Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition) \
31 do { \
32 if (unlikely(condition)) { \
33 WARN_ON(1); \
34 set_sbi_flag(sbi, SBI_NEED_FSCK); \
35 } \
36 } while (0)
37 #define f2fs_down_write(x, y) down_write(x)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 #define CRCPOLY_LE 0xedb88320
88
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 unsigned char *p = (unsigned char *)buf;
92 __u32 crc = F2FS_SUPER_MAGIC;
93 int i;
94
95 while (len--) {
96 crc ^= *p++;
97 for (i = 0; i < 8; i++)
98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 }
100 return crc;
101 }
102
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107
108 /*
109 * For checkpoint manager
110 */
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 enum {
117 CP_UMOUNT,
118 CP_FASTBOOT,
119 CP_SYNC,
120 CP_RECOVERY,
121 CP_DISCARD,
122 };
123
124 #define DEF_BATCHED_TRIM_SECTIONS 32
125 #define BATCHED_TRIM_SEGMENTS(sbi) \
126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi) \
128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL 60 /* 60 secs */
130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
131
132 struct cp_control {
133 int reason;
134 __u64 trim_start;
135 __u64 trim_end;
136 __u64 trim_minlen;
137 __u64 trimmed;
138 };
139
140 /*
141 * For CP/NAT/SIT/SSA readahead
142 */
143 enum {
144 META_CP,
145 META_NAT,
146 META_SIT,
147 META_SSA,
148 META_POR,
149 };
150
151 /* for the list of ino */
152 enum {
153 ORPHAN_INO, /* for orphan ino list */
154 APPEND_INO, /* for append ino list */
155 UPDATE_INO, /* for update ino list */
156 MAX_INO_ENTRY, /* max. list */
157 };
158
159 struct ino_entry {
160 struct list_head list; /* list head */
161 nid_t ino; /* inode number */
162 };
163
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
188
189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 int before = nats_in_cursum(rs);
200 rs->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 int before = sits_in_cursum(rs);
207 rs->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(sum);
216 return size <= MAX_SIT_JENTRIES(sum);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
235
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
237 _IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
239 _IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
241 _IOW('f', 21, struct f2fs_encryption_policy)
242
243 /*
244 * should be same as XFS_IOC_GOINGDOWN.
245 * Flags for going down operation used by FS_IOC_GOINGDOWN
246 */
247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
252
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255 * ioctl commands in 32 bit emulation
256 */
257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
260 #endif
261
262 struct f2fs_defragment {
263 u64 start;
264 u64 len;
265 };
266
267 /*
268 * For INODE and NODE manager
269 */
270 /* for directory operations */
271 struct f2fs_str {
272 unsigned char *name;
273 u32 len;
274 };
275
276 struct f2fs_filename {
277 const struct qstr *usr_fname;
278 struct f2fs_str disk_name;
279 f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 struct f2fs_str crypto_buf;
282 #endif
283 };
284
285 #define FSTR_INIT(n, l) { .name = n, .len = l }
286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p) ((p)->disk_name.name)
288 #define fname_len(p) ((p)->disk_name.len)
289
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 };
358
359 struct extent_tree {
360 nid_t ino; /* inode number */
361 struct rb_root root; /* root of extent info rb-tree */
362 struct extent_node *cached_en; /* recently accessed extent node */
363 struct extent_info largest; /* largested extent info */
364 struct list_head list; /* to be used by sbi->zombie_list */
365 rwlock_t lock; /* protect extent info rb-tree */
366 atomic_t node_cnt; /* # of extent node in rb-tree*/
367 };
368
369 /*
370 * This structure is taken from ext4_map_blocks.
371 *
372 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
373 */
374 #define F2FS_MAP_NEW (1 << BH_New)
375 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
376 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
377 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
378 F2FS_MAP_UNWRITTEN)
379
380 struct f2fs_map_blocks {
381 block_t m_pblk;
382 block_t m_lblk;
383 unsigned int m_len;
384 unsigned int m_flags;
385 };
386
387 /* for flag in get_data_block */
388 #define F2FS_GET_BLOCK_READ 0
389 #define F2FS_GET_BLOCK_DIO 1
390 #define F2FS_GET_BLOCK_FIEMAP 2
391 #define F2FS_GET_BLOCK_BMAP 3
392
393 /*
394 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
395 */
396 #define FADVISE_COLD_BIT 0x01
397 #define FADVISE_LOST_PINO_BIT 0x02
398 #define FADVISE_ENCRYPT_BIT 0x04
399 #define FADVISE_ENC_NAME_BIT 0x08
400
401 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
402 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
403 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
404 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
406 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
408 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
409 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
410 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
411 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
412
413 /* Encryption algorithms */
414 #define F2FS_ENCRYPTION_MODE_INVALID 0
415 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
416 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
417 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
418 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
419
420 #include "f2fs_crypto.h"
421
422 #define DEF_DIR_LEVEL 0
423
424 struct f2fs_inode_info {
425 struct inode vfs_inode; /* serve a vfs inode */
426 unsigned long i_flags; /* keep an inode flags for ioctl */
427 unsigned char i_advise; /* use to give file attribute hints */
428 unsigned char i_dir_level; /* use for dentry level for large dir */
429 unsigned int i_current_depth; /* use only in directory structure */
430 unsigned int i_pino; /* parent inode number */
431 umode_t i_acl_mode; /* keep file acl mode temporarily */
432
433 /* Use below internally in f2fs*/
434 unsigned long flags; /* use to pass per-file flags */
435 struct rw_semaphore i_sem; /* protect fi info */
436 atomic_t dirty_pages; /* # of dirty pages */
437 f2fs_hash_t chash; /* hash value of given file name */
438 unsigned int clevel; /* maximum level of given file name */
439 nid_t i_xattr_nid; /* node id that contains xattrs */
440 unsigned long long xattr_ver; /* cp version of xattr modification */
441
442 struct list_head dirty_list; /* linked in global dirty list */
443 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
444 struct mutex inmem_lock; /* lock for inmemory pages */
445
446 struct extent_tree *extent_tree; /* cached extent_tree entry */
447
448 #ifdef CONFIG_F2FS_FS_ENCRYPTION
449 /* Encryption params */
450 struct f2fs_crypt_info *i_crypt_info;
451 #endif
452 };
453
454 static inline void get_extent_info(struct extent_info *ext,
455 struct f2fs_extent i_ext)
456 {
457 ext->fofs = le32_to_cpu(i_ext.fofs);
458 ext->blk = le32_to_cpu(i_ext.blk);
459 ext->len = le32_to_cpu(i_ext.len);
460 }
461
462 static inline void set_raw_extent(struct extent_info *ext,
463 struct f2fs_extent *i_ext)
464 {
465 i_ext->fofs = cpu_to_le32(ext->fofs);
466 i_ext->blk = cpu_to_le32(ext->blk);
467 i_ext->len = cpu_to_le32(ext->len);
468 }
469
470 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
471 u32 blk, unsigned int len)
472 {
473 ei->fofs = fofs;
474 ei->blk = blk;
475 ei->len = len;
476 }
477
478 static inline bool __is_extent_same(struct extent_info *ei1,
479 struct extent_info *ei2)
480 {
481 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
482 ei1->len == ei2->len);
483 }
484
485 static inline bool __is_extent_mergeable(struct extent_info *back,
486 struct extent_info *front)
487 {
488 return (back->fofs + back->len == front->fofs &&
489 back->blk + back->len == front->blk);
490 }
491
492 static inline bool __is_back_mergeable(struct extent_info *cur,
493 struct extent_info *back)
494 {
495 return __is_extent_mergeable(back, cur);
496 }
497
498 static inline bool __is_front_mergeable(struct extent_info *cur,
499 struct extent_info *front)
500 {
501 return __is_extent_mergeable(cur, front);
502 }
503
504 static inline void __try_update_largest_extent(struct extent_tree *et,
505 struct extent_node *en)
506 {
507 if (en->ei.len > et->largest.len)
508 et->largest = en->ei;
509 }
510
511 struct f2fs_nm_info {
512 block_t nat_blkaddr; /* base disk address of NAT */
513 nid_t max_nid; /* maximum possible node ids */
514 nid_t available_nids; /* maximum available node ids */
515 nid_t next_scan_nid; /* the next nid to be scanned */
516 unsigned int ram_thresh; /* control the memory footprint */
517 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
518
519 /* NAT cache management */
520 struct radix_tree_root nat_root;/* root of the nat entry cache */
521 struct radix_tree_root nat_set_root;/* root of the nat set cache */
522 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
523 struct list_head nat_entries; /* cached nat entry list (clean) */
524 unsigned int nat_cnt; /* the # of cached nat entries */
525 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
526
527 /* free node ids management */
528 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
529 struct list_head free_nid_list; /* a list for free nids */
530 spinlock_t free_nid_list_lock; /* protect free nid list */
531 unsigned int fcnt; /* the number of free node id */
532 struct mutex build_lock; /* lock for build free nids */
533
534 /* for checkpoint */
535 char *nat_bitmap; /* NAT bitmap pointer */
536 int bitmap_size; /* bitmap size */
537 };
538
539 /*
540 * this structure is used as one of function parameters.
541 * all the information are dedicated to a given direct node block determined
542 * by the data offset in a file.
543 */
544 struct dnode_of_data {
545 struct inode *inode; /* vfs inode pointer */
546 struct page *inode_page; /* its inode page, NULL is possible */
547 struct page *node_page; /* cached direct node page */
548 nid_t nid; /* node id of the direct node block */
549 unsigned int ofs_in_node; /* data offset in the node page */
550 bool inode_page_locked; /* inode page is locked or not */
551 bool node_changed; /* is node block changed */
552 block_t data_blkaddr; /* block address of the node block */
553 };
554
555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
556 struct page *ipage, struct page *npage, nid_t nid)
557 {
558 memset(dn, 0, sizeof(*dn));
559 dn->inode = inode;
560 dn->inode_page = ipage;
561 dn->node_page = npage;
562 dn->nid = nid;
563 }
564
565 /*
566 * For SIT manager
567 *
568 * By default, there are 6 active log areas across the whole main area.
569 * When considering hot and cold data separation to reduce cleaning overhead,
570 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
571 * respectively.
572 * In the current design, you should not change the numbers intentionally.
573 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
574 * logs individually according to the underlying devices. (default: 6)
575 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
576 * data and 8 for node logs.
577 */
578 #define NR_CURSEG_DATA_TYPE (3)
579 #define NR_CURSEG_NODE_TYPE (3)
580 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
581
582 enum {
583 CURSEG_HOT_DATA = 0, /* directory entry blocks */
584 CURSEG_WARM_DATA, /* data blocks */
585 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
586 CURSEG_HOT_NODE, /* direct node blocks of directory files */
587 CURSEG_WARM_NODE, /* direct node blocks of normal files */
588 CURSEG_COLD_NODE, /* indirect node blocks */
589 NO_CHECK_TYPE,
590 CURSEG_DIRECT_IO, /* to use for the direct IO path */
591 };
592
593 struct flush_cmd {
594 struct completion wait;
595 struct llist_node llnode;
596 int ret;
597 };
598
599 struct flush_cmd_control {
600 struct task_struct *f2fs_issue_flush; /* flush thread */
601 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
602 struct llist_head issue_list; /* list for command issue */
603 struct llist_node *dispatch_list; /* list for command dispatch */
604 };
605
606 struct f2fs_sm_info {
607 struct sit_info *sit_info; /* whole segment information */
608 struct free_segmap_info *free_info; /* free segment information */
609 struct dirty_seglist_info *dirty_info; /* dirty segment information */
610 struct curseg_info *curseg_array; /* active segment information */
611
612 block_t seg0_blkaddr; /* block address of 0'th segment */
613 block_t main_blkaddr; /* start block address of main area */
614 block_t ssa_blkaddr; /* start block address of SSA area */
615
616 unsigned int segment_count; /* total # of segments */
617 unsigned int main_segments; /* # of segments in main area */
618 unsigned int reserved_segments; /* # of reserved segments */
619 unsigned int ovp_segments; /* # of overprovision segments */
620
621 /* a threshold to reclaim prefree segments */
622 unsigned int rec_prefree_segments;
623
624 /* for small discard management */
625 struct list_head discard_list; /* 4KB discard list */
626 int nr_discards; /* # of discards in the list */
627 int max_discards; /* max. discards to be issued */
628
629 /* for batched trimming */
630 unsigned int trim_sections; /* # of sections to trim */
631
632 struct list_head sit_entry_set; /* sit entry set list */
633
634 unsigned int ipu_policy; /* in-place-update policy */
635 unsigned int min_ipu_util; /* in-place-update threshold */
636 unsigned int min_fsync_blocks; /* threshold for fsync */
637
638 /* for flush command control */
639 struct flush_cmd_control *cmd_control_info;
640
641 };
642
643 /*
644 * For superblock
645 */
646 /*
647 * COUNT_TYPE for monitoring
648 *
649 * f2fs monitors the number of several block types such as on-writeback,
650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651 */
652 enum count_type {
653 F2FS_WRITEBACK,
654 F2FS_DIRTY_DENTS,
655 F2FS_DIRTY_DATA,
656 F2FS_DIRTY_NODES,
657 F2FS_DIRTY_META,
658 F2FS_INMEM_PAGES,
659 NR_COUNT_TYPE,
660 };
661
662 /*
663 * The below are the page types of bios used in submit_bio().
664 * The available types are:
665 * DATA User data pages. It operates as async mode.
666 * NODE Node pages. It operates as async mode.
667 * META FS metadata pages such as SIT, NAT, CP.
668 * NR_PAGE_TYPE The number of page types.
669 * META_FLUSH Make sure the previous pages are written
670 * with waiting the bio's completion
671 * ... Only can be used with META.
672 */
673 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
674 enum page_type {
675 DATA,
676 NODE,
677 META,
678 NR_PAGE_TYPE,
679 META_FLUSH,
680 INMEM, /* the below types are used by tracepoints only. */
681 INMEM_DROP,
682 IPU,
683 OPU,
684 };
685
686 struct f2fs_io_info {
687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
689 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
690 block_t blk_addr; /* block address to be written */
691 struct page *page; /* page to be written */
692 struct page *encrypted_page; /* encrypted page */
693 };
694
695 #define is_read_io(rw) (((rw) & 1) == READ)
696 struct f2fs_bio_info {
697 struct f2fs_sb_info *sbi; /* f2fs superblock */
698 struct bio *bio; /* bios to merge */
699 sector_t last_block_in_bio; /* last block number */
700 struct f2fs_io_info fio; /* store buffered io info. */
701 struct rw_semaphore io_rwsem; /* blocking op for bio */
702 };
703
704 enum inode_type {
705 DIR_INODE, /* for dirty dir inode */
706 FILE_INODE, /* for dirty regular/symlink inode */
707 NR_INODE_TYPE,
708 };
709
710 /* for inner inode cache management */
711 struct inode_management {
712 struct radix_tree_root ino_root; /* ino entry array */
713 spinlock_t ino_lock; /* for ino entry lock */
714 struct list_head ino_list; /* inode list head */
715 unsigned long ino_num; /* number of entries */
716 };
717
718 /* For s_flag in struct f2fs_sb_info */
719 enum {
720 SBI_IS_DIRTY, /* dirty flag for checkpoint */
721 SBI_IS_CLOSE, /* specify unmounting */
722 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
723 SBI_POR_DOING, /* recovery is doing or not */
724 };
725
726 enum {
727 CP_TIME,
728 REQ_TIME,
729 MAX_TIME,
730 };
731
732 struct f2fs_sb_info {
733 struct super_block *sb; /* pointer to VFS super block */
734 struct proc_dir_entry *s_proc; /* proc entry */
735 struct f2fs_super_block *raw_super; /* raw super block pointer */
736 int valid_super_block; /* valid super block no */
737 int s_flag; /* flags for sbi */
738
739 /* for node-related operations */
740 struct f2fs_nm_info *nm_info; /* node manager */
741 struct inode *node_inode; /* cache node blocks */
742
743 /* for segment-related operations */
744 struct f2fs_sm_info *sm_info; /* segment manager */
745
746 /* for bio operations */
747 struct f2fs_bio_info read_io; /* for read bios */
748 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
749
750 /* for checkpoint */
751 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
752 struct inode *meta_inode; /* cache meta blocks */
753 struct mutex cp_mutex; /* checkpoint procedure lock */
754 struct rw_semaphore cp_rwsem; /* blocking FS operations */
755 struct rw_semaphore node_write; /* locking node writes */
756 struct mutex writepages; /* mutex for writepages() */
757 wait_queue_head_t cp_wait;
758 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
759 long interval_time[MAX_TIME]; /* to store thresholds */
760
761 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
762
763 /* for orphan inode, use 0'th array */
764 unsigned int max_orphans; /* max orphan inodes */
765
766 /* for inode management */
767 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
768 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
769
770 /* for extent tree cache */
771 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
772 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
773 struct list_head extent_list; /* lru list for shrinker */
774 spinlock_t extent_lock; /* locking extent lru list */
775 atomic_t total_ext_tree; /* extent tree count */
776 struct list_head zombie_list; /* extent zombie tree list */
777 atomic_t total_zombie_tree; /* extent zombie tree count */
778 atomic_t total_ext_node; /* extent info count */
779
780 /* basic filesystem units */
781 unsigned int log_sectors_per_block; /* log2 sectors per block */
782 unsigned int log_blocksize; /* log2 block size */
783 unsigned int blocksize; /* block size */
784 unsigned int root_ino_num; /* root inode number*/
785 unsigned int node_ino_num; /* node inode number*/
786 unsigned int meta_ino_num; /* meta inode number*/
787 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
788 unsigned int blocks_per_seg; /* blocks per segment */
789 unsigned int segs_per_sec; /* segments per section */
790 unsigned int secs_per_zone; /* sections per zone */
791 unsigned int total_sections; /* total section count */
792 unsigned int total_node_count; /* total node block count */
793 unsigned int total_valid_node_count; /* valid node block count */
794 unsigned int total_valid_inode_count; /* valid inode count */
795 loff_t max_file_blocks; /* max block index of file */
796 int active_logs; /* # of active logs */
797 int dir_level; /* directory level */
798
799 block_t user_block_count; /* # of user blocks */
800 block_t total_valid_block_count; /* # of valid blocks */
801 block_t alloc_valid_block_count; /* # of allocated blocks */
802 block_t discard_blks; /* discard command candidats */
803 block_t last_valid_block_count; /* for recovery */
804 u32 s_next_generation; /* for NFS support */
805 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
806
807 struct f2fs_mount_info mount_opt; /* mount options */
808
809 /* for cleaning operations */
810 struct mutex gc_mutex; /* mutex for GC */
811 struct f2fs_gc_kthread *gc_thread; /* GC thread */
812 unsigned int cur_victim_sec; /* current victim section num */
813
814 /* maximum # of trials to find a victim segment for SSR and GC */
815 unsigned int max_victim_search;
816
817 /*
818 * for stat information.
819 * one is for the LFS mode, and the other is for the SSR mode.
820 */
821 #ifdef CONFIG_F2FS_STAT_FS
822 struct f2fs_stat_info *stat_info; /* FS status information */
823 unsigned int segment_count[2]; /* # of allocated segments */
824 unsigned int block_count[2]; /* # of allocated blocks */
825 atomic_t inplace_count; /* # of inplace update */
826 atomic64_t total_hit_ext; /* # of lookup extent cache */
827 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
828 atomic64_t read_hit_largest; /* # of hit largest extent node */
829 atomic64_t read_hit_cached; /* # of hit cached extent node */
830 atomic_t inline_xattr; /* # of inline_xattr inodes */
831 atomic_t inline_inode; /* # of inline_data inodes */
832 atomic_t inline_dir; /* # of inline_dentry inodes */
833 int bg_gc; /* background gc calls */
834 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
835 #endif
836 unsigned int last_victim[2]; /* last victim segment # */
837 spinlock_t stat_lock; /* lock for stat operations */
838
839 /* For sysfs suppport */
840 struct kobject s_kobj;
841 struct completion s_kobj_unregister;
842
843 /* For shrinker support */
844 struct list_head s_list;
845 struct mutex umount_mutex;
846 unsigned int shrinker_run_no;
847 };
848
849 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
850 {
851 sbi->last_time[type] = jiffies;
852 }
853
854 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
855 {
856 struct timespec ts = {sbi->interval_time[type], 0};
857 unsigned long interval = timespec_to_jiffies(&ts);
858
859 return time_after(jiffies, sbi->last_time[type] + interval);
860 }
861
862 static inline bool is_idle(struct f2fs_sb_info *sbi)
863 {
864 struct block_device *bdev = sbi->sb->s_bdev;
865 struct request_queue *q = bdev_get_queue(bdev);
866 struct request_list *rl = &q->root_rl;
867
868 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
869 return 0;
870
871 return f2fs_time_over(sbi, REQ_TIME);
872 }
873
874 /*
875 * Inline functions
876 */
877 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
878 {
879 return container_of(inode, struct f2fs_inode_info, vfs_inode);
880 }
881
882 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
883 {
884 return sb->s_fs_info;
885 }
886
887 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
888 {
889 return F2FS_SB(inode->i_sb);
890 }
891
892 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
893 {
894 return F2FS_I_SB(mapping->host);
895 }
896
897 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
898 {
899 return F2FS_M_SB(page->mapping);
900 }
901
902 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
903 {
904 return (struct f2fs_super_block *)(sbi->raw_super);
905 }
906
907 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
908 {
909 return (struct f2fs_checkpoint *)(sbi->ckpt);
910 }
911
912 static inline struct f2fs_node *F2FS_NODE(struct page *page)
913 {
914 return (struct f2fs_node *)page_address(page);
915 }
916
917 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
918 {
919 return &((struct f2fs_node *)page_address(page))->i;
920 }
921
922 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
923 {
924 return (struct f2fs_nm_info *)(sbi->nm_info);
925 }
926
927 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
928 {
929 return (struct f2fs_sm_info *)(sbi->sm_info);
930 }
931
932 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
933 {
934 return (struct sit_info *)(SM_I(sbi)->sit_info);
935 }
936
937 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
938 {
939 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
940 }
941
942 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
943 {
944 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
945 }
946
947 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
948 {
949 return sbi->meta_inode->i_mapping;
950 }
951
952 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
953 {
954 return sbi->node_inode->i_mapping;
955 }
956
957 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
958 {
959 return sbi->s_flag & (0x01 << type);
960 }
961
962 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
963 {
964 sbi->s_flag |= (0x01 << type);
965 }
966
967 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
968 {
969 sbi->s_flag &= ~(0x01 << type);
970 }
971
972 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
973 {
974 return le64_to_cpu(cp->checkpoint_ver);
975 }
976
977 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
978 {
979 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
980 return ckpt_flags & f;
981 }
982
983 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
984 {
985 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
986 ckpt_flags |= f;
987 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
988 }
989
990 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
991 {
992 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
993 ckpt_flags &= (~f);
994 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
995 }
996
997 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
998 {
999 down_read(&sbi->cp_rwsem);
1000 }
1001
1002 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1003 {
1004 up_read(&sbi->cp_rwsem);
1005 }
1006
1007 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1008 {
1009 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1010 }
1011
1012 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1013 {
1014 up_write(&sbi->cp_rwsem);
1015 }
1016
1017 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1018 {
1019 int reason = CP_SYNC;
1020
1021 if (test_opt(sbi, FASTBOOT))
1022 reason = CP_FASTBOOT;
1023 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1024 reason = CP_UMOUNT;
1025 return reason;
1026 }
1027
1028 static inline bool __remain_node_summaries(int reason)
1029 {
1030 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1031 }
1032
1033 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1034 {
1035 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1036 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1037 }
1038
1039 /*
1040 * Check whether the given nid is within node id range.
1041 */
1042 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1043 {
1044 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1045 return -EINVAL;
1046 if (unlikely(nid >= NM_I(sbi)->max_nid))
1047 return -EINVAL;
1048 return 0;
1049 }
1050
1051 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1052
1053 /*
1054 * Check whether the inode has blocks or not
1055 */
1056 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1057 {
1058 if (F2FS_I(inode)->i_xattr_nid)
1059 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1060 else
1061 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1062 }
1063
1064 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1065 {
1066 return ofs == XATTR_NODE_OFFSET;
1067 }
1068
1069 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1070 struct inode *inode, blkcnt_t count)
1071 {
1072 block_t valid_block_count;
1073
1074 spin_lock(&sbi->stat_lock);
1075 valid_block_count =
1076 sbi->total_valid_block_count + (block_t)count;
1077 if (unlikely(valid_block_count > sbi->user_block_count)) {
1078 spin_unlock(&sbi->stat_lock);
1079 return false;
1080 }
1081 inode->i_blocks += count;
1082 sbi->total_valid_block_count = valid_block_count;
1083 sbi->alloc_valid_block_count += (block_t)count;
1084 spin_unlock(&sbi->stat_lock);
1085 return true;
1086 }
1087
1088 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1089 struct inode *inode,
1090 blkcnt_t count)
1091 {
1092 spin_lock(&sbi->stat_lock);
1093 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1094 f2fs_bug_on(sbi, inode->i_blocks < count);
1095 inode->i_blocks -= count;
1096 sbi->total_valid_block_count -= (block_t)count;
1097 spin_unlock(&sbi->stat_lock);
1098 }
1099
1100 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1101 {
1102 atomic_inc(&sbi->nr_pages[count_type]);
1103 set_sbi_flag(sbi, SBI_IS_DIRTY);
1104 }
1105
1106 static inline void inode_inc_dirty_pages(struct inode *inode)
1107 {
1108 atomic_inc(&F2FS_I(inode)->dirty_pages);
1109 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1110 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1111 }
1112
1113 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1114 {
1115 atomic_dec(&sbi->nr_pages[count_type]);
1116 }
1117
1118 static inline void inode_dec_dirty_pages(struct inode *inode)
1119 {
1120 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1121 !S_ISLNK(inode->i_mode))
1122 return;
1123
1124 atomic_dec(&F2FS_I(inode)->dirty_pages);
1125 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1126 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1127 }
1128
1129 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1130 {
1131 return atomic_read(&sbi->nr_pages[count_type]);
1132 }
1133
1134 static inline int get_dirty_pages(struct inode *inode)
1135 {
1136 return atomic_read(&F2FS_I(inode)->dirty_pages);
1137 }
1138
1139 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1140 {
1141 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1142 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1143 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1144 }
1145
1146 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1147 {
1148 return sbi->total_valid_block_count;
1149 }
1150
1151 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1152 {
1153 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1154
1155 /* return NAT or SIT bitmap */
1156 if (flag == NAT_BITMAP)
1157 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1158 else if (flag == SIT_BITMAP)
1159 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1160
1161 return 0;
1162 }
1163
1164 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1165 {
1166 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1167 }
1168
1169 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1170 {
1171 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1172 int offset;
1173
1174 if (__cp_payload(sbi) > 0) {
1175 if (flag == NAT_BITMAP)
1176 return &ckpt->sit_nat_version_bitmap;
1177 else
1178 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1179 } else {
1180 offset = (flag == NAT_BITMAP) ?
1181 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1182 return &ckpt->sit_nat_version_bitmap + offset;
1183 }
1184 }
1185
1186 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1187 {
1188 block_t start_addr;
1189 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1190 unsigned long long ckpt_version = cur_cp_version(ckpt);
1191
1192 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1193
1194 /*
1195 * odd numbered checkpoint should at cp segment 0
1196 * and even segment must be at cp segment 1
1197 */
1198 if (!(ckpt_version & 1))
1199 start_addr += sbi->blocks_per_seg;
1200
1201 return start_addr;
1202 }
1203
1204 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1205 {
1206 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1207 }
1208
1209 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1210 struct inode *inode)
1211 {
1212 block_t valid_block_count;
1213 unsigned int valid_node_count;
1214
1215 spin_lock(&sbi->stat_lock);
1216
1217 valid_block_count = sbi->total_valid_block_count + 1;
1218 if (unlikely(valid_block_count > sbi->user_block_count)) {
1219 spin_unlock(&sbi->stat_lock);
1220 return false;
1221 }
1222
1223 valid_node_count = sbi->total_valid_node_count + 1;
1224 if (unlikely(valid_node_count > sbi->total_node_count)) {
1225 spin_unlock(&sbi->stat_lock);
1226 return false;
1227 }
1228
1229 if (inode)
1230 inode->i_blocks++;
1231
1232 sbi->alloc_valid_block_count++;
1233 sbi->total_valid_node_count++;
1234 sbi->total_valid_block_count++;
1235 spin_unlock(&sbi->stat_lock);
1236
1237 return true;
1238 }
1239
1240 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1241 struct inode *inode)
1242 {
1243 spin_lock(&sbi->stat_lock);
1244
1245 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1246 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1247 f2fs_bug_on(sbi, !inode->i_blocks);
1248
1249 inode->i_blocks--;
1250 sbi->total_valid_node_count--;
1251 sbi->total_valid_block_count--;
1252
1253 spin_unlock(&sbi->stat_lock);
1254 }
1255
1256 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1257 {
1258 return sbi->total_valid_node_count;
1259 }
1260
1261 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1262 {
1263 spin_lock(&sbi->stat_lock);
1264 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1265 sbi->total_valid_inode_count++;
1266 spin_unlock(&sbi->stat_lock);
1267 }
1268
1269 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1270 {
1271 spin_lock(&sbi->stat_lock);
1272 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1273 sbi->total_valid_inode_count--;
1274 spin_unlock(&sbi->stat_lock);
1275 }
1276
1277 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1278 {
1279 return sbi->total_valid_inode_count;
1280 }
1281
1282 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1283 pgoff_t index, bool for_write)
1284 {
1285 if (!for_write)
1286 return grab_cache_page(mapping, index);
1287 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1288 }
1289
1290 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1291 {
1292 char *src_kaddr = kmap(src);
1293 char *dst_kaddr = kmap(dst);
1294
1295 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1296 kunmap(dst);
1297 kunmap(src);
1298 }
1299
1300 static inline void f2fs_put_page(struct page *page, int unlock)
1301 {
1302 if (!page)
1303 return;
1304
1305 if (unlock) {
1306 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1307 unlock_page(page);
1308 }
1309 page_cache_release(page);
1310 }
1311
1312 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1313 {
1314 if (dn->node_page)
1315 f2fs_put_page(dn->node_page, 1);
1316 if (dn->inode_page && dn->node_page != dn->inode_page)
1317 f2fs_put_page(dn->inode_page, 0);
1318 dn->node_page = NULL;
1319 dn->inode_page = NULL;
1320 }
1321
1322 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1323 size_t size)
1324 {
1325 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1326 }
1327
1328 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1329 gfp_t flags)
1330 {
1331 void *entry;
1332
1333 entry = kmem_cache_alloc(cachep, flags);
1334 if (!entry)
1335 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1336 return entry;
1337 }
1338
1339 static inline struct bio *f2fs_bio_alloc(int npages)
1340 {
1341 struct bio *bio;
1342
1343 /* No failure on bio allocation */
1344 bio = bio_alloc(GFP_NOIO, npages);
1345 if (!bio)
1346 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1347 return bio;
1348 }
1349
1350 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1351 unsigned long index, void *item)
1352 {
1353 while (radix_tree_insert(root, index, item))
1354 cond_resched();
1355 }
1356
1357 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1358
1359 static inline bool IS_INODE(struct page *page)
1360 {
1361 struct f2fs_node *p = F2FS_NODE(page);
1362 return RAW_IS_INODE(p);
1363 }
1364
1365 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1366 {
1367 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1368 }
1369
1370 static inline block_t datablock_addr(struct page *node_page,
1371 unsigned int offset)
1372 {
1373 struct f2fs_node *raw_node;
1374 __le32 *addr_array;
1375 raw_node = F2FS_NODE(node_page);
1376 addr_array = blkaddr_in_node(raw_node);
1377 return le32_to_cpu(addr_array[offset]);
1378 }
1379
1380 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1381 {
1382 int mask;
1383
1384 addr += (nr >> 3);
1385 mask = 1 << (7 - (nr & 0x07));
1386 return mask & *addr;
1387 }
1388
1389 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1390 {
1391 int mask;
1392
1393 addr += (nr >> 3);
1394 mask = 1 << (7 - (nr & 0x07));
1395 *addr |= mask;
1396 }
1397
1398 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1399 {
1400 int mask;
1401
1402 addr += (nr >> 3);
1403 mask = 1 << (7 - (nr & 0x07));
1404 *addr &= ~mask;
1405 }
1406
1407 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1408 {
1409 int mask;
1410 int ret;
1411
1412 addr += (nr >> 3);
1413 mask = 1 << (7 - (nr & 0x07));
1414 ret = mask & *addr;
1415 *addr |= mask;
1416 return ret;
1417 }
1418
1419 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1420 {
1421 int mask;
1422 int ret;
1423
1424 addr += (nr >> 3);
1425 mask = 1 << (7 - (nr & 0x07));
1426 ret = mask & *addr;
1427 *addr &= ~mask;
1428 return ret;
1429 }
1430
1431 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1432 {
1433 int mask;
1434
1435 addr += (nr >> 3);
1436 mask = 1 << (7 - (nr & 0x07));
1437 *addr ^= mask;
1438 }
1439
1440 /* used for f2fs_inode_info->flags */
1441 enum {
1442 FI_NEW_INODE, /* indicate newly allocated inode */
1443 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1444 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1445 FI_INC_LINK, /* need to increment i_nlink */
1446 FI_ACL_MODE, /* indicate acl mode */
1447 FI_NO_ALLOC, /* should not allocate any blocks */
1448 FI_FREE_NID, /* free allocated nide */
1449 FI_UPDATE_DIR, /* should update inode block for consistency */
1450 FI_DELAY_IPUT, /* used for the recovery */
1451 FI_NO_EXTENT, /* not to use the extent cache */
1452 FI_INLINE_XATTR, /* used for inline xattr */
1453 FI_INLINE_DATA, /* used for inline data*/
1454 FI_INLINE_DENTRY, /* used for inline dentry */
1455 FI_APPEND_WRITE, /* inode has appended data */
1456 FI_UPDATE_WRITE, /* inode has in-place-update data */
1457 FI_NEED_IPU, /* used for ipu per file */
1458 FI_ATOMIC_FILE, /* indicate atomic file */
1459 FI_VOLATILE_FILE, /* indicate volatile file */
1460 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1461 FI_DROP_CACHE, /* drop dirty page cache */
1462 FI_DATA_EXIST, /* indicate data exists */
1463 FI_INLINE_DOTS, /* indicate inline dot dentries */
1464 FI_DO_DEFRAG, /* indicate defragment is running */
1465 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1466 };
1467
1468 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1469 {
1470 if (!test_bit(flag, &fi->flags))
1471 set_bit(flag, &fi->flags);
1472 }
1473
1474 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1475 {
1476 return test_bit(flag, &fi->flags);
1477 }
1478
1479 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1480 {
1481 if (test_bit(flag, &fi->flags))
1482 clear_bit(flag, &fi->flags);
1483 }
1484
1485 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1486 {
1487 fi->i_acl_mode = mode;
1488 set_inode_flag(fi, FI_ACL_MODE);
1489 }
1490
1491 static inline void get_inline_info(struct f2fs_inode_info *fi,
1492 struct f2fs_inode *ri)
1493 {
1494 if (ri->i_inline & F2FS_INLINE_XATTR)
1495 set_inode_flag(fi, FI_INLINE_XATTR);
1496 if (ri->i_inline & F2FS_INLINE_DATA)
1497 set_inode_flag(fi, FI_INLINE_DATA);
1498 if (ri->i_inline & F2FS_INLINE_DENTRY)
1499 set_inode_flag(fi, FI_INLINE_DENTRY);
1500 if (ri->i_inline & F2FS_DATA_EXIST)
1501 set_inode_flag(fi, FI_DATA_EXIST);
1502 if (ri->i_inline & F2FS_INLINE_DOTS)
1503 set_inode_flag(fi, FI_INLINE_DOTS);
1504 }
1505
1506 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1507 struct f2fs_inode *ri)
1508 {
1509 ri->i_inline = 0;
1510
1511 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1512 ri->i_inline |= F2FS_INLINE_XATTR;
1513 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1514 ri->i_inline |= F2FS_INLINE_DATA;
1515 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1516 ri->i_inline |= F2FS_INLINE_DENTRY;
1517 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1518 ri->i_inline |= F2FS_DATA_EXIST;
1519 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1520 ri->i_inline |= F2FS_INLINE_DOTS;
1521 }
1522
1523 static inline int f2fs_has_inline_xattr(struct inode *inode)
1524 {
1525 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1526 }
1527
1528 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1529 {
1530 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1531 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1532 return DEF_ADDRS_PER_INODE;
1533 }
1534
1535 static inline void *inline_xattr_addr(struct page *page)
1536 {
1537 struct f2fs_inode *ri = F2FS_INODE(page);
1538 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1539 F2FS_INLINE_XATTR_ADDRS]);
1540 }
1541
1542 static inline int inline_xattr_size(struct inode *inode)
1543 {
1544 if (f2fs_has_inline_xattr(inode))
1545 return F2FS_INLINE_XATTR_ADDRS << 2;
1546 else
1547 return 0;
1548 }
1549
1550 static inline int f2fs_has_inline_data(struct inode *inode)
1551 {
1552 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1553 }
1554
1555 static inline void f2fs_clear_inline_inode(struct inode *inode)
1556 {
1557 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1558 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1559 }
1560
1561 static inline int f2fs_exist_data(struct inode *inode)
1562 {
1563 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1564 }
1565
1566 static inline int f2fs_has_inline_dots(struct inode *inode)
1567 {
1568 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1569 }
1570
1571 static inline bool f2fs_is_atomic_file(struct inode *inode)
1572 {
1573 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1574 }
1575
1576 static inline bool f2fs_is_volatile_file(struct inode *inode)
1577 {
1578 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1579 }
1580
1581 static inline bool f2fs_is_first_block_written(struct inode *inode)
1582 {
1583 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1584 }
1585
1586 static inline bool f2fs_is_drop_cache(struct inode *inode)
1587 {
1588 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1589 }
1590
1591 static inline void *inline_data_addr(struct page *page)
1592 {
1593 struct f2fs_inode *ri = F2FS_INODE(page);
1594 return (void *)&(ri->i_addr[1]);
1595 }
1596
1597 static inline int f2fs_has_inline_dentry(struct inode *inode)
1598 {
1599 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1600 }
1601
1602 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1603 {
1604 if (!f2fs_has_inline_dentry(dir))
1605 kunmap(page);
1606 }
1607
1608 static inline int is_file(struct inode *inode, int type)
1609 {
1610 return F2FS_I(inode)->i_advise & type;
1611 }
1612
1613 static inline void set_file(struct inode *inode, int type)
1614 {
1615 F2FS_I(inode)->i_advise |= type;
1616 }
1617
1618 static inline void clear_file(struct inode *inode, int type)
1619 {
1620 F2FS_I(inode)->i_advise &= ~type;
1621 }
1622
1623 static inline int f2fs_readonly(struct super_block *sb)
1624 {
1625 return sb->s_flags & MS_RDONLY;
1626 }
1627
1628 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1629 {
1630 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1631 }
1632
1633 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1634 {
1635 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1636 sbi->sb->s_flags |= MS_RDONLY;
1637 }
1638
1639 static inline bool is_dot_dotdot(const struct qstr *str)
1640 {
1641 if (str->len == 1 && str->name[0] == '.')
1642 return true;
1643
1644 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1645 return true;
1646
1647 return false;
1648 }
1649
1650 static inline bool f2fs_may_extent_tree(struct inode *inode)
1651 {
1652 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1653 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1654 return false;
1655
1656 return S_ISREG(inode->i_mode);
1657 }
1658
1659 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1660 {
1661 void *ret;
1662
1663 ret = kmalloc(size, flags | __GFP_NOWARN);
1664 if (!ret)
1665 ret = __vmalloc(size, flags, PAGE_KERNEL);
1666 return ret;
1667 }
1668
1669 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1670 {
1671 void *ret;
1672
1673 ret = kzalloc(size, flags | __GFP_NOWARN);
1674 if (!ret)
1675 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1676 return ret;
1677 }
1678
1679 #define get_inode_mode(i) \
1680 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1681 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1682
1683 /* get offset of first page in next direct node */
1684 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1685 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1686 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1687 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1688
1689 /*
1690 * file.c
1691 */
1692 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1693 void truncate_data_blocks(struct dnode_of_data *);
1694 int truncate_blocks(struct inode *, u64, bool);
1695 int f2fs_truncate(struct inode *, bool);
1696 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1697 int f2fs_setattr(struct dentry *, struct iattr *);
1698 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1699 int truncate_data_blocks_range(struct dnode_of_data *, int);
1700 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1701 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1702
1703 /*
1704 * inode.c
1705 */
1706 void f2fs_set_inode_flags(struct inode *);
1707 struct inode *f2fs_iget(struct super_block *, unsigned long);
1708 int try_to_free_nats(struct f2fs_sb_info *, int);
1709 int update_inode(struct inode *, struct page *);
1710 int update_inode_page(struct inode *);
1711 int f2fs_write_inode(struct inode *, struct writeback_control *);
1712 void f2fs_evict_inode(struct inode *);
1713 void handle_failed_inode(struct inode *);
1714
1715 /*
1716 * namei.c
1717 */
1718 struct dentry *f2fs_get_parent(struct dentry *child);
1719
1720 /*
1721 * dir.c
1722 */
1723 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1724 void set_de_type(struct f2fs_dir_entry *, umode_t);
1725
1726 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1727 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1728 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1729 unsigned int, struct f2fs_str *);
1730 void do_make_empty_dir(struct inode *, struct inode *,
1731 struct f2fs_dentry_ptr *);
1732 struct page *init_inode_metadata(struct inode *, struct inode *,
1733 const struct qstr *, struct page *);
1734 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1735 int room_for_filename(const void *, int, int);
1736 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1737 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1738 struct page **);
1739 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1740 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1741 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1742 struct page *, struct inode *);
1743 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1744 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1745 const struct qstr *, f2fs_hash_t , unsigned int);
1746 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1747 umode_t);
1748 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1749 struct inode *);
1750 int f2fs_do_tmpfile(struct inode *, struct inode *);
1751 bool f2fs_empty_dir(struct inode *);
1752
1753 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1754 {
1755 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1756 inode, inode->i_ino, inode->i_mode);
1757 }
1758
1759 /*
1760 * super.c
1761 */
1762 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1763 int f2fs_sync_fs(struct super_block *, int);
1764 extern __printf(3, 4)
1765 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1766
1767 /*
1768 * hash.c
1769 */
1770 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1771
1772 /*
1773 * node.c
1774 */
1775 struct dnode_of_data;
1776 struct node_info;
1777
1778 bool available_free_memory(struct f2fs_sb_info *, int);
1779 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1780 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1781 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1782 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1783 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1784 int truncate_inode_blocks(struct inode *, pgoff_t);
1785 int truncate_xattr_node(struct inode *, struct page *);
1786 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1787 int remove_inode_page(struct inode *);
1788 struct page *new_inode_page(struct inode *);
1789 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1790 void ra_node_page(struct f2fs_sb_info *, nid_t);
1791 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1792 struct page *get_node_page_ra(struct page *, int);
1793 void sync_inode_page(struct dnode_of_data *);
1794 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1795 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1796 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1797 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1798 int try_to_free_nids(struct f2fs_sb_info *, int);
1799 void recover_inline_xattr(struct inode *, struct page *);
1800 void recover_xattr_data(struct inode *, struct page *, block_t);
1801 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1802 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1803 struct f2fs_summary_block *);
1804 void flush_nat_entries(struct f2fs_sb_info *);
1805 int build_node_manager(struct f2fs_sb_info *);
1806 void destroy_node_manager(struct f2fs_sb_info *);
1807 int __init create_node_manager_caches(void);
1808 void destroy_node_manager_caches(void);
1809
1810 /*
1811 * segment.c
1812 */
1813 void register_inmem_page(struct inode *, struct page *);
1814 int commit_inmem_pages(struct inode *, bool);
1815 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1816 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1817 int f2fs_issue_flush(struct f2fs_sb_info *);
1818 int create_flush_cmd_control(struct f2fs_sb_info *);
1819 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1820 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1821 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1822 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1823 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1824 void release_discard_addrs(struct f2fs_sb_info *);
1825 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1826 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1827 void allocate_new_segments(struct f2fs_sb_info *);
1828 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1829 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1830 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1831 void write_meta_page(struct f2fs_sb_info *, struct page *);
1832 void write_node_page(unsigned int, struct f2fs_io_info *);
1833 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1834 void rewrite_data_page(struct f2fs_io_info *);
1835 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1836 block_t, block_t, unsigned char, bool);
1837 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1838 block_t, block_t *, struct f2fs_summary *, int);
1839 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1840 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1841 void write_data_summaries(struct f2fs_sb_info *, block_t);
1842 void write_node_summaries(struct f2fs_sb_info *, block_t);
1843 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1844 int, unsigned int, int);
1845 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1846 int build_segment_manager(struct f2fs_sb_info *);
1847 void destroy_segment_manager(struct f2fs_sb_info *);
1848 int __init create_segment_manager_caches(void);
1849 void destroy_segment_manager_caches(void);
1850
1851 /*
1852 * checkpoint.c
1853 */
1854 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1855 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1856 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1857 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1858 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1859 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1860 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1861 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1862 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1863 void release_ino_entry(struct f2fs_sb_info *);
1864 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1865 int acquire_orphan_inode(struct f2fs_sb_info *);
1866 void release_orphan_inode(struct f2fs_sb_info *);
1867 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1868 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1869 int recover_orphan_inodes(struct f2fs_sb_info *);
1870 int get_valid_checkpoint(struct f2fs_sb_info *);
1871 void update_dirty_page(struct inode *, struct page *);
1872 void add_dirty_dir_inode(struct inode *);
1873 void remove_dirty_inode(struct inode *);
1874 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1875 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1876 void init_ino_entry_info(struct f2fs_sb_info *);
1877 int __init create_checkpoint_caches(void);
1878 void destroy_checkpoint_caches(void);
1879
1880 /*
1881 * data.c
1882 */
1883 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1884 int f2fs_submit_page_bio(struct f2fs_io_info *);
1885 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1886 void set_data_blkaddr(struct dnode_of_data *);
1887 int reserve_new_block(struct dnode_of_data *);
1888 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1889 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1890 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1891 struct page *find_data_page(struct inode *, pgoff_t);
1892 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1893 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1894 int do_write_data_page(struct f2fs_io_info *);
1895 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1896 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1897 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1898 int f2fs_release_page(struct page *, gfp_t);
1899
1900 /*
1901 * gc.c
1902 */
1903 int start_gc_thread(struct f2fs_sb_info *);
1904 void stop_gc_thread(struct f2fs_sb_info *);
1905 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1906 int f2fs_gc(struct f2fs_sb_info *, bool);
1907 void build_gc_manager(struct f2fs_sb_info *);
1908
1909 /*
1910 * recovery.c
1911 */
1912 int recover_fsync_data(struct f2fs_sb_info *);
1913 bool space_for_roll_forward(struct f2fs_sb_info *);
1914
1915 /*
1916 * debug.c
1917 */
1918 #ifdef CONFIG_F2FS_STAT_FS
1919 struct f2fs_stat_info {
1920 struct list_head stat_list;
1921 struct f2fs_sb_info *sbi;
1922 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1923 int main_area_segs, main_area_sections, main_area_zones;
1924 unsigned long long hit_largest, hit_cached, hit_rbtree;
1925 unsigned long long hit_total, total_ext;
1926 int ext_tree, zombie_tree, ext_node;
1927 int ndirty_node, ndirty_meta;
1928 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1929 int nats, dirty_nats, sits, dirty_sits, fnids;
1930 int total_count, utilization;
1931 int bg_gc, inmem_pages, wb_pages;
1932 int inline_xattr, inline_inode, inline_dir;
1933 unsigned int valid_count, valid_node_count, valid_inode_count;
1934 unsigned int bimodal, avg_vblocks;
1935 int util_free, util_valid, util_invalid;
1936 int rsvd_segs, overp_segs;
1937 int dirty_count, node_pages, meta_pages;
1938 int prefree_count, call_count, cp_count, bg_cp_count;
1939 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1940 int bg_node_segs, bg_data_segs;
1941 int tot_blks, data_blks, node_blks;
1942 int bg_data_blks, bg_node_blks;
1943 int curseg[NR_CURSEG_TYPE];
1944 int cursec[NR_CURSEG_TYPE];
1945 int curzone[NR_CURSEG_TYPE];
1946
1947 unsigned int segment_count[2];
1948 unsigned int block_count[2];
1949 unsigned int inplace_count;
1950 unsigned long long base_mem, cache_mem, page_mem;
1951 };
1952
1953 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1954 {
1955 return (struct f2fs_stat_info *)sbi->stat_info;
1956 }
1957
1958 #define stat_inc_cp_count(si) ((si)->cp_count++)
1959 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1960 #define stat_inc_call_count(si) ((si)->call_count++)
1961 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1962 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1963 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1964 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1965 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1966 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1967 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1968 #define stat_inc_inline_xattr(inode) \
1969 do { \
1970 if (f2fs_has_inline_xattr(inode)) \
1971 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1972 } while (0)
1973 #define stat_dec_inline_xattr(inode) \
1974 do { \
1975 if (f2fs_has_inline_xattr(inode)) \
1976 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1977 } while (0)
1978 #define stat_inc_inline_inode(inode) \
1979 do { \
1980 if (f2fs_has_inline_data(inode)) \
1981 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1982 } while (0)
1983 #define stat_dec_inline_inode(inode) \
1984 do { \
1985 if (f2fs_has_inline_data(inode)) \
1986 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1987 } while (0)
1988 #define stat_inc_inline_dir(inode) \
1989 do { \
1990 if (f2fs_has_inline_dentry(inode)) \
1991 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1992 } while (0)
1993 #define stat_dec_inline_dir(inode) \
1994 do { \
1995 if (f2fs_has_inline_dentry(inode)) \
1996 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1997 } while (0)
1998 #define stat_inc_seg_type(sbi, curseg) \
1999 ((sbi)->segment_count[(curseg)->alloc_type]++)
2000 #define stat_inc_block_count(sbi, curseg) \
2001 ((sbi)->block_count[(curseg)->alloc_type]++)
2002 #define stat_inc_inplace_blocks(sbi) \
2003 (atomic_inc(&(sbi)->inplace_count))
2004 #define stat_inc_seg_count(sbi, type, gc_type) \
2005 do { \
2006 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2007 (si)->tot_segs++; \
2008 if (type == SUM_TYPE_DATA) { \
2009 si->data_segs++; \
2010 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2011 } else { \
2012 si->node_segs++; \
2013 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2014 } \
2015 } while (0)
2016
2017 #define stat_inc_tot_blk_count(si, blks) \
2018 (si->tot_blks += (blks))
2019
2020 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2021 do { \
2022 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2023 stat_inc_tot_blk_count(si, blks); \
2024 si->data_blks += (blks); \
2025 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2026 } while (0)
2027
2028 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2029 do { \
2030 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2031 stat_inc_tot_blk_count(si, blks); \
2032 si->node_blks += (blks); \
2033 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2034 } while (0)
2035
2036 int f2fs_build_stats(struct f2fs_sb_info *);
2037 void f2fs_destroy_stats(struct f2fs_sb_info *);
2038 int __init f2fs_create_root_stats(void);
2039 void f2fs_destroy_root_stats(void);
2040 #else
2041 #define stat_inc_cp_count(si)
2042 #define stat_inc_bg_cp_count(si)
2043 #define stat_inc_call_count(si)
2044 #define stat_inc_bggc_count(si)
2045 #define stat_inc_dirty_inode(sbi, type)
2046 #define stat_dec_dirty_inode(sbi, type)
2047 #define stat_inc_total_hit(sb)
2048 #define stat_inc_rbtree_node_hit(sb)
2049 #define stat_inc_largest_node_hit(sbi)
2050 #define stat_inc_cached_node_hit(sbi)
2051 #define stat_inc_inline_xattr(inode)
2052 #define stat_dec_inline_xattr(inode)
2053 #define stat_inc_inline_inode(inode)
2054 #define stat_dec_inline_inode(inode)
2055 #define stat_inc_inline_dir(inode)
2056 #define stat_dec_inline_dir(inode)
2057 #define stat_inc_seg_type(sbi, curseg)
2058 #define stat_inc_block_count(sbi, curseg)
2059 #define stat_inc_inplace_blocks(sbi)
2060 #define stat_inc_seg_count(sbi, type, gc_type)
2061 #define stat_inc_tot_blk_count(si, blks)
2062 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2063 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2064
2065 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2066 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2067 static inline int __init f2fs_create_root_stats(void) { return 0; }
2068 static inline void f2fs_destroy_root_stats(void) { }
2069 #endif
2070
2071 extern const struct file_operations f2fs_dir_operations;
2072 extern const struct file_operations f2fs_file_operations;
2073 extern const struct inode_operations f2fs_file_inode_operations;
2074 extern const struct address_space_operations f2fs_dblock_aops;
2075 extern const struct address_space_operations f2fs_node_aops;
2076 extern const struct address_space_operations f2fs_meta_aops;
2077 extern const struct inode_operations f2fs_dir_inode_operations;
2078 extern const struct inode_operations f2fs_symlink_inode_operations;
2079 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2080 extern const struct inode_operations f2fs_special_inode_operations;
2081 extern struct kmem_cache *inode_entry_slab;
2082
2083 /*
2084 * inline.c
2085 */
2086 bool f2fs_may_inline_data(struct inode *);
2087 bool f2fs_may_inline_dentry(struct inode *);
2088 void read_inline_data(struct page *, struct page *);
2089 bool truncate_inline_inode(struct page *, u64);
2090 int f2fs_read_inline_data(struct inode *, struct page *);
2091 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2092 int f2fs_convert_inline_inode(struct inode *);
2093 int f2fs_write_inline_data(struct inode *, struct page *);
2094 bool recover_inline_data(struct inode *, struct page *);
2095 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2096 struct f2fs_filename *, struct page **);
2097 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2098 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2099 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2100 nid_t, umode_t);
2101 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2102 struct inode *, struct inode *);
2103 bool f2fs_empty_inline_dir(struct inode *);
2104 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2105 struct f2fs_str *);
2106 int f2fs_inline_data_fiemap(struct inode *,
2107 struct fiemap_extent_info *, __u64, __u64);
2108
2109 /*
2110 * shrinker.c
2111 */
2112 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2113 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2114 void f2fs_join_shrinker(struct f2fs_sb_info *);
2115 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2116
2117 /*
2118 * extent_cache.c
2119 */
2120 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2121 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2122 unsigned int f2fs_destroy_extent_node(struct inode *);
2123 void f2fs_destroy_extent_tree(struct inode *);
2124 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2125 void f2fs_update_extent_cache(struct dnode_of_data *);
2126 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2127 pgoff_t, block_t, unsigned int);
2128 void init_extent_cache_info(struct f2fs_sb_info *);
2129 int __init create_extent_cache(void);
2130 void destroy_extent_cache(void);
2131
2132 /*
2133 * crypto support
2134 */
2135 static inline int f2fs_encrypted_inode(struct inode *inode)
2136 {
2137 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2138 return file_is_encrypt(inode);
2139 #else
2140 return 0;
2141 #endif
2142 }
2143
2144 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2145 {
2146 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2147 file_set_encrypt(inode);
2148 #endif
2149 }
2150
2151 static inline bool f2fs_bio_encrypted(struct bio *bio)
2152 {
2153 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2154 return unlikely(bio->bi_private != NULL);
2155 #else
2156 return false;
2157 #endif
2158 }
2159
2160 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2161 {
2162 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2163 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2164 #else
2165 return 0;
2166 #endif
2167 }
2168
2169 static inline bool f2fs_may_encrypt(struct inode *inode)
2170 {
2171 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2172 umode_t mode = inode->i_mode;
2173
2174 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2175 #else
2176 return 0;
2177 #endif
2178 }
2179
2180 /* crypto_policy.c */
2181 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2182 struct inode *);
2183 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2184 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2185 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2186
2187 /* crypt.c */
2188 extern struct kmem_cache *f2fs_crypt_info_cachep;
2189 bool f2fs_valid_contents_enc_mode(uint32_t);
2190 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2191 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2192 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2193 struct page *f2fs_encrypt(struct inode *, struct page *);
2194 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2195 int f2fs_decrypt_one(struct inode *, struct page *);
2196 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2197
2198 /* crypto_key.c */
2199 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2200 int _f2fs_get_encryption_info(struct inode *inode);
2201
2202 /* crypto_fname.c */
2203 bool f2fs_valid_filenames_enc_mode(uint32_t);
2204 u32 f2fs_fname_crypto_round_up(u32, u32);
2205 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2206 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2207 const struct f2fs_str *, struct f2fs_str *);
2208 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2209 struct f2fs_str *);
2210
2211 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2212 void f2fs_restore_and_release_control_page(struct page **);
2213 void f2fs_restore_control_page(struct page *);
2214
2215 int __init f2fs_init_crypto(void);
2216 int f2fs_crypto_initialize(void);
2217 void f2fs_exit_crypto(void);
2218
2219 int f2fs_has_encryption_key(struct inode *);
2220
2221 static inline int f2fs_get_encryption_info(struct inode *inode)
2222 {
2223 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2224
2225 if (!ci ||
2226 (ci->ci_keyring_key &&
2227 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2228 (1 << KEY_FLAG_REVOKED) |
2229 (1 << KEY_FLAG_DEAD)))))
2230 return _f2fs_get_encryption_info(inode);
2231 return 0;
2232 }
2233
2234 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2235 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2236 int lookup, struct f2fs_filename *);
2237 void f2fs_fname_free_filename(struct f2fs_filename *);
2238 #else
2239 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2240 static inline void f2fs_restore_control_page(struct page *p) { }
2241
2242 static inline int __init f2fs_init_crypto(void) { return 0; }
2243 static inline void f2fs_exit_crypto(void) { }
2244
2245 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2246 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2247 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2248
2249 static inline int f2fs_fname_setup_filename(struct inode *dir,
2250 const struct qstr *iname,
2251 int lookup, struct f2fs_filename *fname)
2252 {
2253 memset(fname, 0, sizeof(struct f2fs_filename));
2254 fname->usr_fname = iname;
2255 fname->disk_name.name = (unsigned char *)iname->name;
2256 fname->disk_name.len = iname->len;
2257 return 0;
2258 }
2259
2260 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2261 #endif
2262 #endif
This page took 0.076789 seconds and 6 git commands to generate.