f2fs: flush inode metadata when checkpoint is doing
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 struct f2fs_fault_info {
52 atomic_t inject_ops;
53 unsigned int inject_rate;
54 unsigned int inject_type;
55 };
56
57 extern struct f2fs_fault_info f2fs_fault;
58 extern char *fault_name[FAULT_MAX];
59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
60
61 static inline bool time_to_inject(int type)
62 {
63 if (!f2fs_fault.inject_rate)
64 return false;
65 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
66 return false;
67 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
68 return false;
69 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
70 return false;
71 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
72 return false;
73 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
74 return false;
75 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
76 return false;
77
78 atomic_inc(&f2fs_fault.inject_ops);
79 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
80 atomic_set(&f2fs_fault.inject_ops, 0);
81 printk("%sF2FS-fs : inject %s in %pF\n",
82 KERN_INFO,
83 fault_name[type],
84 __builtin_return_address(0));
85 return true;
86 }
87 return false;
88 }
89 #endif
90
91 /*
92 * For mount options
93 */
94 #define F2FS_MOUNT_BG_GC 0x00000001
95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
96 #define F2FS_MOUNT_DISCARD 0x00000004
97 #define F2FS_MOUNT_NOHEAP 0x00000008
98 #define F2FS_MOUNT_XATTR_USER 0x00000010
99 #define F2FS_MOUNT_POSIX_ACL 0x00000020
100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
101 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
102 #define F2FS_MOUNT_INLINE_DATA 0x00000100
103 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
104 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
105 #define F2FS_MOUNT_NOBARRIER 0x00000800
106 #define F2FS_MOUNT_FASTBOOT 0x00001000
107 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
108 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
109 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
110 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
111
112 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
115
116 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
117 typecheck(unsigned long long, b) && \
118 ((long long)((a) - (b)) > 0))
119
120 typedef u32 block_t; /*
121 * should not change u32, since it is the on-disk block
122 * address format, __le32.
123 */
124 typedef u32 nid_t;
125
126 struct f2fs_mount_info {
127 unsigned int opt;
128 };
129
130 #define F2FS_FEATURE_ENCRYPT 0x0001
131
132 #define F2FS_HAS_FEATURE(sb, mask) \
133 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
134 #define F2FS_SET_FEATURE(sb, mask) \
135 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
136 #define F2FS_CLEAR_FEATURE(sb, mask) \
137 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
138
139 /*
140 * For checkpoint manager
141 */
142 enum {
143 NAT_BITMAP,
144 SIT_BITMAP
145 };
146
147 enum {
148 CP_UMOUNT,
149 CP_FASTBOOT,
150 CP_SYNC,
151 CP_RECOVERY,
152 CP_DISCARD,
153 };
154
155 #define DEF_BATCHED_TRIM_SECTIONS 32
156 #define BATCHED_TRIM_SEGMENTS(sbi) \
157 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
158 #define BATCHED_TRIM_BLOCKS(sbi) \
159 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
160 #define DEF_CP_INTERVAL 60 /* 60 secs */
161 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
162
163 struct cp_control {
164 int reason;
165 __u64 trim_start;
166 __u64 trim_end;
167 __u64 trim_minlen;
168 __u64 trimmed;
169 };
170
171 /*
172 * For CP/NAT/SIT/SSA readahead
173 */
174 enum {
175 META_CP,
176 META_NAT,
177 META_SIT,
178 META_SSA,
179 META_POR,
180 };
181
182 /* for the list of ino */
183 enum {
184 ORPHAN_INO, /* for orphan ino list */
185 APPEND_INO, /* for append ino list */
186 UPDATE_INO, /* for update ino list */
187 MAX_INO_ENTRY, /* max. list */
188 };
189
190 struct ino_entry {
191 struct list_head list; /* list head */
192 nid_t ino; /* inode number */
193 };
194
195 /* for the list of inodes to be GCed */
196 struct inode_entry {
197 struct list_head list; /* list head */
198 struct inode *inode; /* vfs inode pointer */
199 };
200
201 /* for the list of blockaddresses to be discarded */
202 struct discard_entry {
203 struct list_head list; /* list head */
204 block_t blkaddr; /* block address to be discarded */
205 int len; /* # of consecutive blocks of the discard */
206 };
207
208 /* for the list of fsync inodes, used only during recovery */
209 struct fsync_inode_entry {
210 struct list_head list; /* list head */
211 struct inode *inode; /* vfs inode pointer */
212 block_t blkaddr; /* block address locating the last fsync */
213 block_t last_dentry; /* block address locating the last dentry */
214 };
215
216 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
217 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
218
219 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
220 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
221 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
222 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
223
224 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
225 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
226
227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
228 {
229 int before = nats_in_cursum(journal);
230 journal->n_nats = cpu_to_le16(before + i);
231 return before;
232 }
233
234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
235 {
236 int before = sits_in_cursum(journal);
237 journal->n_sits = cpu_to_le16(before + i);
238 return before;
239 }
240
241 static inline bool __has_cursum_space(struct f2fs_journal *journal,
242 int size, int type)
243 {
244 if (type == NAT_JOURNAL)
245 return size <= MAX_NAT_JENTRIES(journal);
246 return size <= MAX_SIT_JENTRIES(journal);
247 }
248
249 /*
250 * ioctl commands
251 */
252 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
253 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
254 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
255
256 #define F2FS_IOCTL_MAGIC 0xf5
257 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
259 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
261 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
262 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
263 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
264 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
265
266 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
267 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
269
270 /*
271 * should be same as XFS_IOC_GOINGDOWN.
272 * Flags for going down operation used by FS_IOC_GOINGDOWN
273 */
274 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
275 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
276 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
277 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
278 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
279
280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
281 /*
282 * ioctl commands in 32 bit emulation
283 */
284 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
285 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
286 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
287 #endif
288
289 struct f2fs_defragment {
290 u64 start;
291 u64 len;
292 };
293
294 /*
295 * For INODE and NODE manager
296 */
297 /* for directory operations */
298 struct f2fs_dentry_ptr {
299 struct inode *inode;
300 const void *bitmap;
301 struct f2fs_dir_entry *dentry;
302 __u8 (*filename)[F2FS_SLOT_LEN];
303 int max;
304 };
305
306 static inline void make_dentry_ptr(struct inode *inode,
307 struct f2fs_dentry_ptr *d, void *src, int type)
308 {
309 d->inode = inode;
310
311 if (type == 1) {
312 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
313 d->max = NR_DENTRY_IN_BLOCK;
314 d->bitmap = &t->dentry_bitmap;
315 d->dentry = t->dentry;
316 d->filename = t->filename;
317 } else {
318 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
319 d->max = NR_INLINE_DENTRY;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 }
324 }
325
326 /*
327 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
328 * as its node offset to distinguish from index node blocks.
329 * But some bits are used to mark the node block.
330 */
331 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
332 >> OFFSET_BIT_SHIFT)
333 enum {
334 ALLOC_NODE, /* allocate a new node page if needed */
335 LOOKUP_NODE, /* look up a node without readahead */
336 LOOKUP_NODE_RA, /*
337 * look up a node with readahead called
338 * by get_data_block.
339 */
340 };
341
342 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
343
344 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
345
346 /* vector size for gang look-up from extent cache that consists of radix tree */
347 #define EXT_TREE_VEC_SIZE 64
348
349 /* for in-memory extent cache entry */
350 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
351
352 /* number of extent info in extent cache we try to shrink */
353 #define EXTENT_CACHE_SHRINK_NUMBER 128
354
355 struct extent_info {
356 unsigned int fofs; /* start offset in a file */
357 u32 blk; /* start block address of the extent */
358 unsigned int len; /* length of the extent */
359 };
360
361 struct extent_node {
362 struct rb_node rb_node; /* rb node located in rb-tree */
363 struct list_head list; /* node in global extent list of sbi */
364 struct extent_info ei; /* extent info */
365 struct extent_tree *et; /* extent tree pointer */
366 };
367
368 struct extent_tree {
369 nid_t ino; /* inode number */
370 struct rb_root root; /* root of extent info rb-tree */
371 struct extent_node *cached_en; /* recently accessed extent node */
372 struct extent_info largest; /* largested extent info */
373 struct list_head list; /* to be used by sbi->zombie_list */
374 rwlock_t lock; /* protect extent info rb-tree */
375 atomic_t node_cnt; /* # of extent node in rb-tree*/
376 };
377
378 /*
379 * This structure is taken from ext4_map_blocks.
380 *
381 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
382 */
383 #define F2FS_MAP_NEW (1 << BH_New)
384 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
385 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
386 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
387 F2FS_MAP_UNWRITTEN)
388
389 struct f2fs_map_blocks {
390 block_t m_pblk;
391 block_t m_lblk;
392 unsigned int m_len;
393 unsigned int m_flags;
394 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
395 };
396
397 /* for flag in get_data_block */
398 #define F2FS_GET_BLOCK_READ 0
399 #define F2FS_GET_BLOCK_DIO 1
400 #define F2FS_GET_BLOCK_FIEMAP 2
401 #define F2FS_GET_BLOCK_BMAP 3
402 #define F2FS_GET_BLOCK_PRE_DIO 4
403 #define F2FS_GET_BLOCK_PRE_AIO 5
404
405 /*
406 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
407 */
408 #define FADVISE_COLD_BIT 0x01
409 #define FADVISE_LOST_PINO_BIT 0x02
410 #define FADVISE_ENCRYPT_BIT 0x04
411 #define FADVISE_ENC_NAME_BIT 0x08
412
413 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
414 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
415 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
416 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
417 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
418 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
419 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
420 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
422 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 struct percpu_counter dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444
445 struct list_head dirty_list; /* dirty list for dirs and files */
446 struct list_head gdirty_list; /* linked in global dirty list */
447 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
448 struct mutex inmem_lock; /* lock for inmemory pages */
449 struct extent_tree *extent_tree; /* cached extent_tree entry */
450 };
451
452 static inline void get_extent_info(struct extent_info *ext,
453 struct f2fs_extent *i_ext)
454 {
455 ext->fofs = le32_to_cpu(i_ext->fofs);
456 ext->blk = le32_to_cpu(i_ext->blk);
457 ext->len = le32_to_cpu(i_ext->len);
458 }
459
460 static inline void set_raw_extent(struct extent_info *ext,
461 struct f2fs_extent *i_ext)
462 {
463 i_ext->fofs = cpu_to_le32(ext->fofs);
464 i_ext->blk = cpu_to_le32(ext->blk);
465 i_ext->len = cpu_to_le32(ext->len);
466 }
467
468 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
469 u32 blk, unsigned int len)
470 {
471 ei->fofs = fofs;
472 ei->blk = blk;
473 ei->len = len;
474 }
475
476 static inline bool __is_extent_same(struct extent_info *ei1,
477 struct extent_info *ei2)
478 {
479 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
480 ei1->len == ei2->len);
481 }
482
483 static inline bool __is_extent_mergeable(struct extent_info *back,
484 struct extent_info *front)
485 {
486 return (back->fofs + back->len == front->fofs &&
487 back->blk + back->len == front->blk);
488 }
489
490 static inline bool __is_back_mergeable(struct extent_info *cur,
491 struct extent_info *back)
492 {
493 return __is_extent_mergeable(back, cur);
494 }
495
496 static inline bool __is_front_mergeable(struct extent_info *cur,
497 struct extent_info *front)
498 {
499 return __is_extent_mergeable(cur, front);
500 }
501
502 static inline void __try_update_largest_extent(struct inode *inode,
503 struct extent_tree *et, struct extent_node *en)
504 {
505 if (en->ei.len > et->largest.len) {
506 et->largest = en->ei;
507 mark_inode_dirty_sync(inode);
508 }
509 }
510
511 struct f2fs_nm_info {
512 block_t nat_blkaddr; /* base disk address of NAT */
513 nid_t max_nid; /* maximum possible node ids */
514 nid_t available_nids; /* maximum available node ids */
515 nid_t next_scan_nid; /* the next nid to be scanned */
516 unsigned int ram_thresh; /* control the memory footprint */
517 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
518 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
519
520 /* NAT cache management */
521 struct radix_tree_root nat_root;/* root of the nat entry cache */
522 struct radix_tree_root nat_set_root;/* root of the nat set cache */
523 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
524 struct list_head nat_entries; /* cached nat entry list (clean) */
525 unsigned int nat_cnt; /* the # of cached nat entries */
526 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
527
528 /* free node ids management */
529 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
530 struct list_head free_nid_list; /* a list for free nids */
531 spinlock_t free_nid_list_lock; /* protect free nid list */
532 unsigned int fcnt; /* the number of free node id */
533 struct mutex build_lock; /* lock for build free nids */
534
535 /* for checkpoint */
536 char *nat_bitmap; /* NAT bitmap pointer */
537 int bitmap_size; /* bitmap size */
538 };
539
540 /*
541 * this structure is used as one of function parameters.
542 * all the information are dedicated to a given direct node block determined
543 * by the data offset in a file.
544 */
545 struct dnode_of_data {
546 struct inode *inode; /* vfs inode pointer */
547 struct page *inode_page; /* its inode page, NULL is possible */
548 struct page *node_page; /* cached direct node page */
549 nid_t nid; /* node id of the direct node block */
550 unsigned int ofs_in_node; /* data offset in the node page */
551 bool inode_page_locked; /* inode page is locked or not */
552 bool node_changed; /* is node block changed */
553 char cur_level; /* level of hole node page */
554 char max_level; /* level of current page located */
555 block_t data_blkaddr; /* block address of the node block */
556 };
557
558 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
559 struct page *ipage, struct page *npage, nid_t nid)
560 {
561 memset(dn, 0, sizeof(*dn));
562 dn->inode = inode;
563 dn->inode_page = ipage;
564 dn->node_page = npage;
565 dn->nid = nid;
566 }
567
568 /*
569 * For SIT manager
570 *
571 * By default, there are 6 active log areas across the whole main area.
572 * When considering hot and cold data separation to reduce cleaning overhead,
573 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
574 * respectively.
575 * In the current design, you should not change the numbers intentionally.
576 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
577 * logs individually according to the underlying devices. (default: 6)
578 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
579 * data and 8 for node logs.
580 */
581 #define NR_CURSEG_DATA_TYPE (3)
582 #define NR_CURSEG_NODE_TYPE (3)
583 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
584
585 enum {
586 CURSEG_HOT_DATA = 0, /* directory entry blocks */
587 CURSEG_WARM_DATA, /* data blocks */
588 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
589 CURSEG_HOT_NODE, /* direct node blocks of directory files */
590 CURSEG_WARM_NODE, /* direct node blocks of normal files */
591 CURSEG_COLD_NODE, /* indirect node blocks */
592 NO_CHECK_TYPE,
593 CURSEG_DIRECT_IO, /* to use for the direct IO path */
594 };
595
596 struct flush_cmd {
597 struct completion wait;
598 struct llist_node llnode;
599 int ret;
600 };
601
602 struct flush_cmd_control {
603 struct task_struct *f2fs_issue_flush; /* flush thread */
604 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
605 struct llist_head issue_list; /* list for command issue */
606 struct llist_node *dispatch_list; /* list for command dispatch */
607 };
608
609 struct f2fs_sm_info {
610 struct sit_info *sit_info; /* whole segment information */
611 struct free_segmap_info *free_info; /* free segment information */
612 struct dirty_seglist_info *dirty_info; /* dirty segment information */
613 struct curseg_info *curseg_array; /* active segment information */
614
615 block_t seg0_blkaddr; /* block address of 0'th segment */
616 block_t main_blkaddr; /* start block address of main area */
617 block_t ssa_blkaddr; /* start block address of SSA area */
618
619 unsigned int segment_count; /* total # of segments */
620 unsigned int main_segments; /* # of segments in main area */
621 unsigned int reserved_segments; /* # of reserved segments */
622 unsigned int ovp_segments; /* # of overprovision segments */
623
624 /* a threshold to reclaim prefree segments */
625 unsigned int rec_prefree_segments;
626
627 /* for small discard management */
628 struct list_head discard_list; /* 4KB discard list */
629 int nr_discards; /* # of discards in the list */
630 int max_discards; /* max. discards to be issued */
631
632 /* for batched trimming */
633 unsigned int trim_sections; /* # of sections to trim */
634
635 struct list_head sit_entry_set; /* sit entry set list */
636
637 unsigned int ipu_policy; /* in-place-update policy */
638 unsigned int min_ipu_util; /* in-place-update threshold */
639 unsigned int min_fsync_blocks; /* threshold for fsync */
640
641 /* for flush command control */
642 struct flush_cmd_control *cmd_control_info;
643
644 };
645
646 /*
647 * For superblock
648 */
649 /*
650 * COUNT_TYPE for monitoring
651 *
652 * f2fs monitors the number of several block types such as on-writeback,
653 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
654 */
655 enum count_type {
656 F2FS_DIRTY_DENTS,
657 F2FS_DIRTY_DATA,
658 F2FS_DIRTY_NODES,
659 F2FS_DIRTY_META,
660 F2FS_INMEM_PAGES,
661 F2FS_DIRTY_IMETA,
662 NR_COUNT_TYPE,
663 };
664
665 /*
666 * The below are the page types of bios used in submit_bio().
667 * The available types are:
668 * DATA User data pages. It operates as async mode.
669 * NODE Node pages. It operates as async mode.
670 * META FS metadata pages such as SIT, NAT, CP.
671 * NR_PAGE_TYPE The number of page types.
672 * META_FLUSH Make sure the previous pages are written
673 * with waiting the bio's completion
674 * ... Only can be used with META.
675 */
676 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
677 enum page_type {
678 DATA,
679 NODE,
680 META,
681 NR_PAGE_TYPE,
682 META_FLUSH,
683 INMEM, /* the below types are used by tracepoints only. */
684 INMEM_DROP,
685 INMEM_REVOKE,
686 IPU,
687 OPU,
688 };
689
690 struct f2fs_io_info {
691 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
692 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
693 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
694 block_t new_blkaddr; /* new block address to be written */
695 block_t old_blkaddr; /* old block address before Cow */
696 struct page *page; /* page to be written */
697 struct page *encrypted_page; /* encrypted page */
698 };
699
700 #define is_read_io(rw) (((rw) & 1) == READ)
701 struct f2fs_bio_info {
702 struct f2fs_sb_info *sbi; /* f2fs superblock */
703 struct bio *bio; /* bios to merge */
704 sector_t last_block_in_bio; /* last block number */
705 struct f2fs_io_info fio; /* store buffered io info. */
706 struct rw_semaphore io_rwsem; /* blocking op for bio */
707 };
708
709 enum inode_type {
710 DIR_INODE, /* for dirty dir inode */
711 FILE_INODE, /* for dirty regular/symlink inode */
712 DIRTY_META, /* for all dirtied inode metadata */
713 NR_INODE_TYPE,
714 };
715
716 /* for inner inode cache management */
717 struct inode_management {
718 struct radix_tree_root ino_root; /* ino entry array */
719 spinlock_t ino_lock; /* for ino entry lock */
720 struct list_head ino_list; /* inode list head */
721 unsigned long ino_num; /* number of entries */
722 };
723
724 /* For s_flag in struct f2fs_sb_info */
725 enum {
726 SBI_IS_DIRTY, /* dirty flag for checkpoint */
727 SBI_IS_CLOSE, /* specify unmounting */
728 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
729 SBI_POR_DOING, /* recovery is doing or not */
730 SBI_NEED_SB_WRITE, /* need to recover superblock */
731 };
732
733 enum {
734 CP_TIME,
735 REQ_TIME,
736 MAX_TIME,
737 };
738
739 #ifdef CONFIG_F2FS_FS_ENCRYPTION
740 #define F2FS_KEY_DESC_PREFIX "f2fs:"
741 #define F2FS_KEY_DESC_PREFIX_SIZE 5
742 #endif
743 struct f2fs_sb_info {
744 struct super_block *sb; /* pointer to VFS super block */
745 struct proc_dir_entry *s_proc; /* proc entry */
746 struct f2fs_super_block *raw_super; /* raw super block pointer */
747 int valid_super_block; /* valid super block no */
748 int s_flag; /* flags for sbi */
749
750 #ifdef CONFIG_F2FS_FS_ENCRYPTION
751 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
752 u8 key_prefix_size;
753 #endif
754 /* for node-related operations */
755 struct f2fs_nm_info *nm_info; /* node manager */
756 struct inode *node_inode; /* cache node blocks */
757
758 /* for segment-related operations */
759 struct f2fs_sm_info *sm_info; /* segment manager */
760
761 /* for bio operations */
762 struct f2fs_bio_info read_io; /* for read bios */
763 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
764
765 /* for checkpoint */
766 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
767 struct inode *meta_inode; /* cache meta blocks */
768 struct mutex cp_mutex; /* checkpoint procedure lock */
769 struct rw_semaphore cp_rwsem; /* blocking FS operations */
770 struct rw_semaphore node_write; /* locking node writes */
771 struct mutex writepages; /* mutex for writepages() */
772 wait_queue_head_t cp_wait;
773 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
774 long interval_time[MAX_TIME]; /* to store thresholds */
775
776 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
777
778 /* for orphan inode, use 0'th array */
779 unsigned int max_orphans; /* max orphan inodes */
780
781 /* for inode management */
782 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
783 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
784
785 /* for extent tree cache */
786 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
787 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
788 struct list_head extent_list; /* lru list for shrinker */
789 spinlock_t extent_lock; /* locking extent lru list */
790 atomic_t total_ext_tree; /* extent tree count */
791 struct list_head zombie_list; /* extent zombie tree list */
792 atomic_t total_zombie_tree; /* extent zombie tree count */
793 atomic_t total_ext_node; /* extent info count */
794
795 /* basic filesystem units */
796 unsigned int log_sectors_per_block; /* log2 sectors per block */
797 unsigned int log_blocksize; /* log2 block size */
798 unsigned int blocksize; /* block size */
799 unsigned int root_ino_num; /* root inode number*/
800 unsigned int node_ino_num; /* node inode number*/
801 unsigned int meta_ino_num; /* meta inode number*/
802 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
803 unsigned int blocks_per_seg; /* blocks per segment */
804 unsigned int segs_per_sec; /* segments per section */
805 unsigned int secs_per_zone; /* sections per zone */
806 unsigned int total_sections; /* total section count */
807 unsigned int total_node_count; /* total node block count */
808 unsigned int total_valid_node_count; /* valid node block count */
809 loff_t max_file_blocks; /* max block index of file */
810 int active_logs; /* # of active logs */
811 int dir_level; /* directory level */
812
813 block_t user_block_count; /* # of user blocks */
814 block_t total_valid_block_count; /* # of valid blocks */
815 block_t discard_blks; /* discard command candidats */
816 block_t last_valid_block_count; /* for recovery */
817 u32 s_next_generation; /* for NFS support */
818 atomic_t nr_wb_bios; /* # of writeback bios */
819
820 /* # of pages, see count_type */
821 struct percpu_counter nr_pages[NR_COUNT_TYPE];
822 /* # of allocated blocks */
823 struct percpu_counter alloc_valid_block_count;
824
825 /* valid inode count */
826 struct percpu_counter total_valid_inode_count;
827
828 struct f2fs_mount_info mount_opt; /* mount options */
829
830 /* for cleaning operations */
831 struct mutex gc_mutex; /* mutex for GC */
832 struct f2fs_gc_kthread *gc_thread; /* GC thread */
833 unsigned int cur_victim_sec; /* current victim section num */
834
835 /* maximum # of trials to find a victim segment for SSR and GC */
836 unsigned int max_victim_search;
837
838 /*
839 * for stat information.
840 * one is for the LFS mode, and the other is for the SSR mode.
841 */
842 #ifdef CONFIG_F2FS_STAT_FS
843 struct f2fs_stat_info *stat_info; /* FS status information */
844 unsigned int segment_count[2]; /* # of allocated segments */
845 unsigned int block_count[2]; /* # of allocated blocks */
846 atomic_t inplace_count; /* # of inplace update */
847 atomic64_t total_hit_ext; /* # of lookup extent cache */
848 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
849 atomic64_t read_hit_largest; /* # of hit largest extent node */
850 atomic64_t read_hit_cached; /* # of hit cached extent node */
851 atomic_t inline_xattr; /* # of inline_xattr inodes */
852 atomic_t inline_inode; /* # of inline_data inodes */
853 atomic_t inline_dir; /* # of inline_dentry inodes */
854 int bg_gc; /* background gc calls */
855 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
856 #endif
857 unsigned int last_victim[2]; /* last victim segment # */
858 spinlock_t stat_lock; /* lock for stat operations */
859
860 /* For sysfs suppport */
861 struct kobject s_kobj;
862 struct completion s_kobj_unregister;
863
864 /* For shrinker support */
865 struct list_head s_list;
866 struct mutex umount_mutex;
867 unsigned int shrinker_run_no;
868
869 /* For write statistics */
870 u64 sectors_written_start;
871 u64 kbytes_written;
872
873 /* Reference to checksum algorithm driver via cryptoapi */
874 struct crypto_shash *s_chksum_driver;
875 };
876
877 /* For write statistics. Suppose sector size is 512 bytes,
878 * and the return value is in kbytes. s is of struct f2fs_sb_info.
879 */
880 #define BD_PART_WRITTEN(s) \
881 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
882 s->sectors_written_start) >> 1)
883
884 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
885 {
886 sbi->last_time[type] = jiffies;
887 }
888
889 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
890 {
891 struct timespec ts = {sbi->interval_time[type], 0};
892 unsigned long interval = timespec_to_jiffies(&ts);
893
894 return time_after(jiffies, sbi->last_time[type] + interval);
895 }
896
897 static inline bool is_idle(struct f2fs_sb_info *sbi)
898 {
899 struct block_device *bdev = sbi->sb->s_bdev;
900 struct request_queue *q = bdev_get_queue(bdev);
901 struct request_list *rl = &q->root_rl;
902
903 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
904 return 0;
905
906 return f2fs_time_over(sbi, REQ_TIME);
907 }
908
909 /*
910 * Inline functions
911 */
912 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
913 unsigned int length)
914 {
915 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
916 u32 *ctx = (u32 *)shash_desc_ctx(shash);
917 int err;
918
919 shash->tfm = sbi->s_chksum_driver;
920 shash->flags = 0;
921 *ctx = F2FS_SUPER_MAGIC;
922
923 err = crypto_shash_update(shash, address, length);
924 BUG_ON(err);
925
926 return *ctx;
927 }
928
929 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
930 void *buf, size_t buf_size)
931 {
932 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
933 }
934
935 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
936 {
937 return container_of(inode, struct f2fs_inode_info, vfs_inode);
938 }
939
940 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
941 {
942 return sb->s_fs_info;
943 }
944
945 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
946 {
947 return F2FS_SB(inode->i_sb);
948 }
949
950 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
951 {
952 return F2FS_I_SB(mapping->host);
953 }
954
955 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
956 {
957 return F2FS_M_SB(page->mapping);
958 }
959
960 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
961 {
962 return (struct f2fs_super_block *)(sbi->raw_super);
963 }
964
965 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
966 {
967 return (struct f2fs_checkpoint *)(sbi->ckpt);
968 }
969
970 static inline struct f2fs_node *F2FS_NODE(struct page *page)
971 {
972 return (struct f2fs_node *)page_address(page);
973 }
974
975 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
976 {
977 return &((struct f2fs_node *)page_address(page))->i;
978 }
979
980 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
981 {
982 return (struct f2fs_nm_info *)(sbi->nm_info);
983 }
984
985 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
986 {
987 return (struct f2fs_sm_info *)(sbi->sm_info);
988 }
989
990 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
991 {
992 return (struct sit_info *)(SM_I(sbi)->sit_info);
993 }
994
995 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
996 {
997 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
998 }
999
1000 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1001 {
1002 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1003 }
1004
1005 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1006 {
1007 return sbi->meta_inode->i_mapping;
1008 }
1009
1010 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1011 {
1012 return sbi->node_inode->i_mapping;
1013 }
1014
1015 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1016 {
1017 return sbi->s_flag & (0x01 << type);
1018 }
1019
1020 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1021 {
1022 sbi->s_flag |= (0x01 << type);
1023 }
1024
1025 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1026 {
1027 sbi->s_flag &= ~(0x01 << type);
1028 }
1029
1030 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1031 {
1032 return le64_to_cpu(cp->checkpoint_ver);
1033 }
1034
1035 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1036 {
1037 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1038 return ckpt_flags & f;
1039 }
1040
1041 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1042 {
1043 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1044 ckpt_flags |= f;
1045 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1046 }
1047
1048 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1049 {
1050 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1051 ckpt_flags &= (~f);
1052 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1053 }
1054
1055 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1056 {
1057 down_read(&sbi->cp_rwsem);
1058 }
1059
1060 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1061 {
1062 up_read(&sbi->cp_rwsem);
1063 }
1064
1065 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1066 {
1067 down_write(&sbi->cp_rwsem);
1068 }
1069
1070 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1071 {
1072 up_write(&sbi->cp_rwsem);
1073 }
1074
1075 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1076 {
1077 int reason = CP_SYNC;
1078
1079 if (test_opt(sbi, FASTBOOT))
1080 reason = CP_FASTBOOT;
1081 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1082 reason = CP_UMOUNT;
1083 return reason;
1084 }
1085
1086 static inline bool __remain_node_summaries(int reason)
1087 {
1088 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1089 }
1090
1091 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1092 {
1093 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1094 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1095 }
1096
1097 /*
1098 * Check whether the given nid is within node id range.
1099 */
1100 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1101 {
1102 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1103 return -EINVAL;
1104 if (unlikely(nid >= NM_I(sbi)->max_nid))
1105 return -EINVAL;
1106 return 0;
1107 }
1108
1109 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1110
1111 /*
1112 * Check whether the inode has blocks or not
1113 */
1114 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1115 {
1116 if (F2FS_I(inode)->i_xattr_nid)
1117 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1118 else
1119 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1120 }
1121
1122 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1123 {
1124 return ofs == XATTR_NODE_OFFSET;
1125 }
1126
1127 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1128 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1129 struct inode *inode, blkcnt_t *count)
1130 {
1131 block_t valid_block_count;
1132
1133 spin_lock(&sbi->stat_lock);
1134 #ifdef CONFIG_F2FS_FAULT_INJECTION
1135 if (time_to_inject(FAULT_BLOCK)) {
1136 spin_unlock(&sbi->stat_lock);
1137 return false;
1138 }
1139 #endif
1140 valid_block_count =
1141 sbi->total_valid_block_count + (block_t)(*count);
1142 if (unlikely(valid_block_count > sbi->user_block_count)) {
1143 *count = sbi->user_block_count - sbi->total_valid_block_count;
1144 if (!*count) {
1145 spin_unlock(&sbi->stat_lock);
1146 return false;
1147 }
1148 }
1149 /* *count can be recalculated */
1150 f2fs_i_blocks_write(inode, *count, true);
1151 sbi->total_valid_block_count =
1152 sbi->total_valid_block_count + (block_t)(*count);
1153 spin_unlock(&sbi->stat_lock);
1154
1155 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1156 return true;
1157 }
1158
1159 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1160 struct inode *inode,
1161 blkcnt_t count)
1162 {
1163 spin_lock(&sbi->stat_lock);
1164 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1165 f2fs_bug_on(sbi, inode->i_blocks < count);
1166 f2fs_i_blocks_write(inode, count, false);
1167 sbi->total_valid_block_count -= (block_t)count;
1168 spin_unlock(&sbi->stat_lock);
1169 }
1170
1171 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1172 {
1173 percpu_counter_inc(&sbi->nr_pages[count_type]);
1174 set_sbi_flag(sbi, SBI_IS_DIRTY);
1175 }
1176
1177 static inline void inode_inc_dirty_pages(struct inode *inode)
1178 {
1179 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1180 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1181 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1182 }
1183
1184 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1185 {
1186 percpu_counter_dec(&sbi->nr_pages[count_type]);
1187 }
1188
1189 static inline void inode_dec_dirty_pages(struct inode *inode)
1190 {
1191 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1192 !S_ISLNK(inode->i_mode))
1193 return;
1194
1195 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1196 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1197 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1198 }
1199
1200 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1201 {
1202 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1203 }
1204
1205 static inline s64 get_dirty_pages(struct inode *inode)
1206 {
1207 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1208 }
1209
1210 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1211 {
1212 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1213 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1214 sbi->log_blocks_per_seg;
1215
1216 return segs / sbi->segs_per_sec;
1217 }
1218
1219 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1220 {
1221 return sbi->total_valid_block_count;
1222 }
1223
1224 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1225 {
1226 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1227
1228 /* return NAT or SIT bitmap */
1229 if (flag == NAT_BITMAP)
1230 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1231 else if (flag == SIT_BITMAP)
1232 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1233
1234 return 0;
1235 }
1236
1237 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1238 {
1239 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1240 }
1241
1242 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1243 {
1244 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1245 int offset;
1246
1247 if (__cp_payload(sbi) > 0) {
1248 if (flag == NAT_BITMAP)
1249 return &ckpt->sit_nat_version_bitmap;
1250 else
1251 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1252 } else {
1253 offset = (flag == NAT_BITMAP) ?
1254 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1255 return &ckpt->sit_nat_version_bitmap + offset;
1256 }
1257 }
1258
1259 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1260 {
1261 block_t start_addr;
1262 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1263 unsigned long long ckpt_version = cur_cp_version(ckpt);
1264
1265 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1266
1267 /*
1268 * odd numbered checkpoint should at cp segment 0
1269 * and even segment must be at cp segment 1
1270 */
1271 if (!(ckpt_version & 1))
1272 start_addr += sbi->blocks_per_seg;
1273
1274 return start_addr;
1275 }
1276
1277 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1278 {
1279 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1280 }
1281
1282 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1283 struct inode *inode)
1284 {
1285 block_t valid_block_count;
1286 unsigned int valid_node_count;
1287
1288 spin_lock(&sbi->stat_lock);
1289
1290 valid_block_count = sbi->total_valid_block_count + 1;
1291 if (unlikely(valid_block_count > sbi->user_block_count)) {
1292 spin_unlock(&sbi->stat_lock);
1293 return false;
1294 }
1295
1296 valid_node_count = sbi->total_valid_node_count + 1;
1297 if (unlikely(valid_node_count > sbi->total_node_count)) {
1298 spin_unlock(&sbi->stat_lock);
1299 return false;
1300 }
1301
1302 if (inode)
1303 f2fs_i_blocks_write(inode, 1, true);
1304
1305 sbi->total_valid_node_count++;
1306 sbi->total_valid_block_count++;
1307 spin_unlock(&sbi->stat_lock);
1308
1309 percpu_counter_inc(&sbi->alloc_valid_block_count);
1310 return true;
1311 }
1312
1313 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1314 struct inode *inode)
1315 {
1316 spin_lock(&sbi->stat_lock);
1317
1318 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1319 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1320 f2fs_bug_on(sbi, !inode->i_blocks);
1321
1322 f2fs_i_blocks_write(inode, 1, false);
1323 sbi->total_valid_node_count--;
1324 sbi->total_valid_block_count--;
1325
1326 spin_unlock(&sbi->stat_lock);
1327 }
1328
1329 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1330 {
1331 return sbi->total_valid_node_count;
1332 }
1333
1334 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1335 {
1336 percpu_counter_inc(&sbi->total_valid_inode_count);
1337 }
1338
1339 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1340 {
1341 percpu_counter_dec(&sbi->total_valid_inode_count);
1342 }
1343
1344 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1345 {
1346 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1347 }
1348
1349 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1350 pgoff_t index, bool for_write)
1351 {
1352 #ifdef CONFIG_F2FS_FAULT_INJECTION
1353 struct page *page = find_lock_page(mapping, index);
1354 if (page)
1355 return page;
1356
1357 if (time_to_inject(FAULT_PAGE_ALLOC))
1358 return NULL;
1359 #endif
1360 if (!for_write)
1361 return grab_cache_page(mapping, index);
1362 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1363 }
1364
1365 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1366 {
1367 char *src_kaddr = kmap(src);
1368 char *dst_kaddr = kmap(dst);
1369
1370 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1371 kunmap(dst);
1372 kunmap(src);
1373 }
1374
1375 static inline void f2fs_put_page(struct page *page, int unlock)
1376 {
1377 if (!page)
1378 return;
1379
1380 if (unlock) {
1381 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1382 unlock_page(page);
1383 }
1384 put_page(page);
1385 }
1386
1387 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1388 {
1389 if (dn->node_page)
1390 f2fs_put_page(dn->node_page, 1);
1391 if (dn->inode_page && dn->node_page != dn->inode_page)
1392 f2fs_put_page(dn->inode_page, 0);
1393 dn->node_page = NULL;
1394 dn->inode_page = NULL;
1395 }
1396
1397 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1398 size_t size)
1399 {
1400 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1401 }
1402
1403 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1404 gfp_t flags)
1405 {
1406 void *entry;
1407
1408 entry = kmem_cache_alloc(cachep, flags);
1409 if (!entry)
1410 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1411 return entry;
1412 }
1413
1414 static inline struct bio *f2fs_bio_alloc(int npages)
1415 {
1416 struct bio *bio;
1417
1418 /* No failure on bio allocation */
1419 bio = bio_alloc(GFP_NOIO, npages);
1420 if (!bio)
1421 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1422 return bio;
1423 }
1424
1425 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1426 unsigned long index, void *item)
1427 {
1428 while (radix_tree_insert(root, index, item))
1429 cond_resched();
1430 }
1431
1432 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1433
1434 static inline bool IS_INODE(struct page *page)
1435 {
1436 struct f2fs_node *p = F2FS_NODE(page);
1437 return RAW_IS_INODE(p);
1438 }
1439
1440 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1441 {
1442 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1443 }
1444
1445 static inline block_t datablock_addr(struct page *node_page,
1446 unsigned int offset)
1447 {
1448 struct f2fs_node *raw_node;
1449 __le32 *addr_array;
1450 raw_node = F2FS_NODE(node_page);
1451 addr_array = blkaddr_in_node(raw_node);
1452 return le32_to_cpu(addr_array[offset]);
1453 }
1454
1455 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1456 {
1457 int mask;
1458
1459 addr += (nr >> 3);
1460 mask = 1 << (7 - (nr & 0x07));
1461 return mask & *addr;
1462 }
1463
1464 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1465 {
1466 int mask;
1467
1468 addr += (nr >> 3);
1469 mask = 1 << (7 - (nr & 0x07));
1470 *addr |= mask;
1471 }
1472
1473 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1474 {
1475 int mask;
1476
1477 addr += (nr >> 3);
1478 mask = 1 << (7 - (nr & 0x07));
1479 *addr &= ~mask;
1480 }
1481
1482 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1483 {
1484 int mask;
1485 int ret;
1486
1487 addr += (nr >> 3);
1488 mask = 1 << (7 - (nr & 0x07));
1489 ret = mask & *addr;
1490 *addr |= mask;
1491 return ret;
1492 }
1493
1494 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1495 {
1496 int mask;
1497 int ret;
1498
1499 addr += (nr >> 3);
1500 mask = 1 << (7 - (nr & 0x07));
1501 ret = mask & *addr;
1502 *addr &= ~mask;
1503 return ret;
1504 }
1505
1506 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1507 {
1508 int mask;
1509
1510 addr += (nr >> 3);
1511 mask = 1 << (7 - (nr & 0x07));
1512 *addr ^= mask;
1513 }
1514
1515 /* used for f2fs_inode_info->flags */
1516 enum {
1517 FI_NEW_INODE, /* indicate newly allocated inode */
1518 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1519 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1520 FI_INC_LINK, /* need to increment i_nlink */
1521 FI_ACL_MODE, /* indicate acl mode */
1522 FI_NO_ALLOC, /* should not allocate any blocks */
1523 FI_FREE_NID, /* free allocated nide */
1524 FI_UPDATE_DIR, /* should update inode block for consistency */
1525 FI_NO_EXTENT, /* not to use the extent cache */
1526 FI_INLINE_XATTR, /* used for inline xattr */
1527 FI_INLINE_DATA, /* used for inline data*/
1528 FI_INLINE_DENTRY, /* used for inline dentry */
1529 FI_APPEND_WRITE, /* inode has appended data */
1530 FI_UPDATE_WRITE, /* inode has in-place-update data */
1531 FI_NEED_IPU, /* used for ipu per file */
1532 FI_ATOMIC_FILE, /* indicate atomic file */
1533 FI_VOLATILE_FILE, /* indicate volatile file */
1534 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1535 FI_DROP_CACHE, /* drop dirty page cache */
1536 FI_DATA_EXIST, /* indicate data exists */
1537 FI_INLINE_DOTS, /* indicate inline dot dentries */
1538 FI_DO_DEFRAG, /* indicate defragment is running */
1539 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1540 };
1541
1542 static inline void __mark_inode_dirty_flag(struct inode *inode,
1543 int flag, bool set)
1544 {
1545 switch (flag) {
1546 case FI_INLINE_XATTR:
1547 case FI_INLINE_DATA:
1548 case FI_INLINE_DENTRY:
1549 if (set)
1550 return;
1551 case FI_DATA_EXIST:
1552 case FI_INLINE_DOTS:
1553 mark_inode_dirty_sync(inode);
1554 }
1555 }
1556
1557 static inline void set_inode_flag(struct inode *inode, int flag)
1558 {
1559 if (!test_bit(flag, &F2FS_I(inode)->flags))
1560 set_bit(flag, &F2FS_I(inode)->flags);
1561 __mark_inode_dirty_flag(inode, flag, true);
1562 }
1563
1564 static inline int is_inode_flag_set(struct inode *inode, int flag)
1565 {
1566 return test_bit(flag, &F2FS_I(inode)->flags);
1567 }
1568
1569 static inline void clear_inode_flag(struct inode *inode, int flag)
1570 {
1571 if (test_bit(flag, &F2FS_I(inode)->flags))
1572 clear_bit(flag, &F2FS_I(inode)->flags);
1573 __mark_inode_dirty_flag(inode, flag, false);
1574 }
1575
1576 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1577 {
1578 F2FS_I(inode)->i_acl_mode = mode;
1579 set_inode_flag(inode, FI_ACL_MODE);
1580 mark_inode_dirty_sync(inode);
1581 }
1582
1583 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1584 {
1585 if (inc)
1586 inc_nlink(inode);
1587 else
1588 drop_nlink(inode);
1589 mark_inode_dirty_sync(inode);
1590 }
1591
1592 static inline void f2fs_i_blocks_write(struct inode *inode,
1593 blkcnt_t diff, bool add)
1594 {
1595 inode->i_blocks = add ? inode->i_blocks + diff :
1596 inode->i_blocks - diff;
1597 mark_inode_dirty_sync(inode);
1598 }
1599
1600 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1601 {
1602 if (i_size_read(inode) == i_size)
1603 return;
1604
1605 i_size_write(inode, i_size);
1606 mark_inode_dirty_sync(inode);
1607 }
1608
1609 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1610 {
1611 F2FS_I(inode)->i_current_depth = depth;
1612 mark_inode_dirty_sync(inode);
1613 }
1614
1615 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1616 {
1617 F2FS_I(inode)->i_xattr_nid = xnid;
1618 mark_inode_dirty_sync(inode);
1619 }
1620
1621 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1622 {
1623 F2FS_I(inode)->i_pino = pino;
1624 mark_inode_dirty_sync(inode);
1625 }
1626
1627 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1628 {
1629 struct f2fs_inode_info *fi = F2FS_I(inode);
1630
1631 if (ri->i_inline & F2FS_INLINE_XATTR)
1632 set_bit(FI_INLINE_XATTR, &fi->flags);
1633 if (ri->i_inline & F2FS_INLINE_DATA)
1634 set_bit(FI_INLINE_DATA, &fi->flags);
1635 if (ri->i_inline & F2FS_INLINE_DENTRY)
1636 set_bit(FI_INLINE_DENTRY, &fi->flags);
1637 if (ri->i_inline & F2FS_DATA_EXIST)
1638 set_bit(FI_DATA_EXIST, &fi->flags);
1639 if (ri->i_inline & F2FS_INLINE_DOTS)
1640 set_bit(FI_INLINE_DOTS, &fi->flags);
1641 }
1642
1643 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1644 {
1645 ri->i_inline = 0;
1646
1647 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1648 ri->i_inline |= F2FS_INLINE_XATTR;
1649 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1650 ri->i_inline |= F2FS_INLINE_DATA;
1651 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1652 ri->i_inline |= F2FS_INLINE_DENTRY;
1653 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1654 ri->i_inline |= F2FS_DATA_EXIST;
1655 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1656 ri->i_inline |= F2FS_INLINE_DOTS;
1657 }
1658
1659 static inline int f2fs_has_inline_xattr(struct inode *inode)
1660 {
1661 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1662 }
1663
1664 static inline unsigned int addrs_per_inode(struct inode *inode)
1665 {
1666 if (f2fs_has_inline_xattr(inode))
1667 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1668 return DEF_ADDRS_PER_INODE;
1669 }
1670
1671 static inline void *inline_xattr_addr(struct page *page)
1672 {
1673 struct f2fs_inode *ri = F2FS_INODE(page);
1674 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1675 F2FS_INLINE_XATTR_ADDRS]);
1676 }
1677
1678 static inline int inline_xattr_size(struct inode *inode)
1679 {
1680 if (f2fs_has_inline_xattr(inode))
1681 return F2FS_INLINE_XATTR_ADDRS << 2;
1682 else
1683 return 0;
1684 }
1685
1686 static inline int f2fs_has_inline_data(struct inode *inode)
1687 {
1688 return is_inode_flag_set(inode, FI_INLINE_DATA);
1689 }
1690
1691 static inline void f2fs_clear_inline_inode(struct inode *inode)
1692 {
1693 clear_inode_flag(inode, FI_INLINE_DATA);
1694 clear_inode_flag(inode, FI_DATA_EXIST);
1695 }
1696
1697 static inline int f2fs_exist_data(struct inode *inode)
1698 {
1699 return is_inode_flag_set(inode, FI_DATA_EXIST);
1700 }
1701
1702 static inline int f2fs_has_inline_dots(struct inode *inode)
1703 {
1704 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1705 }
1706
1707 static inline bool f2fs_is_atomic_file(struct inode *inode)
1708 {
1709 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1710 }
1711
1712 static inline bool f2fs_is_volatile_file(struct inode *inode)
1713 {
1714 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1715 }
1716
1717 static inline bool f2fs_is_first_block_written(struct inode *inode)
1718 {
1719 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1720 }
1721
1722 static inline bool f2fs_is_drop_cache(struct inode *inode)
1723 {
1724 return is_inode_flag_set(inode, FI_DROP_CACHE);
1725 }
1726
1727 static inline void *inline_data_addr(struct page *page)
1728 {
1729 struct f2fs_inode *ri = F2FS_INODE(page);
1730 return (void *)&(ri->i_addr[1]);
1731 }
1732
1733 static inline int f2fs_has_inline_dentry(struct inode *inode)
1734 {
1735 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1736 }
1737
1738 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1739 {
1740 if (!f2fs_has_inline_dentry(dir))
1741 kunmap(page);
1742 }
1743
1744 static inline int is_file(struct inode *inode, int type)
1745 {
1746 return F2FS_I(inode)->i_advise & type;
1747 }
1748
1749 static inline void set_file(struct inode *inode, int type)
1750 {
1751 F2FS_I(inode)->i_advise |= type;
1752 mark_inode_dirty_sync(inode);
1753 }
1754
1755 static inline void clear_file(struct inode *inode, int type)
1756 {
1757 F2FS_I(inode)->i_advise &= ~type;
1758 mark_inode_dirty_sync(inode);
1759 }
1760
1761 static inline int f2fs_readonly(struct super_block *sb)
1762 {
1763 return sb->s_flags & MS_RDONLY;
1764 }
1765
1766 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1767 {
1768 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1769 }
1770
1771 static inline bool is_dot_dotdot(const struct qstr *str)
1772 {
1773 if (str->len == 1 && str->name[0] == '.')
1774 return true;
1775
1776 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1777 return true;
1778
1779 return false;
1780 }
1781
1782 static inline bool f2fs_may_extent_tree(struct inode *inode)
1783 {
1784 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1785 is_inode_flag_set(inode, FI_NO_EXTENT))
1786 return false;
1787
1788 return S_ISREG(inode->i_mode);
1789 }
1790
1791 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1792 {
1793 #ifdef CONFIG_F2FS_FAULT_INJECTION
1794 if (time_to_inject(FAULT_KMALLOC))
1795 return NULL;
1796 #endif
1797 return kmalloc(size, flags);
1798 }
1799
1800 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1801 {
1802 void *ret;
1803
1804 ret = kmalloc(size, flags | __GFP_NOWARN);
1805 if (!ret)
1806 ret = __vmalloc(size, flags, PAGE_KERNEL);
1807 return ret;
1808 }
1809
1810 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1811 {
1812 void *ret;
1813
1814 ret = kzalloc(size, flags | __GFP_NOWARN);
1815 if (!ret)
1816 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1817 return ret;
1818 }
1819
1820 #define get_inode_mode(i) \
1821 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1822 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1823
1824 /* get offset of first page in next direct node */
1825 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1826 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1827 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1828 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1829
1830 /*
1831 * file.c
1832 */
1833 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1834 void truncate_data_blocks(struct dnode_of_data *);
1835 int truncate_blocks(struct inode *, u64, bool);
1836 int f2fs_truncate(struct inode *, bool);
1837 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1838 int f2fs_setattr(struct dentry *, struct iattr *);
1839 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1840 int truncate_data_blocks_range(struct dnode_of_data *, int);
1841 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1842 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1843
1844 /*
1845 * inode.c
1846 */
1847 void f2fs_set_inode_flags(struct inode *);
1848 struct inode *f2fs_iget(struct super_block *, unsigned long);
1849 int try_to_free_nats(struct f2fs_sb_info *, int);
1850 int update_inode(struct inode *, struct page *);
1851 int update_inode_page(struct inode *);
1852 int f2fs_write_inode(struct inode *, struct writeback_control *);
1853 void f2fs_evict_inode(struct inode *);
1854 void handle_failed_inode(struct inode *);
1855
1856 /*
1857 * namei.c
1858 */
1859 struct dentry *f2fs_get_parent(struct dentry *child);
1860
1861 /*
1862 * dir.c
1863 */
1864 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1865 void set_de_type(struct f2fs_dir_entry *, umode_t);
1866 unsigned char get_de_type(struct f2fs_dir_entry *);
1867 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1868 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1869 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1870 unsigned int, struct fscrypt_str *);
1871 void do_make_empty_dir(struct inode *, struct inode *,
1872 struct f2fs_dentry_ptr *);
1873 struct page *init_inode_metadata(struct inode *, struct inode *,
1874 const struct qstr *, struct page *);
1875 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1876 int room_for_filename(const void *, int, int);
1877 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1878 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1879 struct page **);
1880 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1881 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1882 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1883 struct page *, struct inode *);
1884 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1885 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1886 const struct qstr *, f2fs_hash_t , unsigned int);
1887 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1888 struct inode *, nid_t, umode_t);
1889 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1890 umode_t);
1891 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1892 struct inode *);
1893 int f2fs_do_tmpfile(struct inode *, struct inode *);
1894 bool f2fs_empty_dir(struct inode *);
1895
1896 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1897 {
1898 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1899 inode, inode->i_ino, inode->i_mode);
1900 }
1901
1902 /*
1903 * super.c
1904 */
1905 void f2fs_inode_synced(struct inode *);
1906 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1907 int f2fs_sync_fs(struct super_block *, int);
1908 extern __printf(3, 4)
1909 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1910 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1911
1912 /*
1913 * hash.c
1914 */
1915 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1916
1917 /*
1918 * node.c
1919 */
1920 struct dnode_of_data;
1921 struct node_info;
1922
1923 bool available_free_memory(struct f2fs_sb_info *, int);
1924 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1925 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1926 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1927 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1928 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1929 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1930 int truncate_inode_blocks(struct inode *, pgoff_t);
1931 int truncate_xattr_node(struct inode *, struct page *);
1932 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1933 int remove_inode_page(struct inode *);
1934 struct page *new_inode_page(struct inode *);
1935 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1936 void ra_node_page(struct f2fs_sb_info *, nid_t);
1937 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1938 struct page *get_node_page_ra(struct page *, int);
1939 void sync_inode_page(struct dnode_of_data *);
1940 void move_node_page(struct page *, int);
1941 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1942 bool);
1943 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1944 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1945 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1946 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1947 int try_to_free_nids(struct f2fs_sb_info *, int);
1948 void recover_inline_xattr(struct inode *, struct page *);
1949 void recover_xattr_data(struct inode *, struct page *, block_t);
1950 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1951 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1952 struct f2fs_summary_block *);
1953 void flush_nat_entries(struct f2fs_sb_info *);
1954 int build_node_manager(struct f2fs_sb_info *);
1955 void destroy_node_manager(struct f2fs_sb_info *);
1956 int __init create_node_manager_caches(void);
1957 void destroy_node_manager_caches(void);
1958
1959 /*
1960 * segment.c
1961 */
1962 void register_inmem_page(struct inode *, struct page *);
1963 void drop_inmem_pages(struct inode *);
1964 int commit_inmem_pages(struct inode *);
1965 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1966 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1967 int f2fs_issue_flush(struct f2fs_sb_info *);
1968 int create_flush_cmd_control(struct f2fs_sb_info *);
1969 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1970 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1971 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1972 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1973 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1974 void release_discard_addrs(struct f2fs_sb_info *);
1975 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1976 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1977 void allocate_new_segments(struct f2fs_sb_info *);
1978 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1979 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1980 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1981 void write_meta_page(struct f2fs_sb_info *, struct page *);
1982 void write_node_page(unsigned int, struct f2fs_io_info *);
1983 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1984 void rewrite_data_page(struct f2fs_io_info *);
1985 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1986 block_t, block_t, bool, bool);
1987 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1988 block_t, block_t, unsigned char, bool, bool);
1989 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1990 block_t, block_t *, struct f2fs_summary *, int);
1991 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1992 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1993 void write_data_summaries(struct f2fs_sb_info *, block_t);
1994 void write_node_summaries(struct f2fs_sb_info *, block_t);
1995 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1996 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1997 int build_segment_manager(struct f2fs_sb_info *);
1998 void destroy_segment_manager(struct f2fs_sb_info *);
1999 int __init create_segment_manager_caches(void);
2000 void destroy_segment_manager_caches(void);
2001
2002 /*
2003 * checkpoint.c
2004 */
2005 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2006 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2007 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2008 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2009 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2010 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2011 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2012 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2013 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2014 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2015 void release_ino_entry(struct f2fs_sb_info *, bool);
2016 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2017 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2018 int acquire_orphan_inode(struct f2fs_sb_info *);
2019 void release_orphan_inode(struct f2fs_sb_info *);
2020 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
2021 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2022 int recover_orphan_inodes(struct f2fs_sb_info *);
2023 int get_valid_checkpoint(struct f2fs_sb_info *);
2024 void update_dirty_page(struct inode *, struct page *);
2025 void remove_dirty_inode(struct inode *);
2026 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2027 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2028 void init_ino_entry_info(struct f2fs_sb_info *);
2029 int __init create_checkpoint_caches(void);
2030 void destroy_checkpoint_caches(void);
2031
2032 /*
2033 * data.c
2034 */
2035 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2036 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2037 struct page *, nid_t, enum page_type, int);
2038 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2039 int f2fs_submit_page_bio(struct f2fs_io_info *);
2040 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2041 void set_data_blkaddr(struct dnode_of_data *);
2042 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2043 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2044 int reserve_new_block(struct dnode_of_data *);
2045 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2046 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2047 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2048 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2049 struct page *find_data_page(struct inode *, pgoff_t);
2050 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2051 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2052 int do_write_data_page(struct f2fs_io_info *);
2053 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2054 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2055 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2056 int f2fs_release_page(struct page *, gfp_t);
2057
2058 /*
2059 * gc.c
2060 */
2061 int start_gc_thread(struct f2fs_sb_info *);
2062 void stop_gc_thread(struct f2fs_sb_info *);
2063 block_t start_bidx_of_node(unsigned int, struct inode *);
2064 int f2fs_gc(struct f2fs_sb_info *, bool);
2065 void build_gc_manager(struct f2fs_sb_info *);
2066
2067 /*
2068 * recovery.c
2069 */
2070 int recover_fsync_data(struct f2fs_sb_info *, bool);
2071 bool space_for_roll_forward(struct f2fs_sb_info *);
2072
2073 /*
2074 * debug.c
2075 */
2076 #ifdef CONFIG_F2FS_STAT_FS
2077 struct f2fs_stat_info {
2078 struct list_head stat_list;
2079 struct f2fs_sb_info *sbi;
2080 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2081 int main_area_segs, main_area_sections, main_area_zones;
2082 unsigned long long hit_largest, hit_cached, hit_rbtree;
2083 unsigned long long hit_total, total_ext;
2084 int ext_tree, zombie_tree, ext_node;
2085 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2086 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2087 int nats, dirty_nats, sits, dirty_sits, fnids;
2088 int total_count, utilization;
2089 int bg_gc, wb_bios;
2090 int inline_xattr, inline_inode, inline_dir, orphans;
2091 unsigned int valid_count, valid_node_count, valid_inode_count;
2092 unsigned int bimodal, avg_vblocks;
2093 int util_free, util_valid, util_invalid;
2094 int rsvd_segs, overp_segs;
2095 int dirty_count, node_pages, meta_pages;
2096 int prefree_count, call_count, cp_count, bg_cp_count;
2097 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2098 int bg_node_segs, bg_data_segs;
2099 int tot_blks, data_blks, node_blks;
2100 int bg_data_blks, bg_node_blks;
2101 int curseg[NR_CURSEG_TYPE];
2102 int cursec[NR_CURSEG_TYPE];
2103 int curzone[NR_CURSEG_TYPE];
2104
2105 unsigned int segment_count[2];
2106 unsigned int block_count[2];
2107 unsigned int inplace_count;
2108 unsigned long long base_mem, cache_mem, page_mem;
2109 };
2110
2111 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2112 {
2113 return (struct f2fs_stat_info *)sbi->stat_info;
2114 }
2115
2116 #define stat_inc_cp_count(si) ((si)->cp_count++)
2117 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2118 #define stat_inc_call_count(si) ((si)->call_count++)
2119 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2120 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2121 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2122 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2123 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2124 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2125 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2126 #define stat_inc_inline_xattr(inode) \
2127 do { \
2128 if (f2fs_has_inline_xattr(inode)) \
2129 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2130 } while (0)
2131 #define stat_dec_inline_xattr(inode) \
2132 do { \
2133 if (f2fs_has_inline_xattr(inode)) \
2134 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2135 } while (0)
2136 #define stat_inc_inline_inode(inode) \
2137 do { \
2138 if (f2fs_has_inline_data(inode)) \
2139 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2140 } while (0)
2141 #define stat_dec_inline_inode(inode) \
2142 do { \
2143 if (f2fs_has_inline_data(inode)) \
2144 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2145 } while (0)
2146 #define stat_inc_inline_dir(inode) \
2147 do { \
2148 if (f2fs_has_inline_dentry(inode)) \
2149 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2150 } while (0)
2151 #define stat_dec_inline_dir(inode) \
2152 do { \
2153 if (f2fs_has_inline_dentry(inode)) \
2154 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2155 } while (0)
2156 #define stat_inc_seg_type(sbi, curseg) \
2157 ((sbi)->segment_count[(curseg)->alloc_type]++)
2158 #define stat_inc_block_count(sbi, curseg) \
2159 ((sbi)->block_count[(curseg)->alloc_type]++)
2160 #define stat_inc_inplace_blocks(sbi) \
2161 (atomic_inc(&(sbi)->inplace_count))
2162 #define stat_inc_seg_count(sbi, type, gc_type) \
2163 do { \
2164 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2165 (si)->tot_segs++; \
2166 if (type == SUM_TYPE_DATA) { \
2167 si->data_segs++; \
2168 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2169 } else { \
2170 si->node_segs++; \
2171 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2172 } \
2173 } while (0)
2174
2175 #define stat_inc_tot_blk_count(si, blks) \
2176 (si->tot_blks += (blks))
2177
2178 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2179 do { \
2180 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2181 stat_inc_tot_blk_count(si, blks); \
2182 si->data_blks += (blks); \
2183 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2184 } while (0)
2185
2186 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2187 do { \
2188 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2189 stat_inc_tot_blk_count(si, blks); \
2190 si->node_blks += (blks); \
2191 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2192 } while (0)
2193
2194 int f2fs_build_stats(struct f2fs_sb_info *);
2195 void f2fs_destroy_stats(struct f2fs_sb_info *);
2196 int __init f2fs_create_root_stats(void);
2197 void f2fs_destroy_root_stats(void);
2198 #else
2199 #define stat_inc_cp_count(si)
2200 #define stat_inc_bg_cp_count(si)
2201 #define stat_inc_call_count(si)
2202 #define stat_inc_bggc_count(si)
2203 #define stat_inc_dirty_inode(sbi, type)
2204 #define stat_dec_dirty_inode(sbi, type)
2205 #define stat_inc_total_hit(sb)
2206 #define stat_inc_rbtree_node_hit(sb)
2207 #define stat_inc_largest_node_hit(sbi)
2208 #define stat_inc_cached_node_hit(sbi)
2209 #define stat_inc_inline_xattr(inode)
2210 #define stat_dec_inline_xattr(inode)
2211 #define stat_inc_inline_inode(inode)
2212 #define stat_dec_inline_inode(inode)
2213 #define stat_inc_inline_dir(inode)
2214 #define stat_dec_inline_dir(inode)
2215 #define stat_inc_seg_type(sbi, curseg)
2216 #define stat_inc_block_count(sbi, curseg)
2217 #define stat_inc_inplace_blocks(sbi)
2218 #define stat_inc_seg_count(sbi, type, gc_type)
2219 #define stat_inc_tot_blk_count(si, blks)
2220 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2221 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2222
2223 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2224 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2225 static inline int __init f2fs_create_root_stats(void) { return 0; }
2226 static inline void f2fs_destroy_root_stats(void) { }
2227 #endif
2228
2229 extern const struct file_operations f2fs_dir_operations;
2230 extern const struct file_operations f2fs_file_operations;
2231 extern const struct inode_operations f2fs_file_inode_operations;
2232 extern const struct address_space_operations f2fs_dblock_aops;
2233 extern const struct address_space_operations f2fs_node_aops;
2234 extern const struct address_space_operations f2fs_meta_aops;
2235 extern const struct inode_operations f2fs_dir_inode_operations;
2236 extern const struct inode_operations f2fs_symlink_inode_operations;
2237 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2238 extern const struct inode_operations f2fs_special_inode_operations;
2239 extern struct kmem_cache *inode_entry_slab;
2240
2241 /*
2242 * inline.c
2243 */
2244 bool f2fs_may_inline_data(struct inode *);
2245 bool f2fs_may_inline_dentry(struct inode *);
2246 void read_inline_data(struct page *, struct page *);
2247 bool truncate_inline_inode(struct page *, u64);
2248 int f2fs_read_inline_data(struct inode *, struct page *);
2249 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2250 int f2fs_convert_inline_inode(struct inode *);
2251 int f2fs_write_inline_data(struct inode *, struct page *);
2252 bool recover_inline_data(struct inode *, struct page *);
2253 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2254 struct fscrypt_name *, struct page **);
2255 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2256 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2257 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2258 nid_t, umode_t);
2259 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2260 struct inode *, struct inode *);
2261 bool f2fs_empty_inline_dir(struct inode *);
2262 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2263 struct fscrypt_str *);
2264 int f2fs_inline_data_fiemap(struct inode *,
2265 struct fiemap_extent_info *, __u64, __u64);
2266
2267 /*
2268 * shrinker.c
2269 */
2270 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2271 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2272 void f2fs_join_shrinker(struct f2fs_sb_info *);
2273 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2274
2275 /*
2276 * extent_cache.c
2277 */
2278 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2279 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2280 unsigned int f2fs_destroy_extent_node(struct inode *);
2281 void f2fs_destroy_extent_tree(struct inode *);
2282 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2283 void f2fs_update_extent_cache(struct dnode_of_data *);
2284 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2285 pgoff_t, block_t, unsigned int);
2286 void init_extent_cache_info(struct f2fs_sb_info *);
2287 int __init create_extent_cache(void);
2288 void destroy_extent_cache(void);
2289
2290 /*
2291 * crypto support
2292 */
2293 static inline bool f2fs_encrypted_inode(struct inode *inode)
2294 {
2295 return file_is_encrypt(inode);
2296 }
2297
2298 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2299 {
2300 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2301 file_set_encrypt(inode);
2302 #endif
2303 }
2304
2305 static inline bool f2fs_bio_encrypted(struct bio *bio)
2306 {
2307 return bio->bi_private != NULL;
2308 }
2309
2310 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2311 {
2312 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2313 }
2314
2315 static inline bool f2fs_may_encrypt(struct inode *inode)
2316 {
2317 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2318 umode_t mode = inode->i_mode;
2319
2320 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2321 #else
2322 return 0;
2323 #endif
2324 }
2325
2326 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2327 #define fscrypt_set_d_op(i)
2328 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2329 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2330 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2331 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2332 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2333 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2334 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2335 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2336 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2337 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2338 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2339 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2340 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2341 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2342 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2343 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2344 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2345 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2346 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2347 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2348 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2349 #endif
2350 #endif
This page took 0.079023 seconds and 6 git commands to generate.