f2fs: update memory footprint information
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_SYNC,
104 CP_DISCARD,
105 };
106
107 struct cp_control {
108 int reason;
109 __u64 trim_start;
110 __u64 trim_end;
111 __u64 trim_minlen;
112 __u64 trimmed;
113 };
114
115 /*
116 * For CP/NAT/SIT/SSA readahead
117 */
118 enum {
119 META_CP,
120 META_NAT,
121 META_SIT,
122 META_SSA,
123 META_POR,
124 };
125
126 /* for the list of ino */
127 enum {
128 ORPHAN_INO, /* for orphan ino list */
129 APPEND_INO, /* for append ino list */
130 UPDATE_INO, /* for update ino list */
131 MAX_INO_ENTRY, /* max. list */
132 };
133
134 struct ino_entry {
135 struct list_head list; /* list head */
136 nid_t ino; /* inode number */
137 };
138
139 /*
140 * for the list of directory inodes or gc inodes.
141 * NOTE: there are two slab users for this structure, if we add/modify/delete
142 * fields in structure for one of slab users, it may affect fields or size of
143 * other one, in this condition, it's better to split both of slab and related
144 * data structure.
145 */
146 struct inode_entry {
147 struct list_head list; /* list head */
148 struct inode *inode; /* vfs inode pointer */
149 };
150
151 /* for the list of blockaddresses to be discarded */
152 struct discard_entry {
153 struct list_head list; /* list head */
154 block_t blkaddr; /* block address to be discarded */
155 int len; /* # of consecutive blocks of the discard */
156 };
157
158 /* for the list of fsync inodes, used only during recovery */
159 struct fsync_inode_entry {
160 struct list_head list; /* list head */
161 struct inode *inode; /* vfs inode pointer */
162 block_t blkaddr; /* block address locating the last fsync */
163 block_t last_dentry; /* block address locating the last dentry */
164 block_t last_inode; /* block address locating the last inode */
165 };
166
167 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
168 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
169
170 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
171 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
172 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
173 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
174
175 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
176 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
177
178 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 int before = nats_in_cursum(rs);
181 rs->n_nats = cpu_to_le16(before + i);
182 return before;
183 }
184
185 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 int before = sits_in_cursum(rs);
188 rs->n_sits = cpu_to_le16(before + i);
189 return before;
190 }
191
192 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
193 int type)
194 {
195 if (type == NAT_JOURNAL)
196 return size <= MAX_NAT_JENTRIES(sum);
197 return size <= MAX_SIT_JENTRIES(sum);
198 }
199
200 /*
201 * ioctl commands
202 */
203 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
204 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
205
206 #define F2FS_IOCTL_MAGIC 0xf5
207 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
208 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
209 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
210 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
211 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
212
213 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
214 /*
215 * ioctl commands in 32 bit emulation
216 */
217 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
218 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
219 #endif
220
221 /*
222 * For INODE and NODE manager
223 */
224 /* for directory operations */
225 struct f2fs_dentry_ptr {
226 const void *bitmap;
227 struct f2fs_dir_entry *dentry;
228 __u8 (*filename)[F2FS_SLOT_LEN];
229 int max;
230 };
231
232 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
233 void *src, int type)
234 {
235 if (type == 1) {
236 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
237 d->max = NR_DENTRY_IN_BLOCK;
238 d->bitmap = &t->dentry_bitmap;
239 d->dentry = t->dentry;
240 d->filename = t->filename;
241 } else {
242 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
243 d->max = NR_INLINE_DENTRY;
244 d->bitmap = &t->dentry_bitmap;
245 d->dentry = t->dentry;
246 d->filename = t->filename;
247 }
248 }
249
250 /*
251 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
252 * as its node offset to distinguish from index node blocks.
253 * But some bits are used to mark the node block.
254 */
255 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
256 >> OFFSET_BIT_SHIFT)
257 enum {
258 ALLOC_NODE, /* allocate a new node page if needed */
259 LOOKUP_NODE, /* look up a node without readahead */
260 LOOKUP_NODE_RA, /*
261 * look up a node with readahead called
262 * by get_data_block.
263 */
264 };
265
266 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
267
268 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
269
270 /* for in-memory extent cache entry */
271 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
272
273 struct extent_info {
274 rwlock_t ext_lock; /* rwlock for consistency */
275 unsigned int fofs; /* start offset in a file */
276 u32 blk_addr; /* start block address of the extent */
277 unsigned int len; /* length of the extent */
278 };
279
280 /*
281 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
282 */
283 #define FADVISE_COLD_BIT 0x01
284 #define FADVISE_LOST_PINO_BIT 0x02
285
286 #define DEF_DIR_LEVEL 0
287
288 struct f2fs_inode_info {
289 struct inode vfs_inode; /* serve a vfs inode */
290 unsigned long i_flags; /* keep an inode flags for ioctl */
291 unsigned char i_advise; /* use to give file attribute hints */
292 unsigned char i_dir_level; /* use for dentry level for large dir */
293 unsigned int i_current_depth; /* use only in directory structure */
294 unsigned int i_pino; /* parent inode number */
295 umode_t i_acl_mode; /* keep file acl mode temporarily */
296
297 /* Use below internally in f2fs*/
298 unsigned long flags; /* use to pass per-file flags */
299 struct rw_semaphore i_sem; /* protect fi info */
300 atomic_t dirty_pages; /* # of dirty pages */
301 f2fs_hash_t chash; /* hash value of given file name */
302 unsigned int clevel; /* maximum level of given file name */
303 nid_t i_xattr_nid; /* node id that contains xattrs */
304 unsigned long long xattr_ver; /* cp version of xattr modification */
305 struct extent_info ext; /* in-memory extent cache entry */
306 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
307
308 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
309 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
310 struct mutex inmem_lock; /* lock for inmemory pages */
311 };
312
313 static inline void get_extent_info(struct extent_info *ext,
314 struct f2fs_extent i_ext)
315 {
316 write_lock(&ext->ext_lock);
317 ext->fofs = le32_to_cpu(i_ext.fofs);
318 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
319 ext->len = le32_to_cpu(i_ext.len);
320 write_unlock(&ext->ext_lock);
321 }
322
323 static inline void set_raw_extent(struct extent_info *ext,
324 struct f2fs_extent *i_ext)
325 {
326 read_lock(&ext->ext_lock);
327 i_ext->fofs = cpu_to_le32(ext->fofs);
328 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
329 i_ext->len = cpu_to_le32(ext->len);
330 read_unlock(&ext->ext_lock);
331 }
332
333 struct f2fs_nm_info {
334 block_t nat_blkaddr; /* base disk address of NAT */
335 nid_t max_nid; /* maximum possible node ids */
336 nid_t available_nids; /* maximum available node ids */
337 nid_t next_scan_nid; /* the next nid to be scanned */
338 unsigned int ram_thresh; /* control the memory footprint */
339
340 /* NAT cache management */
341 struct radix_tree_root nat_root;/* root of the nat entry cache */
342 struct radix_tree_root nat_set_root;/* root of the nat set cache */
343 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
344 struct list_head nat_entries; /* cached nat entry list (clean) */
345 unsigned int nat_cnt; /* the # of cached nat entries */
346 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
347
348 /* free node ids management */
349 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
350 struct list_head free_nid_list; /* a list for free nids */
351 spinlock_t free_nid_list_lock; /* protect free nid list */
352 unsigned int fcnt; /* the number of free node id */
353 struct mutex build_lock; /* lock for build free nids */
354
355 /* for checkpoint */
356 char *nat_bitmap; /* NAT bitmap pointer */
357 int bitmap_size; /* bitmap size */
358 };
359
360 /*
361 * this structure is used as one of function parameters.
362 * all the information are dedicated to a given direct node block determined
363 * by the data offset in a file.
364 */
365 struct dnode_of_data {
366 struct inode *inode; /* vfs inode pointer */
367 struct page *inode_page; /* its inode page, NULL is possible */
368 struct page *node_page; /* cached direct node page */
369 nid_t nid; /* node id of the direct node block */
370 unsigned int ofs_in_node; /* data offset in the node page */
371 bool inode_page_locked; /* inode page is locked or not */
372 block_t data_blkaddr; /* block address of the node block */
373 };
374
375 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
376 struct page *ipage, struct page *npage, nid_t nid)
377 {
378 memset(dn, 0, sizeof(*dn));
379 dn->inode = inode;
380 dn->inode_page = ipage;
381 dn->node_page = npage;
382 dn->nid = nid;
383 }
384
385 /*
386 * For SIT manager
387 *
388 * By default, there are 6 active log areas across the whole main area.
389 * When considering hot and cold data separation to reduce cleaning overhead,
390 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
391 * respectively.
392 * In the current design, you should not change the numbers intentionally.
393 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
394 * logs individually according to the underlying devices. (default: 6)
395 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
396 * data and 8 for node logs.
397 */
398 #define NR_CURSEG_DATA_TYPE (3)
399 #define NR_CURSEG_NODE_TYPE (3)
400 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
401
402 enum {
403 CURSEG_HOT_DATA = 0, /* directory entry blocks */
404 CURSEG_WARM_DATA, /* data blocks */
405 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
406 CURSEG_HOT_NODE, /* direct node blocks of directory files */
407 CURSEG_WARM_NODE, /* direct node blocks of normal files */
408 CURSEG_COLD_NODE, /* indirect node blocks */
409 NO_CHECK_TYPE,
410 CURSEG_DIRECT_IO, /* to use for the direct IO path */
411 };
412
413 struct flush_cmd {
414 struct completion wait;
415 struct llist_node llnode;
416 int ret;
417 };
418
419 struct flush_cmd_control {
420 struct task_struct *f2fs_issue_flush; /* flush thread */
421 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
422 struct llist_head issue_list; /* list for command issue */
423 struct llist_node *dispatch_list; /* list for command dispatch */
424 };
425
426 struct f2fs_sm_info {
427 struct sit_info *sit_info; /* whole segment information */
428 struct free_segmap_info *free_info; /* free segment information */
429 struct dirty_seglist_info *dirty_info; /* dirty segment information */
430 struct curseg_info *curseg_array; /* active segment information */
431
432 block_t seg0_blkaddr; /* block address of 0'th segment */
433 block_t main_blkaddr; /* start block address of main area */
434 block_t ssa_blkaddr; /* start block address of SSA area */
435
436 unsigned int segment_count; /* total # of segments */
437 unsigned int main_segments; /* # of segments in main area */
438 unsigned int reserved_segments; /* # of reserved segments */
439 unsigned int ovp_segments; /* # of overprovision segments */
440
441 /* a threshold to reclaim prefree segments */
442 unsigned int rec_prefree_segments;
443
444 /* for small discard management */
445 struct list_head discard_list; /* 4KB discard list */
446 int nr_discards; /* # of discards in the list */
447 int max_discards; /* max. discards to be issued */
448
449 struct list_head sit_entry_set; /* sit entry set list */
450
451 unsigned int ipu_policy; /* in-place-update policy */
452 unsigned int min_ipu_util; /* in-place-update threshold */
453 unsigned int min_fsync_blocks; /* threshold for fsync */
454
455 /* for flush command control */
456 struct flush_cmd_control *cmd_control_info;
457
458 };
459
460 /*
461 * For superblock
462 */
463 /*
464 * COUNT_TYPE for monitoring
465 *
466 * f2fs monitors the number of several block types such as on-writeback,
467 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
468 */
469 enum count_type {
470 F2FS_WRITEBACK,
471 F2FS_DIRTY_DENTS,
472 F2FS_DIRTY_NODES,
473 F2FS_DIRTY_META,
474 F2FS_INMEM_PAGES,
475 NR_COUNT_TYPE,
476 };
477
478 /*
479 * The below are the page types of bios used in submit_bio().
480 * The available types are:
481 * DATA User data pages. It operates as async mode.
482 * NODE Node pages. It operates as async mode.
483 * META FS metadata pages such as SIT, NAT, CP.
484 * NR_PAGE_TYPE The number of page types.
485 * META_FLUSH Make sure the previous pages are written
486 * with waiting the bio's completion
487 * ... Only can be used with META.
488 */
489 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
490 enum page_type {
491 DATA,
492 NODE,
493 META,
494 NR_PAGE_TYPE,
495 META_FLUSH,
496 };
497
498 struct f2fs_io_info {
499 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
500 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
501 block_t blk_addr; /* block address to be written */
502 };
503
504 #define is_read_io(rw) (((rw) & 1) == READ)
505 struct f2fs_bio_info {
506 struct f2fs_sb_info *sbi; /* f2fs superblock */
507 struct bio *bio; /* bios to merge */
508 sector_t last_block_in_bio; /* last block number */
509 struct f2fs_io_info fio; /* store buffered io info. */
510 struct rw_semaphore io_rwsem; /* blocking op for bio */
511 };
512
513 /* for inner inode cache management */
514 struct inode_management {
515 struct radix_tree_root ino_root; /* ino entry array */
516 spinlock_t ino_lock; /* for ino entry lock */
517 struct list_head ino_list; /* inode list head */
518 unsigned long ino_num; /* number of entries */
519 };
520
521 struct f2fs_sb_info {
522 struct super_block *sb; /* pointer to VFS super block */
523 struct proc_dir_entry *s_proc; /* proc entry */
524 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
525 struct f2fs_super_block *raw_super; /* raw super block pointer */
526 int s_dirty; /* dirty flag for checkpoint */
527 bool need_fsck; /* need fsck.f2fs to fix */
528
529 /* for node-related operations */
530 struct f2fs_nm_info *nm_info; /* node manager */
531 struct inode *node_inode; /* cache node blocks */
532
533 /* for segment-related operations */
534 struct f2fs_sm_info *sm_info; /* segment manager */
535
536 /* for bio operations */
537 struct f2fs_bio_info read_io; /* for read bios */
538 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
539
540 /* for checkpoint */
541 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
542 struct inode *meta_inode; /* cache meta blocks */
543 struct mutex cp_mutex; /* checkpoint procedure lock */
544 struct rw_semaphore cp_rwsem; /* blocking FS operations */
545 struct rw_semaphore node_write; /* locking node writes */
546 struct mutex writepages; /* mutex for writepages() */
547 bool por_doing; /* recovery is doing or not */
548 wait_queue_head_t cp_wait;
549
550 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
551
552 /* for orphan inode, use 0'th array */
553 unsigned int max_orphans; /* max orphan inodes */
554
555 /* for directory inode management */
556 struct list_head dir_inode_list; /* dir inode list */
557 spinlock_t dir_inode_lock; /* for dir inode list lock */
558
559 /* basic filesystem units */
560 unsigned int log_sectors_per_block; /* log2 sectors per block */
561 unsigned int log_blocksize; /* log2 block size */
562 unsigned int blocksize; /* block size */
563 unsigned int root_ino_num; /* root inode number*/
564 unsigned int node_ino_num; /* node inode number*/
565 unsigned int meta_ino_num; /* meta inode number*/
566 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
567 unsigned int blocks_per_seg; /* blocks per segment */
568 unsigned int segs_per_sec; /* segments per section */
569 unsigned int secs_per_zone; /* sections per zone */
570 unsigned int total_sections; /* total section count */
571 unsigned int total_node_count; /* total node block count */
572 unsigned int total_valid_node_count; /* valid node block count */
573 unsigned int total_valid_inode_count; /* valid inode count */
574 int active_logs; /* # of active logs */
575 int dir_level; /* directory level */
576
577 block_t user_block_count; /* # of user blocks */
578 block_t total_valid_block_count; /* # of valid blocks */
579 block_t alloc_valid_block_count; /* # of allocated blocks */
580 block_t last_valid_block_count; /* for recovery */
581 u32 s_next_generation; /* for NFS support */
582 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
583
584 struct f2fs_mount_info mount_opt; /* mount options */
585
586 /* for cleaning operations */
587 struct mutex gc_mutex; /* mutex for GC */
588 struct f2fs_gc_kthread *gc_thread; /* GC thread */
589 unsigned int cur_victim_sec; /* current victim section num */
590
591 /* maximum # of trials to find a victim segment for SSR and GC */
592 unsigned int max_victim_search;
593
594 /*
595 * for stat information.
596 * one is for the LFS mode, and the other is for the SSR mode.
597 */
598 #ifdef CONFIG_F2FS_STAT_FS
599 struct f2fs_stat_info *stat_info; /* FS status information */
600 unsigned int segment_count[2]; /* # of allocated segments */
601 unsigned int block_count[2]; /* # of allocated blocks */
602 atomic_t inplace_count; /* # of inplace update */
603 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
604 atomic_t inline_inode; /* # of inline_data inodes */
605 atomic_t inline_dir; /* # of inline_dentry inodes */
606 int bg_gc; /* background gc calls */
607 unsigned int n_dirty_dirs; /* # of dir inodes */
608 #endif
609 unsigned int last_victim[2]; /* last victim segment # */
610 spinlock_t stat_lock; /* lock for stat operations */
611
612 /* For sysfs suppport */
613 struct kobject s_kobj;
614 struct completion s_kobj_unregister;
615 };
616
617 /*
618 * Inline functions
619 */
620 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
621 {
622 return container_of(inode, struct f2fs_inode_info, vfs_inode);
623 }
624
625 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
626 {
627 return sb->s_fs_info;
628 }
629
630 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
631 {
632 return F2FS_SB(inode->i_sb);
633 }
634
635 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
636 {
637 return F2FS_I_SB(mapping->host);
638 }
639
640 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
641 {
642 return F2FS_M_SB(page->mapping);
643 }
644
645 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
646 {
647 return (struct f2fs_super_block *)(sbi->raw_super);
648 }
649
650 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
651 {
652 return (struct f2fs_checkpoint *)(sbi->ckpt);
653 }
654
655 static inline struct f2fs_node *F2FS_NODE(struct page *page)
656 {
657 return (struct f2fs_node *)page_address(page);
658 }
659
660 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
661 {
662 return &((struct f2fs_node *)page_address(page))->i;
663 }
664
665 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
666 {
667 return (struct f2fs_nm_info *)(sbi->nm_info);
668 }
669
670 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
671 {
672 return (struct f2fs_sm_info *)(sbi->sm_info);
673 }
674
675 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
676 {
677 return (struct sit_info *)(SM_I(sbi)->sit_info);
678 }
679
680 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
681 {
682 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
683 }
684
685 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
686 {
687 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
688 }
689
690 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
691 {
692 return sbi->meta_inode->i_mapping;
693 }
694
695 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
696 {
697 return sbi->node_inode->i_mapping;
698 }
699
700 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
701 {
702 sbi->s_dirty = 1;
703 }
704
705 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
706 {
707 sbi->s_dirty = 0;
708 }
709
710 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
711 {
712 return le64_to_cpu(cp->checkpoint_ver);
713 }
714
715 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
716 {
717 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
718 return ckpt_flags & f;
719 }
720
721 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
722 {
723 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
724 ckpt_flags |= f;
725 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
726 }
727
728 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
729 {
730 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
731 ckpt_flags &= (~f);
732 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
733 }
734
735 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
736 {
737 down_read(&sbi->cp_rwsem);
738 }
739
740 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
741 {
742 up_read(&sbi->cp_rwsem);
743 }
744
745 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
746 {
747 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
748 }
749
750 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
751 {
752 up_write(&sbi->cp_rwsem);
753 }
754
755 /*
756 * Check whether the given nid is within node id range.
757 */
758 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
759 {
760 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
761 return -EINVAL;
762 if (unlikely(nid >= NM_I(sbi)->max_nid))
763 return -EINVAL;
764 return 0;
765 }
766
767 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
768
769 /*
770 * Check whether the inode has blocks or not
771 */
772 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
773 {
774 if (F2FS_I(inode)->i_xattr_nid)
775 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
776 else
777 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
778 }
779
780 static inline bool f2fs_has_xattr_block(unsigned int ofs)
781 {
782 return ofs == XATTR_NODE_OFFSET;
783 }
784
785 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
786 struct inode *inode, blkcnt_t count)
787 {
788 block_t valid_block_count;
789
790 spin_lock(&sbi->stat_lock);
791 valid_block_count =
792 sbi->total_valid_block_count + (block_t)count;
793 if (unlikely(valid_block_count > sbi->user_block_count)) {
794 spin_unlock(&sbi->stat_lock);
795 return false;
796 }
797 inode->i_blocks += count;
798 sbi->total_valid_block_count = valid_block_count;
799 sbi->alloc_valid_block_count += (block_t)count;
800 spin_unlock(&sbi->stat_lock);
801 return true;
802 }
803
804 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
805 struct inode *inode,
806 blkcnt_t count)
807 {
808 spin_lock(&sbi->stat_lock);
809 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
810 f2fs_bug_on(sbi, inode->i_blocks < count);
811 inode->i_blocks -= count;
812 sbi->total_valid_block_count -= (block_t)count;
813 spin_unlock(&sbi->stat_lock);
814 }
815
816 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
817 {
818 atomic_inc(&sbi->nr_pages[count_type]);
819 F2FS_SET_SB_DIRT(sbi);
820 }
821
822 static inline void inode_inc_dirty_pages(struct inode *inode)
823 {
824 atomic_inc(&F2FS_I(inode)->dirty_pages);
825 if (S_ISDIR(inode->i_mode))
826 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
827 }
828
829 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
830 {
831 atomic_dec(&sbi->nr_pages[count_type]);
832 }
833
834 static inline void inode_dec_dirty_pages(struct inode *inode)
835 {
836 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
837 return;
838
839 atomic_dec(&F2FS_I(inode)->dirty_pages);
840
841 if (S_ISDIR(inode->i_mode))
842 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
843 }
844
845 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
846 {
847 return atomic_read(&sbi->nr_pages[count_type]);
848 }
849
850 static inline int get_dirty_pages(struct inode *inode)
851 {
852 return atomic_read(&F2FS_I(inode)->dirty_pages);
853 }
854
855 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
856 {
857 unsigned int pages_per_sec = sbi->segs_per_sec *
858 (1 << sbi->log_blocks_per_seg);
859 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
860 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
861 }
862
863 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
864 {
865 return sbi->total_valid_block_count;
866 }
867
868 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
869 {
870 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
871
872 /* return NAT or SIT bitmap */
873 if (flag == NAT_BITMAP)
874 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
875 else if (flag == SIT_BITMAP)
876 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
877
878 return 0;
879 }
880
881 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
882 {
883 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
884 int offset;
885
886 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
887 if (flag == NAT_BITMAP)
888 return &ckpt->sit_nat_version_bitmap;
889 else
890 return (unsigned char *)ckpt + F2FS_BLKSIZE;
891 } else {
892 offset = (flag == NAT_BITMAP) ?
893 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
894 return &ckpt->sit_nat_version_bitmap + offset;
895 }
896 }
897
898 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
899 {
900 block_t start_addr;
901 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
902 unsigned long long ckpt_version = cur_cp_version(ckpt);
903
904 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
905
906 /*
907 * odd numbered checkpoint should at cp segment 0
908 * and even segment must be at cp segment 1
909 */
910 if (!(ckpt_version & 1))
911 start_addr += sbi->blocks_per_seg;
912
913 return start_addr;
914 }
915
916 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
917 {
918 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
919 }
920
921 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
922 struct inode *inode)
923 {
924 block_t valid_block_count;
925 unsigned int valid_node_count;
926
927 spin_lock(&sbi->stat_lock);
928
929 valid_block_count = sbi->total_valid_block_count + 1;
930 if (unlikely(valid_block_count > sbi->user_block_count)) {
931 spin_unlock(&sbi->stat_lock);
932 return false;
933 }
934
935 valid_node_count = sbi->total_valid_node_count + 1;
936 if (unlikely(valid_node_count > sbi->total_node_count)) {
937 spin_unlock(&sbi->stat_lock);
938 return false;
939 }
940
941 if (inode)
942 inode->i_blocks++;
943
944 sbi->alloc_valid_block_count++;
945 sbi->total_valid_node_count++;
946 sbi->total_valid_block_count++;
947 spin_unlock(&sbi->stat_lock);
948
949 return true;
950 }
951
952 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
953 struct inode *inode)
954 {
955 spin_lock(&sbi->stat_lock);
956
957 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
958 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
959 f2fs_bug_on(sbi, !inode->i_blocks);
960
961 inode->i_blocks--;
962 sbi->total_valid_node_count--;
963 sbi->total_valid_block_count--;
964
965 spin_unlock(&sbi->stat_lock);
966 }
967
968 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
969 {
970 return sbi->total_valid_node_count;
971 }
972
973 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
974 {
975 spin_lock(&sbi->stat_lock);
976 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
977 sbi->total_valid_inode_count++;
978 spin_unlock(&sbi->stat_lock);
979 }
980
981 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
982 {
983 spin_lock(&sbi->stat_lock);
984 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
985 sbi->total_valid_inode_count--;
986 spin_unlock(&sbi->stat_lock);
987 }
988
989 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
990 {
991 return sbi->total_valid_inode_count;
992 }
993
994 static inline void f2fs_put_page(struct page *page, int unlock)
995 {
996 if (!page)
997 return;
998
999 if (unlock) {
1000 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1001 unlock_page(page);
1002 }
1003 page_cache_release(page);
1004 }
1005
1006 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1007 {
1008 if (dn->node_page)
1009 f2fs_put_page(dn->node_page, 1);
1010 if (dn->inode_page && dn->node_page != dn->inode_page)
1011 f2fs_put_page(dn->inode_page, 0);
1012 dn->node_page = NULL;
1013 dn->inode_page = NULL;
1014 }
1015
1016 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1017 size_t size)
1018 {
1019 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1020 }
1021
1022 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1023 gfp_t flags)
1024 {
1025 void *entry;
1026 retry:
1027 entry = kmem_cache_alloc(cachep, flags);
1028 if (!entry) {
1029 cond_resched();
1030 goto retry;
1031 }
1032
1033 return entry;
1034 }
1035
1036 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1037 unsigned long index, void *item)
1038 {
1039 while (radix_tree_insert(root, index, item))
1040 cond_resched();
1041 }
1042
1043 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1044
1045 static inline bool IS_INODE(struct page *page)
1046 {
1047 struct f2fs_node *p = F2FS_NODE(page);
1048 return RAW_IS_INODE(p);
1049 }
1050
1051 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1052 {
1053 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1054 }
1055
1056 static inline block_t datablock_addr(struct page *node_page,
1057 unsigned int offset)
1058 {
1059 struct f2fs_node *raw_node;
1060 __le32 *addr_array;
1061 raw_node = F2FS_NODE(node_page);
1062 addr_array = blkaddr_in_node(raw_node);
1063 return le32_to_cpu(addr_array[offset]);
1064 }
1065
1066 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1067 {
1068 int mask;
1069
1070 addr += (nr >> 3);
1071 mask = 1 << (7 - (nr & 0x07));
1072 return mask & *addr;
1073 }
1074
1075 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1076 {
1077 int mask;
1078 int ret;
1079
1080 addr += (nr >> 3);
1081 mask = 1 << (7 - (nr & 0x07));
1082 ret = mask & *addr;
1083 *addr |= mask;
1084 return ret;
1085 }
1086
1087 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1088 {
1089 int mask;
1090 int ret;
1091
1092 addr += (nr >> 3);
1093 mask = 1 << (7 - (nr & 0x07));
1094 ret = mask & *addr;
1095 *addr &= ~mask;
1096 return ret;
1097 }
1098
1099 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1100 {
1101 int mask;
1102
1103 addr += (nr >> 3);
1104 mask = 1 << (7 - (nr & 0x07));
1105 *addr ^= mask;
1106 }
1107
1108 /* used for f2fs_inode_info->flags */
1109 enum {
1110 FI_NEW_INODE, /* indicate newly allocated inode */
1111 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1112 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1113 FI_INC_LINK, /* need to increment i_nlink */
1114 FI_ACL_MODE, /* indicate acl mode */
1115 FI_NO_ALLOC, /* should not allocate any blocks */
1116 FI_UPDATE_DIR, /* should update inode block for consistency */
1117 FI_DELAY_IPUT, /* used for the recovery */
1118 FI_NO_EXTENT, /* not to use the extent cache */
1119 FI_INLINE_XATTR, /* used for inline xattr */
1120 FI_INLINE_DATA, /* used for inline data*/
1121 FI_INLINE_DENTRY, /* used for inline dentry */
1122 FI_APPEND_WRITE, /* inode has appended data */
1123 FI_UPDATE_WRITE, /* inode has in-place-update data */
1124 FI_NEED_IPU, /* used for ipu per file */
1125 FI_ATOMIC_FILE, /* indicate atomic file */
1126 FI_VOLATILE_FILE, /* indicate volatile file */
1127 FI_DROP_CACHE, /* drop dirty page cache */
1128 FI_DATA_EXIST, /* indicate data exists */
1129 };
1130
1131 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1132 {
1133 if (!test_bit(flag, &fi->flags))
1134 set_bit(flag, &fi->flags);
1135 }
1136
1137 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1138 {
1139 return test_bit(flag, &fi->flags);
1140 }
1141
1142 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1143 {
1144 if (test_bit(flag, &fi->flags))
1145 clear_bit(flag, &fi->flags);
1146 }
1147
1148 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1149 {
1150 fi->i_acl_mode = mode;
1151 set_inode_flag(fi, FI_ACL_MODE);
1152 }
1153
1154 static inline void get_inline_info(struct f2fs_inode_info *fi,
1155 struct f2fs_inode *ri)
1156 {
1157 if (ri->i_inline & F2FS_INLINE_XATTR)
1158 set_inode_flag(fi, FI_INLINE_XATTR);
1159 if (ri->i_inline & F2FS_INLINE_DATA)
1160 set_inode_flag(fi, FI_INLINE_DATA);
1161 if (ri->i_inline & F2FS_INLINE_DENTRY)
1162 set_inode_flag(fi, FI_INLINE_DENTRY);
1163 if (ri->i_inline & F2FS_DATA_EXIST)
1164 set_inode_flag(fi, FI_DATA_EXIST);
1165 }
1166
1167 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1168 struct f2fs_inode *ri)
1169 {
1170 ri->i_inline = 0;
1171
1172 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1173 ri->i_inline |= F2FS_INLINE_XATTR;
1174 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1175 ri->i_inline |= F2FS_INLINE_DATA;
1176 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1177 ri->i_inline |= F2FS_INLINE_DENTRY;
1178 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1179 ri->i_inline |= F2FS_DATA_EXIST;
1180 }
1181
1182 static inline int f2fs_has_inline_xattr(struct inode *inode)
1183 {
1184 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1185 }
1186
1187 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1188 {
1189 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1190 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1191 return DEF_ADDRS_PER_INODE;
1192 }
1193
1194 static inline void *inline_xattr_addr(struct page *page)
1195 {
1196 struct f2fs_inode *ri = F2FS_INODE(page);
1197 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1198 F2FS_INLINE_XATTR_ADDRS]);
1199 }
1200
1201 static inline int inline_xattr_size(struct inode *inode)
1202 {
1203 if (f2fs_has_inline_xattr(inode))
1204 return F2FS_INLINE_XATTR_ADDRS << 2;
1205 else
1206 return 0;
1207 }
1208
1209 static inline int f2fs_has_inline_data(struct inode *inode)
1210 {
1211 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1212 }
1213
1214 static inline void f2fs_clear_inline_inode(struct inode *inode)
1215 {
1216 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1217 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1218 }
1219
1220 static inline int f2fs_exist_data(struct inode *inode)
1221 {
1222 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1223 }
1224
1225 static inline bool f2fs_is_atomic_file(struct inode *inode)
1226 {
1227 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1228 }
1229
1230 static inline bool f2fs_is_volatile_file(struct inode *inode)
1231 {
1232 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1233 }
1234
1235 static inline bool f2fs_is_drop_cache(struct inode *inode)
1236 {
1237 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1238 }
1239
1240 static inline void *inline_data_addr(struct page *page)
1241 {
1242 struct f2fs_inode *ri = F2FS_INODE(page);
1243 return (void *)&(ri->i_addr[1]);
1244 }
1245
1246 static inline int f2fs_has_inline_dentry(struct inode *inode)
1247 {
1248 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1249 }
1250
1251 static inline void *inline_dentry_addr(struct page *page)
1252 {
1253 struct f2fs_inode *ri = F2FS_INODE(page);
1254 return (void *)&(ri->i_addr[1]);
1255 }
1256
1257 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1258 {
1259 if (!f2fs_has_inline_dentry(dir))
1260 kunmap(page);
1261 }
1262
1263 static inline int f2fs_readonly(struct super_block *sb)
1264 {
1265 return sb->s_flags & MS_RDONLY;
1266 }
1267
1268 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1269 {
1270 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1271 }
1272
1273 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1274 {
1275 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1276 sbi->sb->s_flags |= MS_RDONLY;
1277 }
1278
1279 #define get_inode_mode(i) \
1280 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1281 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1282
1283 /* get offset of first page in next direct node */
1284 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1285 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1286 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1287 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1288
1289 /*
1290 * file.c
1291 */
1292 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1293 void truncate_data_blocks(struct dnode_of_data *);
1294 int truncate_blocks(struct inode *, u64, bool);
1295 void f2fs_truncate(struct inode *);
1296 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1297 int f2fs_setattr(struct dentry *, struct iattr *);
1298 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1299 int truncate_data_blocks_range(struct dnode_of_data *, int);
1300 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1301 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1302
1303 /*
1304 * inode.c
1305 */
1306 void f2fs_set_inode_flags(struct inode *);
1307 struct inode *f2fs_iget(struct super_block *, unsigned long);
1308 int try_to_free_nats(struct f2fs_sb_info *, int);
1309 void update_inode(struct inode *, struct page *);
1310 void update_inode_page(struct inode *);
1311 int f2fs_write_inode(struct inode *, struct writeback_control *);
1312 void f2fs_evict_inode(struct inode *);
1313 void handle_failed_inode(struct inode *);
1314
1315 /*
1316 * namei.c
1317 */
1318 struct dentry *f2fs_get_parent(struct dentry *child);
1319
1320 /*
1321 * dir.c
1322 */
1323 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1324 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1325 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1326 struct f2fs_dentry_ptr *);
1327 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1328 unsigned int);
1329 void do_make_empty_dir(struct inode *, struct inode *,
1330 struct f2fs_dentry_ptr *);
1331 struct page *init_inode_metadata(struct inode *, struct inode *,
1332 const struct qstr *, struct page *);
1333 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1334 int room_for_filename(const void *, int, int);
1335 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1336 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1337 struct page **);
1338 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1339 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1340 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1341 struct page *, struct inode *);
1342 int update_dent_inode(struct inode *, const struct qstr *);
1343 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1344 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1345 struct inode *);
1346 int f2fs_do_tmpfile(struct inode *, struct inode *);
1347 int f2fs_make_empty(struct inode *, struct inode *);
1348 bool f2fs_empty_dir(struct inode *);
1349
1350 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1351 {
1352 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1353 inode);
1354 }
1355
1356 /*
1357 * super.c
1358 */
1359 int f2fs_sync_fs(struct super_block *, int);
1360 extern __printf(3, 4)
1361 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1362
1363 /*
1364 * hash.c
1365 */
1366 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1367
1368 /*
1369 * node.c
1370 */
1371 struct dnode_of_data;
1372 struct node_info;
1373
1374 bool available_free_memory(struct f2fs_sb_info *, int);
1375 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1376 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1377 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1378 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1379 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1380 int truncate_inode_blocks(struct inode *, pgoff_t);
1381 int truncate_xattr_node(struct inode *, struct page *);
1382 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1383 void remove_inode_page(struct inode *);
1384 struct page *new_inode_page(struct inode *);
1385 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1386 void ra_node_page(struct f2fs_sb_info *, nid_t);
1387 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1388 struct page *get_node_page_ra(struct page *, int);
1389 void sync_inode_page(struct dnode_of_data *);
1390 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1391 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1392 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1393 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1394 void recover_inline_xattr(struct inode *, struct page *);
1395 void recover_xattr_data(struct inode *, struct page *, block_t);
1396 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1397 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1398 struct f2fs_summary_block *);
1399 void flush_nat_entries(struct f2fs_sb_info *);
1400 int build_node_manager(struct f2fs_sb_info *);
1401 void destroy_node_manager(struct f2fs_sb_info *);
1402 int __init create_node_manager_caches(void);
1403 void destroy_node_manager_caches(void);
1404
1405 /*
1406 * segment.c
1407 */
1408 void register_inmem_page(struct inode *, struct page *);
1409 void commit_inmem_pages(struct inode *, bool);
1410 void f2fs_balance_fs(struct f2fs_sb_info *);
1411 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1412 int f2fs_issue_flush(struct f2fs_sb_info *);
1413 int create_flush_cmd_control(struct f2fs_sb_info *);
1414 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1415 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1416 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1417 void clear_prefree_segments(struct f2fs_sb_info *);
1418 void release_discard_addrs(struct f2fs_sb_info *);
1419 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1420 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1421 void allocate_new_segments(struct f2fs_sb_info *);
1422 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1423 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1424 void write_meta_page(struct f2fs_sb_info *, struct page *);
1425 void write_node_page(struct f2fs_sb_info *, struct page *,
1426 unsigned int, struct f2fs_io_info *);
1427 void write_data_page(struct page *, struct dnode_of_data *,
1428 struct f2fs_io_info *);
1429 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1430 void recover_data_page(struct f2fs_sb_info *, struct page *,
1431 struct f2fs_summary *, block_t, block_t);
1432 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1433 block_t, block_t *, struct f2fs_summary *, int);
1434 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1435 void write_data_summaries(struct f2fs_sb_info *, block_t);
1436 void write_node_summaries(struct f2fs_sb_info *, block_t);
1437 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1438 int, unsigned int, int);
1439 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1440 int build_segment_manager(struct f2fs_sb_info *);
1441 void destroy_segment_manager(struct f2fs_sb_info *);
1442 int __init create_segment_manager_caches(void);
1443 void destroy_segment_manager_caches(void);
1444
1445 /*
1446 * checkpoint.c
1447 */
1448 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1449 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1450 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1451 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1452 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1453 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1454 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1455 void release_dirty_inode(struct f2fs_sb_info *);
1456 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1457 int acquire_orphan_inode(struct f2fs_sb_info *);
1458 void release_orphan_inode(struct f2fs_sb_info *);
1459 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1460 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1461 void recover_orphan_inodes(struct f2fs_sb_info *);
1462 int get_valid_checkpoint(struct f2fs_sb_info *);
1463 void update_dirty_page(struct inode *, struct page *);
1464 void add_dirty_dir_inode(struct inode *);
1465 void remove_dirty_dir_inode(struct inode *);
1466 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1467 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1468 void init_ino_entry_info(struct f2fs_sb_info *);
1469 int __init create_checkpoint_caches(void);
1470 void destroy_checkpoint_caches(void);
1471
1472 /*
1473 * data.c
1474 */
1475 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1476 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1477 struct f2fs_io_info *);
1478 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1479 struct f2fs_io_info *);
1480 int reserve_new_block(struct dnode_of_data *);
1481 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1482 void update_extent_cache(struct dnode_of_data *);
1483 struct page *find_data_page(struct inode *, pgoff_t, bool);
1484 struct page *get_lock_data_page(struct inode *, pgoff_t);
1485 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1486 int do_write_data_page(struct page *, struct f2fs_io_info *);
1487 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1488
1489 /*
1490 * gc.c
1491 */
1492 int start_gc_thread(struct f2fs_sb_info *);
1493 void stop_gc_thread(struct f2fs_sb_info *);
1494 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1495 int f2fs_gc(struct f2fs_sb_info *);
1496 void build_gc_manager(struct f2fs_sb_info *);
1497
1498 /*
1499 * recovery.c
1500 */
1501 int recover_fsync_data(struct f2fs_sb_info *);
1502 bool space_for_roll_forward(struct f2fs_sb_info *);
1503
1504 /*
1505 * debug.c
1506 */
1507 #ifdef CONFIG_F2FS_STAT_FS
1508 struct f2fs_stat_info {
1509 struct list_head stat_list;
1510 struct f2fs_sb_info *sbi;
1511 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1512 int main_area_segs, main_area_sections, main_area_zones;
1513 int hit_ext, total_ext;
1514 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1515 int nats, dirty_nats, sits, dirty_sits, fnids;
1516 int total_count, utilization;
1517 int bg_gc, inline_inode, inline_dir, inmem_pages;
1518 unsigned int valid_count, valid_node_count, valid_inode_count;
1519 unsigned int bimodal, avg_vblocks;
1520 int util_free, util_valid, util_invalid;
1521 int rsvd_segs, overp_segs;
1522 int dirty_count, node_pages, meta_pages;
1523 int prefree_count, call_count, cp_count;
1524 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1525 int tot_blks, data_blks, node_blks;
1526 int curseg[NR_CURSEG_TYPE];
1527 int cursec[NR_CURSEG_TYPE];
1528 int curzone[NR_CURSEG_TYPE];
1529
1530 unsigned int segment_count[2];
1531 unsigned int block_count[2];
1532 unsigned int inplace_count;
1533 unsigned base_mem, cache_mem, page_mem;
1534 };
1535
1536 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1537 {
1538 return (struct f2fs_stat_info *)sbi->stat_info;
1539 }
1540
1541 #define stat_inc_cp_count(si) ((si)->cp_count++)
1542 #define stat_inc_call_count(si) ((si)->call_count++)
1543 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1544 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1545 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1546 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1547 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1548 #define stat_inc_inline_inode(inode) \
1549 do { \
1550 if (f2fs_has_inline_data(inode)) \
1551 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1552 } while (0)
1553 #define stat_dec_inline_inode(inode) \
1554 do { \
1555 if (f2fs_has_inline_data(inode)) \
1556 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1557 } while (0)
1558 #define stat_inc_inline_dir(inode) \
1559 do { \
1560 if (f2fs_has_inline_dentry(inode)) \
1561 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1562 } while (0)
1563 #define stat_dec_inline_dir(inode) \
1564 do { \
1565 if (f2fs_has_inline_dentry(inode)) \
1566 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1567 } while (0)
1568 #define stat_inc_seg_type(sbi, curseg) \
1569 ((sbi)->segment_count[(curseg)->alloc_type]++)
1570 #define stat_inc_block_count(sbi, curseg) \
1571 ((sbi)->block_count[(curseg)->alloc_type]++)
1572 #define stat_inc_inplace_blocks(sbi) \
1573 (atomic_inc(&(sbi)->inplace_count))
1574 #define stat_inc_seg_count(sbi, type) \
1575 do { \
1576 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1577 (si)->tot_segs++; \
1578 if (type == SUM_TYPE_DATA) \
1579 si->data_segs++; \
1580 else \
1581 si->node_segs++; \
1582 } while (0)
1583
1584 #define stat_inc_tot_blk_count(si, blks) \
1585 (si->tot_blks += (blks))
1586
1587 #define stat_inc_data_blk_count(sbi, blks) \
1588 do { \
1589 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1590 stat_inc_tot_blk_count(si, blks); \
1591 si->data_blks += (blks); \
1592 } while (0)
1593
1594 #define stat_inc_node_blk_count(sbi, blks) \
1595 do { \
1596 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1597 stat_inc_tot_blk_count(si, blks); \
1598 si->node_blks += (blks); \
1599 } while (0)
1600
1601 int f2fs_build_stats(struct f2fs_sb_info *);
1602 void f2fs_destroy_stats(struct f2fs_sb_info *);
1603 void __init f2fs_create_root_stats(void);
1604 void f2fs_destroy_root_stats(void);
1605 #else
1606 #define stat_inc_cp_count(si)
1607 #define stat_inc_call_count(si)
1608 #define stat_inc_bggc_count(si)
1609 #define stat_inc_dirty_dir(sbi)
1610 #define stat_dec_dirty_dir(sbi)
1611 #define stat_inc_total_hit(sb)
1612 #define stat_inc_read_hit(sb)
1613 #define stat_inc_inline_inode(inode)
1614 #define stat_dec_inline_inode(inode)
1615 #define stat_inc_inline_dir(inode)
1616 #define stat_dec_inline_dir(inode)
1617 #define stat_inc_seg_type(sbi, curseg)
1618 #define stat_inc_block_count(sbi, curseg)
1619 #define stat_inc_inplace_blocks(sbi)
1620 #define stat_inc_seg_count(si, type)
1621 #define stat_inc_tot_blk_count(si, blks)
1622 #define stat_inc_data_blk_count(si, blks)
1623 #define stat_inc_node_blk_count(sbi, blks)
1624
1625 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1626 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1627 static inline void __init f2fs_create_root_stats(void) { }
1628 static inline void f2fs_destroy_root_stats(void) { }
1629 #endif
1630
1631 extern const struct file_operations f2fs_dir_operations;
1632 extern const struct file_operations f2fs_file_operations;
1633 extern const struct inode_operations f2fs_file_inode_operations;
1634 extern const struct address_space_operations f2fs_dblock_aops;
1635 extern const struct address_space_operations f2fs_node_aops;
1636 extern const struct address_space_operations f2fs_meta_aops;
1637 extern const struct inode_operations f2fs_dir_inode_operations;
1638 extern const struct inode_operations f2fs_symlink_inode_operations;
1639 extern const struct inode_operations f2fs_special_inode_operations;
1640
1641 /*
1642 * inline.c
1643 */
1644 bool f2fs_may_inline(struct inode *);
1645 void read_inline_data(struct page *, struct page *);
1646 int f2fs_read_inline_data(struct inode *, struct page *);
1647 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1648 int f2fs_convert_inline_inode(struct inode *);
1649 int f2fs_write_inline_data(struct inode *, struct page *);
1650 void truncate_inline_data(struct page *, u64);
1651 bool recover_inline_data(struct inode *, struct page *);
1652 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1653 struct page **);
1654 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1655 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1656 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1657 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1658 struct inode *, struct inode *);
1659 bool f2fs_empty_inline_dir(struct inode *);
1660 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1661 #endif
This page took 0.064122 seconds and 5 git commands to generate.