f2fs: introduce f2fs_submit_merged_bio_cond
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition) \
31 do { \
32 if (unlikely(condition)) { \
33 WARN_ON(1); \
34 set_sbi_flag(sbi, SBI_NEED_FSCK); \
35 } \
36 } while (0)
37 #define f2fs_down_write(x, y) down_write(x)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 #define CRCPOLY_LE 0xedb88320
88
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 unsigned char *p = (unsigned char *)buf;
92 __u32 crc = F2FS_SUPER_MAGIC;
93 int i;
94
95 while (len--) {
96 crc ^= *p++;
97 for (i = 0; i < 8; i++)
98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 }
100 return crc;
101 }
102
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107
108 /*
109 * For checkpoint manager
110 */
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 enum {
117 CP_UMOUNT,
118 CP_FASTBOOT,
119 CP_SYNC,
120 CP_RECOVERY,
121 CP_DISCARD,
122 };
123
124 #define DEF_BATCHED_TRIM_SECTIONS 32
125 #define BATCHED_TRIM_SEGMENTS(sbi) \
126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi) \
128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL 60 /* 60 secs */
130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
131
132 struct cp_control {
133 int reason;
134 __u64 trim_start;
135 __u64 trim_end;
136 __u64 trim_minlen;
137 __u64 trimmed;
138 };
139
140 /*
141 * For CP/NAT/SIT/SSA readahead
142 */
143 enum {
144 META_CP,
145 META_NAT,
146 META_SIT,
147 META_SSA,
148 META_POR,
149 };
150
151 /* for the list of ino */
152 enum {
153 ORPHAN_INO, /* for orphan ino list */
154 APPEND_INO, /* for append ino list */
155 UPDATE_INO, /* for update ino list */
156 MAX_INO_ENTRY, /* max. list */
157 };
158
159 struct ino_entry {
160 struct list_head list; /* list head */
161 nid_t ino; /* inode number */
162 };
163
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
188
189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 int before = nats_in_cursum(rs);
200 rs->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 int before = sits_in_cursum(rs);
207 rs->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(sum);
216 return size <= MAX_SIT_JENTRIES(sum);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
235
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
237 _IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
239 _IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
241 _IOW('f', 21, struct f2fs_encryption_policy)
242
243 /*
244 * should be same as XFS_IOC_GOINGDOWN.
245 * Flags for going down operation used by FS_IOC_GOINGDOWN
246 */
247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
252
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255 * ioctl commands in 32 bit emulation
256 */
257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
260 #endif
261
262 struct f2fs_defragment {
263 u64 start;
264 u64 len;
265 };
266
267 /*
268 * For INODE and NODE manager
269 */
270 /* for directory operations */
271 struct f2fs_str {
272 unsigned char *name;
273 u32 len;
274 };
275
276 struct f2fs_filename {
277 const struct qstr *usr_fname;
278 struct f2fs_str disk_name;
279 f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 struct f2fs_str crypto_buf;
282 #endif
283 };
284
285 #define FSTR_INIT(n, l) { .name = n, .len = l }
286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p) ((p)->disk_name.name)
288 #define fname_len(p) ((p)->disk_name.len)
289
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394
395 /*
396 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
397 */
398 #define FADVISE_COLD_BIT 0x01
399 #define FADVISE_LOST_PINO_BIT 0x02
400 #define FADVISE_ENCRYPT_BIT 0x04
401 #define FADVISE_ENC_NAME_BIT 0x08
402
403 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
404 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
405 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
406 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
407 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
408 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
409 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
410 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
411 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
413 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
414
415 /* Encryption algorithms */
416 #define F2FS_ENCRYPTION_MODE_INVALID 0
417 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
418 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
419 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
420 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
421
422 #include "f2fs_crypto.h"
423
424 #define DEF_DIR_LEVEL 0
425
426 struct f2fs_inode_info {
427 struct inode vfs_inode; /* serve a vfs inode */
428 unsigned long i_flags; /* keep an inode flags for ioctl */
429 unsigned char i_advise; /* use to give file attribute hints */
430 unsigned char i_dir_level; /* use for dentry level for large dir */
431 unsigned int i_current_depth; /* use only in directory structure */
432 unsigned int i_pino; /* parent inode number */
433 umode_t i_acl_mode; /* keep file acl mode temporarily */
434
435 /* Use below internally in f2fs*/
436 unsigned long flags; /* use to pass per-file flags */
437 struct rw_semaphore i_sem; /* protect fi info */
438 atomic_t dirty_pages; /* # of dirty pages */
439 f2fs_hash_t chash; /* hash value of given file name */
440 unsigned int clevel; /* maximum level of given file name */
441 nid_t i_xattr_nid; /* node id that contains xattrs */
442 unsigned long long xattr_ver; /* cp version of xattr modification */
443
444 struct list_head dirty_list; /* linked in global dirty list */
445 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
446 struct mutex inmem_lock; /* lock for inmemory pages */
447
448 struct extent_tree *extent_tree; /* cached extent_tree entry */
449
450 #ifdef CONFIG_F2FS_FS_ENCRYPTION
451 /* Encryption params */
452 struct f2fs_crypt_info *i_crypt_info;
453 #endif
454 };
455
456 static inline void get_extent_info(struct extent_info *ext,
457 struct f2fs_extent i_ext)
458 {
459 ext->fofs = le32_to_cpu(i_ext.fofs);
460 ext->blk = le32_to_cpu(i_ext.blk);
461 ext->len = le32_to_cpu(i_ext.len);
462 }
463
464 static inline void set_raw_extent(struct extent_info *ext,
465 struct f2fs_extent *i_ext)
466 {
467 i_ext->fofs = cpu_to_le32(ext->fofs);
468 i_ext->blk = cpu_to_le32(ext->blk);
469 i_ext->len = cpu_to_le32(ext->len);
470 }
471
472 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
473 u32 blk, unsigned int len)
474 {
475 ei->fofs = fofs;
476 ei->blk = blk;
477 ei->len = len;
478 }
479
480 static inline bool __is_extent_same(struct extent_info *ei1,
481 struct extent_info *ei2)
482 {
483 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
484 ei1->len == ei2->len);
485 }
486
487 static inline bool __is_extent_mergeable(struct extent_info *back,
488 struct extent_info *front)
489 {
490 return (back->fofs + back->len == front->fofs &&
491 back->blk + back->len == front->blk);
492 }
493
494 static inline bool __is_back_mergeable(struct extent_info *cur,
495 struct extent_info *back)
496 {
497 return __is_extent_mergeable(back, cur);
498 }
499
500 static inline bool __is_front_mergeable(struct extent_info *cur,
501 struct extent_info *front)
502 {
503 return __is_extent_mergeable(cur, front);
504 }
505
506 static inline void __try_update_largest_extent(struct extent_tree *et,
507 struct extent_node *en)
508 {
509 if (en->ei.len > et->largest.len)
510 et->largest = en->ei;
511 }
512
513 struct f2fs_nm_info {
514 block_t nat_blkaddr; /* base disk address of NAT */
515 nid_t max_nid; /* maximum possible node ids */
516 nid_t available_nids; /* maximum available node ids */
517 nid_t next_scan_nid; /* the next nid to be scanned */
518 unsigned int ram_thresh; /* control the memory footprint */
519 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
520 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
521
522 /* NAT cache management */
523 struct radix_tree_root nat_root;/* root of the nat entry cache */
524 struct radix_tree_root nat_set_root;/* root of the nat set cache */
525 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
526 struct list_head nat_entries; /* cached nat entry list (clean) */
527 unsigned int nat_cnt; /* the # of cached nat entries */
528 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
529
530 /* free node ids management */
531 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
532 struct list_head free_nid_list; /* a list for free nids */
533 spinlock_t free_nid_list_lock; /* protect free nid list */
534 unsigned int fcnt; /* the number of free node id */
535 struct mutex build_lock; /* lock for build free nids */
536
537 /* for checkpoint */
538 char *nat_bitmap; /* NAT bitmap pointer */
539 int bitmap_size; /* bitmap size */
540 };
541
542 /*
543 * this structure is used as one of function parameters.
544 * all the information are dedicated to a given direct node block determined
545 * by the data offset in a file.
546 */
547 struct dnode_of_data {
548 struct inode *inode; /* vfs inode pointer */
549 struct page *inode_page; /* its inode page, NULL is possible */
550 struct page *node_page; /* cached direct node page */
551 nid_t nid; /* node id of the direct node block */
552 unsigned int ofs_in_node; /* data offset in the node page */
553 bool inode_page_locked; /* inode page is locked or not */
554 bool node_changed; /* is node block changed */
555 char cur_level; /* level of hole node page */
556 char max_level; /* level of current page located */
557 block_t data_blkaddr; /* block address of the node block */
558 };
559
560 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
561 struct page *ipage, struct page *npage, nid_t nid)
562 {
563 memset(dn, 0, sizeof(*dn));
564 dn->inode = inode;
565 dn->inode_page = ipage;
566 dn->node_page = npage;
567 dn->nid = nid;
568 }
569
570 /*
571 * For SIT manager
572 *
573 * By default, there are 6 active log areas across the whole main area.
574 * When considering hot and cold data separation to reduce cleaning overhead,
575 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
576 * respectively.
577 * In the current design, you should not change the numbers intentionally.
578 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
579 * logs individually according to the underlying devices. (default: 6)
580 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
581 * data and 8 for node logs.
582 */
583 #define NR_CURSEG_DATA_TYPE (3)
584 #define NR_CURSEG_NODE_TYPE (3)
585 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
586
587 enum {
588 CURSEG_HOT_DATA = 0, /* directory entry blocks */
589 CURSEG_WARM_DATA, /* data blocks */
590 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
591 CURSEG_HOT_NODE, /* direct node blocks of directory files */
592 CURSEG_WARM_NODE, /* direct node blocks of normal files */
593 CURSEG_COLD_NODE, /* indirect node blocks */
594 NO_CHECK_TYPE,
595 CURSEG_DIRECT_IO, /* to use for the direct IO path */
596 };
597
598 struct flush_cmd {
599 struct completion wait;
600 struct llist_node llnode;
601 int ret;
602 };
603
604 struct flush_cmd_control {
605 struct task_struct *f2fs_issue_flush; /* flush thread */
606 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
607 struct llist_head issue_list; /* list for command issue */
608 struct llist_node *dispatch_list; /* list for command dispatch */
609 };
610
611 struct f2fs_sm_info {
612 struct sit_info *sit_info; /* whole segment information */
613 struct free_segmap_info *free_info; /* free segment information */
614 struct dirty_seglist_info *dirty_info; /* dirty segment information */
615 struct curseg_info *curseg_array; /* active segment information */
616
617 block_t seg0_blkaddr; /* block address of 0'th segment */
618 block_t main_blkaddr; /* start block address of main area */
619 block_t ssa_blkaddr; /* start block address of SSA area */
620
621 unsigned int segment_count; /* total # of segments */
622 unsigned int main_segments; /* # of segments in main area */
623 unsigned int reserved_segments; /* # of reserved segments */
624 unsigned int ovp_segments; /* # of overprovision segments */
625
626 /* a threshold to reclaim prefree segments */
627 unsigned int rec_prefree_segments;
628
629 /* for small discard management */
630 struct list_head discard_list; /* 4KB discard list */
631 int nr_discards; /* # of discards in the list */
632 int max_discards; /* max. discards to be issued */
633
634 /* for batched trimming */
635 unsigned int trim_sections; /* # of sections to trim */
636
637 struct list_head sit_entry_set; /* sit entry set list */
638
639 unsigned int ipu_policy; /* in-place-update policy */
640 unsigned int min_ipu_util; /* in-place-update threshold */
641 unsigned int min_fsync_blocks; /* threshold for fsync */
642
643 /* for flush command control */
644 struct flush_cmd_control *cmd_control_info;
645
646 };
647
648 /*
649 * For superblock
650 */
651 /*
652 * COUNT_TYPE for monitoring
653 *
654 * f2fs monitors the number of several block types such as on-writeback,
655 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
656 */
657 enum count_type {
658 F2FS_WRITEBACK,
659 F2FS_DIRTY_DENTS,
660 F2FS_DIRTY_DATA,
661 F2FS_DIRTY_NODES,
662 F2FS_DIRTY_META,
663 F2FS_INMEM_PAGES,
664 NR_COUNT_TYPE,
665 };
666
667 /*
668 * The below are the page types of bios used in submit_bio().
669 * The available types are:
670 * DATA User data pages. It operates as async mode.
671 * NODE Node pages. It operates as async mode.
672 * META FS metadata pages such as SIT, NAT, CP.
673 * NR_PAGE_TYPE The number of page types.
674 * META_FLUSH Make sure the previous pages are written
675 * with waiting the bio's completion
676 * ... Only can be used with META.
677 */
678 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
679 enum page_type {
680 DATA,
681 NODE,
682 META,
683 NR_PAGE_TYPE,
684 META_FLUSH,
685 INMEM, /* the below types are used by tracepoints only. */
686 INMEM_DROP,
687 IPU,
688 OPU,
689 };
690
691 struct f2fs_io_info {
692 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
693 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
694 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
695 block_t blk_addr; /* block address to be written */
696 struct page *page; /* page to be written */
697 struct page *encrypted_page; /* encrypted page */
698 };
699
700 #define is_read_io(rw) (((rw) & 1) == READ)
701 struct f2fs_bio_info {
702 struct f2fs_sb_info *sbi; /* f2fs superblock */
703 struct bio *bio; /* bios to merge */
704 sector_t last_block_in_bio; /* last block number */
705 struct f2fs_io_info fio; /* store buffered io info. */
706 struct rw_semaphore io_rwsem; /* blocking op for bio */
707 };
708
709 enum inode_type {
710 DIR_INODE, /* for dirty dir inode */
711 FILE_INODE, /* for dirty regular/symlink inode */
712 NR_INODE_TYPE,
713 };
714
715 /* for inner inode cache management */
716 struct inode_management {
717 struct radix_tree_root ino_root; /* ino entry array */
718 spinlock_t ino_lock; /* for ino entry lock */
719 struct list_head ino_list; /* inode list head */
720 unsigned long ino_num; /* number of entries */
721 };
722
723 /* For s_flag in struct f2fs_sb_info */
724 enum {
725 SBI_IS_DIRTY, /* dirty flag for checkpoint */
726 SBI_IS_CLOSE, /* specify unmounting */
727 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
728 SBI_POR_DOING, /* recovery is doing or not */
729 };
730
731 enum {
732 CP_TIME,
733 REQ_TIME,
734 MAX_TIME,
735 };
736
737 struct f2fs_sb_info {
738 struct super_block *sb; /* pointer to VFS super block */
739 struct proc_dir_entry *s_proc; /* proc entry */
740 struct f2fs_super_block *raw_super; /* raw super block pointer */
741 int valid_super_block; /* valid super block no */
742 int s_flag; /* flags for sbi */
743
744 /* for node-related operations */
745 struct f2fs_nm_info *nm_info; /* node manager */
746 struct inode *node_inode; /* cache node blocks */
747
748 /* for segment-related operations */
749 struct f2fs_sm_info *sm_info; /* segment manager */
750
751 /* for bio operations */
752 struct f2fs_bio_info read_io; /* for read bios */
753 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
754
755 /* for checkpoint */
756 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
757 struct inode *meta_inode; /* cache meta blocks */
758 struct mutex cp_mutex; /* checkpoint procedure lock */
759 struct rw_semaphore cp_rwsem; /* blocking FS operations */
760 struct rw_semaphore node_write; /* locking node writes */
761 struct mutex writepages; /* mutex for writepages() */
762 wait_queue_head_t cp_wait;
763 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
764 long interval_time[MAX_TIME]; /* to store thresholds */
765
766 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
767
768 /* for orphan inode, use 0'th array */
769 unsigned int max_orphans; /* max orphan inodes */
770
771 /* for inode management */
772 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
773 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
774
775 /* for extent tree cache */
776 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
777 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
778 struct list_head extent_list; /* lru list for shrinker */
779 spinlock_t extent_lock; /* locking extent lru list */
780 atomic_t total_ext_tree; /* extent tree count */
781 struct list_head zombie_list; /* extent zombie tree list */
782 atomic_t total_zombie_tree; /* extent zombie tree count */
783 atomic_t total_ext_node; /* extent info count */
784
785 /* basic filesystem units */
786 unsigned int log_sectors_per_block; /* log2 sectors per block */
787 unsigned int log_blocksize; /* log2 block size */
788 unsigned int blocksize; /* block size */
789 unsigned int root_ino_num; /* root inode number*/
790 unsigned int node_ino_num; /* node inode number*/
791 unsigned int meta_ino_num; /* meta inode number*/
792 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
793 unsigned int blocks_per_seg; /* blocks per segment */
794 unsigned int segs_per_sec; /* segments per section */
795 unsigned int secs_per_zone; /* sections per zone */
796 unsigned int total_sections; /* total section count */
797 unsigned int total_node_count; /* total node block count */
798 unsigned int total_valid_node_count; /* valid node block count */
799 unsigned int total_valid_inode_count; /* valid inode count */
800 loff_t max_file_blocks; /* max block index of file */
801 int active_logs; /* # of active logs */
802 int dir_level; /* directory level */
803
804 block_t user_block_count; /* # of user blocks */
805 block_t total_valid_block_count; /* # of valid blocks */
806 block_t alloc_valid_block_count; /* # of allocated blocks */
807 block_t discard_blks; /* discard command candidats */
808 block_t last_valid_block_count; /* for recovery */
809 u32 s_next_generation; /* for NFS support */
810 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
811
812 struct f2fs_mount_info mount_opt; /* mount options */
813
814 /* for cleaning operations */
815 struct mutex gc_mutex; /* mutex for GC */
816 struct f2fs_gc_kthread *gc_thread; /* GC thread */
817 unsigned int cur_victim_sec; /* current victim section num */
818
819 /* maximum # of trials to find a victim segment for SSR and GC */
820 unsigned int max_victim_search;
821
822 /*
823 * for stat information.
824 * one is for the LFS mode, and the other is for the SSR mode.
825 */
826 #ifdef CONFIG_F2FS_STAT_FS
827 struct f2fs_stat_info *stat_info; /* FS status information */
828 unsigned int segment_count[2]; /* # of allocated segments */
829 unsigned int block_count[2]; /* # of allocated blocks */
830 atomic_t inplace_count; /* # of inplace update */
831 atomic64_t total_hit_ext; /* # of lookup extent cache */
832 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
833 atomic64_t read_hit_largest; /* # of hit largest extent node */
834 atomic64_t read_hit_cached; /* # of hit cached extent node */
835 atomic_t inline_xattr; /* # of inline_xattr inodes */
836 atomic_t inline_inode; /* # of inline_data inodes */
837 atomic_t inline_dir; /* # of inline_dentry inodes */
838 int bg_gc; /* background gc calls */
839 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
840 #endif
841 unsigned int last_victim[2]; /* last victim segment # */
842 spinlock_t stat_lock; /* lock for stat operations */
843
844 /* For sysfs suppport */
845 struct kobject s_kobj;
846 struct completion s_kobj_unregister;
847
848 /* For shrinker support */
849 struct list_head s_list;
850 struct mutex umount_mutex;
851 unsigned int shrinker_run_no;
852
853 /* For write statistics */
854 u64 sectors_written_start;
855 u64 kbytes_written;
856 };
857
858 /* For write statistics. Suppose sector size is 512 bytes,
859 * and the return value is in kbytes. s is of struct f2fs_sb_info.
860 */
861 #define BD_PART_WRITTEN(s) \
862 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
863 s->sectors_written_start) >> 1)
864
865 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
866 {
867 sbi->last_time[type] = jiffies;
868 }
869
870 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
871 {
872 struct timespec ts = {sbi->interval_time[type], 0};
873 unsigned long interval = timespec_to_jiffies(&ts);
874
875 return time_after(jiffies, sbi->last_time[type] + interval);
876 }
877
878 static inline bool is_idle(struct f2fs_sb_info *sbi)
879 {
880 struct block_device *bdev = sbi->sb->s_bdev;
881 struct request_queue *q = bdev_get_queue(bdev);
882 struct request_list *rl = &q->root_rl;
883
884 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
885 return 0;
886
887 return f2fs_time_over(sbi, REQ_TIME);
888 }
889
890 /*
891 * Inline functions
892 */
893 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
894 {
895 return container_of(inode, struct f2fs_inode_info, vfs_inode);
896 }
897
898 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
899 {
900 return sb->s_fs_info;
901 }
902
903 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
904 {
905 return F2FS_SB(inode->i_sb);
906 }
907
908 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
909 {
910 return F2FS_I_SB(mapping->host);
911 }
912
913 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
914 {
915 return F2FS_M_SB(page->mapping);
916 }
917
918 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
919 {
920 return (struct f2fs_super_block *)(sbi->raw_super);
921 }
922
923 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
924 {
925 return (struct f2fs_checkpoint *)(sbi->ckpt);
926 }
927
928 static inline struct f2fs_node *F2FS_NODE(struct page *page)
929 {
930 return (struct f2fs_node *)page_address(page);
931 }
932
933 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
934 {
935 return &((struct f2fs_node *)page_address(page))->i;
936 }
937
938 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
939 {
940 return (struct f2fs_nm_info *)(sbi->nm_info);
941 }
942
943 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
944 {
945 return (struct f2fs_sm_info *)(sbi->sm_info);
946 }
947
948 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
949 {
950 return (struct sit_info *)(SM_I(sbi)->sit_info);
951 }
952
953 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
954 {
955 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
956 }
957
958 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
959 {
960 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
961 }
962
963 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
964 {
965 return sbi->meta_inode->i_mapping;
966 }
967
968 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
969 {
970 return sbi->node_inode->i_mapping;
971 }
972
973 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
974 {
975 return sbi->s_flag & (0x01 << type);
976 }
977
978 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
979 {
980 sbi->s_flag |= (0x01 << type);
981 }
982
983 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
984 {
985 sbi->s_flag &= ~(0x01 << type);
986 }
987
988 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
989 {
990 return le64_to_cpu(cp->checkpoint_ver);
991 }
992
993 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
994 {
995 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
996 return ckpt_flags & f;
997 }
998
999 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1000 {
1001 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1002 ckpt_flags |= f;
1003 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1004 }
1005
1006 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1007 {
1008 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1009 ckpt_flags &= (~f);
1010 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1011 }
1012
1013 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1014 {
1015 down_read(&sbi->cp_rwsem);
1016 }
1017
1018 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1019 {
1020 up_read(&sbi->cp_rwsem);
1021 }
1022
1023 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1024 {
1025 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1026 }
1027
1028 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1029 {
1030 up_write(&sbi->cp_rwsem);
1031 }
1032
1033 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1034 {
1035 int reason = CP_SYNC;
1036
1037 if (test_opt(sbi, FASTBOOT))
1038 reason = CP_FASTBOOT;
1039 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1040 reason = CP_UMOUNT;
1041 return reason;
1042 }
1043
1044 static inline bool __remain_node_summaries(int reason)
1045 {
1046 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1047 }
1048
1049 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1050 {
1051 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1052 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1053 }
1054
1055 /*
1056 * Check whether the given nid is within node id range.
1057 */
1058 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1059 {
1060 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1061 return -EINVAL;
1062 if (unlikely(nid >= NM_I(sbi)->max_nid))
1063 return -EINVAL;
1064 return 0;
1065 }
1066
1067 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1068
1069 /*
1070 * Check whether the inode has blocks or not
1071 */
1072 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1073 {
1074 if (F2FS_I(inode)->i_xattr_nid)
1075 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1076 else
1077 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1078 }
1079
1080 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1081 {
1082 return ofs == XATTR_NODE_OFFSET;
1083 }
1084
1085 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1086 struct inode *inode, blkcnt_t count)
1087 {
1088 block_t valid_block_count;
1089
1090 spin_lock(&sbi->stat_lock);
1091 valid_block_count =
1092 sbi->total_valid_block_count + (block_t)count;
1093 if (unlikely(valid_block_count > sbi->user_block_count)) {
1094 spin_unlock(&sbi->stat_lock);
1095 return false;
1096 }
1097 inode->i_blocks += count;
1098 sbi->total_valid_block_count = valid_block_count;
1099 sbi->alloc_valid_block_count += (block_t)count;
1100 spin_unlock(&sbi->stat_lock);
1101 return true;
1102 }
1103
1104 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1105 struct inode *inode,
1106 blkcnt_t count)
1107 {
1108 spin_lock(&sbi->stat_lock);
1109 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1110 f2fs_bug_on(sbi, inode->i_blocks < count);
1111 inode->i_blocks -= count;
1112 sbi->total_valid_block_count -= (block_t)count;
1113 spin_unlock(&sbi->stat_lock);
1114 }
1115
1116 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1117 {
1118 atomic_inc(&sbi->nr_pages[count_type]);
1119 set_sbi_flag(sbi, SBI_IS_DIRTY);
1120 }
1121
1122 static inline void inode_inc_dirty_pages(struct inode *inode)
1123 {
1124 atomic_inc(&F2FS_I(inode)->dirty_pages);
1125 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1126 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1127 }
1128
1129 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1130 {
1131 atomic_dec(&sbi->nr_pages[count_type]);
1132 }
1133
1134 static inline void inode_dec_dirty_pages(struct inode *inode)
1135 {
1136 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1137 !S_ISLNK(inode->i_mode))
1138 return;
1139
1140 atomic_dec(&F2FS_I(inode)->dirty_pages);
1141 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1142 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1143 }
1144
1145 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1146 {
1147 return atomic_read(&sbi->nr_pages[count_type]);
1148 }
1149
1150 static inline int get_dirty_pages(struct inode *inode)
1151 {
1152 return atomic_read(&F2FS_I(inode)->dirty_pages);
1153 }
1154
1155 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1156 {
1157 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1158 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1159 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1160 }
1161
1162 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1163 {
1164 return sbi->total_valid_block_count;
1165 }
1166
1167 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1168 {
1169 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1170
1171 /* return NAT or SIT bitmap */
1172 if (flag == NAT_BITMAP)
1173 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1174 else if (flag == SIT_BITMAP)
1175 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1176
1177 return 0;
1178 }
1179
1180 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1181 {
1182 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1183 }
1184
1185 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1186 {
1187 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1188 int offset;
1189
1190 if (__cp_payload(sbi) > 0) {
1191 if (flag == NAT_BITMAP)
1192 return &ckpt->sit_nat_version_bitmap;
1193 else
1194 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1195 } else {
1196 offset = (flag == NAT_BITMAP) ?
1197 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1198 return &ckpt->sit_nat_version_bitmap + offset;
1199 }
1200 }
1201
1202 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1203 {
1204 block_t start_addr;
1205 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1206 unsigned long long ckpt_version = cur_cp_version(ckpt);
1207
1208 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1209
1210 /*
1211 * odd numbered checkpoint should at cp segment 0
1212 * and even segment must be at cp segment 1
1213 */
1214 if (!(ckpt_version & 1))
1215 start_addr += sbi->blocks_per_seg;
1216
1217 return start_addr;
1218 }
1219
1220 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1221 {
1222 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1223 }
1224
1225 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1226 struct inode *inode)
1227 {
1228 block_t valid_block_count;
1229 unsigned int valid_node_count;
1230
1231 spin_lock(&sbi->stat_lock);
1232
1233 valid_block_count = sbi->total_valid_block_count + 1;
1234 if (unlikely(valid_block_count > sbi->user_block_count)) {
1235 spin_unlock(&sbi->stat_lock);
1236 return false;
1237 }
1238
1239 valid_node_count = sbi->total_valid_node_count + 1;
1240 if (unlikely(valid_node_count > sbi->total_node_count)) {
1241 spin_unlock(&sbi->stat_lock);
1242 return false;
1243 }
1244
1245 if (inode)
1246 inode->i_blocks++;
1247
1248 sbi->alloc_valid_block_count++;
1249 sbi->total_valid_node_count++;
1250 sbi->total_valid_block_count++;
1251 spin_unlock(&sbi->stat_lock);
1252
1253 return true;
1254 }
1255
1256 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1257 struct inode *inode)
1258 {
1259 spin_lock(&sbi->stat_lock);
1260
1261 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1262 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1263 f2fs_bug_on(sbi, !inode->i_blocks);
1264
1265 inode->i_blocks--;
1266 sbi->total_valid_node_count--;
1267 sbi->total_valid_block_count--;
1268
1269 spin_unlock(&sbi->stat_lock);
1270 }
1271
1272 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1273 {
1274 return sbi->total_valid_node_count;
1275 }
1276
1277 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1278 {
1279 spin_lock(&sbi->stat_lock);
1280 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1281 sbi->total_valid_inode_count++;
1282 spin_unlock(&sbi->stat_lock);
1283 }
1284
1285 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1286 {
1287 spin_lock(&sbi->stat_lock);
1288 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1289 sbi->total_valid_inode_count--;
1290 spin_unlock(&sbi->stat_lock);
1291 }
1292
1293 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1294 {
1295 return sbi->total_valid_inode_count;
1296 }
1297
1298 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1299 pgoff_t index, bool for_write)
1300 {
1301 if (!for_write)
1302 return grab_cache_page(mapping, index);
1303 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1304 }
1305
1306 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1307 {
1308 char *src_kaddr = kmap(src);
1309 char *dst_kaddr = kmap(dst);
1310
1311 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1312 kunmap(dst);
1313 kunmap(src);
1314 }
1315
1316 static inline void f2fs_put_page(struct page *page, int unlock)
1317 {
1318 if (!page)
1319 return;
1320
1321 if (unlock) {
1322 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1323 unlock_page(page);
1324 }
1325 page_cache_release(page);
1326 }
1327
1328 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1329 {
1330 if (dn->node_page)
1331 f2fs_put_page(dn->node_page, 1);
1332 if (dn->inode_page && dn->node_page != dn->inode_page)
1333 f2fs_put_page(dn->inode_page, 0);
1334 dn->node_page = NULL;
1335 dn->inode_page = NULL;
1336 }
1337
1338 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1339 size_t size)
1340 {
1341 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1342 }
1343
1344 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1345 gfp_t flags)
1346 {
1347 void *entry;
1348
1349 entry = kmem_cache_alloc(cachep, flags);
1350 if (!entry)
1351 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1352 return entry;
1353 }
1354
1355 static inline struct bio *f2fs_bio_alloc(int npages)
1356 {
1357 struct bio *bio;
1358
1359 /* No failure on bio allocation */
1360 bio = bio_alloc(GFP_NOIO, npages);
1361 if (!bio)
1362 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1363 return bio;
1364 }
1365
1366 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1367 unsigned long index, void *item)
1368 {
1369 while (radix_tree_insert(root, index, item))
1370 cond_resched();
1371 }
1372
1373 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1374
1375 static inline bool IS_INODE(struct page *page)
1376 {
1377 struct f2fs_node *p = F2FS_NODE(page);
1378 return RAW_IS_INODE(p);
1379 }
1380
1381 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1382 {
1383 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1384 }
1385
1386 static inline block_t datablock_addr(struct page *node_page,
1387 unsigned int offset)
1388 {
1389 struct f2fs_node *raw_node;
1390 __le32 *addr_array;
1391 raw_node = F2FS_NODE(node_page);
1392 addr_array = blkaddr_in_node(raw_node);
1393 return le32_to_cpu(addr_array[offset]);
1394 }
1395
1396 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1397 {
1398 int mask;
1399
1400 addr += (nr >> 3);
1401 mask = 1 << (7 - (nr & 0x07));
1402 return mask & *addr;
1403 }
1404
1405 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1406 {
1407 int mask;
1408
1409 addr += (nr >> 3);
1410 mask = 1 << (7 - (nr & 0x07));
1411 *addr |= mask;
1412 }
1413
1414 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1415 {
1416 int mask;
1417
1418 addr += (nr >> 3);
1419 mask = 1 << (7 - (nr & 0x07));
1420 *addr &= ~mask;
1421 }
1422
1423 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1424 {
1425 int mask;
1426 int ret;
1427
1428 addr += (nr >> 3);
1429 mask = 1 << (7 - (nr & 0x07));
1430 ret = mask & *addr;
1431 *addr |= mask;
1432 return ret;
1433 }
1434
1435 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1436 {
1437 int mask;
1438 int ret;
1439
1440 addr += (nr >> 3);
1441 mask = 1 << (7 - (nr & 0x07));
1442 ret = mask & *addr;
1443 *addr &= ~mask;
1444 return ret;
1445 }
1446
1447 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1448 {
1449 int mask;
1450
1451 addr += (nr >> 3);
1452 mask = 1 << (7 - (nr & 0x07));
1453 *addr ^= mask;
1454 }
1455
1456 /* used for f2fs_inode_info->flags */
1457 enum {
1458 FI_NEW_INODE, /* indicate newly allocated inode */
1459 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1460 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1461 FI_INC_LINK, /* need to increment i_nlink */
1462 FI_ACL_MODE, /* indicate acl mode */
1463 FI_NO_ALLOC, /* should not allocate any blocks */
1464 FI_FREE_NID, /* free allocated nide */
1465 FI_UPDATE_DIR, /* should update inode block for consistency */
1466 FI_DELAY_IPUT, /* used for the recovery */
1467 FI_NO_EXTENT, /* not to use the extent cache */
1468 FI_INLINE_XATTR, /* used for inline xattr */
1469 FI_INLINE_DATA, /* used for inline data*/
1470 FI_INLINE_DENTRY, /* used for inline dentry */
1471 FI_APPEND_WRITE, /* inode has appended data */
1472 FI_UPDATE_WRITE, /* inode has in-place-update data */
1473 FI_NEED_IPU, /* used for ipu per file */
1474 FI_ATOMIC_FILE, /* indicate atomic file */
1475 FI_VOLATILE_FILE, /* indicate volatile file */
1476 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1477 FI_DROP_CACHE, /* drop dirty page cache */
1478 FI_DATA_EXIST, /* indicate data exists */
1479 FI_INLINE_DOTS, /* indicate inline dot dentries */
1480 FI_DO_DEFRAG, /* indicate defragment is running */
1481 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1482 };
1483
1484 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1485 {
1486 if (!test_bit(flag, &fi->flags))
1487 set_bit(flag, &fi->flags);
1488 }
1489
1490 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1491 {
1492 return test_bit(flag, &fi->flags);
1493 }
1494
1495 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1496 {
1497 if (test_bit(flag, &fi->flags))
1498 clear_bit(flag, &fi->flags);
1499 }
1500
1501 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1502 {
1503 fi->i_acl_mode = mode;
1504 set_inode_flag(fi, FI_ACL_MODE);
1505 }
1506
1507 static inline void get_inline_info(struct f2fs_inode_info *fi,
1508 struct f2fs_inode *ri)
1509 {
1510 if (ri->i_inline & F2FS_INLINE_XATTR)
1511 set_inode_flag(fi, FI_INLINE_XATTR);
1512 if (ri->i_inline & F2FS_INLINE_DATA)
1513 set_inode_flag(fi, FI_INLINE_DATA);
1514 if (ri->i_inline & F2FS_INLINE_DENTRY)
1515 set_inode_flag(fi, FI_INLINE_DENTRY);
1516 if (ri->i_inline & F2FS_DATA_EXIST)
1517 set_inode_flag(fi, FI_DATA_EXIST);
1518 if (ri->i_inline & F2FS_INLINE_DOTS)
1519 set_inode_flag(fi, FI_INLINE_DOTS);
1520 }
1521
1522 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1523 struct f2fs_inode *ri)
1524 {
1525 ri->i_inline = 0;
1526
1527 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1528 ri->i_inline |= F2FS_INLINE_XATTR;
1529 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1530 ri->i_inline |= F2FS_INLINE_DATA;
1531 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1532 ri->i_inline |= F2FS_INLINE_DENTRY;
1533 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1534 ri->i_inline |= F2FS_DATA_EXIST;
1535 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1536 ri->i_inline |= F2FS_INLINE_DOTS;
1537 }
1538
1539 static inline int f2fs_has_inline_xattr(struct inode *inode)
1540 {
1541 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1542 }
1543
1544 static inline unsigned int addrs_per_inode(struct inode *inode)
1545 {
1546 if (f2fs_has_inline_xattr(inode))
1547 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1548 return DEF_ADDRS_PER_INODE;
1549 }
1550
1551 static inline void *inline_xattr_addr(struct page *page)
1552 {
1553 struct f2fs_inode *ri = F2FS_INODE(page);
1554 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1555 F2FS_INLINE_XATTR_ADDRS]);
1556 }
1557
1558 static inline int inline_xattr_size(struct inode *inode)
1559 {
1560 if (f2fs_has_inline_xattr(inode))
1561 return F2FS_INLINE_XATTR_ADDRS << 2;
1562 else
1563 return 0;
1564 }
1565
1566 static inline int f2fs_has_inline_data(struct inode *inode)
1567 {
1568 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1569 }
1570
1571 static inline void f2fs_clear_inline_inode(struct inode *inode)
1572 {
1573 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1574 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1575 }
1576
1577 static inline int f2fs_exist_data(struct inode *inode)
1578 {
1579 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1580 }
1581
1582 static inline int f2fs_has_inline_dots(struct inode *inode)
1583 {
1584 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1585 }
1586
1587 static inline bool f2fs_is_atomic_file(struct inode *inode)
1588 {
1589 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1590 }
1591
1592 static inline bool f2fs_is_volatile_file(struct inode *inode)
1593 {
1594 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1595 }
1596
1597 static inline bool f2fs_is_first_block_written(struct inode *inode)
1598 {
1599 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1600 }
1601
1602 static inline bool f2fs_is_drop_cache(struct inode *inode)
1603 {
1604 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1605 }
1606
1607 static inline void *inline_data_addr(struct page *page)
1608 {
1609 struct f2fs_inode *ri = F2FS_INODE(page);
1610 return (void *)&(ri->i_addr[1]);
1611 }
1612
1613 static inline int f2fs_has_inline_dentry(struct inode *inode)
1614 {
1615 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1616 }
1617
1618 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1619 {
1620 if (!f2fs_has_inline_dentry(dir))
1621 kunmap(page);
1622 }
1623
1624 static inline int is_file(struct inode *inode, int type)
1625 {
1626 return F2FS_I(inode)->i_advise & type;
1627 }
1628
1629 static inline void set_file(struct inode *inode, int type)
1630 {
1631 F2FS_I(inode)->i_advise |= type;
1632 }
1633
1634 static inline void clear_file(struct inode *inode, int type)
1635 {
1636 F2FS_I(inode)->i_advise &= ~type;
1637 }
1638
1639 static inline int f2fs_readonly(struct super_block *sb)
1640 {
1641 return sb->s_flags & MS_RDONLY;
1642 }
1643
1644 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1645 {
1646 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1647 }
1648
1649 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1650 {
1651 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1652 sbi->sb->s_flags |= MS_RDONLY;
1653 }
1654
1655 static inline bool is_dot_dotdot(const struct qstr *str)
1656 {
1657 if (str->len == 1 && str->name[0] == '.')
1658 return true;
1659
1660 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1661 return true;
1662
1663 return false;
1664 }
1665
1666 static inline bool f2fs_may_extent_tree(struct inode *inode)
1667 {
1668 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1669 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1670 return false;
1671
1672 return S_ISREG(inode->i_mode);
1673 }
1674
1675 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1676 {
1677 void *ret;
1678
1679 ret = kmalloc(size, flags | __GFP_NOWARN);
1680 if (!ret)
1681 ret = __vmalloc(size, flags, PAGE_KERNEL);
1682 return ret;
1683 }
1684
1685 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1686 {
1687 void *ret;
1688
1689 ret = kzalloc(size, flags | __GFP_NOWARN);
1690 if (!ret)
1691 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1692 return ret;
1693 }
1694
1695 #define get_inode_mode(i) \
1696 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1697 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1698
1699 /* get offset of first page in next direct node */
1700 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1701 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1702 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1703 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1704
1705 /*
1706 * file.c
1707 */
1708 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1709 void truncate_data_blocks(struct dnode_of_data *);
1710 int truncate_blocks(struct inode *, u64, bool);
1711 int f2fs_truncate(struct inode *, bool);
1712 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1713 int f2fs_setattr(struct dentry *, struct iattr *);
1714 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1715 int truncate_data_blocks_range(struct dnode_of_data *, int);
1716 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1717 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1718
1719 /*
1720 * inode.c
1721 */
1722 void f2fs_set_inode_flags(struct inode *);
1723 struct inode *f2fs_iget(struct super_block *, unsigned long);
1724 int try_to_free_nats(struct f2fs_sb_info *, int);
1725 int update_inode(struct inode *, struct page *);
1726 int update_inode_page(struct inode *);
1727 int f2fs_write_inode(struct inode *, struct writeback_control *);
1728 void f2fs_evict_inode(struct inode *);
1729 void handle_failed_inode(struct inode *);
1730
1731 /*
1732 * namei.c
1733 */
1734 struct dentry *f2fs_get_parent(struct dentry *child);
1735
1736 /*
1737 * dir.c
1738 */
1739 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1740 void set_de_type(struct f2fs_dir_entry *, umode_t);
1741
1742 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1743 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1744 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1745 unsigned int, struct f2fs_str *);
1746 void do_make_empty_dir(struct inode *, struct inode *,
1747 struct f2fs_dentry_ptr *);
1748 struct page *init_inode_metadata(struct inode *, struct inode *,
1749 const struct qstr *, struct page *);
1750 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1751 int room_for_filename(const void *, int, int);
1752 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1753 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1754 struct page **);
1755 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1756 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1757 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1758 struct page *, struct inode *);
1759 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1760 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1761 const struct qstr *, f2fs_hash_t , unsigned int);
1762 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1763 umode_t);
1764 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1765 struct inode *);
1766 int f2fs_do_tmpfile(struct inode *, struct inode *);
1767 bool f2fs_empty_dir(struct inode *);
1768
1769 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1770 {
1771 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1772 inode, inode->i_ino, inode->i_mode);
1773 }
1774
1775 /*
1776 * super.c
1777 */
1778 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1779 int f2fs_sync_fs(struct super_block *, int);
1780 extern __printf(3, 4)
1781 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1782
1783 /*
1784 * hash.c
1785 */
1786 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1787
1788 /*
1789 * node.c
1790 */
1791 struct dnode_of_data;
1792 struct node_info;
1793
1794 bool available_free_memory(struct f2fs_sb_info *, int);
1795 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1796 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1797 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1798 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1799 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1800 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1801 int truncate_inode_blocks(struct inode *, pgoff_t);
1802 int truncate_xattr_node(struct inode *, struct page *);
1803 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1804 int remove_inode_page(struct inode *);
1805 struct page *new_inode_page(struct inode *);
1806 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1807 void ra_node_page(struct f2fs_sb_info *, nid_t);
1808 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1809 struct page *get_node_page_ra(struct page *, int);
1810 void sync_inode_page(struct dnode_of_data *);
1811 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1812 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1813 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1814 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1815 int try_to_free_nids(struct f2fs_sb_info *, int);
1816 void recover_inline_xattr(struct inode *, struct page *);
1817 void recover_xattr_data(struct inode *, struct page *, block_t);
1818 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1819 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1820 struct f2fs_summary_block *);
1821 void flush_nat_entries(struct f2fs_sb_info *);
1822 int build_node_manager(struct f2fs_sb_info *);
1823 void destroy_node_manager(struct f2fs_sb_info *);
1824 int __init create_node_manager_caches(void);
1825 void destroy_node_manager_caches(void);
1826
1827 /*
1828 * segment.c
1829 */
1830 void register_inmem_page(struct inode *, struct page *);
1831 int commit_inmem_pages(struct inode *, bool);
1832 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1833 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1834 int f2fs_issue_flush(struct f2fs_sb_info *);
1835 int create_flush_cmd_control(struct f2fs_sb_info *);
1836 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1837 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1838 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1839 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1840 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1841 void release_discard_addrs(struct f2fs_sb_info *);
1842 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1843 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1844 void allocate_new_segments(struct f2fs_sb_info *);
1845 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1846 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1847 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1848 void write_meta_page(struct f2fs_sb_info *, struct page *);
1849 void write_node_page(unsigned int, struct f2fs_io_info *);
1850 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1851 void rewrite_data_page(struct f2fs_io_info *);
1852 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1853 block_t, block_t, unsigned char, bool);
1854 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1855 block_t, block_t *, struct f2fs_summary *, int);
1856 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1857 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1858 void write_data_summaries(struct f2fs_sb_info *, block_t);
1859 void write_node_summaries(struct f2fs_sb_info *, block_t);
1860 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1861 int, unsigned int, int);
1862 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1863 int build_segment_manager(struct f2fs_sb_info *);
1864 void destroy_segment_manager(struct f2fs_sb_info *);
1865 int __init create_segment_manager_caches(void);
1866 void destroy_segment_manager_caches(void);
1867
1868 /*
1869 * checkpoint.c
1870 */
1871 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1872 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1873 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1874 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1875 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1876 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1877 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1878 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1879 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1880 void release_ino_entry(struct f2fs_sb_info *);
1881 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1882 int acquire_orphan_inode(struct f2fs_sb_info *);
1883 void release_orphan_inode(struct f2fs_sb_info *);
1884 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1885 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1886 int recover_orphan_inodes(struct f2fs_sb_info *);
1887 int get_valid_checkpoint(struct f2fs_sb_info *);
1888 void update_dirty_page(struct inode *, struct page *);
1889 void add_dirty_dir_inode(struct inode *);
1890 void remove_dirty_inode(struct inode *);
1891 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1892 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1893 void init_ino_entry_info(struct f2fs_sb_info *);
1894 int __init create_checkpoint_caches(void);
1895 void destroy_checkpoint_caches(void);
1896
1897 /*
1898 * data.c
1899 */
1900 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1901 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1902 struct page *, nid_t, enum page_type, int);
1903 int f2fs_submit_page_bio(struct f2fs_io_info *);
1904 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1905 void set_data_blkaddr(struct dnode_of_data *);
1906 int reserve_new_block(struct dnode_of_data *);
1907 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1908 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1909 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1910 struct page *find_data_page(struct inode *, pgoff_t);
1911 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1912 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1913 int do_write_data_page(struct f2fs_io_info *);
1914 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1915 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1916 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1917 int f2fs_release_page(struct page *, gfp_t);
1918
1919 /*
1920 * gc.c
1921 */
1922 int start_gc_thread(struct f2fs_sb_info *);
1923 void stop_gc_thread(struct f2fs_sb_info *);
1924 block_t start_bidx_of_node(unsigned int, struct inode *);
1925 int f2fs_gc(struct f2fs_sb_info *, bool);
1926 void build_gc_manager(struct f2fs_sb_info *);
1927
1928 /*
1929 * recovery.c
1930 */
1931 int recover_fsync_data(struct f2fs_sb_info *);
1932 bool space_for_roll_forward(struct f2fs_sb_info *);
1933
1934 /*
1935 * debug.c
1936 */
1937 #ifdef CONFIG_F2FS_STAT_FS
1938 struct f2fs_stat_info {
1939 struct list_head stat_list;
1940 struct f2fs_sb_info *sbi;
1941 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1942 int main_area_segs, main_area_sections, main_area_zones;
1943 unsigned long long hit_largest, hit_cached, hit_rbtree;
1944 unsigned long long hit_total, total_ext;
1945 int ext_tree, zombie_tree, ext_node;
1946 int ndirty_node, ndirty_meta;
1947 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1948 int nats, dirty_nats, sits, dirty_sits, fnids;
1949 int total_count, utilization;
1950 int bg_gc, inmem_pages, wb_pages;
1951 int inline_xattr, inline_inode, inline_dir;
1952 unsigned int valid_count, valid_node_count, valid_inode_count;
1953 unsigned int bimodal, avg_vblocks;
1954 int util_free, util_valid, util_invalid;
1955 int rsvd_segs, overp_segs;
1956 int dirty_count, node_pages, meta_pages;
1957 int prefree_count, call_count, cp_count, bg_cp_count;
1958 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1959 int bg_node_segs, bg_data_segs;
1960 int tot_blks, data_blks, node_blks;
1961 int bg_data_blks, bg_node_blks;
1962 int curseg[NR_CURSEG_TYPE];
1963 int cursec[NR_CURSEG_TYPE];
1964 int curzone[NR_CURSEG_TYPE];
1965
1966 unsigned int segment_count[2];
1967 unsigned int block_count[2];
1968 unsigned int inplace_count;
1969 unsigned long long base_mem, cache_mem, page_mem;
1970 };
1971
1972 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1973 {
1974 return (struct f2fs_stat_info *)sbi->stat_info;
1975 }
1976
1977 #define stat_inc_cp_count(si) ((si)->cp_count++)
1978 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1979 #define stat_inc_call_count(si) ((si)->call_count++)
1980 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1981 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1982 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1983 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1984 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1985 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1986 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1987 #define stat_inc_inline_xattr(inode) \
1988 do { \
1989 if (f2fs_has_inline_xattr(inode)) \
1990 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1991 } while (0)
1992 #define stat_dec_inline_xattr(inode) \
1993 do { \
1994 if (f2fs_has_inline_xattr(inode)) \
1995 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1996 } while (0)
1997 #define stat_inc_inline_inode(inode) \
1998 do { \
1999 if (f2fs_has_inline_data(inode)) \
2000 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2001 } while (0)
2002 #define stat_dec_inline_inode(inode) \
2003 do { \
2004 if (f2fs_has_inline_data(inode)) \
2005 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2006 } while (0)
2007 #define stat_inc_inline_dir(inode) \
2008 do { \
2009 if (f2fs_has_inline_dentry(inode)) \
2010 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2011 } while (0)
2012 #define stat_dec_inline_dir(inode) \
2013 do { \
2014 if (f2fs_has_inline_dentry(inode)) \
2015 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2016 } while (0)
2017 #define stat_inc_seg_type(sbi, curseg) \
2018 ((sbi)->segment_count[(curseg)->alloc_type]++)
2019 #define stat_inc_block_count(sbi, curseg) \
2020 ((sbi)->block_count[(curseg)->alloc_type]++)
2021 #define stat_inc_inplace_blocks(sbi) \
2022 (atomic_inc(&(sbi)->inplace_count))
2023 #define stat_inc_seg_count(sbi, type, gc_type) \
2024 do { \
2025 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2026 (si)->tot_segs++; \
2027 if (type == SUM_TYPE_DATA) { \
2028 si->data_segs++; \
2029 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2030 } else { \
2031 si->node_segs++; \
2032 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2033 } \
2034 } while (0)
2035
2036 #define stat_inc_tot_blk_count(si, blks) \
2037 (si->tot_blks += (blks))
2038
2039 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2040 do { \
2041 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2042 stat_inc_tot_blk_count(si, blks); \
2043 si->data_blks += (blks); \
2044 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2045 } while (0)
2046
2047 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2048 do { \
2049 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2050 stat_inc_tot_blk_count(si, blks); \
2051 si->node_blks += (blks); \
2052 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2053 } while (0)
2054
2055 int f2fs_build_stats(struct f2fs_sb_info *);
2056 void f2fs_destroy_stats(struct f2fs_sb_info *);
2057 int __init f2fs_create_root_stats(void);
2058 void f2fs_destroy_root_stats(void);
2059 #else
2060 #define stat_inc_cp_count(si)
2061 #define stat_inc_bg_cp_count(si)
2062 #define stat_inc_call_count(si)
2063 #define stat_inc_bggc_count(si)
2064 #define stat_inc_dirty_inode(sbi, type)
2065 #define stat_dec_dirty_inode(sbi, type)
2066 #define stat_inc_total_hit(sb)
2067 #define stat_inc_rbtree_node_hit(sb)
2068 #define stat_inc_largest_node_hit(sbi)
2069 #define stat_inc_cached_node_hit(sbi)
2070 #define stat_inc_inline_xattr(inode)
2071 #define stat_dec_inline_xattr(inode)
2072 #define stat_inc_inline_inode(inode)
2073 #define stat_dec_inline_inode(inode)
2074 #define stat_inc_inline_dir(inode)
2075 #define stat_dec_inline_dir(inode)
2076 #define stat_inc_seg_type(sbi, curseg)
2077 #define stat_inc_block_count(sbi, curseg)
2078 #define stat_inc_inplace_blocks(sbi)
2079 #define stat_inc_seg_count(sbi, type, gc_type)
2080 #define stat_inc_tot_blk_count(si, blks)
2081 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2082 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2083
2084 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2085 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2086 static inline int __init f2fs_create_root_stats(void) { return 0; }
2087 static inline void f2fs_destroy_root_stats(void) { }
2088 #endif
2089
2090 extern const struct file_operations f2fs_dir_operations;
2091 extern const struct file_operations f2fs_file_operations;
2092 extern const struct inode_operations f2fs_file_inode_operations;
2093 extern const struct address_space_operations f2fs_dblock_aops;
2094 extern const struct address_space_operations f2fs_node_aops;
2095 extern const struct address_space_operations f2fs_meta_aops;
2096 extern const struct inode_operations f2fs_dir_inode_operations;
2097 extern const struct inode_operations f2fs_symlink_inode_operations;
2098 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2099 extern const struct inode_operations f2fs_special_inode_operations;
2100 extern struct kmem_cache *inode_entry_slab;
2101
2102 /*
2103 * inline.c
2104 */
2105 bool f2fs_may_inline_data(struct inode *);
2106 bool f2fs_may_inline_dentry(struct inode *);
2107 void read_inline_data(struct page *, struct page *);
2108 bool truncate_inline_inode(struct page *, u64);
2109 int f2fs_read_inline_data(struct inode *, struct page *);
2110 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2111 int f2fs_convert_inline_inode(struct inode *);
2112 int f2fs_write_inline_data(struct inode *, struct page *);
2113 bool recover_inline_data(struct inode *, struct page *);
2114 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2115 struct f2fs_filename *, struct page **);
2116 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2117 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2118 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2119 nid_t, umode_t);
2120 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2121 struct inode *, struct inode *);
2122 bool f2fs_empty_inline_dir(struct inode *);
2123 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2124 struct f2fs_str *);
2125 int f2fs_inline_data_fiemap(struct inode *,
2126 struct fiemap_extent_info *, __u64, __u64);
2127
2128 /*
2129 * shrinker.c
2130 */
2131 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2132 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2133 void f2fs_join_shrinker(struct f2fs_sb_info *);
2134 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2135
2136 /*
2137 * extent_cache.c
2138 */
2139 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2140 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2141 unsigned int f2fs_destroy_extent_node(struct inode *);
2142 void f2fs_destroy_extent_tree(struct inode *);
2143 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2144 void f2fs_update_extent_cache(struct dnode_of_data *);
2145 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2146 pgoff_t, block_t, unsigned int);
2147 void init_extent_cache_info(struct f2fs_sb_info *);
2148 int __init create_extent_cache(void);
2149 void destroy_extent_cache(void);
2150
2151 /*
2152 * crypto support
2153 */
2154 static inline int f2fs_encrypted_inode(struct inode *inode)
2155 {
2156 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2157 return file_is_encrypt(inode);
2158 #else
2159 return 0;
2160 #endif
2161 }
2162
2163 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2164 {
2165 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2166 file_set_encrypt(inode);
2167 #endif
2168 }
2169
2170 static inline bool f2fs_bio_encrypted(struct bio *bio)
2171 {
2172 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2173 return unlikely(bio->bi_private != NULL);
2174 #else
2175 return false;
2176 #endif
2177 }
2178
2179 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2180 {
2181 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2182 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2183 #else
2184 return 0;
2185 #endif
2186 }
2187
2188 static inline bool f2fs_may_encrypt(struct inode *inode)
2189 {
2190 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2191 umode_t mode = inode->i_mode;
2192
2193 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2194 #else
2195 return 0;
2196 #endif
2197 }
2198
2199 /* crypto_policy.c */
2200 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2201 struct inode *);
2202 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2203 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2204 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2205
2206 /* crypt.c */
2207 extern struct kmem_cache *f2fs_crypt_info_cachep;
2208 bool f2fs_valid_contents_enc_mode(uint32_t);
2209 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2210 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2211 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2212 struct page *f2fs_encrypt(struct inode *, struct page *);
2213 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2214 int f2fs_decrypt_one(struct inode *, struct page *);
2215 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2216
2217 /* crypto_key.c */
2218 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2219 int _f2fs_get_encryption_info(struct inode *inode);
2220
2221 /* crypto_fname.c */
2222 bool f2fs_valid_filenames_enc_mode(uint32_t);
2223 u32 f2fs_fname_crypto_round_up(u32, u32);
2224 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2225 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2226 const struct f2fs_str *, struct f2fs_str *);
2227 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2228 struct f2fs_str *);
2229
2230 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2231 void f2fs_restore_and_release_control_page(struct page **);
2232 void f2fs_restore_control_page(struct page *);
2233
2234 int __init f2fs_init_crypto(void);
2235 int f2fs_crypto_initialize(void);
2236 void f2fs_exit_crypto(void);
2237
2238 int f2fs_has_encryption_key(struct inode *);
2239
2240 static inline int f2fs_get_encryption_info(struct inode *inode)
2241 {
2242 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2243
2244 if (!ci ||
2245 (ci->ci_keyring_key &&
2246 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2247 (1 << KEY_FLAG_REVOKED) |
2248 (1 << KEY_FLAG_DEAD)))))
2249 return _f2fs_get_encryption_info(inode);
2250 return 0;
2251 }
2252
2253 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2254 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2255 int lookup, struct f2fs_filename *);
2256 void f2fs_fname_free_filename(struct f2fs_filename *);
2257 #else
2258 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2259 static inline void f2fs_restore_control_page(struct page *p) { }
2260
2261 static inline int __init f2fs_init_crypto(void) { return 0; }
2262 static inline void f2fs_exit_crypto(void) { }
2263
2264 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2265 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2266 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2267
2268 static inline int f2fs_fname_setup_filename(struct inode *dir,
2269 const struct qstr *iname,
2270 int lookup, struct f2fs_filename *fname)
2271 {
2272 memset(fname, 0, sizeof(struct f2fs_filename));
2273 fname->usr_fname = iname;
2274 fname->disk_name.name = (unsigned char *)iname->name;
2275 fname->disk_name.len = iname->len;
2276 return 0;
2277 }
2278
2279 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2280 #endif
2281 #endif
This page took 0.199672 seconds and 6 git commands to generate.