f2fs: use bio count instead of F2FS_WRITEBACK page count
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 struct f2fs_fault_info {
52 atomic_t inject_ops;
53 unsigned int inject_rate;
54 unsigned int inject_type;
55 };
56
57 extern struct f2fs_fault_info f2fs_fault;
58 extern char *fault_name[FAULT_MAX];
59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
60
61 static inline bool time_to_inject(int type)
62 {
63 if (!f2fs_fault.inject_rate)
64 return false;
65 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
66 return false;
67 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
68 return false;
69 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
70 return false;
71 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
72 return false;
73 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
74 return false;
75 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
76 return false;
77
78 atomic_inc(&f2fs_fault.inject_ops);
79 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
80 atomic_set(&f2fs_fault.inject_ops, 0);
81 printk("%sF2FS-fs : inject %s in %pF\n",
82 KERN_INFO,
83 fault_name[type],
84 __builtin_return_address(0));
85 return true;
86 }
87 return false;
88 }
89 #endif
90
91 /*
92 * For mount options
93 */
94 #define F2FS_MOUNT_BG_GC 0x00000001
95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
96 #define F2FS_MOUNT_DISCARD 0x00000004
97 #define F2FS_MOUNT_NOHEAP 0x00000008
98 #define F2FS_MOUNT_XATTR_USER 0x00000010
99 #define F2FS_MOUNT_POSIX_ACL 0x00000020
100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
101 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
102 #define F2FS_MOUNT_INLINE_DATA 0x00000100
103 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
104 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
105 #define F2FS_MOUNT_NOBARRIER 0x00000800
106 #define F2FS_MOUNT_FASTBOOT 0x00001000
107 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
108 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
109 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
110 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
111
112 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
115
116 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
117 typecheck(unsigned long long, b) && \
118 ((long long)((a) - (b)) > 0))
119
120 typedef u32 block_t; /*
121 * should not change u32, since it is the on-disk block
122 * address format, __le32.
123 */
124 typedef u32 nid_t;
125
126 struct f2fs_mount_info {
127 unsigned int opt;
128 };
129
130 #define F2FS_FEATURE_ENCRYPT 0x0001
131
132 #define F2FS_HAS_FEATURE(sb, mask) \
133 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
134 #define F2FS_SET_FEATURE(sb, mask) \
135 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
136 #define F2FS_CLEAR_FEATURE(sb, mask) \
137 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
138
139 /*
140 * For checkpoint manager
141 */
142 enum {
143 NAT_BITMAP,
144 SIT_BITMAP
145 };
146
147 enum {
148 CP_UMOUNT,
149 CP_FASTBOOT,
150 CP_SYNC,
151 CP_RECOVERY,
152 CP_DISCARD,
153 };
154
155 #define DEF_BATCHED_TRIM_SECTIONS 32
156 #define BATCHED_TRIM_SEGMENTS(sbi) \
157 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
158 #define BATCHED_TRIM_BLOCKS(sbi) \
159 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
160 #define DEF_CP_INTERVAL 60 /* 60 secs */
161 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
162
163 struct cp_control {
164 int reason;
165 __u64 trim_start;
166 __u64 trim_end;
167 __u64 trim_minlen;
168 __u64 trimmed;
169 };
170
171 /*
172 * For CP/NAT/SIT/SSA readahead
173 */
174 enum {
175 META_CP,
176 META_NAT,
177 META_SIT,
178 META_SSA,
179 META_POR,
180 };
181
182 /* for the list of ino */
183 enum {
184 ORPHAN_INO, /* for orphan ino list */
185 APPEND_INO, /* for append ino list */
186 UPDATE_INO, /* for update ino list */
187 MAX_INO_ENTRY, /* max. list */
188 };
189
190 struct ino_entry {
191 struct list_head list; /* list head */
192 nid_t ino; /* inode number */
193 };
194
195 /* for the list of inodes to be GCed */
196 struct inode_entry {
197 struct list_head list; /* list head */
198 struct inode *inode; /* vfs inode pointer */
199 };
200
201 /* for the list of blockaddresses to be discarded */
202 struct discard_entry {
203 struct list_head list; /* list head */
204 block_t blkaddr; /* block address to be discarded */
205 int len; /* # of consecutive blocks of the discard */
206 };
207
208 /* for the list of fsync inodes, used only during recovery */
209 struct fsync_inode_entry {
210 struct list_head list; /* list head */
211 struct inode *inode; /* vfs inode pointer */
212 block_t blkaddr; /* block address locating the last fsync */
213 block_t last_dentry; /* block address locating the last dentry */
214 };
215
216 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
217 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
218
219 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
220 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
221 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
222 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
223
224 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
225 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
226
227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
228 {
229 int before = nats_in_cursum(journal);
230 journal->n_nats = cpu_to_le16(before + i);
231 return before;
232 }
233
234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
235 {
236 int before = sits_in_cursum(journal);
237 journal->n_sits = cpu_to_le16(before + i);
238 return before;
239 }
240
241 static inline bool __has_cursum_space(struct f2fs_journal *journal,
242 int size, int type)
243 {
244 if (type == NAT_JOURNAL)
245 return size <= MAX_NAT_JENTRIES(journal);
246 return size <= MAX_SIT_JENTRIES(journal);
247 }
248
249 /*
250 * ioctl commands
251 */
252 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
253 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
254 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
255
256 #define F2FS_IOCTL_MAGIC 0xf5
257 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
259 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
261 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
262 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
263 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
264 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
265
266 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
267 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
269
270 /*
271 * should be same as XFS_IOC_GOINGDOWN.
272 * Flags for going down operation used by FS_IOC_GOINGDOWN
273 */
274 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
275 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
276 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
277 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
278 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
279
280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
281 /*
282 * ioctl commands in 32 bit emulation
283 */
284 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
285 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
286 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
287 #endif
288
289 struct f2fs_defragment {
290 u64 start;
291 u64 len;
292 };
293
294 /*
295 * For INODE and NODE manager
296 */
297 /* for directory operations */
298 struct f2fs_dentry_ptr {
299 struct inode *inode;
300 const void *bitmap;
301 struct f2fs_dir_entry *dentry;
302 __u8 (*filename)[F2FS_SLOT_LEN];
303 int max;
304 };
305
306 static inline void make_dentry_ptr(struct inode *inode,
307 struct f2fs_dentry_ptr *d, void *src, int type)
308 {
309 d->inode = inode;
310
311 if (type == 1) {
312 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
313 d->max = NR_DENTRY_IN_BLOCK;
314 d->bitmap = &t->dentry_bitmap;
315 d->dentry = t->dentry;
316 d->filename = t->filename;
317 } else {
318 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
319 d->max = NR_INLINE_DENTRY;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 }
324 }
325
326 /*
327 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
328 * as its node offset to distinguish from index node blocks.
329 * But some bits are used to mark the node block.
330 */
331 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
332 >> OFFSET_BIT_SHIFT)
333 enum {
334 ALLOC_NODE, /* allocate a new node page if needed */
335 LOOKUP_NODE, /* look up a node without readahead */
336 LOOKUP_NODE_RA, /*
337 * look up a node with readahead called
338 * by get_data_block.
339 */
340 };
341
342 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
343
344 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
345
346 /* vector size for gang look-up from extent cache that consists of radix tree */
347 #define EXT_TREE_VEC_SIZE 64
348
349 /* for in-memory extent cache entry */
350 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
351
352 /* number of extent info in extent cache we try to shrink */
353 #define EXTENT_CACHE_SHRINK_NUMBER 128
354
355 struct extent_info {
356 unsigned int fofs; /* start offset in a file */
357 u32 blk; /* start block address of the extent */
358 unsigned int len; /* length of the extent */
359 };
360
361 struct extent_node {
362 struct rb_node rb_node; /* rb node located in rb-tree */
363 struct list_head list; /* node in global extent list of sbi */
364 struct extent_info ei; /* extent info */
365 struct extent_tree *et; /* extent tree pointer */
366 };
367
368 struct extent_tree {
369 nid_t ino; /* inode number */
370 struct rb_root root; /* root of extent info rb-tree */
371 struct extent_node *cached_en; /* recently accessed extent node */
372 struct extent_info largest; /* largested extent info */
373 struct list_head list; /* to be used by sbi->zombie_list */
374 rwlock_t lock; /* protect extent info rb-tree */
375 atomic_t node_cnt; /* # of extent node in rb-tree*/
376 };
377
378 /*
379 * This structure is taken from ext4_map_blocks.
380 *
381 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
382 */
383 #define F2FS_MAP_NEW (1 << BH_New)
384 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
385 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
386 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
387 F2FS_MAP_UNWRITTEN)
388
389 struct f2fs_map_blocks {
390 block_t m_pblk;
391 block_t m_lblk;
392 unsigned int m_len;
393 unsigned int m_flags;
394 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
395 };
396
397 /* for flag in get_data_block */
398 #define F2FS_GET_BLOCK_READ 0
399 #define F2FS_GET_BLOCK_DIO 1
400 #define F2FS_GET_BLOCK_FIEMAP 2
401 #define F2FS_GET_BLOCK_BMAP 3
402 #define F2FS_GET_BLOCK_PRE_DIO 4
403 #define F2FS_GET_BLOCK_PRE_AIO 5
404
405 /*
406 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
407 */
408 #define FADVISE_COLD_BIT 0x01
409 #define FADVISE_LOST_PINO_BIT 0x02
410 #define FADVISE_ENCRYPT_BIT 0x04
411 #define FADVISE_ENC_NAME_BIT 0x08
412
413 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
414 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
415 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
416 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
417 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
418 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
419 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
420 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
422 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 atomic_t dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444
445 struct list_head dirty_list; /* linked in global dirty list */
446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
447 struct mutex inmem_lock; /* lock for inmemory pages */
448 struct extent_tree *extent_tree; /* cached extent_tree entry */
449 };
450
451 static inline void get_extent_info(struct extent_info *ext,
452 struct f2fs_extent *i_ext)
453 {
454 ext->fofs = le32_to_cpu(i_ext->fofs);
455 ext->blk = le32_to_cpu(i_ext->blk);
456 ext->len = le32_to_cpu(i_ext->len);
457 }
458
459 static inline void set_raw_extent(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 i_ext->fofs = cpu_to_le32(ext->fofs);
463 i_ext->blk = cpu_to_le32(ext->blk);
464 i_ext->len = cpu_to_le32(ext->len);
465 }
466
467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
468 u32 blk, unsigned int len)
469 {
470 ei->fofs = fofs;
471 ei->blk = blk;
472 ei->len = len;
473 }
474
475 static inline bool __is_extent_same(struct extent_info *ei1,
476 struct extent_info *ei2)
477 {
478 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
479 ei1->len == ei2->len);
480 }
481
482 static inline bool __is_extent_mergeable(struct extent_info *back,
483 struct extent_info *front)
484 {
485 return (back->fofs + back->len == front->fofs &&
486 back->blk + back->len == front->blk);
487 }
488
489 static inline bool __is_back_mergeable(struct extent_info *cur,
490 struct extent_info *back)
491 {
492 return __is_extent_mergeable(back, cur);
493 }
494
495 static inline bool __is_front_mergeable(struct extent_info *cur,
496 struct extent_info *front)
497 {
498 return __is_extent_mergeable(cur, front);
499 }
500
501 static inline void __try_update_largest_extent(struct extent_tree *et,
502 struct extent_node *en)
503 {
504 if (en->ei.len > et->largest.len)
505 et->largest = en->ei;
506 }
507
508 struct f2fs_nm_info {
509 block_t nat_blkaddr; /* base disk address of NAT */
510 nid_t max_nid; /* maximum possible node ids */
511 nid_t available_nids; /* maximum available node ids */
512 nid_t next_scan_nid; /* the next nid to be scanned */
513 unsigned int ram_thresh; /* control the memory footprint */
514 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
515 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
516
517 /* NAT cache management */
518 struct radix_tree_root nat_root;/* root of the nat entry cache */
519 struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
521 struct list_head nat_entries; /* cached nat entry list (clean) */
522 unsigned int nat_cnt; /* the # of cached nat entries */
523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
524
525 /* free node ids management */
526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 struct list_head free_nid_list; /* a list for free nids */
528 spinlock_t free_nid_list_lock; /* protect free nid list */
529 unsigned int fcnt; /* the number of free node id */
530 struct mutex build_lock; /* lock for build free nids */
531
532 /* for checkpoint */
533 char *nat_bitmap; /* NAT bitmap pointer */
534 int bitmap_size; /* bitmap size */
535 };
536
537 /*
538 * this structure is used as one of function parameters.
539 * all the information are dedicated to a given direct node block determined
540 * by the data offset in a file.
541 */
542 struct dnode_of_data {
543 struct inode *inode; /* vfs inode pointer */
544 struct page *inode_page; /* its inode page, NULL is possible */
545 struct page *node_page; /* cached direct node page */
546 nid_t nid; /* node id of the direct node block */
547 unsigned int ofs_in_node; /* data offset in the node page */
548 bool inode_page_locked; /* inode page is locked or not */
549 bool node_changed; /* is node block changed */
550 char cur_level; /* level of hole node page */
551 char max_level; /* level of current page located */
552 block_t data_blkaddr; /* block address of the node block */
553 };
554
555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
556 struct page *ipage, struct page *npage, nid_t nid)
557 {
558 memset(dn, 0, sizeof(*dn));
559 dn->inode = inode;
560 dn->inode_page = ipage;
561 dn->node_page = npage;
562 dn->nid = nid;
563 }
564
565 /*
566 * For SIT manager
567 *
568 * By default, there are 6 active log areas across the whole main area.
569 * When considering hot and cold data separation to reduce cleaning overhead,
570 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
571 * respectively.
572 * In the current design, you should not change the numbers intentionally.
573 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
574 * logs individually according to the underlying devices. (default: 6)
575 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
576 * data and 8 for node logs.
577 */
578 #define NR_CURSEG_DATA_TYPE (3)
579 #define NR_CURSEG_NODE_TYPE (3)
580 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
581
582 enum {
583 CURSEG_HOT_DATA = 0, /* directory entry blocks */
584 CURSEG_WARM_DATA, /* data blocks */
585 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
586 CURSEG_HOT_NODE, /* direct node blocks of directory files */
587 CURSEG_WARM_NODE, /* direct node blocks of normal files */
588 CURSEG_COLD_NODE, /* indirect node blocks */
589 NO_CHECK_TYPE,
590 CURSEG_DIRECT_IO, /* to use for the direct IO path */
591 };
592
593 struct flush_cmd {
594 struct completion wait;
595 struct llist_node llnode;
596 int ret;
597 };
598
599 struct flush_cmd_control {
600 struct task_struct *f2fs_issue_flush; /* flush thread */
601 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
602 struct llist_head issue_list; /* list for command issue */
603 struct llist_node *dispatch_list; /* list for command dispatch */
604 };
605
606 struct f2fs_sm_info {
607 struct sit_info *sit_info; /* whole segment information */
608 struct free_segmap_info *free_info; /* free segment information */
609 struct dirty_seglist_info *dirty_info; /* dirty segment information */
610 struct curseg_info *curseg_array; /* active segment information */
611
612 block_t seg0_blkaddr; /* block address of 0'th segment */
613 block_t main_blkaddr; /* start block address of main area */
614 block_t ssa_blkaddr; /* start block address of SSA area */
615
616 unsigned int segment_count; /* total # of segments */
617 unsigned int main_segments; /* # of segments in main area */
618 unsigned int reserved_segments; /* # of reserved segments */
619 unsigned int ovp_segments; /* # of overprovision segments */
620
621 /* a threshold to reclaim prefree segments */
622 unsigned int rec_prefree_segments;
623
624 /* for small discard management */
625 struct list_head discard_list; /* 4KB discard list */
626 int nr_discards; /* # of discards in the list */
627 int max_discards; /* max. discards to be issued */
628
629 /* for batched trimming */
630 unsigned int trim_sections; /* # of sections to trim */
631
632 struct list_head sit_entry_set; /* sit entry set list */
633
634 unsigned int ipu_policy; /* in-place-update policy */
635 unsigned int min_ipu_util; /* in-place-update threshold */
636 unsigned int min_fsync_blocks; /* threshold for fsync */
637
638 /* for flush command control */
639 struct flush_cmd_control *cmd_control_info;
640
641 };
642
643 /*
644 * For superblock
645 */
646 /*
647 * COUNT_TYPE for monitoring
648 *
649 * f2fs monitors the number of several block types such as on-writeback,
650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651 */
652 enum count_type {
653 F2FS_DIRTY_DENTS,
654 F2FS_DIRTY_DATA,
655 F2FS_DIRTY_NODES,
656 F2FS_DIRTY_META,
657 F2FS_INMEM_PAGES,
658 NR_COUNT_TYPE,
659 };
660
661 /*
662 * The below are the page types of bios used in submit_bio().
663 * The available types are:
664 * DATA User data pages. It operates as async mode.
665 * NODE Node pages. It operates as async mode.
666 * META FS metadata pages such as SIT, NAT, CP.
667 * NR_PAGE_TYPE The number of page types.
668 * META_FLUSH Make sure the previous pages are written
669 * with waiting the bio's completion
670 * ... Only can be used with META.
671 */
672 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
673 enum page_type {
674 DATA,
675 NODE,
676 META,
677 NR_PAGE_TYPE,
678 META_FLUSH,
679 INMEM, /* the below types are used by tracepoints only. */
680 INMEM_DROP,
681 INMEM_REVOKE,
682 IPU,
683 OPU,
684 };
685
686 struct f2fs_io_info {
687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
689 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
690 block_t new_blkaddr; /* new block address to be written */
691 block_t old_blkaddr; /* old block address before Cow */
692 struct page *page; /* page to be written */
693 struct page *encrypted_page; /* encrypted page */
694 };
695
696 #define is_read_io(rw) (((rw) & 1) == READ)
697 struct f2fs_bio_info {
698 struct f2fs_sb_info *sbi; /* f2fs superblock */
699 struct bio *bio; /* bios to merge */
700 sector_t last_block_in_bio; /* last block number */
701 struct f2fs_io_info fio; /* store buffered io info. */
702 struct rw_semaphore io_rwsem; /* blocking op for bio */
703 };
704
705 enum inode_type {
706 DIR_INODE, /* for dirty dir inode */
707 FILE_INODE, /* for dirty regular/symlink inode */
708 NR_INODE_TYPE,
709 };
710
711 /* for inner inode cache management */
712 struct inode_management {
713 struct radix_tree_root ino_root; /* ino entry array */
714 spinlock_t ino_lock; /* for ino entry lock */
715 struct list_head ino_list; /* inode list head */
716 unsigned long ino_num; /* number of entries */
717 };
718
719 /* For s_flag in struct f2fs_sb_info */
720 enum {
721 SBI_IS_DIRTY, /* dirty flag for checkpoint */
722 SBI_IS_CLOSE, /* specify unmounting */
723 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
724 SBI_POR_DOING, /* recovery is doing or not */
725 SBI_NEED_SB_WRITE, /* need to recover superblock */
726 };
727
728 enum {
729 CP_TIME,
730 REQ_TIME,
731 MAX_TIME,
732 };
733
734 #ifdef CONFIG_F2FS_FS_ENCRYPTION
735 #define F2FS_KEY_DESC_PREFIX "f2fs:"
736 #define F2FS_KEY_DESC_PREFIX_SIZE 5
737 #endif
738 struct f2fs_sb_info {
739 struct super_block *sb; /* pointer to VFS super block */
740 struct proc_dir_entry *s_proc; /* proc entry */
741 struct f2fs_super_block *raw_super; /* raw super block pointer */
742 int valid_super_block; /* valid super block no */
743 int s_flag; /* flags for sbi */
744
745 #ifdef CONFIG_F2FS_FS_ENCRYPTION
746 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
747 u8 key_prefix_size;
748 #endif
749 /* for node-related operations */
750 struct f2fs_nm_info *nm_info; /* node manager */
751 struct inode *node_inode; /* cache node blocks */
752
753 /* for segment-related operations */
754 struct f2fs_sm_info *sm_info; /* segment manager */
755
756 /* for bio operations */
757 struct f2fs_bio_info read_io; /* for read bios */
758 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
759
760 /* for checkpoint */
761 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
762 struct inode *meta_inode; /* cache meta blocks */
763 struct mutex cp_mutex; /* checkpoint procedure lock */
764 struct rw_semaphore cp_rwsem; /* blocking FS operations */
765 struct rw_semaphore node_write; /* locking node writes */
766 struct mutex writepages; /* mutex for writepages() */
767 wait_queue_head_t cp_wait;
768 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
769 long interval_time[MAX_TIME]; /* to store thresholds */
770
771 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
772
773 /* for orphan inode, use 0'th array */
774 unsigned int max_orphans; /* max orphan inodes */
775
776 /* for inode management */
777 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
778 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
779
780 /* for extent tree cache */
781 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
782 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
783 struct list_head extent_list; /* lru list for shrinker */
784 spinlock_t extent_lock; /* locking extent lru list */
785 atomic_t total_ext_tree; /* extent tree count */
786 struct list_head zombie_list; /* extent zombie tree list */
787 atomic_t total_zombie_tree; /* extent zombie tree count */
788 atomic_t total_ext_node; /* extent info count */
789
790 /* basic filesystem units */
791 unsigned int log_sectors_per_block; /* log2 sectors per block */
792 unsigned int log_blocksize; /* log2 block size */
793 unsigned int blocksize; /* block size */
794 unsigned int root_ino_num; /* root inode number*/
795 unsigned int node_ino_num; /* node inode number*/
796 unsigned int meta_ino_num; /* meta inode number*/
797 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
798 unsigned int blocks_per_seg; /* blocks per segment */
799 unsigned int segs_per_sec; /* segments per section */
800 unsigned int secs_per_zone; /* sections per zone */
801 unsigned int total_sections; /* total section count */
802 unsigned int total_node_count; /* total node block count */
803 unsigned int total_valid_node_count; /* valid node block count */
804 unsigned int total_valid_inode_count; /* valid inode count */
805 loff_t max_file_blocks; /* max block index of file */
806 int active_logs; /* # of active logs */
807 int dir_level; /* directory level */
808
809 block_t user_block_count; /* # of user blocks */
810 block_t total_valid_block_count; /* # of valid blocks */
811 block_t alloc_valid_block_count; /* # of allocated blocks */
812 block_t discard_blks; /* discard command candidats */
813 block_t last_valid_block_count; /* for recovery */
814 u32 s_next_generation; /* for NFS support */
815 atomic_t nr_wb_bios; /* # of writeback bios */
816 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
817
818 struct f2fs_mount_info mount_opt; /* mount options */
819
820 /* for cleaning operations */
821 struct mutex gc_mutex; /* mutex for GC */
822 struct f2fs_gc_kthread *gc_thread; /* GC thread */
823 unsigned int cur_victim_sec; /* current victim section num */
824
825 /* maximum # of trials to find a victim segment for SSR and GC */
826 unsigned int max_victim_search;
827
828 /*
829 * for stat information.
830 * one is for the LFS mode, and the other is for the SSR mode.
831 */
832 #ifdef CONFIG_F2FS_STAT_FS
833 struct f2fs_stat_info *stat_info; /* FS status information */
834 unsigned int segment_count[2]; /* # of allocated segments */
835 unsigned int block_count[2]; /* # of allocated blocks */
836 atomic_t inplace_count; /* # of inplace update */
837 atomic64_t total_hit_ext; /* # of lookup extent cache */
838 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
839 atomic64_t read_hit_largest; /* # of hit largest extent node */
840 atomic64_t read_hit_cached; /* # of hit cached extent node */
841 atomic_t inline_xattr; /* # of inline_xattr inodes */
842 atomic_t inline_inode; /* # of inline_data inodes */
843 atomic_t inline_dir; /* # of inline_dentry inodes */
844 int bg_gc; /* background gc calls */
845 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
846 #endif
847 unsigned int last_victim[2]; /* last victim segment # */
848 spinlock_t stat_lock; /* lock for stat operations */
849
850 /* For sysfs suppport */
851 struct kobject s_kobj;
852 struct completion s_kobj_unregister;
853
854 /* For shrinker support */
855 struct list_head s_list;
856 struct mutex umount_mutex;
857 unsigned int shrinker_run_no;
858
859 /* For write statistics */
860 u64 sectors_written_start;
861 u64 kbytes_written;
862
863 /* Reference to checksum algorithm driver via cryptoapi */
864 struct crypto_shash *s_chksum_driver;
865 };
866
867 /* For write statistics. Suppose sector size is 512 bytes,
868 * and the return value is in kbytes. s is of struct f2fs_sb_info.
869 */
870 #define BD_PART_WRITTEN(s) \
871 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
872 s->sectors_written_start) >> 1)
873
874 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
875 {
876 sbi->last_time[type] = jiffies;
877 }
878
879 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
880 {
881 struct timespec ts = {sbi->interval_time[type], 0};
882 unsigned long interval = timespec_to_jiffies(&ts);
883
884 return time_after(jiffies, sbi->last_time[type] + interval);
885 }
886
887 static inline bool is_idle(struct f2fs_sb_info *sbi)
888 {
889 struct block_device *bdev = sbi->sb->s_bdev;
890 struct request_queue *q = bdev_get_queue(bdev);
891 struct request_list *rl = &q->root_rl;
892
893 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
894 return 0;
895
896 return f2fs_time_over(sbi, REQ_TIME);
897 }
898
899 /*
900 * Inline functions
901 */
902 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
903 unsigned int length)
904 {
905 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
906 u32 *ctx = (u32 *)shash_desc_ctx(shash);
907 int err;
908
909 shash->tfm = sbi->s_chksum_driver;
910 shash->flags = 0;
911 *ctx = F2FS_SUPER_MAGIC;
912
913 err = crypto_shash_update(shash, address, length);
914 BUG_ON(err);
915
916 return *ctx;
917 }
918
919 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
920 void *buf, size_t buf_size)
921 {
922 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
923 }
924
925 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
926 {
927 return container_of(inode, struct f2fs_inode_info, vfs_inode);
928 }
929
930 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
931 {
932 return sb->s_fs_info;
933 }
934
935 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
936 {
937 return F2FS_SB(inode->i_sb);
938 }
939
940 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
941 {
942 return F2FS_I_SB(mapping->host);
943 }
944
945 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
946 {
947 return F2FS_M_SB(page->mapping);
948 }
949
950 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
951 {
952 return (struct f2fs_super_block *)(sbi->raw_super);
953 }
954
955 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
956 {
957 return (struct f2fs_checkpoint *)(sbi->ckpt);
958 }
959
960 static inline struct f2fs_node *F2FS_NODE(struct page *page)
961 {
962 return (struct f2fs_node *)page_address(page);
963 }
964
965 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
966 {
967 return &((struct f2fs_node *)page_address(page))->i;
968 }
969
970 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
971 {
972 return (struct f2fs_nm_info *)(sbi->nm_info);
973 }
974
975 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
976 {
977 return (struct f2fs_sm_info *)(sbi->sm_info);
978 }
979
980 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
981 {
982 return (struct sit_info *)(SM_I(sbi)->sit_info);
983 }
984
985 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
986 {
987 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
988 }
989
990 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
991 {
992 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
993 }
994
995 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
996 {
997 return sbi->meta_inode->i_mapping;
998 }
999
1000 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1001 {
1002 return sbi->node_inode->i_mapping;
1003 }
1004
1005 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1006 {
1007 return sbi->s_flag & (0x01 << type);
1008 }
1009
1010 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1011 {
1012 sbi->s_flag |= (0x01 << type);
1013 }
1014
1015 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1016 {
1017 sbi->s_flag &= ~(0x01 << type);
1018 }
1019
1020 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1021 {
1022 return le64_to_cpu(cp->checkpoint_ver);
1023 }
1024
1025 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1026 {
1027 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1028 return ckpt_flags & f;
1029 }
1030
1031 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1032 {
1033 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1034 ckpt_flags |= f;
1035 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1036 }
1037
1038 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1039 {
1040 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1041 ckpt_flags &= (~f);
1042 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1043 }
1044
1045 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1046 {
1047 down_read(&sbi->cp_rwsem);
1048 }
1049
1050 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1051 {
1052 up_read(&sbi->cp_rwsem);
1053 }
1054
1055 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1056 {
1057 down_write(&sbi->cp_rwsem);
1058 }
1059
1060 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1061 {
1062 up_write(&sbi->cp_rwsem);
1063 }
1064
1065 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1066 {
1067 int reason = CP_SYNC;
1068
1069 if (test_opt(sbi, FASTBOOT))
1070 reason = CP_FASTBOOT;
1071 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1072 reason = CP_UMOUNT;
1073 return reason;
1074 }
1075
1076 static inline bool __remain_node_summaries(int reason)
1077 {
1078 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1079 }
1080
1081 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1082 {
1083 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1084 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1085 }
1086
1087 /*
1088 * Check whether the given nid is within node id range.
1089 */
1090 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1091 {
1092 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1093 return -EINVAL;
1094 if (unlikely(nid >= NM_I(sbi)->max_nid))
1095 return -EINVAL;
1096 return 0;
1097 }
1098
1099 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1100
1101 /*
1102 * Check whether the inode has blocks or not
1103 */
1104 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1105 {
1106 if (F2FS_I(inode)->i_xattr_nid)
1107 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1108 else
1109 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1110 }
1111
1112 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1113 {
1114 return ofs == XATTR_NODE_OFFSET;
1115 }
1116
1117 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1118 struct inode *inode, blkcnt_t *count)
1119 {
1120 block_t valid_block_count;
1121
1122 spin_lock(&sbi->stat_lock);
1123 #ifdef CONFIG_F2FS_FAULT_INJECTION
1124 if (time_to_inject(FAULT_BLOCK)) {
1125 spin_unlock(&sbi->stat_lock);
1126 return false;
1127 }
1128 #endif
1129 valid_block_count =
1130 sbi->total_valid_block_count + (block_t)(*count);
1131 if (unlikely(valid_block_count > sbi->user_block_count)) {
1132 *count = sbi->user_block_count - sbi->total_valid_block_count;
1133 if (!*count) {
1134 spin_unlock(&sbi->stat_lock);
1135 return false;
1136 }
1137 }
1138 /* *count can be recalculated */
1139 inode->i_blocks += *count;
1140 sbi->total_valid_block_count =
1141 sbi->total_valid_block_count + (block_t)(*count);
1142 sbi->alloc_valid_block_count += (block_t)(*count);
1143 spin_unlock(&sbi->stat_lock);
1144 return true;
1145 }
1146
1147 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1148 struct inode *inode,
1149 blkcnt_t count)
1150 {
1151 spin_lock(&sbi->stat_lock);
1152 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1153 f2fs_bug_on(sbi, inode->i_blocks < count);
1154 inode->i_blocks -= count;
1155 sbi->total_valid_block_count -= (block_t)count;
1156 spin_unlock(&sbi->stat_lock);
1157 }
1158
1159 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1160 {
1161 atomic_inc(&sbi->nr_pages[count_type]);
1162 set_sbi_flag(sbi, SBI_IS_DIRTY);
1163 }
1164
1165 static inline void inode_inc_dirty_pages(struct inode *inode)
1166 {
1167 atomic_inc(&F2FS_I(inode)->dirty_pages);
1168 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1169 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1170 }
1171
1172 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1173 {
1174 atomic_dec(&sbi->nr_pages[count_type]);
1175 }
1176
1177 static inline void inode_dec_dirty_pages(struct inode *inode)
1178 {
1179 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1180 !S_ISLNK(inode->i_mode))
1181 return;
1182
1183 atomic_dec(&F2FS_I(inode)->dirty_pages);
1184 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1185 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1186 }
1187
1188 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1189 {
1190 return atomic_read(&sbi->nr_pages[count_type]);
1191 }
1192
1193 static inline int get_dirty_pages(struct inode *inode)
1194 {
1195 return atomic_read(&F2FS_I(inode)->dirty_pages);
1196 }
1197
1198 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1199 {
1200 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1201 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1202 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1203 }
1204
1205 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1206 {
1207 return sbi->total_valid_block_count;
1208 }
1209
1210 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1211 {
1212 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1213
1214 /* return NAT or SIT bitmap */
1215 if (flag == NAT_BITMAP)
1216 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1217 else if (flag == SIT_BITMAP)
1218 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1219
1220 return 0;
1221 }
1222
1223 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1224 {
1225 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1226 }
1227
1228 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1229 {
1230 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1231 int offset;
1232
1233 if (__cp_payload(sbi) > 0) {
1234 if (flag == NAT_BITMAP)
1235 return &ckpt->sit_nat_version_bitmap;
1236 else
1237 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1238 } else {
1239 offset = (flag == NAT_BITMAP) ?
1240 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1241 return &ckpt->sit_nat_version_bitmap + offset;
1242 }
1243 }
1244
1245 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1246 {
1247 block_t start_addr;
1248 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1249 unsigned long long ckpt_version = cur_cp_version(ckpt);
1250
1251 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1252
1253 /*
1254 * odd numbered checkpoint should at cp segment 0
1255 * and even segment must be at cp segment 1
1256 */
1257 if (!(ckpt_version & 1))
1258 start_addr += sbi->blocks_per_seg;
1259
1260 return start_addr;
1261 }
1262
1263 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1264 {
1265 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1266 }
1267
1268 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1269 struct inode *inode)
1270 {
1271 block_t valid_block_count;
1272 unsigned int valid_node_count;
1273
1274 spin_lock(&sbi->stat_lock);
1275
1276 valid_block_count = sbi->total_valid_block_count + 1;
1277 if (unlikely(valid_block_count > sbi->user_block_count)) {
1278 spin_unlock(&sbi->stat_lock);
1279 return false;
1280 }
1281
1282 valid_node_count = sbi->total_valid_node_count + 1;
1283 if (unlikely(valid_node_count > sbi->total_node_count)) {
1284 spin_unlock(&sbi->stat_lock);
1285 return false;
1286 }
1287
1288 if (inode)
1289 inode->i_blocks++;
1290
1291 sbi->alloc_valid_block_count++;
1292 sbi->total_valid_node_count++;
1293 sbi->total_valid_block_count++;
1294 spin_unlock(&sbi->stat_lock);
1295
1296 return true;
1297 }
1298
1299 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1300 struct inode *inode)
1301 {
1302 spin_lock(&sbi->stat_lock);
1303
1304 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1305 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1306 f2fs_bug_on(sbi, !inode->i_blocks);
1307
1308 inode->i_blocks--;
1309 sbi->total_valid_node_count--;
1310 sbi->total_valid_block_count--;
1311
1312 spin_unlock(&sbi->stat_lock);
1313 }
1314
1315 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1316 {
1317 return sbi->total_valid_node_count;
1318 }
1319
1320 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1321 {
1322 spin_lock(&sbi->stat_lock);
1323 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1324 sbi->total_valid_inode_count++;
1325 spin_unlock(&sbi->stat_lock);
1326 }
1327
1328 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1329 {
1330 spin_lock(&sbi->stat_lock);
1331 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1332 sbi->total_valid_inode_count--;
1333 spin_unlock(&sbi->stat_lock);
1334 }
1335
1336 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1337 {
1338 return sbi->total_valid_inode_count;
1339 }
1340
1341 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1342 pgoff_t index, bool for_write)
1343 {
1344 #ifdef CONFIG_F2FS_FAULT_INJECTION
1345 struct page *page = find_lock_page(mapping, index);
1346 if (page)
1347 return page;
1348
1349 if (time_to_inject(FAULT_PAGE_ALLOC))
1350 return NULL;
1351 #endif
1352 if (!for_write)
1353 return grab_cache_page(mapping, index);
1354 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1355 }
1356
1357 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1358 {
1359 char *src_kaddr = kmap(src);
1360 char *dst_kaddr = kmap(dst);
1361
1362 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1363 kunmap(dst);
1364 kunmap(src);
1365 }
1366
1367 static inline void f2fs_put_page(struct page *page, int unlock)
1368 {
1369 if (!page)
1370 return;
1371
1372 if (unlock) {
1373 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1374 unlock_page(page);
1375 }
1376 put_page(page);
1377 }
1378
1379 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1380 {
1381 if (dn->node_page)
1382 f2fs_put_page(dn->node_page, 1);
1383 if (dn->inode_page && dn->node_page != dn->inode_page)
1384 f2fs_put_page(dn->inode_page, 0);
1385 dn->node_page = NULL;
1386 dn->inode_page = NULL;
1387 }
1388
1389 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1390 size_t size)
1391 {
1392 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1393 }
1394
1395 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1396 gfp_t flags)
1397 {
1398 void *entry;
1399
1400 entry = kmem_cache_alloc(cachep, flags);
1401 if (!entry)
1402 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1403 return entry;
1404 }
1405
1406 static inline struct bio *f2fs_bio_alloc(int npages)
1407 {
1408 struct bio *bio;
1409
1410 /* No failure on bio allocation */
1411 bio = bio_alloc(GFP_NOIO, npages);
1412 if (!bio)
1413 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1414 return bio;
1415 }
1416
1417 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1418 unsigned long index, void *item)
1419 {
1420 while (radix_tree_insert(root, index, item))
1421 cond_resched();
1422 }
1423
1424 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1425
1426 static inline bool IS_INODE(struct page *page)
1427 {
1428 struct f2fs_node *p = F2FS_NODE(page);
1429 return RAW_IS_INODE(p);
1430 }
1431
1432 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1433 {
1434 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1435 }
1436
1437 static inline block_t datablock_addr(struct page *node_page,
1438 unsigned int offset)
1439 {
1440 struct f2fs_node *raw_node;
1441 __le32 *addr_array;
1442 raw_node = F2FS_NODE(node_page);
1443 addr_array = blkaddr_in_node(raw_node);
1444 return le32_to_cpu(addr_array[offset]);
1445 }
1446
1447 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1448 {
1449 int mask;
1450
1451 addr += (nr >> 3);
1452 mask = 1 << (7 - (nr & 0x07));
1453 return mask & *addr;
1454 }
1455
1456 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1457 {
1458 int mask;
1459
1460 addr += (nr >> 3);
1461 mask = 1 << (7 - (nr & 0x07));
1462 *addr |= mask;
1463 }
1464
1465 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1466 {
1467 int mask;
1468
1469 addr += (nr >> 3);
1470 mask = 1 << (7 - (nr & 0x07));
1471 *addr &= ~mask;
1472 }
1473
1474 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1475 {
1476 int mask;
1477 int ret;
1478
1479 addr += (nr >> 3);
1480 mask = 1 << (7 - (nr & 0x07));
1481 ret = mask & *addr;
1482 *addr |= mask;
1483 return ret;
1484 }
1485
1486 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1487 {
1488 int mask;
1489 int ret;
1490
1491 addr += (nr >> 3);
1492 mask = 1 << (7 - (nr & 0x07));
1493 ret = mask & *addr;
1494 *addr &= ~mask;
1495 return ret;
1496 }
1497
1498 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1499 {
1500 int mask;
1501
1502 addr += (nr >> 3);
1503 mask = 1 << (7 - (nr & 0x07));
1504 *addr ^= mask;
1505 }
1506
1507 /* used for f2fs_inode_info->flags */
1508 enum {
1509 FI_NEW_INODE, /* indicate newly allocated inode */
1510 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1511 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1512 FI_INC_LINK, /* need to increment i_nlink */
1513 FI_ACL_MODE, /* indicate acl mode */
1514 FI_NO_ALLOC, /* should not allocate any blocks */
1515 FI_FREE_NID, /* free allocated nide */
1516 FI_UPDATE_DIR, /* should update inode block for consistency */
1517 FI_NO_EXTENT, /* not to use the extent cache */
1518 FI_INLINE_XATTR, /* used for inline xattr */
1519 FI_INLINE_DATA, /* used for inline data*/
1520 FI_INLINE_DENTRY, /* used for inline dentry */
1521 FI_APPEND_WRITE, /* inode has appended data */
1522 FI_UPDATE_WRITE, /* inode has in-place-update data */
1523 FI_NEED_IPU, /* used for ipu per file */
1524 FI_ATOMIC_FILE, /* indicate atomic file */
1525 FI_VOLATILE_FILE, /* indicate volatile file */
1526 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1527 FI_DROP_CACHE, /* drop dirty page cache */
1528 FI_DATA_EXIST, /* indicate data exists */
1529 FI_INLINE_DOTS, /* indicate inline dot dentries */
1530 FI_DO_DEFRAG, /* indicate defragment is running */
1531 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1532 };
1533
1534 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1535 {
1536 if (!test_bit(flag, &fi->flags))
1537 set_bit(flag, &fi->flags);
1538 }
1539
1540 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1541 {
1542 return test_bit(flag, &fi->flags);
1543 }
1544
1545 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1546 {
1547 if (test_bit(flag, &fi->flags))
1548 clear_bit(flag, &fi->flags);
1549 }
1550
1551 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1552 {
1553 fi->i_acl_mode = mode;
1554 set_inode_flag(fi, FI_ACL_MODE);
1555 }
1556
1557 static inline void get_inline_info(struct f2fs_inode_info *fi,
1558 struct f2fs_inode *ri)
1559 {
1560 if (ri->i_inline & F2FS_INLINE_XATTR)
1561 set_inode_flag(fi, FI_INLINE_XATTR);
1562 if (ri->i_inline & F2FS_INLINE_DATA)
1563 set_inode_flag(fi, FI_INLINE_DATA);
1564 if (ri->i_inline & F2FS_INLINE_DENTRY)
1565 set_inode_flag(fi, FI_INLINE_DENTRY);
1566 if (ri->i_inline & F2FS_DATA_EXIST)
1567 set_inode_flag(fi, FI_DATA_EXIST);
1568 if (ri->i_inline & F2FS_INLINE_DOTS)
1569 set_inode_flag(fi, FI_INLINE_DOTS);
1570 }
1571
1572 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1573 struct f2fs_inode *ri)
1574 {
1575 ri->i_inline = 0;
1576
1577 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1578 ri->i_inline |= F2FS_INLINE_XATTR;
1579 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1580 ri->i_inline |= F2FS_INLINE_DATA;
1581 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1582 ri->i_inline |= F2FS_INLINE_DENTRY;
1583 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1584 ri->i_inline |= F2FS_DATA_EXIST;
1585 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1586 ri->i_inline |= F2FS_INLINE_DOTS;
1587 }
1588
1589 static inline int f2fs_has_inline_xattr(struct inode *inode)
1590 {
1591 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1592 }
1593
1594 static inline unsigned int addrs_per_inode(struct inode *inode)
1595 {
1596 if (f2fs_has_inline_xattr(inode))
1597 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1598 return DEF_ADDRS_PER_INODE;
1599 }
1600
1601 static inline void *inline_xattr_addr(struct page *page)
1602 {
1603 struct f2fs_inode *ri = F2FS_INODE(page);
1604 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1605 F2FS_INLINE_XATTR_ADDRS]);
1606 }
1607
1608 static inline int inline_xattr_size(struct inode *inode)
1609 {
1610 if (f2fs_has_inline_xattr(inode))
1611 return F2FS_INLINE_XATTR_ADDRS << 2;
1612 else
1613 return 0;
1614 }
1615
1616 static inline int f2fs_has_inline_data(struct inode *inode)
1617 {
1618 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1619 }
1620
1621 static inline void f2fs_clear_inline_inode(struct inode *inode)
1622 {
1623 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1624 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1625 }
1626
1627 static inline int f2fs_exist_data(struct inode *inode)
1628 {
1629 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1630 }
1631
1632 static inline int f2fs_has_inline_dots(struct inode *inode)
1633 {
1634 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1635 }
1636
1637 static inline bool f2fs_is_atomic_file(struct inode *inode)
1638 {
1639 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1640 }
1641
1642 static inline bool f2fs_is_volatile_file(struct inode *inode)
1643 {
1644 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1645 }
1646
1647 static inline bool f2fs_is_first_block_written(struct inode *inode)
1648 {
1649 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1650 }
1651
1652 static inline bool f2fs_is_drop_cache(struct inode *inode)
1653 {
1654 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1655 }
1656
1657 static inline void *inline_data_addr(struct page *page)
1658 {
1659 struct f2fs_inode *ri = F2FS_INODE(page);
1660 return (void *)&(ri->i_addr[1]);
1661 }
1662
1663 static inline int f2fs_has_inline_dentry(struct inode *inode)
1664 {
1665 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1666 }
1667
1668 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1669 {
1670 if (!f2fs_has_inline_dentry(dir))
1671 kunmap(page);
1672 }
1673
1674 static inline int is_file(struct inode *inode, int type)
1675 {
1676 return F2FS_I(inode)->i_advise & type;
1677 }
1678
1679 static inline void set_file(struct inode *inode, int type)
1680 {
1681 F2FS_I(inode)->i_advise |= type;
1682 }
1683
1684 static inline void clear_file(struct inode *inode, int type)
1685 {
1686 F2FS_I(inode)->i_advise &= ~type;
1687 }
1688
1689 static inline int f2fs_readonly(struct super_block *sb)
1690 {
1691 return sb->s_flags & MS_RDONLY;
1692 }
1693
1694 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1695 {
1696 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1697 }
1698
1699 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1700 {
1701 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1702 sbi->sb->s_flags |= MS_RDONLY;
1703 }
1704
1705 static inline bool is_dot_dotdot(const struct qstr *str)
1706 {
1707 if (str->len == 1 && str->name[0] == '.')
1708 return true;
1709
1710 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1711 return true;
1712
1713 return false;
1714 }
1715
1716 static inline bool f2fs_may_extent_tree(struct inode *inode)
1717 {
1718 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1719 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1720 return false;
1721
1722 return S_ISREG(inode->i_mode);
1723 }
1724
1725 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1726 {
1727 #ifdef CONFIG_F2FS_FAULT_INJECTION
1728 if (time_to_inject(FAULT_KMALLOC))
1729 return NULL;
1730 #endif
1731 return kmalloc(size, flags);
1732 }
1733
1734 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1735 {
1736 void *ret;
1737
1738 ret = kmalloc(size, flags | __GFP_NOWARN);
1739 if (!ret)
1740 ret = __vmalloc(size, flags, PAGE_KERNEL);
1741 return ret;
1742 }
1743
1744 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1745 {
1746 void *ret;
1747
1748 ret = kzalloc(size, flags | __GFP_NOWARN);
1749 if (!ret)
1750 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1751 return ret;
1752 }
1753
1754 #define get_inode_mode(i) \
1755 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1756 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1757
1758 /* get offset of first page in next direct node */
1759 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1760 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1761 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1762 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1763
1764 /*
1765 * file.c
1766 */
1767 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1768 void truncate_data_blocks(struct dnode_of_data *);
1769 int truncate_blocks(struct inode *, u64, bool);
1770 int f2fs_truncate(struct inode *, bool);
1771 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1772 int f2fs_setattr(struct dentry *, struct iattr *);
1773 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1774 int truncate_data_blocks_range(struct dnode_of_data *, int);
1775 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1776 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1777
1778 /*
1779 * inode.c
1780 */
1781 void f2fs_set_inode_flags(struct inode *);
1782 struct inode *f2fs_iget(struct super_block *, unsigned long);
1783 int try_to_free_nats(struct f2fs_sb_info *, int);
1784 int update_inode(struct inode *, struct page *);
1785 int update_inode_page(struct inode *);
1786 int f2fs_write_inode(struct inode *, struct writeback_control *);
1787 void f2fs_evict_inode(struct inode *);
1788 void handle_failed_inode(struct inode *);
1789
1790 /*
1791 * namei.c
1792 */
1793 struct dentry *f2fs_get_parent(struct dentry *child);
1794
1795 /*
1796 * dir.c
1797 */
1798 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1799 void set_de_type(struct f2fs_dir_entry *, umode_t);
1800 unsigned char get_de_type(struct f2fs_dir_entry *);
1801 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1802 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1803 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1804 unsigned int, struct fscrypt_str *);
1805 void do_make_empty_dir(struct inode *, struct inode *,
1806 struct f2fs_dentry_ptr *);
1807 struct page *init_inode_metadata(struct inode *, struct inode *,
1808 const struct qstr *, struct page *);
1809 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1810 int room_for_filename(const void *, int, int);
1811 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1812 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1813 struct page **);
1814 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1815 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1816 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1817 struct page *, struct inode *);
1818 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1819 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1820 const struct qstr *, f2fs_hash_t , unsigned int);
1821 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1822 struct inode *, nid_t, umode_t);
1823 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1824 umode_t);
1825 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1826 struct inode *);
1827 int f2fs_do_tmpfile(struct inode *, struct inode *);
1828 bool f2fs_empty_dir(struct inode *);
1829
1830 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1831 {
1832 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1833 inode, inode->i_ino, inode->i_mode);
1834 }
1835
1836 /*
1837 * super.c
1838 */
1839 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1840 int f2fs_sync_fs(struct super_block *, int);
1841 extern __printf(3, 4)
1842 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1843 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1844
1845 /*
1846 * hash.c
1847 */
1848 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1849
1850 /*
1851 * node.c
1852 */
1853 struct dnode_of_data;
1854 struct node_info;
1855
1856 bool available_free_memory(struct f2fs_sb_info *, int);
1857 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1858 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1859 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1860 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1861 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1862 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1863 int truncate_inode_blocks(struct inode *, pgoff_t);
1864 int truncate_xattr_node(struct inode *, struct page *);
1865 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1866 int remove_inode_page(struct inode *);
1867 struct page *new_inode_page(struct inode *);
1868 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1869 void ra_node_page(struct f2fs_sb_info *, nid_t);
1870 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1871 struct page *get_node_page_ra(struct page *, int);
1872 void sync_inode_page(struct dnode_of_data *);
1873 void move_node_page(struct page *, int);
1874 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1875 bool);
1876 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1877 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1878 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1879 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1880 int try_to_free_nids(struct f2fs_sb_info *, int);
1881 void recover_inline_xattr(struct inode *, struct page *);
1882 void recover_xattr_data(struct inode *, struct page *, block_t);
1883 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1884 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1885 struct f2fs_summary_block *);
1886 void flush_nat_entries(struct f2fs_sb_info *);
1887 int build_node_manager(struct f2fs_sb_info *);
1888 void destroy_node_manager(struct f2fs_sb_info *);
1889 int __init create_node_manager_caches(void);
1890 void destroy_node_manager_caches(void);
1891
1892 /*
1893 * segment.c
1894 */
1895 void register_inmem_page(struct inode *, struct page *);
1896 void drop_inmem_pages(struct inode *);
1897 int commit_inmem_pages(struct inode *);
1898 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1899 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1900 int f2fs_issue_flush(struct f2fs_sb_info *);
1901 int create_flush_cmd_control(struct f2fs_sb_info *);
1902 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1903 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1904 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1905 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1906 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1907 void release_discard_addrs(struct f2fs_sb_info *);
1908 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1909 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1910 void allocate_new_segments(struct f2fs_sb_info *);
1911 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1912 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1913 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1914 void write_meta_page(struct f2fs_sb_info *, struct page *);
1915 void write_node_page(unsigned int, struct f2fs_io_info *);
1916 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1917 void rewrite_data_page(struct f2fs_io_info *);
1918 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1919 block_t, block_t, bool, bool);
1920 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1921 block_t, block_t, unsigned char, bool, bool);
1922 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1923 block_t, block_t *, struct f2fs_summary *, int);
1924 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1925 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1926 void write_data_summaries(struct f2fs_sb_info *, block_t);
1927 void write_node_summaries(struct f2fs_sb_info *, block_t);
1928 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1929 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1930 int build_segment_manager(struct f2fs_sb_info *);
1931 void destroy_segment_manager(struct f2fs_sb_info *);
1932 int __init create_segment_manager_caches(void);
1933 void destroy_segment_manager_caches(void);
1934
1935 /*
1936 * checkpoint.c
1937 */
1938 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1939 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1940 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1941 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1942 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1943 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1944 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1945 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1946 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1947 void release_ino_entry(struct f2fs_sb_info *, bool);
1948 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1949 int acquire_orphan_inode(struct f2fs_sb_info *);
1950 void release_orphan_inode(struct f2fs_sb_info *);
1951 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1952 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1953 int recover_orphan_inodes(struct f2fs_sb_info *);
1954 int get_valid_checkpoint(struct f2fs_sb_info *);
1955 void update_dirty_page(struct inode *, struct page *);
1956 void remove_dirty_inode(struct inode *);
1957 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1958 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1959 void init_ino_entry_info(struct f2fs_sb_info *);
1960 int __init create_checkpoint_caches(void);
1961 void destroy_checkpoint_caches(void);
1962
1963 /*
1964 * data.c
1965 */
1966 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1967 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1968 struct page *, nid_t, enum page_type, int);
1969 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1970 int f2fs_submit_page_bio(struct f2fs_io_info *);
1971 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1972 void set_data_blkaddr(struct dnode_of_data *);
1973 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1974 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
1975 int reserve_new_block(struct dnode_of_data *);
1976 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1977 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1978 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1979 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1980 struct page *find_data_page(struct inode *, pgoff_t);
1981 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1982 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1983 int do_write_data_page(struct f2fs_io_info *);
1984 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1985 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1986 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1987 int f2fs_release_page(struct page *, gfp_t);
1988
1989 /*
1990 * gc.c
1991 */
1992 int start_gc_thread(struct f2fs_sb_info *);
1993 void stop_gc_thread(struct f2fs_sb_info *);
1994 block_t start_bidx_of_node(unsigned int, struct inode *);
1995 int f2fs_gc(struct f2fs_sb_info *, bool);
1996 void build_gc_manager(struct f2fs_sb_info *);
1997
1998 /*
1999 * recovery.c
2000 */
2001 int recover_fsync_data(struct f2fs_sb_info *, bool);
2002 bool space_for_roll_forward(struct f2fs_sb_info *);
2003
2004 /*
2005 * debug.c
2006 */
2007 #ifdef CONFIG_F2FS_STAT_FS
2008 struct f2fs_stat_info {
2009 struct list_head stat_list;
2010 struct f2fs_sb_info *sbi;
2011 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2012 int main_area_segs, main_area_sections, main_area_zones;
2013 unsigned long long hit_largest, hit_cached, hit_rbtree;
2014 unsigned long long hit_total, total_ext;
2015 int ext_tree, zombie_tree, ext_node;
2016 int ndirty_node, ndirty_meta;
2017 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
2018 int nats, dirty_nats, sits, dirty_sits, fnids;
2019 int total_count, utilization;
2020 int bg_gc, inmem_pages, wb_bios;
2021 int inline_xattr, inline_inode, inline_dir, orphans;
2022 unsigned int valid_count, valid_node_count, valid_inode_count;
2023 unsigned int bimodal, avg_vblocks;
2024 int util_free, util_valid, util_invalid;
2025 int rsvd_segs, overp_segs;
2026 int dirty_count, node_pages, meta_pages;
2027 int prefree_count, call_count, cp_count, bg_cp_count;
2028 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2029 int bg_node_segs, bg_data_segs;
2030 int tot_blks, data_blks, node_blks;
2031 int bg_data_blks, bg_node_blks;
2032 int curseg[NR_CURSEG_TYPE];
2033 int cursec[NR_CURSEG_TYPE];
2034 int curzone[NR_CURSEG_TYPE];
2035
2036 unsigned int segment_count[2];
2037 unsigned int block_count[2];
2038 unsigned int inplace_count;
2039 unsigned long long base_mem, cache_mem, page_mem;
2040 };
2041
2042 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2043 {
2044 return (struct f2fs_stat_info *)sbi->stat_info;
2045 }
2046
2047 #define stat_inc_cp_count(si) ((si)->cp_count++)
2048 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2049 #define stat_inc_call_count(si) ((si)->call_count++)
2050 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2051 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2052 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2053 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2054 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2055 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2056 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2057 #define stat_inc_inline_xattr(inode) \
2058 do { \
2059 if (f2fs_has_inline_xattr(inode)) \
2060 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2061 } while (0)
2062 #define stat_dec_inline_xattr(inode) \
2063 do { \
2064 if (f2fs_has_inline_xattr(inode)) \
2065 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2066 } while (0)
2067 #define stat_inc_inline_inode(inode) \
2068 do { \
2069 if (f2fs_has_inline_data(inode)) \
2070 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2071 } while (0)
2072 #define stat_dec_inline_inode(inode) \
2073 do { \
2074 if (f2fs_has_inline_data(inode)) \
2075 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2076 } while (0)
2077 #define stat_inc_inline_dir(inode) \
2078 do { \
2079 if (f2fs_has_inline_dentry(inode)) \
2080 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2081 } while (0)
2082 #define stat_dec_inline_dir(inode) \
2083 do { \
2084 if (f2fs_has_inline_dentry(inode)) \
2085 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2086 } while (0)
2087 #define stat_inc_seg_type(sbi, curseg) \
2088 ((sbi)->segment_count[(curseg)->alloc_type]++)
2089 #define stat_inc_block_count(sbi, curseg) \
2090 ((sbi)->block_count[(curseg)->alloc_type]++)
2091 #define stat_inc_inplace_blocks(sbi) \
2092 (atomic_inc(&(sbi)->inplace_count))
2093 #define stat_inc_seg_count(sbi, type, gc_type) \
2094 do { \
2095 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2096 (si)->tot_segs++; \
2097 if (type == SUM_TYPE_DATA) { \
2098 si->data_segs++; \
2099 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2100 } else { \
2101 si->node_segs++; \
2102 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2103 } \
2104 } while (0)
2105
2106 #define stat_inc_tot_blk_count(si, blks) \
2107 (si->tot_blks += (blks))
2108
2109 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2110 do { \
2111 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2112 stat_inc_tot_blk_count(si, blks); \
2113 si->data_blks += (blks); \
2114 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2115 } while (0)
2116
2117 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2118 do { \
2119 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2120 stat_inc_tot_blk_count(si, blks); \
2121 si->node_blks += (blks); \
2122 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2123 } while (0)
2124
2125 int f2fs_build_stats(struct f2fs_sb_info *);
2126 void f2fs_destroy_stats(struct f2fs_sb_info *);
2127 int __init f2fs_create_root_stats(void);
2128 void f2fs_destroy_root_stats(void);
2129 #else
2130 #define stat_inc_cp_count(si)
2131 #define stat_inc_bg_cp_count(si)
2132 #define stat_inc_call_count(si)
2133 #define stat_inc_bggc_count(si)
2134 #define stat_inc_dirty_inode(sbi, type)
2135 #define stat_dec_dirty_inode(sbi, type)
2136 #define stat_inc_total_hit(sb)
2137 #define stat_inc_rbtree_node_hit(sb)
2138 #define stat_inc_largest_node_hit(sbi)
2139 #define stat_inc_cached_node_hit(sbi)
2140 #define stat_inc_inline_xattr(inode)
2141 #define stat_dec_inline_xattr(inode)
2142 #define stat_inc_inline_inode(inode)
2143 #define stat_dec_inline_inode(inode)
2144 #define stat_inc_inline_dir(inode)
2145 #define stat_dec_inline_dir(inode)
2146 #define stat_inc_seg_type(sbi, curseg)
2147 #define stat_inc_block_count(sbi, curseg)
2148 #define stat_inc_inplace_blocks(sbi)
2149 #define stat_inc_seg_count(sbi, type, gc_type)
2150 #define stat_inc_tot_blk_count(si, blks)
2151 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2152 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2153
2154 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2155 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2156 static inline int __init f2fs_create_root_stats(void) { return 0; }
2157 static inline void f2fs_destroy_root_stats(void) { }
2158 #endif
2159
2160 extern const struct file_operations f2fs_dir_operations;
2161 extern const struct file_operations f2fs_file_operations;
2162 extern const struct inode_operations f2fs_file_inode_operations;
2163 extern const struct address_space_operations f2fs_dblock_aops;
2164 extern const struct address_space_operations f2fs_node_aops;
2165 extern const struct address_space_operations f2fs_meta_aops;
2166 extern const struct inode_operations f2fs_dir_inode_operations;
2167 extern const struct inode_operations f2fs_symlink_inode_operations;
2168 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2169 extern const struct inode_operations f2fs_special_inode_operations;
2170 extern struct kmem_cache *inode_entry_slab;
2171
2172 /*
2173 * inline.c
2174 */
2175 bool f2fs_may_inline_data(struct inode *);
2176 bool f2fs_may_inline_dentry(struct inode *);
2177 void read_inline_data(struct page *, struct page *);
2178 bool truncate_inline_inode(struct page *, u64);
2179 int f2fs_read_inline_data(struct inode *, struct page *);
2180 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2181 int f2fs_convert_inline_inode(struct inode *);
2182 int f2fs_write_inline_data(struct inode *, struct page *);
2183 bool recover_inline_data(struct inode *, struct page *);
2184 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2185 struct fscrypt_name *, struct page **);
2186 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2187 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2188 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2189 nid_t, umode_t);
2190 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2191 struct inode *, struct inode *);
2192 bool f2fs_empty_inline_dir(struct inode *);
2193 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2194 struct fscrypt_str *);
2195 int f2fs_inline_data_fiemap(struct inode *,
2196 struct fiemap_extent_info *, __u64, __u64);
2197
2198 /*
2199 * shrinker.c
2200 */
2201 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2202 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2203 void f2fs_join_shrinker(struct f2fs_sb_info *);
2204 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2205
2206 /*
2207 * extent_cache.c
2208 */
2209 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2210 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2211 unsigned int f2fs_destroy_extent_node(struct inode *);
2212 void f2fs_destroy_extent_tree(struct inode *);
2213 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2214 void f2fs_update_extent_cache(struct dnode_of_data *);
2215 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2216 pgoff_t, block_t, unsigned int);
2217 void init_extent_cache_info(struct f2fs_sb_info *);
2218 int __init create_extent_cache(void);
2219 void destroy_extent_cache(void);
2220
2221 /*
2222 * crypto support
2223 */
2224 static inline bool f2fs_encrypted_inode(struct inode *inode)
2225 {
2226 return file_is_encrypt(inode);
2227 }
2228
2229 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2230 {
2231 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2232 file_set_encrypt(inode);
2233 #endif
2234 }
2235
2236 static inline bool f2fs_bio_encrypted(struct bio *bio)
2237 {
2238 return bio->bi_private != NULL;
2239 }
2240
2241 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2242 {
2243 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2244 }
2245
2246 static inline bool f2fs_may_encrypt(struct inode *inode)
2247 {
2248 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2249 umode_t mode = inode->i_mode;
2250
2251 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2252 #else
2253 return 0;
2254 #endif
2255 }
2256
2257 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2258 #define fscrypt_set_d_op(i)
2259 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2260 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2261 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2262 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2263 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2264 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2265 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2266 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2267 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2268 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2269 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2270 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2271 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2272 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2273 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2274 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2275 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2276 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2277 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2278 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2279 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2280 #endif
2281 #endif
This page took 0.079852 seconds and 5 git commands to generate.