root;/* root of the nat entry cache */
279 rwlock_t nat_tree_lock; /* protect nat_tree_lock */
280 unsigned int nat_cnt; /* the # of cached nat entries */
281 struct list_head nat_entries; /* cached nat entry list (clean) */
282 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
283 struct list_head nat_entry_set; /* nat entry set list */
284 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
285
286 /* free node ids management */
287 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
288 struct list_head free_nid_list; /* a list for free nids */
289 spinlock_t free_nid_list_lock; /* protect free nid list */
290 unsigned int fcnt; /* the number of free node id */
291 struct mutex build_lock; /* lock for build free nids */
292
293 /* for checkpoint */
294 char *nat_bitmap; /* NAT bitmap pointer */
295 int bitmap_size; /* bitmap size */
296 };
297
298 /*
299 * this structure is used as one of function parameters.
300 * all the information are dedicated to a given direct node block determined
301 * by the data offset in a file.
302 */
303 struct dnode_of_data {
304 struct inode *inode; /* vfs inode pointer */
305 struct page *inode_page; /* its inode page, NULL is possible */
306 struct page *node_page; /* cached direct node page */
307 nid_t nid; /* node id of the direct node block */
308 unsigned int ofs_in_node; /* data offset in the node page */
309 bool inode_page_locked; /* inode page is locked or not */
310 block_t data_blkaddr; /* block address of the node block */
311 };
312
313 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
314 struct page *ipage, struct page *npage, nid_t nid)
315 {
316 memset(dn, 0, sizeof(*dn));
317 dn->inode = inode;
318 dn->inode_page = ipage;
319 dn->node_page = npage;
320 dn->nid = nid;
321 }
322
323 /*
324 * For SIT manager
325 *
326 * By default, there are 6 active log areas across the whole main area.
327 * When considering hot and cold data separation to reduce cleaning overhead,
328 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
329 * respectively.
330 * In the current design, you should not change the numbers intentionally.
331 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
332 * logs individually according to the underlying devices. (default: 6)
333 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
334 * data and 8 for node logs.
335 */
336 #define NR_CURSEG_DATA_TYPE (3)
337 #define NR_CURSEG_NODE_TYPE (3)
338 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
339
340 enum {
341 CURSEG_HOT_DATA = 0, /* directory entry blocks */
342 CURSEG_WARM_DATA, /* data blocks */
343 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
344 CURSEG_HOT_NODE, /* direct node blocks of directory files */
345 CURSEG_WARM_NODE, /* direct node blocks of normal files */
346 CURSEG_COLD_NODE, /* indirect node blocks */
347 NO_CHECK_TYPE
348 };
349
350 struct flush_cmd {
351 struct completion wait;
352 struct llist_node llnode;
353 int ret;
354 };
355
356 struct flush_cmd_control {
357 struct task_struct *f2fs_issue_flush; /* flush thread */
358 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
359 struct llist_head issue_list; /* list for command issue */
360 struct llist_node *dispatch_list; /* list for command dispatch */
361 };
362
363 struct f2fs_sm_info {
364 struct sit_info *sit_info; /* whole segment information */
365 struct free_segmap_info *free_info; /* free segment information */
366 struct dirty_seglist_info *dirty_info; /* dirty segment information */
367 struct curseg_info *curseg_array; /* active segment information */
368
369 block_t seg0_blkaddr; /* block address of 0'th segment */
370 block_t main_blkaddr; /* start block address of main area */
371 block_t ssa_blkaddr; /* start block address of SSA area */
372
373 unsigned int segment_count; /* total # of segments */
374 unsigned int main_segments; /* # of segments in main area */
375 unsigned int reserved_segments; /* # of reserved segments */
376 unsigned int ovp_segments; /* # of overprovision segments */
377
378 /* a threshold to reclaim prefree segments */
379 unsigned int rec_prefree_segments;
380
381 /* for small discard management */
382 struct list_head discard_list; /* 4KB discard list */
383 int nr_discards; /* # of discards in the list */
384 int max_discards; /* max. discards to be issued */
385
386 struct list_head sit_entry_set; /* sit entry set list */
387
388 unsigned int ipu_policy; /* in-place-update policy */
389 unsigned int min_ipu_util; /* in-place-update threshold */
390 unsigned int min_fsync_blocks; /* threshold for fsync */
391
392 /* for flush command control */
393 struct flush_cmd_control *cmd_control_info;
394
395 };
396
397 /*
398 * For superblock
399 */
400 /*
401 * COUNT_TYPE for monitoring
402 *
403 * f2fs monitors the number of several block types such as on-writeback,
404 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
405 */
406 enum count_type {
407 F2FS_WRITEBACK,
408 F2FS_DIRTY_DENTS,
409 F2FS_DIRTY_NODES,
410 F2FS_DIRTY_META,
411 NR_COUNT_TYPE,
412 };
413
414 /*
415 * The below are the page types of bios used in submit_bio().
416 * The available types are:
417 * DATA User data pages. It operates as async mode.
418 * NODE Node pages. It operates as async mode.
419 * META FS metadata pages such as SIT, NAT, CP.
420 * NR_PAGE_TYPE The number of page types.
421 * META_FLUSH Make sure the previous pages are written
422 * with waiting the bio's completion
423 * ... Only can be used with META.
424 */
425 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
426 enum page_type {
427 DATA,
428 NODE,
429 META,
430 NR_PAGE_TYPE,
431 META_FLUSH,
432 };
433
434 struct f2fs_io_info {
435 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
436 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
437 };
438
439 #define is_read_io(rw) (((rw) & 1) == READ)
440 struct f2fs_bio_info {
441 struct f2fs_sb_info *sbi; /* f2fs superblock */
442 struct bio *bio; /* bios to merge */
443 sector_t last_block_in_bio; /* last block number */
444 struct f2fs_io_info fio; /* store buffered io info. */
445 struct rw_semaphore io_rwsem; /* blocking op for bio */
446 };
447
448 struct f2fs_sb_info {
449 struct super_block *sb; /* pointer to VFS super block */
450 struct proc_dir_entry *s_proc; /* proc entry */
451 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
452 struct f2fs_super_block *raw_super; /* raw super block pointer */
453 int s_dirty; /* dirty flag for checkpoint */
454 bool need_fsck; /* need fsck.f2fs to fix */
455
456 /* for node-related operations */
457 struct f2fs_nm_info *nm_info; /* node manager */
458 struct inode *node_inode; /* cache node blocks */
459
460 /* for segment-related operations */
461 struct f2fs_sm_info *sm_info; /* segment manager */
462
463 /* for bio operations */
464 struct f2fs_bio_info read_io; /* for read bios */
465 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
466 struct completion *wait_io; /* for completion bios */
467
468 /* for checkpoint */
469 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
470 struct inode *meta_inode; /* cache meta blocks */
471 struct mutex cp_mutex; /* checkpoint procedure lock */
472 struct rw_semaphore cp_rwsem; /* blocking FS operations */
473 struct rw_semaphore node_write; /* locking node writes */
474 struct mutex writepages; /* mutex for writepages() */
475 bool por_doing; /* recovery is doing or not */
476 wait_queue_head_t cp_wait;
477
478 /* for inode management */
479 struct radix_tree_root ino_root[MAX_INO_ENTRY]; /* ino entry array */
480 spinlock_t ino_lock[MAX_INO_ENTRY]; /* for ino entry lock */
481 struct list_head ino_list[MAX_INO_ENTRY]; /* inode list head */
482
483 /* for orphan inode, use 0'th array */
484 unsigned int n_orphans; /* # of orphan inodes */
485 unsigned int max_orphans; /* max orphan inodes */
486
487 /* for directory inode management */
488 struct list_head dir_inode_list; /* dir inode list */
489 spinlock_t dir_inode_lock; /* for dir inode list lock */
490
491 /* basic filesystem units */
492 unsigned int log_sectors_per_block; /* log2 sectors per block */
493 unsigned int log_blocksize; /* log2 block size */
494 unsigned int blocksize; /* block size */
495 unsigned int root_ino_num; /* root inode number*/
496 unsigned int node_ino_num; /* node inode number*/
497 unsigned int meta_ino_num; /* meta inode number*/
498 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
499 unsigned int blocks_per_seg; /* blocks per segment */
500 unsigned int segs_per_sec; /* segments per section */
501 unsigned int secs_per_zone; /* sections per zone */
502 unsigned int total_sections; /* total section count */
503 unsigned int total_node_count; /* total node block count */
504 unsigned int total_valid_node_count; /* valid node block count */
505 unsigned int total_valid_inode_count; /* valid inode count */
506 int active_logs; /* # of active logs */
507 int dir_level; /* directory level */
508
509 block_t user_block_count; /* # of user blocks */
510 block_t total_valid_block_count; /* # of valid blocks */
511 block_t alloc_valid_block_count; /* # of allocated blocks */
512 block_t last_valid_block_count; /* for recovery */
513 u32 s_next_generation; /* for NFS support */
514 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
515
516 struct f2fs_mount_info mount_opt; /* mount options */
517
518 /* for cleaning operations */
519 struct mutex gc_mutex; /* mutex for GC */
520 struct f2fs_gc_kthread *gc_thread; /* GC thread */
521 unsigned int cur_victim_sec; /* current victim section num */
522
523 /* maximum # of trials to find a victim segment for SSR and GC */
524 unsigned int max_victim_search;
525
526 /*
527 * for stat information.
528 * one is for the LFS mode, and the other is for the SSR mode.
529 */
530 #ifdef CONFIG_F2FS_STAT_FS
531 struct f2fs_stat_info *stat_info; /* FS status information */
532 unsigned int segment_count[2]; /* # of allocated segments */
533 unsigned int block_count[2]; /* # of allocated blocks */
534 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
535 int inline_inode; /* # of inline_data inodes */
536 int bg_gc; /* background gc calls */
537 unsigned int n_dirty_dirs; /* # of dir inodes */
538 #endif
539 unsigned int last_victim[2]; /* last victim segment # */
540 spinlock_t stat_lock; /* lock for stat operations */
541
542 /* For sysfs suppport */
543 struct kobject s_kobj;
544 struct completion s_kobj_unregister;
545 };
546
547 /*
548 * Inline functions
549 */
550 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
551 {
552 return container_of(inode, struct f2fs_inode_info, vfs_inode);
553 }
554
555 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
556 {
557 return sb->s_fs_info;
558 }
559
560 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
561 {
562 return F2FS_SB(inode->i_sb);
563 }
564
565 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
566 {
567 return F2FS_I_SB(mapping->host);
568 }
569
570 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
571 {
572 return F2FS_M_SB(page->mapping);
573 }
574
575 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
576 {
577 return (struct f2fs_super_block *)(sbi->raw_super);
578 }
579
580 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
581 {
582 return (struct f2fs_checkpoint *)(sbi->ckpt);
583 }
584
585 static inline struct f2fs_node *F2FS_NODE(struct page *page)
586 {
587 return (struct f2fs_node *)page_address(page);
588 }
589
590 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
591 {
592 return &((struct f2fs_node *)page_address(page))->i;
593 }
594
595 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
596 {
597 return (struct f2fs_nm_info *)(sbi->nm_info);
598 }
599
600 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
601 {
602 return (struct f2fs_sm_info *)(sbi->sm_info);
603 }
604
605 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
606 {
607 return (struct sit_info *)(SM_I(sbi)->sit_info);
608 }
609
610 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
611 {
612 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
613 }
614
615 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
616 {
617 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
618 }
619
620 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
621 {
622 return sbi->meta_inode->i_mapping;
623 }
624
625 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
626 {
627 return sbi->node_inode->i_mapping;
628 }
629
630 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
631 {
632 sbi->s_dirty = 1;
633 }
634
635 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
636 {
637 sbi->s_dirty = 0;
638 }
639
640 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
641 {
642 return le64_to_cpu(cp->checkpoint_ver);
643 }
644
645 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
646 {
647 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
648 return ckpt_flags & f;
649 }
650
651 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
652 {
653 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
654 ckpt_flags |= f;
655 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
656 }
657
658 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
659 {
660 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
661 ckpt_flags &= (~f);
662 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
663 }
664
665 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
666 {
667 down_read(&sbi->cp_rwsem);
668 }
669
670 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
671 {
672 up_read(&sbi->cp_rwsem);
673 }
674
675 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
676 {
677 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
678 }
679
680 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
681 {
682 up_write(&sbi->cp_rwsem);
683 }
684
685 /*
686 * Check whether the given nid is within node id range.
687 */
688 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
689 {
690 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
691 return -EINVAL;
692 if (unlikely(nid >= NM_I(sbi)->max_nid))
693 return -EINVAL;
694 return 0;
695 }
696
697 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
698
699 /*
700 * Check whether the inode has blocks or not
701 */
702 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
703 {
704 if (F2FS_I(inode)->i_xattr_nid)
705 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
706 else
707 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
708 }
709
710 static inline bool f2fs_has_xattr_block(unsigned int ofs)
711 {
712 return ofs == XATTR_NODE_OFFSET;
713 }
714
715 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
716 struct inode *inode, blkcnt_t count)
717 {
718 block_t valid_block_count;
719
720 spin_lock(&sbi->stat_lock);
721 valid_block_count =
722 sbi->total_valid_block_count + (block_t)count;
723 if (unlikely(valid_block_count > sbi->user_block_count)) {
724 spin_unlock(&sbi->stat_lock);
725 return false;
726 }
727 inode->i_blocks += count;
728 sbi->total_valid_block_count = valid_block_count;
729 sbi->alloc_valid_block_count += (block_t)count;
730 spin_unlock(&sbi->stat_lock);
731 return true;
732 }
733
734 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
735 struct inode *inode,
736 blkcnt_t count)
737 {
738 spin_lock(&sbi->stat_lock);
739 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
740 f2fs_bug_on(sbi, inode->i_blocks < count);
741 inode->i_blocks -= count;
742 sbi->total_valid_block_count -= (block_t)count;
743 spin_unlock(&sbi->stat_lock);
744 }
745
746 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
747 {
748 atomic_inc(&sbi->nr_pages[count_type]);
749 F2FS_SET_SB_DIRT(sbi);
750 }
751
752 static inline void inode_inc_dirty_pages(struct inode *inode)
753 {
754 atomic_inc(&F2FS_I(inode)->dirty_pages);
755 if (S_ISDIR(inode->i_mode))
756 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
757 }
758
759 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
760 {
761 atomic_dec(&sbi->nr_pages[count_type]);
762 }
763
764 static inline void inode_dec_dirty_pages(struct inode *inode)
765 {
766 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
767 return;
768
769 atomic_dec(&F2FS_I(inode)->dirty_pages);
770
771 if (S_ISDIR(inode->i_mode))
772 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
773 }
774
775 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
776 {
777 return atomic_read(&sbi->nr_pages[count_type]);
778 }
779
780 static inline int get_dirty_pages(struct inode *inode)
781 {
782 return atomic_read(&F2FS_I(inode)->dirty_pages);
783 }
784
785 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
786 {
787 unsigned int pages_per_sec = sbi->segs_per_sec *
788 (1 << sbi->log_blocks_per_seg);
789 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
790 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
791 }
792
793 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
794 {
795 return sbi->total_valid_block_count;
796 }
797
798 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
799 {
800 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
801
802 /* return NAT or SIT bitmap */
803 if (flag == NAT_BITMAP)
804 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
805 else if (flag == SIT_BITMAP)
806 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
807
808 return 0;
809 }
810
811 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
812 {
813 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
814 int offset;
815
816 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
817 if (flag == NAT_BITMAP)
818 return &ckpt->sit_nat_version_bitmap;
819 else
820 return (unsigned char *)ckpt + F2FS_BLKSIZE;
821 } else {
822 offset = (flag == NAT_BITMAP) ?
823 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
824 return &ckpt->sit_nat_version_bitmap + offset;
825 }
826 }
827
828 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
829 {
830 block_t start_addr;
831 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
832 unsigned long long ckpt_version = cur_cp_version(ckpt);
833
834 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
835
836 /*
837 * odd numbered checkpoint should at cp segment 0
838 * and even segment must be at cp segment 1
839 */
840 if (!(ckpt_version & 1))
841 start_addr += sbi->blocks_per_seg;
842
843 return start_addr;
844 }
845
846 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
847 {
848 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
849 }
850
851 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
852 struct inode *inode)
853 {
854 block_t valid_block_count;
855 unsigned int valid_node_count;
856
857 spin_lock(&sbi->stat_lock);
858
859 valid_block_count = sbi->total_valid_block_count + 1;
860 if (unlikely(valid_block_count > sbi->user_block_count)) {
861 spin_unlock(&sbi->stat_lock);
862 return false;
863 }
864
865 valid_node_count = sbi->total_valid_node_count + 1;
866 if (unlikely(valid_node_count > sbi->total_node_count)) {
867 spin_unlock(&sbi->stat_lock);
868 return false;
869 }
870
871 if (inode)
872 inode->i_blocks++;
873
874 sbi->alloc_valid_block_count++;
875 sbi->total_valid_node_count++;
876 sbi->total_valid_block_count++;
877 spin_unlock(&sbi->stat_lock);
878
879 return true;
880 }
881
882 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
883 struct inode *inode)
884 {
885 spin_lock(&sbi->stat_lock);
886
887 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
888 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
889 f2fs_bug_on(sbi, !inode->i_blocks);
890
891 inode->i_blocks--;
892 sbi->total_valid_node_count--;
893 sbi->total_valid_block_count--;
894
895 spin_unlock(&sbi->stat_lock);
896 }
897
898 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
899 {
900 return sbi->total_valid_node_count;
901 }
902
903 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
904 {
905 spin_lock(&sbi->stat_lock);
906 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
907 sbi->total_valid_inode_count++;
908 spin_unlock(&sbi->stat_lock);
909 }
910
911 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
912 {
913 spin_lock(&sbi->stat_lock);
914 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
915 sbi->total_valid_inode_count--;
916 spin_unlock(&sbi->stat_lock);
917 }
918
919 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
920 {
921 return sbi->total_valid_inode_count;
922 }
923
924 static inline void f2fs_put_page(struct page *page, int unlock)
925 {
926 if (!page)
927 return;
928
929 if (unlock) {
930 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
931 unlock_page(page);
932 }
933 page_cache_release(page);
934 }
935
936 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
937 {
938 if (dn->node_page)
939 f2fs_put_page(dn->node_page, 1);
940 if (dn->inode_page && dn->node_page != dn->inode_page)
941 f2fs_put_page(dn->inode_page, 0);
942 dn->node_page = NULL;
943 dn->inode_page = NULL;
944 }
945
946 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
947 size_t size)
948 {
949 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
950 }
951
952 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
953 gfp_t flags)
954 {
955 void *entry;
956 retry:
957 entry = kmem_cache_alloc(cachep, flags);
958 if (!entry) {
959 cond_resched();
960 goto retry;
961 }
962
963 return entry;
964 }
965
966 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
967
968 static inline bool IS_INODE(struct page *page)
969 {
970 struct f2fs_node *p = F2FS_NODE(page);
971 return RAW_IS_INODE(p);
972 }
973
974 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
975 {
976 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
977 }
978
979 static inline block_t datablock_addr(struct page *node_page,
980 unsigned int offset)
981 {
982 struct f2fs_node *raw_node;
983 __le32 *addr_array;
984 raw_node = F2FS_NODE(node_page);
985 addr_array = blkaddr_in_node(raw_node);
986 return le32_to_cpu(addr_array[offset]);
987 }
988
989 static inline int f2fs_test_bit(unsigned int nr, char *addr)
990 {
991 int mask;
992
993 addr += (nr >> 3);
994 mask = 1 << (7 - (nr & 0x07));
995 return mask & *addr;
996 }
997
998 static inline int f2fs_set_bit(unsigned int nr, char *addr)
999 {
1000 int mask;
1001 int ret;
1002
1003 addr += (nr >> 3);
1004 mask = 1 << (7 - (nr & 0x07));
1005 ret = mask & *addr;
1006 *addr |= mask;
1007 return ret;
1008 }
1009
1010 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
1011 {
1012 int mask;
1013 int ret;
1014
1015 addr += (nr >> 3);
1016 mask = 1 << (7 - (nr & 0x07));
1017 ret = mask & *addr;
1018 *addr &= ~mask;
1019 return ret;
1020 }
1021
1022 /* used for f2fs_inode_info->flags */
1023 enum {
1024 FI_NEW_INODE, /* indicate newly allocated inode */
1025 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1026 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1027 FI_INC_LINK, /* need to increment i_nlink */
1028 FI_ACL_MODE, /* indicate acl mode */
1029 FI_NO_ALLOC, /* should not allocate any blocks */
1030 FI_UPDATE_DIR, /* should update inode block for consistency */
1031 FI_DELAY_IPUT, /* used for the recovery */
1032 FI_NO_EXTENT, /* not to use the extent cache */
1033 FI_INLINE_XATTR, /* used for inline xattr */
1034 FI_INLINE_DATA, /* used for inline data*/
1035 FI_APPEND_WRITE, /* inode has appended data */
1036 FI_UPDATE_WRITE, /* inode has in-place-update data */
1037 FI_NEED_IPU, /* used fo ipu for fdatasync */
1038 };
1039
1040 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1041 {
1042 if (!test_bit(flag, &fi->flags))
1043 set_bit(flag, &fi->flags);
1044 }
1045
1046 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1047 {
1048 return test_bit(flag, &fi->flags);
1049 }
1050
1051 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1052 {
1053 if (test_bit(flag, &fi->flags))
1054 clear_bit(flag, &fi->flags);
1055 }
1056
1057 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1058 {
1059 fi->i_acl_mode = mode;
1060 set_inode_flag(fi, FI_ACL_MODE);
1061 }
1062
1063 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1064 {
1065 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
1066 clear_inode_flag(fi, FI_ACL_MODE);
1067 return 1;
1068 }
1069 return 0;
1070 }
1071
1072 static inline void get_inline_info(struct f2fs_inode_info *fi,
1073 struct f2fs_inode *ri)
1074 {
1075 if (ri->i_inline & F2FS_INLINE_XATTR)
1076 set_inode_flag(fi, FI_INLINE_XATTR);
1077 if (ri->i_inline & F2FS_INLINE_DATA)
1078 set_inode_flag(fi, FI_INLINE_DATA);
1079 }
1080
1081 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1082 struct f2fs_inode *ri)
1083 {
1084 ri->i_inline = 0;
1085
1086 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1087 ri->i_inline |= F2FS_INLINE_XATTR;
1088 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1089 ri->i_inline |= F2FS_INLINE_DATA;
1090 }
1091
1092 static inline int f2fs_has_inline_xattr(struct inode *inode)
1093 {
1094 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1095 }
1096
1097 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1098 {
1099 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1100 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1101 return DEF_ADDRS_PER_INODE;
1102 }
1103
1104 static inline void *inline_xattr_addr(struct page *page)
1105 {
1106 struct f2fs_inode *ri = F2FS_INODE(page);
1107 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1108 F2FS_INLINE_XATTR_ADDRS]);
1109 }
1110
1111 static inline int inline_xattr_size(struct inode *inode)
1112 {
1113 if (f2fs_has_inline_xattr(inode))
1114 return F2FS_INLINE_XATTR_ADDRS << 2;
1115 else
1116 return 0;
1117 }
1118
1119 static inline int f2fs_has_inline_data(struct inode *inode)
1120 {
1121 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1122 }
1123
1124 static inline void *inline_data_addr(struct page *page)
1125 {
1126 struct f2fs_inode *ri = F2FS_INODE(page);
1127 return (void *)&(ri->i_addr[1]);
1128 }
1129
1130 static inline int f2fs_readonly(struct super_block *sb)
1131 {
1132 return sb->s_flags & MS_RDONLY;
1133 }
1134
1135 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1136 {
1137 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1138 }
1139
1140 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1141 {
1142 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1143 sbi->sb->s_flags |= MS_RDONLY;
1144 }
1145
1146 #define get_inode_mode(i) \
1147 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1148 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1149
1150 /* get offset of first page in next direct node */
1151 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1152 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1153 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1154 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1155
1156 /*
1157 * file.c
1158 */
1159 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1160 void truncate_data_blocks(struct dnode_of_data *);
1161 int truncate_blocks(struct inode *, u64, bool);
1162 void f2fs_truncate(struct inode *);
1163 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1164 int f2fs_setattr(struct dentry *, struct iattr *);
1165 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1166 int truncate_data_blocks_range(struct dnode_of_data *, int);
1167 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1168 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1169
1170 /*
1171 * inode.c
1172 */
1173 void f2fs_set_inode_flags(struct inode *);
1174 struct inode *f2fs_iget(struct super_block *, unsigned long);
1175 int try_to_free_nats(struct f2fs_sb_info *, int);
1176 void update_inode(struct inode *, struct page *);
1177 void update_inode_page(struct inode *);
1178 int f2fs_write_inode(struct inode *, struct writeback_control *);
1179 void f2fs_evict_inode(struct inode *);
1180
1181 /*
1182 * namei.c
1183 */
1184 struct dentry *f2fs_get_parent(struct dentry *child);
1185
1186 /*
1187 * dir.c
1188 */
1189 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1190 struct page **);
1191 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1192 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1193 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1194 struct page *, struct inode *);
1195 int update_dent_inode(struct inode *, const struct qstr *);
1196 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1197 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
1198 int f2fs_do_tmpfile(struct inode *, struct inode *);
1199 int f2fs_make_empty(struct inode *, struct inode *);
1200 bool f2fs_empty_dir(struct inode *);
1201
1202 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1203 {
1204 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1205 inode);
1206 }
1207
1208 /*
1209 * super.c
1210 */
1211 int f2fs_sync_fs(struct super_block *, int);
1212 extern __printf(3, 4)
1213 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1214
1215 /*
1216 * hash.c
1217 */
1218 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1219
1220 /*
1221 * node.c
1222 */
1223 struct dnode_of_data;
1224 struct node_info;
1225
1226 bool available_free_memory(struct f2fs_sb_info *, int);
1227 int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1228 bool fsync_mark_done(struct f2fs_sb_info *, nid_t);
1229 void fsync_mark_clear(struct f2fs_sb_info *, nid_t);
1230 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1231 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1232 int truncate_inode_blocks(struct inode *, pgoff_t);
1233 int truncate_xattr_node(struct inode *, struct page *);
1234 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1235 void remove_inode_page(struct inode *);
1236 struct page *new_inode_page(struct inode *);
1237 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1238 void ra_node_page(struct f2fs_sb_info *, nid_t);
1239 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1240 struct page *get_node_page_ra(struct page *, int);
1241 void sync_inode_page(struct dnode_of_data *);
1242 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1243 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1244 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1245 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1246 void recover_inline_xattr(struct inode *, struct page *);
1247 void recover_xattr_data(struct inode *, struct page *, block_t);
1248 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1249 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1250 struct f2fs_summary_block *);
1251 void flush_nat_entries(struct f2fs_sb_info *);
1252 int build_node_manager(struct f2fs_sb_info *);
1253 void destroy_node_manager(struct f2fs_sb_info *);
1254 int __init create_node_manager_caches(void);
1255 void destroy_node_manager_caches(void);
1256
1257 /*
1258 * segment.c
1259 */
1260 void f2fs_balance_fs(struct f2fs_sb_info *);
1261 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1262 int f2fs_issue_flush(struct f2fs_sb_info *);
1263 int create_flush_cmd_control(struct f2fs_sb_info *);
1264 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1265 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1266 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1267 void clear_prefree_segments(struct f2fs_sb_info *);
1268 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1269 int npages_for_summary_flush(struct f2fs_sb_info *);
1270 void allocate_new_segments(struct f2fs_sb_info *);
1271 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1272 void write_meta_page(struct f2fs_sb_info *, struct page *);
1273 void write_node_page(struct f2fs_sb_info *, struct page *,
1274 struct f2fs_io_info *, unsigned int, block_t, block_t *);
1275 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1276 struct f2fs_io_info *);
1277 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1278 void recover_data_page(struct f2fs_sb_info *, struct page *,
1279 struct f2fs_summary *, block_t, block_t);
1280 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1281 block_t, block_t *, struct f2fs_summary *, int);
1282 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1283 void write_data_summaries(struct f2fs_sb_info *, block_t);
1284 void write_node_summaries(struct f2fs_sb_info *, block_t);
1285 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1286 int, unsigned int, int);
1287 void flush_sit_entries(struct f2fs_sb_info *);
1288 int build_segment_manager(struct f2fs_sb_info *);
1289 void destroy_segment_manager(struct f2fs_sb_info *);
1290 int __init create_segment_manager_caches(void);
1291 void destroy_segment_manager_caches(void);
1292
1293 /*
1294 * checkpoint.c
1295 */
1296 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1297 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1298 struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t);
1299 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1300 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1301 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1302 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1303 void release_dirty_inode(struct f2fs_sb_info *);
1304 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1305 int acquire_orphan_inode(struct f2fs_sb_info *);
1306 void release_orphan_inode(struct f2fs_sb_info *);
1307 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1308 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1309 void recover_orphan_inodes(struct f2fs_sb_info *);
1310 int get_valid_checkpoint(struct f2fs_sb_info *);
1311 void update_dirty_page(struct inode *, struct page *);
1312 void add_dirty_dir_inode(struct inode *);
1313 void remove_dirty_dir_inode(struct inode *);
1314 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1315 void write_checkpoint(struct f2fs_sb_info *, bool);
1316 void init_ino_entry_info(struct f2fs_sb_info *);
1317 int __init create_checkpoint_caches(void);
1318 void destroy_checkpoint_caches(void);
1319
1320 /*
1321 * data.c
1322 */
1323 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1324 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1325 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1326 struct f2fs_io_info *);
1327 int reserve_new_block(struct dnode_of_data *);
1328 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1329 void update_extent_cache(block_t, struct dnode_of_data *);
1330 struct page *find_data_page(struct inode *, pgoff_t, bool);
1331 struct page *get_lock_data_page(struct inode *, pgoff_t);
1332 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1333 int do_write_data_page(struct page *, struct f2fs_io_info *);
1334 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1335
1336 /*
1337 * gc.c
1338 */
1339 int start_gc_thread(struct f2fs_sb_info *);
1340 void stop_gc_thread(struct f2fs_sb_info *);
1341 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1342 int f2fs_gc(struct f2fs_sb_info *);
1343 void build_gc_manager(struct f2fs_sb_info *);
1344 int __init create_gc_caches(void);
1345 void destroy_gc_caches(void);
1346
1347 /*
1348 * recovery.c
1349 */
1350 int recover_fsync_data(struct f2fs_sb_info *);
1351 bool space_for_roll_forward(struct f2fs_sb_info *);
1352
1353 /*
1354 * debug.c
1355 */
1356 #ifdef CONFIG_F2FS_STAT_FS
1357 struct f2fs_stat_info {
1358 struct list_head stat_list;
1359 struct f2fs_sb_info *sbi;
1360 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1361 int main_area_segs, main_area_sections, main_area_zones;
1362 int hit_ext, total_ext;
1363 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1364 int nats, sits, fnids;
1365 int total_count, utilization;
1366 int bg_gc, inline_inode;
1367 unsigned int valid_count, valid_node_count, valid_inode_count;
1368 unsigned int bimodal, avg_vblocks;
1369 int util_free, util_valid, util_invalid;
1370 int rsvd_segs, overp_segs;
1371 int dirty_count, node_pages, meta_pages;
1372 int prefree_count, call_count, cp_count;
1373 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1374 int tot_blks, data_blks, node_blks;
1375 int curseg[NR_CURSEG_TYPE];
1376 int cursec[NR_CURSEG_TYPE];
1377 int curzone[NR_CURSEG_TYPE];
1378
1379 unsigned int segment_count[2];
1380 unsigned int block_count[2];
1381 unsigned base_mem, cache_mem;
1382 };
1383
1384 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1385 {
1386 return (struct f2fs_stat_info *)sbi->stat_info;
1387 }
1388
1389 #define stat_inc_cp_count(si) ((si)->cp_count++)
1390 #define stat_inc_call_count(si) ((si)->call_count++)
1391 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1392 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1393 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1394 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1395 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1396 #define stat_inc_inline_inode(inode) \
1397 do { \
1398 if (f2fs_has_inline_data(inode)) \
1399 ((F2FS_I_SB(inode))->inline_inode++); \
1400 } while (0)
1401 #define stat_dec_inline_inode(inode) \
1402 do { \
1403 if (f2fs_has_inline_data(inode)) \
1404 ((F2FS_I_SB(inode))->inline_inode--); \
1405 } while (0)
1406
1407 #define stat_inc_seg_type(sbi, curseg) \
1408 ((sbi)->segment_count[(curseg)->alloc_type]++)
1409 #define stat_inc_block_count(sbi, curseg) \
1410 ((sbi)->block_count[(curseg)->alloc_type]++)
1411
1412 #define stat_inc_seg_count(sbi, type) \
1413 do { \
1414 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1415 (si)->tot_segs++; \
1416 if (type == SUM_TYPE_DATA) \
1417 si->data_segs++; \
1418 else \
1419 si->node_segs++; \
1420 } while (0)
1421
1422 #define stat_inc_tot_blk_count(si, blks) \
1423 (si->tot_blks += (blks))
1424
1425 #define stat_inc_data_blk_count(sbi, blks) \
1426 do { \
1427 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1428 stat_inc_tot_blk_count(si, blks); \
1429 si->data_blks += (blks); \
1430 } while (0)
1431
1432 #define stat_inc_node_blk_count(sbi, blks) \
1433 do { \
1434 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1435 stat_inc_tot_blk_count(si, blks); \
1436 si->node_blks += (blks); \
1437 } while (0)
1438
1439 int f2fs_build_stats(struct f2fs_sb_info *);
1440 void f2fs_destroy_stats(struct f2fs_sb_info *);
1441 void __init f2fs_create_root_stats(void);
1442 void f2fs_destroy_root_stats(void);
1443 #else
1444 #define stat_inc_cp_count(si)
1445 #define stat_inc_call_count(si)
1446 #define stat_inc_bggc_count(si)
1447 #define stat_inc_dirty_dir(sbi)
1448 #define stat_dec_dirty_dir(sbi)
1449 #define stat_inc_total_hit(sb)
1450 #define stat_inc_read_hit(sb)
1451 #define stat_inc_inline_inode(inode)
1452 #define stat_dec_inline_inode(inode)
1453 #define stat_inc_seg_type(sbi, curseg)
1454 #define stat_inc_block_count(sbi, curseg)
1455 #define stat_inc_seg_count(si, type)
1456 #define stat_inc_tot_blk_count(si, blks)
1457 #define stat_inc_data_blk_count(si, blks)
1458 #define stat_inc_node_blk_count(sbi, blks)
1459
1460 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1461 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1462 static inline void __init f2fs_create_root_stats(void) { }
1463 static inline void f2fs_destroy_root_stats(void) { }
1464 #endif
1465
1466 extern const struct file_operations f2fs_dir_operations;
1467 extern const struct file_operations f2fs_file_operations;
1468 extern const struct inode_operations f2fs_file_inode_operations;
1469 extern const struct address_space_operations f2fs_dblock_aops;
1470 extern const struct address_space_operations f2fs_node_aops;
1471 extern const struct address_space_operations f2fs_meta_aops;
1472 extern const struct inode_operations f2fs_dir_inode_operations;
1473 extern const struct inode_operations f2fs_symlink_inode_operations;
1474 extern const struct inode_operations f2fs_special_inode_operations;
1475
1476 /*
1477 * inline.c
1478 */
1479 bool f2fs_may_inline(struct inode *);
1480 int f2fs_read_inline_data(struct inode *, struct page *);
1481 int f2fs_convert_inline_data(struct inode *, pgoff_t, struct page *);
1482 int f2fs_write_inline_data(struct inode *, struct page *, unsigned int);
1483 void truncate_inline_data(struct inode *, u64);
1484 bool recover_inline_data(struct inode *, struct page *);
1485 #endif
This page took 0.289407 seconds and 5 git commands to generate.