dbd277eb9da7673b16a0493f15223d3a8fa89e23
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 extern u32 f2fs_fault_rate;
52 extern atomic_t f2fs_ops;
53 extern char *fault_name[FAULT_MAX];
54
55 static inline bool time_to_inject(int type)
56 {
57 atomic_inc(&f2fs_ops);
58 if (f2fs_fault_rate && (atomic_read(&f2fs_ops) >= f2fs_fault_rate)) {
59 atomic_set(&f2fs_ops, 0);
60 printk("%sF2FS-fs : inject %s in %pF\n",
61 KERN_INFO,
62 fault_name[type],
63 __builtin_return_address(0));
64 return true;
65 }
66 return false;
67 }
68 #endif
69
70 /*
71 * For mount options
72 */
73 #define F2FS_MOUNT_BG_GC 0x00000001
74 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
75 #define F2FS_MOUNT_DISCARD 0x00000004
76 #define F2FS_MOUNT_NOHEAP 0x00000008
77 #define F2FS_MOUNT_XATTR_USER 0x00000010
78 #define F2FS_MOUNT_POSIX_ACL 0x00000020
79 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
80 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
81 #define F2FS_MOUNT_INLINE_DATA 0x00000100
82 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
83 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
84 #define F2FS_MOUNT_NOBARRIER 0x00000800
85 #define F2FS_MOUNT_FASTBOOT 0x00001000
86 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
87 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
88 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
89 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
90
91 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
92 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
93 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
94
95 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
96 typecheck(unsigned long long, b) && \
97 ((long long)((a) - (b)) > 0))
98
99 typedef u32 block_t; /*
100 * should not change u32, since it is the on-disk block
101 * address format, __le32.
102 */
103 typedef u32 nid_t;
104
105 struct f2fs_mount_info {
106 unsigned int opt;
107 };
108
109 #define F2FS_FEATURE_ENCRYPT 0x0001
110
111 #define F2FS_HAS_FEATURE(sb, mask) \
112 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
113 #define F2FS_SET_FEATURE(sb, mask) \
114 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
115 #define F2FS_CLEAR_FEATURE(sb, mask) \
116 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
117
118 /*
119 * For checkpoint manager
120 */
121 enum {
122 NAT_BITMAP,
123 SIT_BITMAP
124 };
125
126 enum {
127 CP_UMOUNT,
128 CP_FASTBOOT,
129 CP_SYNC,
130 CP_RECOVERY,
131 CP_DISCARD,
132 };
133
134 #define DEF_BATCHED_TRIM_SECTIONS 32
135 #define BATCHED_TRIM_SEGMENTS(sbi) \
136 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
137 #define BATCHED_TRIM_BLOCKS(sbi) \
138 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
139 #define DEF_CP_INTERVAL 60 /* 60 secs */
140 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
141
142 struct cp_control {
143 int reason;
144 __u64 trim_start;
145 __u64 trim_end;
146 __u64 trim_minlen;
147 __u64 trimmed;
148 };
149
150 /*
151 * For CP/NAT/SIT/SSA readahead
152 */
153 enum {
154 META_CP,
155 META_NAT,
156 META_SIT,
157 META_SSA,
158 META_POR,
159 };
160
161 /* for the list of ino */
162 enum {
163 ORPHAN_INO, /* for orphan ino list */
164 APPEND_INO, /* for append ino list */
165 UPDATE_INO, /* for update ino list */
166 MAX_INO_ENTRY, /* max. list */
167 };
168
169 struct ino_entry {
170 struct list_head list; /* list head */
171 nid_t ino; /* inode number */
172 };
173
174 /* for the list of inodes to be GCed */
175 struct inode_entry {
176 struct list_head list; /* list head */
177 struct inode *inode; /* vfs inode pointer */
178 };
179
180 /* for the list of blockaddresses to be discarded */
181 struct discard_entry {
182 struct list_head list; /* list head */
183 block_t blkaddr; /* block address to be discarded */
184 int len; /* # of consecutive blocks of the discard */
185 };
186
187 /* for the list of fsync inodes, used only during recovery */
188 struct fsync_inode_entry {
189 struct list_head list; /* list head */
190 struct inode *inode; /* vfs inode pointer */
191 block_t blkaddr; /* block address locating the last fsync */
192 block_t last_dentry; /* block address locating the last dentry */
193 };
194
195 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
196 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
197
198 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
199 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
200 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
201 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
202
203 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
204 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
205
206 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
207 {
208 int before = nats_in_cursum(journal);
209 journal->n_nats = cpu_to_le16(before + i);
210 return before;
211 }
212
213 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
214 {
215 int before = sits_in_cursum(journal);
216 journal->n_sits = cpu_to_le16(before + i);
217 return before;
218 }
219
220 static inline bool __has_cursum_space(struct f2fs_journal *journal,
221 int size, int type)
222 {
223 if (type == NAT_JOURNAL)
224 return size <= MAX_NAT_JENTRIES(journal);
225 return size <= MAX_SIT_JENTRIES(journal);
226 }
227
228 /*
229 * ioctl commands
230 */
231 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
232 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
233 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
234
235 #define F2FS_IOCTL_MAGIC 0xf5
236 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
237 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
238 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
239 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
240 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
241 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
242 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
243 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
244
245 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
246 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
247 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
248
249 /*
250 * should be same as XFS_IOC_GOINGDOWN.
251 * Flags for going down operation used by FS_IOC_GOINGDOWN
252 */
253 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
254 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
255 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
256 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
257 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
258
259 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
260 /*
261 * ioctl commands in 32 bit emulation
262 */
263 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
264 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
265 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
266 #endif
267
268 struct f2fs_defragment {
269 u64 start;
270 u64 len;
271 };
272
273 /*
274 * For INODE and NODE manager
275 */
276 /* for directory operations */
277 struct f2fs_dentry_ptr {
278 struct inode *inode;
279 const void *bitmap;
280 struct f2fs_dir_entry *dentry;
281 __u8 (*filename)[F2FS_SLOT_LEN];
282 int max;
283 };
284
285 static inline void make_dentry_ptr(struct inode *inode,
286 struct f2fs_dentry_ptr *d, void *src, int type)
287 {
288 d->inode = inode;
289
290 if (type == 1) {
291 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
292 d->max = NR_DENTRY_IN_BLOCK;
293 d->bitmap = &t->dentry_bitmap;
294 d->dentry = t->dentry;
295 d->filename = t->filename;
296 } else {
297 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
298 d->max = NR_INLINE_DENTRY;
299 d->bitmap = &t->dentry_bitmap;
300 d->dentry = t->dentry;
301 d->filename = t->filename;
302 }
303 }
304
305 /*
306 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
307 * as its node offset to distinguish from index node blocks.
308 * But some bits are used to mark the node block.
309 */
310 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
311 >> OFFSET_BIT_SHIFT)
312 enum {
313 ALLOC_NODE, /* allocate a new node page if needed */
314 LOOKUP_NODE, /* look up a node without readahead */
315 LOOKUP_NODE_RA, /*
316 * look up a node with readahead called
317 * by get_data_block.
318 */
319 };
320
321 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
322
323 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
324
325 /* vector size for gang look-up from extent cache that consists of radix tree */
326 #define EXT_TREE_VEC_SIZE 64
327
328 /* for in-memory extent cache entry */
329 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
330
331 /* number of extent info in extent cache we try to shrink */
332 #define EXTENT_CACHE_SHRINK_NUMBER 128
333
334 struct extent_info {
335 unsigned int fofs; /* start offset in a file */
336 u32 blk; /* start block address of the extent */
337 unsigned int len; /* length of the extent */
338 };
339
340 struct extent_node {
341 struct rb_node rb_node; /* rb node located in rb-tree */
342 struct list_head list; /* node in global extent list of sbi */
343 struct extent_info ei; /* extent info */
344 struct extent_tree *et; /* extent tree pointer */
345 };
346
347 struct extent_tree {
348 nid_t ino; /* inode number */
349 struct rb_root root; /* root of extent info rb-tree */
350 struct extent_node *cached_en; /* recently accessed extent node */
351 struct extent_info largest; /* largested extent info */
352 struct list_head list; /* to be used by sbi->zombie_list */
353 rwlock_t lock; /* protect extent info rb-tree */
354 atomic_t node_cnt; /* # of extent node in rb-tree*/
355 };
356
357 /*
358 * This structure is taken from ext4_map_blocks.
359 *
360 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
361 */
362 #define F2FS_MAP_NEW (1 << BH_New)
363 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
364 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
365 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
366 F2FS_MAP_UNWRITTEN)
367
368 struct f2fs_map_blocks {
369 block_t m_pblk;
370 block_t m_lblk;
371 unsigned int m_len;
372 unsigned int m_flags;
373 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
374 };
375
376 /* for flag in get_data_block */
377 #define F2FS_GET_BLOCK_READ 0
378 #define F2FS_GET_BLOCK_DIO 1
379 #define F2FS_GET_BLOCK_FIEMAP 2
380 #define F2FS_GET_BLOCK_BMAP 3
381 #define F2FS_GET_BLOCK_PRE_DIO 4
382 #define F2FS_GET_BLOCK_PRE_AIO 5
383
384 /*
385 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
386 */
387 #define FADVISE_COLD_BIT 0x01
388 #define FADVISE_LOST_PINO_BIT 0x02
389 #define FADVISE_ENCRYPT_BIT 0x04
390 #define FADVISE_ENC_NAME_BIT 0x08
391
392 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
393 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
394 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
395 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
396 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
397 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
398 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
399 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
400 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
401 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
402 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
403
404 #define DEF_DIR_LEVEL 0
405
406 struct f2fs_inode_info {
407 struct inode vfs_inode; /* serve a vfs inode */
408 unsigned long i_flags; /* keep an inode flags for ioctl */
409 unsigned char i_advise; /* use to give file attribute hints */
410 unsigned char i_dir_level; /* use for dentry level for large dir */
411 unsigned int i_current_depth; /* use only in directory structure */
412 unsigned int i_pino; /* parent inode number */
413 umode_t i_acl_mode; /* keep file acl mode temporarily */
414
415 /* Use below internally in f2fs*/
416 unsigned long flags; /* use to pass per-file flags */
417 struct rw_semaphore i_sem; /* protect fi info */
418 atomic_t dirty_pages; /* # of dirty pages */
419 f2fs_hash_t chash; /* hash value of given file name */
420 unsigned int clevel; /* maximum level of given file name */
421 nid_t i_xattr_nid; /* node id that contains xattrs */
422 unsigned long long xattr_ver; /* cp version of xattr modification */
423
424 struct list_head dirty_list; /* linked in global dirty list */
425 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
426 struct mutex inmem_lock; /* lock for inmemory pages */
427 struct extent_tree *extent_tree; /* cached extent_tree entry */
428 };
429
430 static inline void get_extent_info(struct extent_info *ext,
431 struct f2fs_extent *i_ext)
432 {
433 ext->fofs = le32_to_cpu(i_ext->fofs);
434 ext->blk = le32_to_cpu(i_ext->blk);
435 ext->len = le32_to_cpu(i_ext->len);
436 }
437
438 static inline void set_raw_extent(struct extent_info *ext,
439 struct f2fs_extent *i_ext)
440 {
441 i_ext->fofs = cpu_to_le32(ext->fofs);
442 i_ext->blk = cpu_to_le32(ext->blk);
443 i_ext->len = cpu_to_le32(ext->len);
444 }
445
446 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
447 u32 blk, unsigned int len)
448 {
449 ei->fofs = fofs;
450 ei->blk = blk;
451 ei->len = len;
452 }
453
454 static inline bool __is_extent_same(struct extent_info *ei1,
455 struct extent_info *ei2)
456 {
457 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
458 ei1->len == ei2->len);
459 }
460
461 static inline bool __is_extent_mergeable(struct extent_info *back,
462 struct extent_info *front)
463 {
464 return (back->fofs + back->len == front->fofs &&
465 back->blk + back->len == front->blk);
466 }
467
468 static inline bool __is_back_mergeable(struct extent_info *cur,
469 struct extent_info *back)
470 {
471 return __is_extent_mergeable(back, cur);
472 }
473
474 static inline bool __is_front_mergeable(struct extent_info *cur,
475 struct extent_info *front)
476 {
477 return __is_extent_mergeable(cur, front);
478 }
479
480 static inline void __try_update_largest_extent(struct extent_tree *et,
481 struct extent_node *en)
482 {
483 if (en->ei.len > et->largest.len)
484 et->largest = en->ei;
485 }
486
487 struct f2fs_nm_info {
488 block_t nat_blkaddr; /* base disk address of NAT */
489 nid_t max_nid; /* maximum possible node ids */
490 nid_t available_nids; /* maximum available node ids */
491 nid_t next_scan_nid; /* the next nid to be scanned */
492 unsigned int ram_thresh; /* control the memory footprint */
493 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
494 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
495
496 /* NAT cache management */
497 struct radix_tree_root nat_root;/* root of the nat entry cache */
498 struct radix_tree_root nat_set_root;/* root of the nat set cache */
499 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
500 struct list_head nat_entries; /* cached nat entry list (clean) */
501 unsigned int nat_cnt; /* the # of cached nat entries */
502 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
503
504 /* free node ids management */
505 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
506 struct list_head free_nid_list; /* a list for free nids */
507 spinlock_t free_nid_list_lock; /* protect free nid list */
508 unsigned int fcnt; /* the number of free node id */
509 struct mutex build_lock; /* lock for build free nids */
510
511 /* for checkpoint */
512 char *nat_bitmap; /* NAT bitmap pointer */
513 int bitmap_size; /* bitmap size */
514 };
515
516 /*
517 * this structure is used as one of function parameters.
518 * all the information are dedicated to a given direct node block determined
519 * by the data offset in a file.
520 */
521 struct dnode_of_data {
522 struct inode *inode; /* vfs inode pointer */
523 struct page *inode_page; /* its inode page, NULL is possible */
524 struct page *node_page; /* cached direct node page */
525 nid_t nid; /* node id of the direct node block */
526 unsigned int ofs_in_node; /* data offset in the node page */
527 bool inode_page_locked; /* inode page is locked or not */
528 bool node_changed; /* is node block changed */
529 char cur_level; /* level of hole node page */
530 char max_level; /* level of current page located */
531 block_t data_blkaddr; /* block address of the node block */
532 };
533
534 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
535 struct page *ipage, struct page *npage, nid_t nid)
536 {
537 memset(dn, 0, sizeof(*dn));
538 dn->inode = inode;
539 dn->inode_page = ipage;
540 dn->node_page = npage;
541 dn->nid = nid;
542 }
543
544 /*
545 * For SIT manager
546 *
547 * By default, there are 6 active log areas across the whole main area.
548 * When considering hot and cold data separation to reduce cleaning overhead,
549 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
550 * respectively.
551 * In the current design, you should not change the numbers intentionally.
552 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
553 * logs individually according to the underlying devices. (default: 6)
554 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
555 * data and 8 for node logs.
556 */
557 #define NR_CURSEG_DATA_TYPE (3)
558 #define NR_CURSEG_NODE_TYPE (3)
559 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
560
561 enum {
562 CURSEG_HOT_DATA = 0, /* directory entry blocks */
563 CURSEG_WARM_DATA, /* data blocks */
564 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
565 CURSEG_HOT_NODE, /* direct node blocks of directory files */
566 CURSEG_WARM_NODE, /* direct node blocks of normal files */
567 CURSEG_COLD_NODE, /* indirect node blocks */
568 NO_CHECK_TYPE,
569 CURSEG_DIRECT_IO, /* to use for the direct IO path */
570 };
571
572 struct flush_cmd {
573 struct completion wait;
574 struct llist_node llnode;
575 int ret;
576 };
577
578 struct flush_cmd_control {
579 struct task_struct *f2fs_issue_flush; /* flush thread */
580 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
581 struct llist_head issue_list; /* list for command issue */
582 struct llist_node *dispatch_list; /* list for command dispatch */
583 };
584
585 struct f2fs_sm_info {
586 struct sit_info *sit_info; /* whole segment information */
587 struct free_segmap_info *free_info; /* free segment information */
588 struct dirty_seglist_info *dirty_info; /* dirty segment information */
589 struct curseg_info *curseg_array; /* active segment information */
590
591 block_t seg0_blkaddr; /* block address of 0'th segment */
592 block_t main_blkaddr; /* start block address of main area */
593 block_t ssa_blkaddr; /* start block address of SSA area */
594
595 unsigned int segment_count; /* total # of segments */
596 unsigned int main_segments; /* # of segments in main area */
597 unsigned int reserved_segments; /* # of reserved segments */
598 unsigned int ovp_segments; /* # of overprovision segments */
599
600 /* a threshold to reclaim prefree segments */
601 unsigned int rec_prefree_segments;
602
603 /* for small discard management */
604 struct list_head discard_list; /* 4KB discard list */
605 int nr_discards; /* # of discards in the list */
606 int max_discards; /* max. discards to be issued */
607
608 /* for batched trimming */
609 unsigned int trim_sections; /* # of sections to trim */
610
611 struct list_head sit_entry_set; /* sit entry set list */
612
613 unsigned int ipu_policy; /* in-place-update policy */
614 unsigned int min_ipu_util; /* in-place-update threshold */
615 unsigned int min_fsync_blocks; /* threshold for fsync */
616
617 /* for flush command control */
618 struct flush_cmd_control *cmd_control_info;
619
620 };
621
622 /*
623 * For superblock
624 */
625 /*
626 * COUNT_TYPE for monitoring
627 *
628 * f2fs monitors the number of several block types such as on-writeback,
629 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
630 */
631 enum count_type {
632 F2FS_WRITEBACK,
633 F2FS_DIRTY_DENTS,
634 F2FS_DIRTY_DATA,
635 F2FS_DIRTY_NODES,
636 F2FS_DIRTY_META,
637 F2FS_INMEM_PAGES,
638 NR_COUNT_TYPE,
639 };
640
641 /*
642 * The below are the page types of bios used in submit_bio().
643 * The available types are:
644 * DATA User data pages. It operates as async mode.
645 * NODE Node pages. It operates as async mode.
646 * META FS metadata pages such as SIT, NAT, CP.
647 * NR_PAGE_TYPE The number of page types.
648 * META_FLUSH Make sure the previous pages are written
649 * with waiting the bio's completion
650 * ... Only can be used with META.
651 */
652 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
653 enum page_type {
654 DATA,
655 NODE,
656 META,
657 NR_PAGE_TYPE,
658 META_FLUSH,
659 INMEM, /* the below types are used by tracepoints only. */
660 INMEM_DROP,
661 INMEM_REVOKE,
662 IPU,
663 OPU,
664 };
665
666 struct f2fs_io_info {
667 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
668 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
669 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
670 block_t new_blkaddr; /* new block address to be written */
671 block_t old_blkaddr; /* old block address before Cow */
672 struct page *page; /* page to be written */
673 struct page *encrypted_page; /* encrypted page */
674 };
675
676 #define is_read_io(rw) (((rw) & 1) == READ)
677 struct f2fs_bio_info {
678 struct f2fs_sb_info *sbi; /* f2fs superblock */
679 struct bio *bio; /* bios to merge */
680 sector_t last_block_in_bio; /* last block number */
681 struct f2fs_io_info fio; /* store buffered io info. */
682 struct rw_semaphore io_rwsem; /* blocking op for bio */
683 };
684
685 enum inode_type {
686 DIR_INODE, /* for dirty dir inode */
687 FILE_INODE, /* for dirty regular/symlink inode */
688 NR_INODE_TYPE,
689 };
690
691 /* for inner inode cache management */
692 struct inode_management {
693 struct radix_tree_root ino_root; /* ino entry array */
694 spinlock_t ino_lock; /* for ino entry lock */
695 struct list_head ino_list; /* inode list head */
696 unsigned long ino_num; /* number of entries */
697 };
698
699 /* For s_flag in struct f2fs_sb_info */
700 enum {
701 SBI_IS_DIRTY, /* dirty flag for checkpoint */
702 SBI_IS_CLOSE, /* specify unmounting */
703 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
704 SBI_POR_DOING, /* recovery is doing or not */
705 SBI_NEED_SB_WRITE, /* need to recover superblock */
706 };
707
708 enum {
709 CP_TIME,
710 REQ_TIME,
711 MAX_TIME,
712 };
713
714 #ifdef CONFIG_F2FS_FS_ENCRYPTION
715 #define F2FS_KEY_DESC_PREFIX "f2fs:"
716 #define F2FS_KEY_DESC_PREFIX_SIZE 5
717 #endif
718 struct f2fs_sb_info {
719 struct super_block *sb; /* pointer to VFS super block */
720 struct proc_dir_entry *s_proc; /* proc entry */
721 struct f2fs_super_block *raw_super; /* raw super block pointer */
722 int valid_super_block; /* valid super block no */
723 int s_flag; /* flags for sbi */
724
725 #ifdef CONFIG_F2FS_FS_ENCRYPTION
726 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
727 u8 key_prefix_size;
728 #endif
729 /* for node-related operations */
730 struct f2fs_nm_info *nm_info; /* node manager */
731 struct inode *node_inode; /* cache node blocks */
732
733 /* for segment-related operations */
734 struct f2fs_sm_info *sm_info; /* segment manager */
735
736 /* for bio operations */
737 struct f2fs_bio_info read_io; /* for read bios */
738 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
739
740 /* for checkpoint */
741 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
742 struct inode *meta_inode; /* cache meta blocks */
743 struct mutex cp_mutex; /* checkpoint procedure lock */
744 struct rw_semaphore cp_rwsem; /* blocking FS operations */
745 struct rw_semaphore node_write; /* locking node writes */
746 struct mutex writepages; /* mutex for writepages() */
747 wait_queue_head_t cp_wait;
748 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
749 long interval_time[MAX_TIME]; /* to store thresholds */
750
751 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
752
753 /* for orphan inode, use 0'th array */
754 unsigned int max_orphans; /* max orphan inodes */
755
756 /* for inode management */
757 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
758 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
759
760 /* for extent tree cache */
761 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
762 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
763 struct list_head extent_list; /* lru list for shrinker */
764 spinlock_t extent_lock; /* locking extent lru list */
765 atomic_t total_ext_tree; /* extent tree count */
766 struct list_head zombie_list; /* extent zombie tree list */
767 atomic_t total_zombie_tree; /* extent zombie tree count */
768 atomic_t total_ext_node; /* extent info count */
769
770 /* basic filesystem units */
771 unsigned int log_sectors_per_block; /* log2 sectors per block */
772 unsigned int log_blocksize; /* log2 block size */
773 unsigned int blocksize; /* block size */
774 unsigned int root_ino_num; /* root inode number*/
775 unsigned int node_ino_num; /* node inode number*/
776 unsigned int meta_ino_num; /* meta inode number*/
777 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
778 unsigned int blocks_per_seg; /* blocks per segment */
779 unsigned int segs_per_sec; /* segments per section */
780 unsigned int secs_per_zone; /* sections per zone */
781 unsigned int total_sections; /* total section count */
782 unsigned int total_node_count; /* total node block count */
783 unsigned int total_valid_node_count; /* valid node block count */
784 unsigned int total_valid_inode_count; /* valid inode count */
785 loff_t max_file_blocks; /* max block index of file */
786 int active_logs; /* # of active logs */
787 int dir_level; /* directory level */
788
789 block_t user_block_count; /* # of user blocks */
790 block_t total_valid_block_count; /* # of valid blocks */
791 block_t alloc_valid_block_count; /* # of allocated blocks */
792 block_t discard_blks; /* discard command candidats */
793 block_t last_valid_block_count; /* for recovery */
794 u32 s_next_generation; /* for NFS support */
795 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
796
797 struct f2fs_mount_info mount_opt; /* mount options */
798
799 /* for cleaning operations */
800 struct mutex gc_mutex; /* mutex for GC */
801 struct f2fs_gc_kthread *gc_thread; /* GC thread */
802 unsigned int cur_victim_sec; /* current victim section num */
803
804 /* maximum # of trials to find a victim segment for SSR and GC */
805 unsigned int max_victim_search;
806
807 /*
808 * for stat information.
809 * one is for the LFS mode, and the other is for the SSR mode.
810 */
811 #ifdef CONFIG_F2FS_STAT_FS
812 struct f2fs_stat_info *stat_info; /* FS status information */
813 unsigned int segment_count[2]; /* # of allocated segments */
814 unsigned int block_count[2]; /* # of allocated blocks */
815 atomic_t inplace_count; /* # of inplace update */
816 atomic64_t total_hit_ext; /* # of lookup extent cache */
817 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
818 atomic64_t read_hit_largest; /* # of hit largest extent node */
819 atomic64_t read_hit_cached; /* # of hit cached extent node */
820 atomic_t inline_xattr; /* # of inline_xattr inodes */
821 atomic_t inline_inode; /* # of inline_data inodes */
822 atomic_t inline_dir; /* # of inline_dentry inodes */
823 int bg_gc; /* background gc calls */
824 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
825 #endif
826 unsigned int last_victim[2]; /* last victim segment # */
827 spinlock_t stat_lock; /* lock for stat operations */
828
829 /* For sysfs suppport */
830 struct kobject s_kobj;
831 struct completion s_kobj_unregister;
832
833 /* For shrinker support */
834 struct list_head s_list;
835 struct mutex umount_mutex;
836 unsigned int shrinker_run_no;
837
838 /* For write statistics */
839 u64 sectors_written_start;
840 u64 kbytes_written;
841
842 /* Reference to checksum algorithm driver via cryptoapi */
843 struct crypto_shash *s_chksum_driver;
844 };
845
846 /* For write statistics. Suppose sector size is 512 bytes,
847 * and the return value is in kbytes. s is of struct f2fs_sb_info.
848 */
849 #define BD_PART_WRITTEN(s) \
850 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
851 s->sectors_written_start) >> 1)
852
853 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
854 {
855 sbi->last_time[type] = jiffies;
856 }
857
858 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
859 {
860 struct timespec ts = {sbi->interval_time[type], 0};
861 unsigned long interval = timespec_to_jiffies(&ts);
862
863 return time_after(jiffies, sbi->last_time[type] + interval);
864 }
865
866 static inline bool is_idle(struct f2fs_sb_info *sbi)
867 {
868 struct block_device *bdev = sbi->sb->s_bdev;
869 struct request_queue *q = bdev_get_queue(bdev);
870 struct request_list *rl = &q->root_rl;
871
872 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
873 return 0;
874
875 return f2fs_time_over(sbi, REQ_TIME);
876 }
877
878 /*
879 * Inline functions
880 */
881 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
882 unsigned int length)
883 {
884 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
885 u32 *ctx = (u32 *)shash_desc_ctx(shash);
886 int err;
887
888 shash->tfm = sbi->s_chksum_driver;
889 shash->flags = 0;
890 *ctx = F2FS_SUPER_MAGIC;
891
892 err = crypto_shash_update(shash, address, length);
893 BUG_ON(err);
894
895 return *ctx;
896 }
897
898 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
899 void *buf, size_t buf_size)
900 {
901 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
902 }
903
904 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
905 {
906 return container_of(inode, struct f2fs_inode_info, vfs_inode);
907 }
908
909 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
910 {
911 return sb->s_fs_info;
912 }
913
914 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
915 {
916 return F2FS_SB(inode->i_sb);
917 }
918
919 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
920 {
921 return F2FS_I_SB(mapping->host);
922 }
923
924 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
925 {
926 return F2FS_M_SB(page->mapping);
927 }
928
929 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
930 {
931 return (struct f2fs_super_block *)(sbi->raw_super);
932 }
933
934 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
935 {
936 return (struct f2fs_checkpoint *)(sbi->ckpt);
937 }
938
939 static inline struct f2fs_node *F2FS_NODE(struct page *page)
940 {
941 return (struct f2fs_node *)page_address(page);
942 }
943
944 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
945 {
946 return &((struct f2fs_node *)page_address(page))->i;
947 }
948
949 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
950 {
951 return (struct f2fs_nm_info *)(sbi->nm_info);
952 }
953
954 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
955 {
956 return (struct f2fs_sm_info *)(sbi->sm_info);
957 }
958
959 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
960 {
961 return (struct sit_info *)(SM_I(sbi)->sit_info);
962 }
963
964 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
965 {
966 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
967 }
968
969 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
970 {
971 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
972 }
973
974 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
975 {
976 return sbi->meta_inode->i_mapping;
977 }
978
979 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
980 {
981 return sbi->node_inode->i_mapping;
982 }
983
984 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
985 {
986 return sbi->s_flag & (0x01 << type);
987 }
988
989 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
990 {
991 sbi->s_flag |= (0x01 << type);
992 }
993
994 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
995 {
996 sbi->s_flag &= ~(0x01 << type);
997 }
998
999 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1000 {
1001 return le64_to_cpu(cp->checkpoint_ver);
1002 }
1003
1004 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1005 {
1006 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1007 return ckpt_flags & f;
1008 }
1009
1010 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1011 {
1012 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1013 ckpt_flags |= f;
1014 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1015 }
1016
1017 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1018 {
1019 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1020 ckpt_flags &= (~f);
1021 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1022 }
1023
1024 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1025 {
1026 down_read(&sbi->cp_rwsem);
1027 }
1028
1029 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1030 {
1031 up_read(&sbi->cp_rwsem);
1032 }
1033
1034 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1035 {
1036 down_write(&sbi->cp_rwsem);
1037 }
1038
1039 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1040 {
1041 up_write(&sbi->cp_rwsem);
1042 }
1043
1044 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1045 {
1046 int reason = CP_SYNC;
1047
1048 if (test_opt(sbi, FASTBOOT))
1049 reason = CP_FASTBOOT;
1050 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1051 reason = CP_UMOUNT;
1052 return reason;
1053 }
1054
1055 static inline bool __remain_node_summaries(int reason)
1056 {
1057 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1058 }
1059
1060 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1061 {
1062 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1063 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1064 }
1065
1066 /*
1067 * Check whether the given nid is within node id range.
1068 */
1069 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1070 {
1071 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1072 return -EINVAL;
1073 if (unlikely(nid >= NM_I(sbi)->max_nid))
1074 return -EINVAL;
1075 return 0;
1076 }
1077
1078 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1079
1080 /*
1081 * Check whether the inode has blocks or not
1082 */
1083 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1084 {
1085 if (F2FS_I(inode)->i_xattr_nid)
1086 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1087 else
1088 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1089 }
1090
1091 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1092 {
1093 return ofs == XATTR_NODE_OFFSET;
1094 }
1095
1096 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1097 struct inode *inode, blkcnt_t count)
1098 {
1099 block_t valid_block_count;
1100
1101 spin_lock(&sbi->stat_lock);
1102 #ifdef CONFIG_F2FS_FAULT_INJECTION
1103 if (time_to_inject(FAULT_BLOCK)) {
1104 spin_unlock(&sbi->stat_lock);
1105 return false;
1106 }
1107 #endif
1108 valid_block_count =
1109 sbi->total_valid_block_count + (block_t)count;
1110 if (unlikely(valid_block_count > sbi->user_block_count)) {
1111 spin_unlock(&sbi->stat_lock);
1112 return false;
1113 }
1114 inode->i_blocks += count;
1115 sbi->total_valid_block_count = valid_block_count;
1116 sbi->alloc_valid_block_count += (block_t)count;
1117 spin_unlock(&sbi->stat_lock);
1118 return true;
1119 }
1120
1121 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1122 struct inode *inode,
1123 blkcnt_t count)
1124 {
1125 spin_lock(&sbi->stat_lock);
1126 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1127 f2fs_bug_on(sbi, inode->i_blocks < count);
1128 inode->i_blocks -= count;
1129 sbi->total_valid_block_count -= (block_t)count;
1130 spin_unlock(&sbi->stat_lock);
1131 }
1132
1133 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1134 {
1135 atomic_inc(&sbi->nr_pages[count_type]);
1136 set_sbi_flag(sbi, SBI_IS_DIRTY);
1137 }
1138
1139 static inline void inode_inc_dirty_pages(struct inode *inode)
1140 {
1141 atomic_inc(&F2FS_I(inode)->dirty_pages);
1142 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1143 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1144 }
1145
1146 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1147 {
1148 atomic_dec(&sbi->nr_pages[count_type]);
1149 }
1150
1151 static inline void inode_dec_dirty_pages(struct inode *inode)
1152 {
1153 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1154 !S_ISLNK(inode->i_mode))
1155 return;
1156
1157 atomic_dec(&F2FS_I(inode)->dirty_pages);
1158 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1159 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1160 }
1161
1162 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1163 {
1164 return atomic_read(&sbi->nr_pages[count_type]);
1165 }
1166
1167 static inline int get_dirty_pages(struct inode *inode)
1168 {
1169 return atomic_read(&F2FS_I(inode)->dirty_pages);
1170 }
1171
1172 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1173 {
1174 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1175 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1176 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1177 }
1178
1179 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1180 {
1181 return sbi->total_valid_block_count;
1182 }
1183
1184 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1185 {
1186 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1187
1188 /* return NAT or SIT bitmap */
1189 if (flag == NAT_BITMAP)
1190 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1191 else if (flag == SIT_BITMAP)
1192 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1193
1194 return 0;
1195 }
1196
1197 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1198 {
1199 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1200 }
1201
1202 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1203 {
1204 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1205 int offset;
1206
1207 if (__cp_payload(sbi) > 0) {
1208 if (flag == NAT_BITMAP)
1209 return &ckpt->sit_nat_version_bitmap;
1210 else
1211 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1212 } else {
1213 offset = (flag == NAT_BITMAP) ?
1214 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1215 return &ckpt->sit_nat_version_bitmap + offset;
1216 }
1217 }
1218
1219 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1220 {
1221 block_t start_addr;
1222 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1223 unsigned long long ckpt_version = cur_cp_version(ckpt);
1224
1225 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1226
1227 /*
1228 * odd numbered checkpoint should at cp segment 0
1229 * and even segment must be at cp segment 1
1230 */
1231 if (!(ckpt_version & 1))
1232 start_addr += sbi->blocks_per_seg;
1233
1234 return start_addr;
1235 }
1236
1237 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1238 {
1239 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1240 }
1241
1242 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1243 struct inode *inode)
1244 {
1245 block_t valid_block_count;
1246 unsigned int valid_node_count;
1247
1248 spin_lock(&sbi->stat_lock);
1249
1250 valid_block_count = sbi->total_valid_block_count + 1;
1251 if (unlikely(valid_block_count > sbi->user_block_count)) {
1252 spin_unlock(&sbi->stat_lock);
1253 return false;
1254 }
1255
1256 valid_node_count = sbi->total_valid_node_count + 1;
1257 if (unlikely(valid_node_count > sbi->total_node_count)) {
1258 spin_unlock(&sbi->stat_lock);
1259 return false;
1260 }
1261
1262 if (inode)
1263 inode->i_blocks++;
1264
1265 sbi->alloc_valid_block_count++;
1266 sbi->total_valid_node_count++;
1267 sbi->total_valid_block_count++;
1268 spin_unlock(&sbi->stat_lock);
1269
1270 return true;
1271 }
1272
1273 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1274 struct inode *inode)
1275 {
1276 spin_lock(&sbi->stat_lock);
1277
1278 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1279 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1280 f2fs_bug_on(sbi, !inode->i_blocks);
1281
1282 inode->i_blocks--;
1283 sbi->total_valid_node_count--;
1284 sbi->total_valid_block_count--;
1285
1286 spin_unlock(&sbi->stat_lock);
1287 }
1288
1289 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1290 {
1291 return sbi->total_valid_node_count;
1292 }
1293
1294 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1295 {
1296 spin_lock(&sbi->stat_lock);
1297 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1298 sbi->total_valid_inode_count++;
1299 spin_unlock(&sbi->stat_lock);
1300 }
1301
1302 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1303 {
1304 spin_lock(&sbi->stat_lock);
1305 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1306 sbi->total_valid_inode_count--;
1307 spin_unlock(&sbi->stat_lock);
1308 }
1309
1310 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1311 {
1312 return sbi->total_valid_inode_count;
1313 }
1314
1315 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1316 pgoff_t index, bool for_write)
1317 {
1318 #ifdef CONFIG_F2FS_FAULT_INJECTION
1319 struct page *page = find_lock_page(mapping, index);
1320 if (page)
1321 return page;
1322
1323 if (time_to_inject(FAULT_PAGE_ALLOC))
1324 return NULL;
1325 #endif
1326 if (!for_write)
1327 return grab_cache_page(mapping, index);
1328 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1329 }
1330
1331 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1332 {
1333 char *src_kaddr = kmap(src);
1334 char *dst_kaddr = kmap(dst);
1335
1336 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1337 kunmap(dst);
1338 kunmap(src);
1339 }
1340
1341 static inline void f2fs_put_page(struct page *page, int unlock)
1342 {
1343 if (!page)
1344 return;
1345
1346 if (unlock) {
1347 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1348 unlock_page(page);
1349 }
1350 put_page(page);
1351 }
1352
1353 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1354 {
1355 if (dn->node_page)
1356 f2fs_put_page(dn->node_page, 1);
1357 if (dn->inode_page && dn->node_page != dn->inode_page)
1358 f2fs_put_page(dn->inode_page, 0);
1359 dn->node_page = NULL;
1360 dn->inode_page = NULL;
1361 }
1362
1363 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1364 size_t size)
1365 {
1366 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1367 }
1368
1369 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1370 gfp_t flags)
1371 {
1372 void *entry;
1373
1374 entry = kmem_cache_alloc(cachep, flags);
1375 if (!entry)
1376 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1377 return entry;
1378 }
1379
1380 static inline struct bio *f2fs_bio_alloc(int npages)
1381 {
1382 struct bio *bio;
1383
1384 /* No failure on bio allocation */
1385 bio = bio_alloc(GFP_NOIO, npages);
1386 if (!bio)
1387 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1388 return bio;
1389 }
1390
1391 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1392 unsigned long index, void *item)
1393 {
1394 while (radix_tree_insert(root, index, item))
1395 cond_resched();
1396 }
1397
1398 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1399
1400 static inline bool IS_INODE(struct page *page)
1401 {
1402 struct f2fs_node *p = F2FS_NODE(page);
1403 return RAW_IS_INODE(p);
1404 }
1405
1406 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1407 {
1408 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1409 }
1410
1411 static inline block_t datablock_addr(struct page *node_page,
1412 unsigned int offset)
1413 {
1414 struct f2fs_node *raw_node;
1415 __le32 *addr_array;
1416 raw_node = F2FS_NODE(node_page);
1417 addr_array = blkaddr_in_node(raw_node);
1418 return le32_to_cpu(addr_array[offset]);
1419 }
1420
1421 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1422 {
1423 int mask;
1424
1425 addr += (nr >> 3);
1426 mask = 1 << (7 - (nr & 0x07));
1427 return mask & *addr;
1428 }
1429
1430 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1431 {
1432 int mask;
1433
1434 addr += (nr >> 3);
1435 mask = 1 << (7 - (nr & 0x07));
1436 *addr |= mask;
1437 }
1438
1439 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1440 {
1441 int mask;
1442
1443 addr += (nr >> 3);
1444 mask = 1 << (7 - (nr & 0x07));
1445 *addr &= ~mask;
1446 }
1447
1448 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1449 {
1450 int mask;
1451 int ret;
1452
1453 addr += (nr >> 3);
1454 mask = 1 << (7 - (nr & 0x07));
1455 ret = mask & *addr;
1456 *addr |= mask;
1457 return ret;
1458 }
1459
1460 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1461 {
1462 int mask;
1463 int ret;
1464
1465 addr += (nr >> 3);
1466 mask = 1 << (7 - (nr & 0x07));
1467 ret = mask & *addr;
1468 *addr &= ~mask;
1469 return ret;
1470 }
1471
1472 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1473 {
1474 int mask;
1475
1476 addr += (nr >> 3);
1477 mask = 1 << (7 - (nr & 0x07));
1478 *addr ^= mask;
1479 }
1480
1481 /* used for f2fs_inode_info->flags */
1482 enum {
1483 FI_NEW_INODE, /* indicate newly allocated inode */
1484 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1485 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1486 FI_INC_LINK, /* need to increment i_nlink */
1487 FI_ACL_MODE, /* indicate acl mode */
1488 FI_NO_ALLOC, /* should not allocate any blocks */
1489 FI_FREE_NID, /* free allocated nide */
1490 FI_UPDATE_DIR, /* should update inode block for consistency */
1491 FI_DELAY_IPUT, /* used for the recovery */
1492 FI_NO_EXTENT, /* not to use the extent cache */
1493 FI_INLINE_XATTR, /* used for inline xattr */
1494 FI_INLINE_DATA, /* used for inline data*/
1495 FI_INLINE_DENTRY, /* used for inline dentry */
1496 FI_APPEND_WRITE, /* inode has appended data */
1497 FI_UPDATE_WRITE, /* inode has in-place-update data */
1498 FI_NEED_IPU, /* used for ipu per file */
1499 FI_ATOMIC_FILE, /* indicate atomic file */
1500 FI_VOLATILE_FILE, /* indicate volatile file */
1501 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1502 FI_DROP_CACHE, /* drop dirty page cache */
1503 FI_DATA_EXIST, /* indicate data exists */
1504 FI_INLINE_DOTS, /* indicate inline dot dentries */
1505 FI_DO_DEFRAG, /* indicate defragment is running */
1506 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1507 };
1508
1509 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1510 {
1511 if (!test_bit(flag, &fi->flags))
1512 set_bit(flag, &fi->flags);
1513 }
1514
1515 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1516 {
1517 return test_bit(flag, &fi->flags);
1518 }
1519
1520 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1521 {
1522 if (test_bit(flag, &fi->flags))
1523 clear_bit(flag, &fi->flags);
1524 }
1525
1526 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1527 {
1528 fi->i_acl_mode = mode;
1529 set_inode_flag(fi, FI_ACL_MODE);
1530 }
1531
1532 static inline void get_inline_info(struct f2fs_inode_info *fi,
1533 struct f2fs_inode *ri)
1534 {
1535 if (ri->i_inline & F2FS_INLINE_XATTR)
1536 set_inode_flag(fi, FI_INLINE_XATTR);
1537 if (ri->i_inline & F2FS_INLINE_DATA)
1538 set_inode_flag(fi, FI_INLINE_DATA);
1539 if (ri->i_inline & F2FS_INLINE_DENTRY)
1540 set_inode_flag(fi, FI_INLINE_DENTRY);
1541 if (ri->i_inline & F2FS_DATA_EXIST)
1542 set_inode_flag(fi, FI_DATA_EXIST);
1543 if (ri->i_inline & F2FS_INLINE_DOTS)
1544 set_inode_flag(fi, FI_INLINE_DOTS);
1545 }
1546
1547 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1548 struct f2fs_inode *ri)
1549 {
1550 ri->i_inline = 0;
1551
1552 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1553 ri->i_inline |= F2FS_INLINE_XATTR;
1554 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1555 ri->i_inline |= F2FS_INLINE_DATA;
1556 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1557 ri->i_inline |= F2FS_INLINE_DENTRY;
1558 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1559 ri->i_inline |= F2FS_DATA_EXIST;
1560 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1561 ri->i_inline |= F2FS_INLINE_DOTS;
1562 }
1563
1564 static inline int f2fs_has_inline_xattr(struct inode *inode)
1565 {
1566 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1567 }
1568
1569 static inline unsigned int addrs_per_inode(struct inode *inode)
1570 {
1571 if (f2fs_has_inline_xattr(inode))
1572 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1573 return DEF_ADDRS_PER_INODE;
1574 }
1575
1576 static inline void *inline_xattr_addr(struct page *page)
1577 {
1578 struct f2fs_inode *ri = F2FS_INODE(page);
1579 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1580 F2FS_INLINE_XATTR_ADDRS]);
1581 }
1582
1583 static inline int inline_xattr_size(struct inode *inode)
1584 {
1585 if (f2fs_has_inline_xattr(inode))
1586 return F2FS_INLINE_XATTR_ADDRS << 2;
1587 else
1588 return 0;
1589 }
1590
1591 static inline int f2fs_has_inline_data(struct inode *inode)
1592 {
1593 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1594 }
1595
1596 static inline void f2fs_clear_inline_inode(struct inode *inode)
1597 {
1598 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1599 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1600 }
1601
1602 static inline int f2fs_exist_data(struct inode *inode)
1603 {
1604 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1605 }
1606
1607 static inline int f2fs_has_inline_dots(struct inode *inode)
1608 {
1609 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1610 }
1611
1612 static inline bool f2fs_is_atomic_file(struct inode *inode)
1613 {
1614 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1615 }
1616
1617 static inline bool f2fs_is_volatile_file(struct inode *inode)
1618 {
1619 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1620 }
1621
1622 static inline bool f2fs_is_first_block_written(struct inode *inode)
1623 {
1624 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1625 }
1626
1627 static inline bool f2fs_is_drop_cache(struct inode *inode)
1628 {
1629 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1630 }
1631
1632 static inline void *inline_data_addr(struct page *page)
1633 {
1634 struct f2fs_inode *ri = F2FS_INODE(page);
1635 return (void *)&(ri->i_addr[1]);
1636 }
1637
1638 static inline int f2fs_has_inline_dentry(struct inode *inode)
1639 {
1640 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1641 }
1642
1643 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1644 {
1645 if (!f2fs_has_inline_dentry(dir))
1646 kunmap(page);
1647 }
1648
1649 static inline int is_file(struct inode *inode, int type)
1650 {
1651 return F2FS_I(inode)->i_advise & type;
1652 }
1653
1654 static inline void set_file(struct inode *inode, int type)
1655 {
1656 F2FS_I(inode)->i_advise |= type;
1657 }
1658
1659 static inline void clear_file(struct inode *inode, int type)
1660 {
1661 F2FS_I(inode)->i_advise &= ~type;
1662 }
1663
1664 static inline int f2fs_readonly(struct super_block *sb)
1665 {
1666 return sb->s_flags & MS_RDONLY;
1667 }
1668
1669 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1670 {
1671 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1672 }
1673
1674 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1675 {
1676 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1677 sbi->sb->s_flags |= MS_RDONLY;
1678 }
1679
1680 static inline bool is_dot_dotdot(const struct qstr *str)
1681 {
1682 if (str->len == 1 && str->name[0] == '.')
1683 return true;
1684
1685 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1686 return true;
1687
1688 return false;
1689 }
1690
1691 static inline bool f2fs_may_extent_tree(struct inode *inode)
1692 {
1693 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1694 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1695 return false;
1696
1697 return S_ISREG(inode->i_mode);
1698 }
1699
1700 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1701 {
1702 #ifdef CONFIG_F2FS_FAULT_INJECTION
1703 if (time_to_inject(FAULT_KMALLOC))
1704 return NULL;
1705 #endif
1706 return kmalloc(size, flags);
1707 }
1708
1709 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1710 {
1711 void *ret;
1712
1713 ret = kmalloc(size, flags | __GFP_NOWARN);
1714 if (!ret)
1715 ret = __vmalloc(size, flags, PAGE_KERNEL);
1716 return ret;
1717 }
1718
1719 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1720 {
1721 void *ret;
1722
1723 ret = kzalloc(size, flags | __GFP_NOWARN);
1724 if (!ret)
1725 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1726 return ret;
1727 }
1728
1729 #define get_inode_mode(i) \
1730 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1731 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1732
1733 /* get offset of first page in next direct node */
1734 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1735 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1736 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1737 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1738
1739 /*
1740 * file.c
1741 */
1742 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1743 void truncate_data_blocks(struct dnode_of_data *);
1744 int truncate_blocks(struct inode *, u64, bool);
1745 int f2fs_truncate(struct inode *, bool);
1746 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1747 int f2fs_setattr(struct dentry *, struct iattr *);
1748 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1749 int truncate_data_blocks_range(struct dnode_of_data *, int);
1750 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1751 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1752
1753 /*
1754 * inode.c
1755 */
1756 void f2fs_set_inode_flags(struct inode *);
1757 struct inode *f2fs_iget(struct super_block *, unsigned long);
1758 int try_to_free_nats(struct f2fs_sb_info *, int);
1759 int update_inode(struct inode *, struct page *);
1760 int update_inode_page(struct inode *);
1761 int f2fs_write_inode(struct inode *, struct writeback_control *);
1762 void f2fs_evict_inode(struct inode *);
1763 void handle_failed_inode(struct inode *);
1764
1765 /*
1766 * namei.c
1767 */
1768 struct dentry *f2fs_get_parent(struct dentry *child);
1769
1770 /*
1771 * dir.c
1772 */
1773 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1774 void set_de_type(struct f2fs_dir_entry *, umode_t);
1775 unsigned char get_de_type(struct f2fs_dir_entry *);
1776 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1777 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1778 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1779 unsigned int, struct fscrypt_str *);
1780 void do_make_empty_dir(struct inode *, struct inode *,
1781 struct f2fs_dentry_ptr *);
1782 struct page *init_inode_metadata(struct inode *, struct inode *,
1783 const struct qstr *, struct page *);
1784 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1785 int room_for_filename(const void *, int, int);
1786 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1787 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1788 struct page **);
1789 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1790 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1791 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1792 struct page *, struct inode *);
1793 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1794 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1795 const struct qstr *, f2fs_hash_t , unsigned int);
1796 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1797 struct inode *, nid_t, umode_t);
1798 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1799 umode_t);
1800 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1801 struct inode *);
1802 int f2fs_do_tmpfile(struct inode *, struct inode *);
1803 bool f2fs_empty_dir(struct inode *);
1804
1805 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1806 {
1807 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1808 inode, inode->i_ino, inode->i_mode);
1809 }
1810
1811 /*
1812 * super.c
1813 */
1814 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1815 int f2fs_sync_fs(struct super_block *, int);
1816 extern __printf(3, 4)
1817 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1818 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1819
1820 /*
1821 * hash.c
1822 */
1823 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1824
1825 /*
1826 * node.c
1827 */
1828 struct dnode_of_data;
1829 struct node_info;
1830
1831 bool available_free_memory(struct f2fs_sb_info *, int);
1832 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1833 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1834 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1835 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1836 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1837 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1838 int truncate_inode_blocks(struct inode *, pgoff_t);
1839 int truncate_xattr_node(struct inode *, struct page *);
1840 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1841 int remove_inode_page(struct inode *);
1842 struct page *new_inode_page(struct inode *);
1843 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1844 void ra_node_page(struct f2fs_sb_info *, nid_t);
1845 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1846 struct page *get_node_page_ra(struct page *, int);
1847 void sync_inode_page(struct dnode_of_data *);
1848 void move_node_page(struct page *, int);
1849 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1850 bool);
1851 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1852 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1853 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1854 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1855 int try_to_free_nids(struct f2fs_sb_info *, int);
1856 void recover_inline_xattr(struct inode *, struct page *);
1857 void recover_xattr_data(struct inode *, struct page *, block_t);
1858 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1859 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1860 struct f2fs_summary_block *);
1861 void flush_nat_entries(struct f2fs_sb_info *);
1862 int build_node_manager(struct f2fs_sb_info *);
1863 void destroy_node_manager(struct f2fs_sb_info *);
1864 int __init create_node_manager_caches(void);
1865 void destroy_node_manager_caches(void);
1866
1867 /*
1868 * segment.c
1869 */
1870 void register_inmem_page(struct inode *, struct page *);
1871 void drop_inmem_pages(struct inode *);
1872 int commit_inmem_pages(struct inode *);
1873 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1874 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1875 int f2fs_issue_flush(struct f2fs_sb_info *);
1876 int create_flush_cmd_control(struct f2fs_sb_info *);
1877 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1878 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1879 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1880 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1881 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1882 void release_discard_addrs(struct f2fs_sb_info *);
1883 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1884 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1885 void allocate_new_segments(struct f2fs_sb_info *);
1886 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1887 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1888 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1889 void write_meta_page(struct f2fs_sb_info *, struct page *);
1890 void write_node_page(unsigned int, struct f2fs_io_info *);
1891 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1892 void rewrite_data_page(struct f2fs_io_info *);
1893 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1894 block_t, block_t, bool, bool);
1895 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1896 block_t, block_t, unsigned char, bool, bool);
1897 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1898 block_t, block_t *, struct f2fs_summary *, int);
1899 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1900 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1901 void write_data_summaries(struct f2fs_sb_info *, block_t);
1902 void write_node_summaries(struct f2fs_sb_info *, block_t);
1903 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1904 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1905 int build_segment_manager(struct f2fs_sb_info *);
1906 void destroy_segment_manager(struct f2fs_sb_info *);
1907 int __init create_segment_manager_caches(void);
1908 void destroy_segment_manager_caches(void);
1909
1910 /*
1911 * checkpoint.c
1912 */
1913 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1914 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1915 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1916 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1917 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1918 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1919 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1920 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1921 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1922 void release_ino_entry(struct f2fs_sb_info *, bool);
1923 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1924 int acquire_orphan_inode(struct f2fs_sb_info *);
1925 void release_orphan_inode(struct f2fs_sb_info *);
1926 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1927 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1928 int recover_orphan_inodes(struct f2fs_sb_info *);
1929 int get_valid_checkpoint(struct f2fs_sb_info *);
1930 void update_dirty_page(struct inode *, struct page *);
1931 void add_dirty_dir_inode(struct inode *);
1932 void remove_dirty_inode(struct inode *);
1933 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1934 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1935 void init_ino_entry_info(struct f2fs_sb_info *);
1936 int __init create_checkpoint_caches(void);
1937 void destroy_checkpoint_caches(void);
1938
1939 /*
1940 * data.c
1941 */
1942 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1943 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1944 struct page *, nid_t, enum page_type, int);
1945 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1946 int f2fs_submit_page_bio(struct f2fs_io_info *);
1947 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1948 void set_data_blkaddr(struct dnode_of_data *);
1949 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1950 int reserve_new_block(struct dnode_of_data *);
1951 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1952 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1953 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1954 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1955 struct page *find_data_page(struct inode *, pgoff_t);
1956 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1957 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1958 int do_write_data_page(struct f2fs_io_info *);
1959 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1960 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1961 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1962 int f2fs_release_page(struct page *, gfp_t);
1963
1964 /*
1965 * gc.c
1966 */
1967 int start_gc_thread(struct f2fs_sb_info *);
1968 void stop_gc_thread(struct f2fs_sb_info *);
1969 block_t start_bidx_of_node(unsigned int, struct inode *);
1970 int f2fs_gc(struct f2fs_sb_info *, bool);
1971 void build_gc_manager(struct f2fs_sb_info *);
1972
1973 /*
1974 * recovery.c
1975 */
1976 int recover_fsync_data(struct f2fs_sb_info *, bool);
1977 bool space_for_roll_forward(struct f2fs_sb_info *);
1978
1979 /*
1980 * debug.c
1981 */
1982 #ifdef CONFIG_F2FS_STAT_FS
1983 struct f2fs_stat_info {
1984 struct list_head stat_list;
1985 struct f2fs_sb_info *sbi;
1986 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1987 int main_area_segs, main_area_sections, main_area_zones;
1988 unsigned long long hit_largest, hit_cached, hit_rbtree;
1989 unsigned long long hit_total, total_ext;
1990 int ext_tree, zombie_tree, ext_node;
1991 int ndirty_node, ndirty_meta;
1992 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1993 int nats, dirty_nats, sits, dirty_sits, fnids;
1994 int total_count, utilization;
1995 int bg_gc, inmem_pages, wb_pages;
1996 int inline_xattr, inline_inode, inline_dir;
1997 unsigned int valid_count, valid_node_count, valid_inode_count;
1998 unsigned int bimodal, avg_vblocks;
1999 int util_free, util_valid, util_invalid;
2000 int rsvd_segs, overp_segs;
2001 int dirty_count, node_pages, meta_pages;
2002 int prefree_count, call_count, cp_count, bg_cp_count;
2003 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2004 int bg_node_segs, bg_data_segs;
2005 int tot_blks, data_blks, node_blks;
2006 int bg_data_blks, bg_node_blks;
2007 int curseg[NR_CURSEG_TYPE];
2008 int cursec[NR_CURSEG_TYPE];
2009 int curzone[NR_CURSEG_TYPE];
2010
2011 unsigned int segment_count[2];
2012 unsigned int block_count[2];
2013 unsigned int inplace_count;
2014 unsigned long long base_mem, cache_mem, page_mem;
2015 };
2016
2017 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2018 {
2019 return (struct f2fs_stat_info *)sbi->stat_info;
2020 }
2021
2022 #define stat_inc_cp_count(si) ((si)->cp_count++)
2023 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2024 #define stat_inc_call_count(si) ((si)->call_count++)
2025 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2026 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2027 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2028 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2029 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2030 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2031 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2032 #define stat_inc_inline_xattr(inode) \
2033 do { \
2034 if (f2fs_has_inline_xattr(inode)) \
2035 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2036 } while (0)
2037 #define stat_dec_inline_xattr(inode) \
2038 do { \
2039 if (f2fs_has_inline_xattr(inode)) \
2040 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2041 } while (0)
2042 #define stat_inc_inline_inode(inode) \
2043 do { \
2044 if (f2fs_has_inline_data(inode)) \
2045 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2046 } while (0)
2047 #define stat_dec_inline_inode(inode) \
2048 do { \
2049 if (f2fs_has_inline_data(inode)) \
2050 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2051 } while (0)
2052 #define stat_inc_inline_dir(inode) \
2053 do { \
2054 if (f2fs_has_inline_dentry(inode)) \
2055 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2056 } while (0)
2057 #define stat_dec_inline_dir(inode) \
2058 do { \
2059 if (f2fs_has_inline_dentry(inode)) \
2060 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2061 } while (0)
2062 #define stat_inc_seg_type(sbi, curseg) \
2063 ((sbi)->segment_count[(curseg)->alloc_type]++)
2064 #define stat_inc_block_count(sbi, curseg) \
2065 ((sbi)->block_count[(curseg)->alloc_type]++)
2066 #define stat_inc_inplace_blocks(sbi) \
2067 (atomic_inc(&(sbi)->inplace_count))
2068 #define stat_inc_seg_count(sbi, type, gc_type) \
2069 do { \
2070 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2071 (si)->tot_segs++; \
2072 if (type == SUM_TYPE_DATA) { \
2073 si->data_segs++; \
2074 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2075 } else { \
2076 si->node_segs++; \
2077 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2078 } \
2079 } while (0)
2080
2081 #define stat_inc_tot_blk_count(si, blks) \
2082 (si->tot_blks += (blks))
2083
2084 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2085 do { \
2086 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2087 stat_inc_tot_blk_count(si, blks); \
2088 si->data_blks += (blks); \
2089 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2090 } while (0)
2091
2092 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2093 do { \
2094 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2095 stat_inc_tot_blk_count(si, blks); \
2096 si->node_blks += (blks); \
2097 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2098 } while (0)
2099
2100 int f2fs_build_stats(struct f2fs_sb_info *);
2101 void f2fs_destroy_stats(struct f2fs_sb_info *);
2102 int __init f2fs_create_root_stats(void);
2103 void f2fs_destroy_root_stats(void);
2104 #else
2105 #define stat_inc_cp_count(si)
2106 #define stat_inc_bg_cp_count(si)
2107 #define stat_inc_call_count(si)
2108 #define stat_inc_bggc_count(si)
2109 #define stat_inc_dirty_inode(sbi, type)
2110 #define stat_dec_dirty_inode(sbi, type)
2111 #define stat_inc_total_hit(sb)
2112 #define stat_inc_rbtree_node_hit(sb)
2113 #define stat_inc_largest_node_hit(sbi)
2114 #define stat_inc_cached_node_hit(sbi)
2115 #define stat_inc_inline_xattr(inode)
2116 #define stat_dec_inline_xattr(inode)
2117 #define stat_inc_inline_inode(inode)
2118 #define stat_dec_inline_inode(inode)
2119 #define stat_inc_inline_dir(inode)
2120 #define stat_dec_inline_dir(inode)
2121 #define stat_inc_seg_type(sbi, curseg)
2122 #define stat_inc_block_count(sbi, curseg)
2123 #define stat_inc_inplace_blocks(sbi)
2124 #define stat_inc_seg_count(sbi, type, gc_type)
2125 #define stat_inc_tot_blk_count(si, blks)
2126 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2127 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2128
2129 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2130 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2131 static inline int __init f2fs_create_root_stats(void) { return 0; }
2132 static inline void f2fs_destroy_root_stats(void) { }
2133 #endif
2134
2135 extern const struct file_operations f2fs_dir_operations;
2136 extern const struct file_operations f2fs_file_operations;
2137 extern const struct inode_operations f2fs_file_inode_operations;
2138 extern const struct address_space_operations f2fs_dblock_aops;
2139 extern const struct address_space_operations f2fs_node_aops;
2140 extern const struct address_space_operations f2fs_meta_aops;
2141 extern const struct inode_operations f2fs_dir_inode_operations;
2142 extern const struct inode_operations f2fs_symlink_inode_operations;
2143 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2144 extern const struct inode_operations f2fs_special_inode_operations;
2145 extern struct kmem_cache *inode_entry_slab;
2146
2147 /*
2148 * inline.c
2149 */
2150 bool f2fs_may_inline_data(struct inode *);
2151 bool f2fs_may_inline_dentry(struct inode *);
2152 void read_inline_data(struct page *, struct page *);
2153 bool truncate_inline_inode(struct page *, u64);
2154 int f2fs_read_inline_data(struct inode *, struct page *);
2155 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2156 int f2fs_convert_inline_inode(struct inode *);
2157 int f2fs_write_inline_data(struct inode *, struct page *);
2158 bool recover_inline_data(struct inode *, struct page *);
2159 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2160 struct fscrypt_name *, struct page **);
2161 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2162 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2163 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2164 nid_t, umode_t);
2165 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2166 struct inode *, struct inode *);
2167 bool f2fs_empty_inline_dir(struct inode *);
2168 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2169 struct fscrypt_str *);
2170 int f2fs_inline_data_fiemap(struct inode *,
2171 struct fiemap_extent_info *, __u64, __u64);
2172
2173 /*
2174 * shrinker.c
2175 */
2176 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2177 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2178 void f2fs_join_shrinker(struct f2fs_sb_info *);
2179 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2180
2181 /*
2182 * extent_cache.c
2183 */
2184 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2185 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2186 unsigned int f2fs_destroy_extent_node(struct inode *);
2187 void f2fs_destroy_extent_tree(struct inode *);
2188 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2189 void f2fs_update_extent_cache(struct dnode_of_data *);
2190 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2191 pgoff_t, block_t, unsigned int);
2192 void init_extent_cache_info(struct f2fs_sb_info *);
2193 int __init create_extent_cache(void);
2194 void destroy_extent_cache(void);
2195
2196 /*
2197 * crypto support
2198 */
2199 static inline bool f2fs_encrypted_inode(struct inode *inode)
2200 {
2201 return file_is_encrypt(inode);
2202 }
2203
2204 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2205 {
2206 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2207 file_set_encrypt(inode);
2208 #endif
2209 }
2210
2211 static inline bool f2fs_bio_encrypted(struct bio *bio)
2212 {
2213 return bio->bi_private != NULL;
2214 }
2215
2216 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2217 {
2218 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2219 }
2220
2221 static inline bool f2fs_may_encrypt(struct inode *inode)
2222 {
2223 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2224 umode_t mode = inode->i_mode;
2225
2226 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2227 #else
2228 return 0;
2229 #endif
2230 }
2231
2232 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2233 #define fscrypt_set_d_op(i)
2234 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2235 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2236 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2237 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2238 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2239 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2240 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2241 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2242 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2243 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2244 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2245 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2246 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2247 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2248 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2249 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2250 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2251 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2252 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2253 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2254 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2255 #endif
2256 #endif
This page took 0.073021 seconds and 4 git commands to generate.