f2fs: support fs shutdown
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define CRCPOLY_LE 0xedb88320
74
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 unsigned char *p = (unsigned char *)buf;
78 __u32 crc = F2FS_SUPER_MAGIC;
79 int i;
80
81 while (len--) {
82 crc ^= *p++;
83 for (i = 0; i < 8; i++)
84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 }
86 return crc;
87 }
88
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93
94 /*
95 * For checkpoint manager
96 */
97 enum {
98 NAT_BITMAP,
99 SIT_BITMAP
100 };
101
102 enum {
103 CP_UMOUNT,
104 CP_FASTBOOT,
105 CP_SYNC,
106 CP_DISCARD,
107 };
108
109 #define DEF_BATCHED_TRIM_SECTIONS 32
110 #define BATCHED_TRIM_SEGMENTS(sbi) \
111 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
112
113 struct cp_control {
114 int reason;
115 __u64 trim_start;
116 __u64 trim_end;
117 __u64 trim_minlen;
118 __u64 trimmed;
119 };
120
121 /*
122 * For CP/NAT/SIT/SSA readahead
123 */
124 enum {
125 META_CP,
126 META_NAT,
127 META_SIT,
128 META_SSA,
129 META_POR,
130 };
131
132 /* for the list of ino */
133 enum {
134 ORPHAN_INO, /* for orphan ino list */
135 APPEND_INO, /* for append ino list */
136 UPDATE_INO, /* for update ino list */
137 MAX_INO_ENTRY, /* max. list */
138 };
139
140 struct ino_entry {
141 struct list_head list; /* list head */
142 nid_t ino; /* inode number */
143 };
144
145 /*
146 * for the list of directory inodes or gc inodes.
147 * NOTE: there are two slab users for this structure, if we add/modify/delete
148 * fields in structure for one of slab users, it may affect fields or size of
149 * other one, in this condition, it's better to split both of slab and related
150 * data structure.
151 */
152 struct inode_entry {
153 struct list_head list; /* list head */
154 struct inode *inode; /* vfs inode pointer */
155 };
156
157 /* for the list of blockaddresses to be discarded */
158 struct discard_entry {
159 struct list_head list; /* list head */
160 block_t blkaddr; /* block address to be discarded */
161 int len; /* # of consecutive blocks of the discard */
162 };
163
164 /* for the list of fsync inodes, used only during recovery */
165 struct fsync_inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 block_t blkaddr; /* block address locating the last fsync */
169 block_t last_dentry; /* block address locating the last dentry */
170 block_t last_inode; /* block address locating the last inode */
171 };
172
173 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
174 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
175
176 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
177 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
178 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
179 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
180
181 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
182 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
183
184 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
185 {
186 int before = nats_in_cursum(rs);
187 rs->n_nats = cpu_to_le16(before + i);
188 return before;
189 }
190
191 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
192 {
193 int before = sits_in_cursum(rs);
194 rs->n_sits = cpu_to_le16(before + i);
195 return before;
196 }
197
198 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
199 int type)
200 {
201 if (type == NAT_JOURNAL)
202 return size <= MAX_NAT_JENTRIES(sum);
203 return size <= MAX_SIT_JENTRIES(sum);
204 }
205
206 /*
207 * ioctl commands
208 */
209 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
210 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
211 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
212
213 #define F2FS_IOCTL_MAGIC 0xf5
214 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
215 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
216 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
217 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
218 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
219
220 /*
221 * should be same as XFS_IOC_GOINGDOWN.
222 * Flags for going down operation used by FS_IOC_GOINGDOWN
223 */
224 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
225 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
226 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
227 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
228
229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
230 /*
231 * ioctl commands in 32 bit emulation
232 */
233 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
234 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
235 #endif
236
237 /*
238 * For INODE and NODE manager
239 */
240 /* for directory operations */
241 struct f2fs_dentry_ptr {
242 const void *bitmap;
243 struct f2fs_dir_entry *dentry;
244 __u8 (*filename)[F2FS_SLOT_LEN];
245 int max;
246 };
247
248 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
249 void *src, int type)
250 {
251 if (type == 1) {
252 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
253 d->max = NR_DENTRY_IN_BLOCK;
254 d->bitmap = &t->dentry_bitmap;
255 d->dentry = t->dentry;
256 d->filename = t->filename;
257 } else {
258 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
259 d->max = NR_INLINE_DENTRY;
260 d->bitmap = &t->dentry_bitmap;
261 d->dentry = t->dentry;
262 d->filename = t->filename;
263 }
264 }
265
266 /*
267 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
268 * as its node offset to distinguish from index node blocks.
269 * But some bits are used to mark the node block.
270 */
271 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
272 >> OFFSET_BIT_SHIFT)
273 enum {
274 ALLOC_NODE, /* allocate a new node page if needed */
275 LOOKUP_NODE, /* look up a node without readahead */
276 LOOKUP_NODE_RA, /*
277 * look up a node with readahead called
278 * by get_data_block.
279 */
280 };
281
282 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
283
284 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
285
286 /* vector size for gang look-up from extent cache that consists of radix tree */
287 #define EXT_TREE_VEC_SIZE 64
288
289 /* for in-memory extent cache entry */
290 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
291
292 /* number of extent info in extent cache we try to shrink */
293 #define EXTENT_CACHE_SHRINK_NUMBER 128
294
295 struct extent_info {
296 unsigned int fofs; /* start offset in a file */
297 u32 blk; /* start block address of the extent */
298 unsigned int len; /* length of the extent */
299 };
300
301 struct extent_node {
302 struct rb_node rb_node; /* rb node located in rb-tree */
303 struct list_head list; /* node in global extent list of sbi */
304 struct extent_info ei; /* extent info */
305 };
306
307 struct extent_tree {
308 nid_t ino; /* inode number */
309 struct rb_root root; /* root of extent info rb-tree */
310 struct extent_node *cached_en; /* recently accessed extent node */
311 rwlock_t lock; /* protect extent info rb-tree */
312 atomic_t refcount; /* reference count of rb-tree */
313 unsigned int count; /* # of extent node in rb-tree*/
314 };
315
316 /*
317 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
318 */
319 #define FADVISE_COLD_BIT 0x01
320 #define FADVISE_LOST_PINO_BIT 0x02
321
322 #define DEF_DIR_LEVEL 0
323
324 struct f2fs_inode_info {
325 struct inode vfs_inode; /* serve a vfs inode */
326 unsigned long i_flags; /* keep an inode flags for ioctl */
327 unsigned char i_advise; /* use to give file attribute hints */
328 unsigned char i_dir_level; /* use for dentry level for large dir */
329 unsigned int i_current_depth; /* use only in directory structure */
330 unsigned int i_pino; /* parent inode number */
331 umode_t i_acl_mode; /* keep file acl mode temporarily */
332
333 /* Use below internally in f2fs*/
334 unsigned long flags; /* use to pass per-file flags */
335 struct rw_semaphore i_sem; /* protect fi info */
336 atomic_t dirty_pages; /* # of dirty pages */
337 f2fs_hash_t chash; /* hash value of given file name */
338 unsigned int clevel; /* maximum level of given file name */
339 nid_t i_xattr_nid; /* node id that contains xattrs */
340 unsigned long long xattr_ver; /* cp version of xattr modification */
341 struct extent_info ext; /* in-memory extent cache entry */
342 rwlock_t ext_lock; /* rwlock for single extent cache */
343 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
344
345 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
346 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
347 struct mutex inmem_lock; /* lock for inmemory pages */
348 };
349
350 static inline void get_extent_info(struct extent_info *ext,
351 struct f2fs_extent i_ext)
352 {
353 ext->fofs = le32_to_cpu(i_ext.fofs);
354 ext->blk = le32_to_cpu(i_ext.blk);
355 ext->len = le32_to_cpu(i_ext.len);
356 }
357
358 static inline void set_raw_extent(struct extent_info *ext,
359 struct f2fs_extent *i_ext)
360 {
361 i_ext->fofs = cpu_to_le32(ext->fofs);
362 i_ext->blk = cpu_to_le32(ext->blk);
363 i_ext->len = cpu_to_le32(ext->len);
364 }
365
366 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
367 u32 blk, unsigned int len)
368 {
369 ei->fofs = fofs;
370 ei->blk = blk;
371 ei->len = len;
372 }
373
374 static inline bool __is_extent_mergeable(struct extent_info *back,
375 struct extent_info *front)
376 {
377 return (back->fofs + back->len == front->fofs &&
378 back->blk + back->len == front->blk);
379 }
380
381 static inline bool __is_back_mergeable(struct extent_info *cur,
382 struct extent_info *back)
383 {
384 return __is_extent_mergeable(back, cur);
385 }
386
387 static inline bool __is_front_mergeable(struct extent_info *cur,
388 struct extent_info *front)
389 {
390 return __is_extent_mergeable(cur, front);
391 }
392
393 struct f2fs_nm_info {
394 block_t nat_blkaddr; /* base disk address of NAT */
395 nid_t max_nid; /* maximum possible node ids */
396 nid_t available_nids; /* maximum available node ids */
397 nid_t next_scan_nid; /* the next nid to be scanned */
398 unsigned int ram_thresh; /* control the memory footprint */
399
400 /* NAT cache management */
401 struct radix_tree_root nat_root;/* root of the nat entry cache */
402 struct radix_tree_root nat_set_root;/* root of the nat set cache */
403 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
404 struct list_head nat_entries; /* cached nat entry list (clean) */
405 unsigned int nat_cnt; /* the # of cached nat entries */
406 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
407
408 /* free node ids management */
409 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
410 struct list_head free_nid_list; /* a list for free nids */
411 spinlock_t free_nid_list_lock; /* protect free nid list */
412 unsigned int fcnt; /* the number of free node id */
413 struct mutex build_lock; /* lock for build free nids */
414
415 /* for checkpoint */
416 char *nat_bitmap; /* NAT bitmap pointer */
417 int bitmap_size; /* bitmap size */
418 };
419
420 /*
421 * this structure is used as one of function parameters.
422 * all the information are dedicated to a given direct node block determined
423 * by the data offset in a file.
424 */
425 struct dnode_of_data {
426 struct inode *inode; /* vfs inode pointer */
427 struct page *inode_page; /* its inode page, NULL is possible */
428 struct page *node_page; /* cached direct node page */
429 nid_t nid; /* node id of the direct node block */
430 unsigned int ofs_in_node; /* data offset in the node page */
431 bool inode_page_locked; /* inode page is locked or not */
432 block_t data_blkaddr; /* block address of the node block */
433 };
434
435 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
436 struct page *ipage, struct page *npage, nid_t nid)
437 {
438 memset(dn, 0, sizeof(*dn));
439 dn->inode = inode;
440 dn->inode_page = ipage;
441 dn->node_page = npage;
442 dn->nid = nid;
443 }
444
445 /*
446 * For SIT manager
447 *
448 * By default, there are 6 active log areas across the whole main area.
449 * When considering hot and cold data separation to reduce cleaning overhead,
450 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
451 * respectively.
452 * In the current design, you should not change the numbers intentionally.
453 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
454 * logs individually according to the underlying devices. (default: 6)
455 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
456 * data and 8 for node logs.
457 */
458 #define NR_CURSEG_DATA_TYPE (3)
459 #define NR_CURSEG_NODE_TYPE (3)
460 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
461
462 enum {
463 CURSEG_HOT_DATA = 0, /* directory entry blocks */
464 CURSEG_WARM_DATA, /* data blocks */
465 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
466 CURSEG_HOT_NODE, /* direct node blocks of directory files */
467 CURSEG_WARM_NODE, /* direct node blocks of normal files */
468 CURSEG_COLD_NODE, /* indirect node blocks */
469 NO_CHECK_TYPE,
470 CURSEG_DIRECT_IO, /* to use for the direct IO path */
471 };
472
473 struct flush_cmd {
474 struct completion wait;
475 struct llist_node llnode;
476 int ret;
477 };
478
479 struct flush_cmd_control {
480 struct task_struct *f2fs_issue_flush; /* flush thread */
481 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
482 struct llist_head issue_list; /* list for command issue */
483 struct llist_node *dispatch_list; /* list for command dispatch */
484 };
485
486 struct f2fs_sm_info {
487 struct sit_info *sit_info; /* whole segment information */
488 struct free_segmap_info *free_info; /* free segment information */
489 struct dirty_seglist_info *dirty_info; /* dirty segment information */
490 struct curseg_info *curseg_array; /* active segment information */
491
492 block_t seg0_blkaddr; /* block address of 0'th segment */
493 block_t main_blkaddr; /* start block address of main area */
494 block_t ssa_blkaddr; /* start block address of SSA area */
495
496 unsigned int segment_count; /* total # of segments */
497 unsigned int main_segments; /* # of segments in main area */
498 unsigned int reserved_segments; /* # of reserved segments */
499 unsigned int ovp_segments; /* # of overprovision segments */
500
501 /* a threshold to reclaim prefree segments */
502 unsigned int rec_prefree_segments;
503
504 /* for small discard management */
505 struct list_head discard_list; /* 4KB discard list */
506 int nr_discards; /* # of discards in the list */
507 int max_discards; /* max. discards to be issued */
508
509 /* for batched trimming */
510 unsigned int trim_sections; /* # of sections to trim */
511
512 struct list_head sit_entry_set; /* sit entry set list */
513
514 unsigned int ipu_policy; /* in-place-update policy */
515 unsigned int min_ipu_util; /* in-place-update threshold */
516 unsigned int min_fsync_blocks; /* threshold for fsync */
517
518 /* for flush command control */
519 struct flush_cmd_control *cmd_control_info;
520
521 };
522
523 /*
524 * For superblock
525 */
526 /*
527 * COUNT_TYPE for monitoring
528 *
529 * f2fs monitors the number of several block types such as on-writeback,
530 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
531 */
532 enum count_type {
533 F2FS_WRITEBACK,
534 F2FS_DIRTY_DENTS,
535 F2FS_DIRTY_NODES,
536 F2FS_DIRTY_META,
537 F2FS_INMEM_PAGES,
538 NR_COUNT_TYPE,
539 };
540
541 /*
542 * The below are the page types of bios used in submit_bio().
543 * The available types are:
544 * DATA User data pages. It operates as async mode.
545 * NODE Node pages. It operates as async mode.
546 * META FS metadata pages such as SIT, NAT, CP.
547 * NR_PAGE_TYPE The number of page types.
548 * META_FLUSH Make sure the previous pages are written
549 * with waiting the bio's completion
550 * ... Only can be used with META.
551 */
552 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
553 enum page_type {
554 DATA,
555 NODE,
556 META,
557 NR_PAGE_TYPE,
558 META_FLUSH,
559 };
560
561 struct f2fs_io_info {
562 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
563 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
564 block_t blk_addr; /* block address to be written */
565 };
566
567 #define is_read_io(rw) (((rw) & 1) == READ)
568 struct f2fs_bio_info {
569 struct f2fs_sb_info *sbi; /* f2fs superblock */
570 struct bio *bio; /* bios to merge */
571 sector_t last_block_in_bio; /* last block number */
572 struct f2fs_io_info fio; /* store buffered io info. */
573 struct rw_semaphore io_rwsem; /* blocking op for bio */
574 };
575
576 /* for inner inode cache management */
577 struct inode_management {
578 struct radix_tree_root ino_root; /* ino entry array */
579 spinlock_t ino_lock; /* for ino entry lock */
580 struct list_head ino_list; /* inode list head */
581 unsigned long ino_num; /* number of entries */
582 };
583
584 /* For s_flag in struct f2fs_sb_info */
585 enum {
586 SBI_IS_DIRTY, /* dirty flag for checkpoint */
587 SBI_IS_CLOSE, /* specify unmounting */
588 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
589 SBI_POR_DOING, /* recovery is doing or not */
590 };
591
592 struct f2fs_sb_info {
593 struct super_block *sb; /* pointer to VFS super block */
594 struct proc_dir_entry *s_proc; /* proc entry */
595 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
596 struct f2fs_super_block *raw_super; /* raw super block pointer */
597 int s_flag; /* flags for sbi */
598
599 /* for node-related operations */
600 struct f2fs_nm_info *nm_info; /* node manager */
601 struct inode *node_inode; /* cache node blocks */
602
603 /* for segment-related operations */
604 struct f2fs_sm_info *sm_info; /* segment manager */
605
606 /* for bio operations */
607 struct f2fs_bio_info read_io; /* for read bios */
608 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
609
610 /* for checkpoint */
611 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
612 struct inode *meta_inode; /* cache meta blocks */
613 struct mutex cp_mutex; /* checkpoint procedure lock */
614 struct rw_semaphore cp_rwsem; /* blocking FS operations */
615 struct rw_semaphore node_write; /* locking node writes */
616 struct mutex writepages; /* mutex for writepages() */
617 wait_queue_head_t cp_wait;
618
619 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
620
621 /* for orphan inode, use 0'th array */
622 unsigned int max_orphans; /* max orphan inodes */
623
624 /* for directory inode management */
625 struct list_head dir_inode_list; /* dir inode list */
626 spinlock_t dir_inode_lock; /* for dir inode list lock */
627
628 /* for extent tree cache */
629 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
630 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
631 struct list_head extent_list; /* lru list for shrinker */
632 spinlock_t extent_lock; /* locking extent lru list */
633 int total_ext_tree; /* extent tree count */
634 atomic_t total_ext_node; /* extent info count */
635
636 /* basic filesystem units */
637 unsigned int log_sectors_per_block; /* log2 sectors per block */
638 unsigned int log_blocksize; /* log2 block size */
639 unsigned int blocksize; /* block size */
640 unsigned int root_ino_num; /* root inode number*/
641 unsigned int node_ino_num; /* node inode number*/
642 unsigned int meta_ino_num; /* meta inode number*/
643 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
644 unsigned int blocks_per_seg; /* blocks per segment */
645 unsigned int segs_per_sec; /* segments per section */
646 unsigned int secs_per_zone; /* sections per zone */
647 unsigned int total_sections; /* total section count */
648 unsigned int total_node_count; /* total node block count */
649 unsigned int total_valid_node_count; /* valid node block count */
650 unsigned int total_valid_inode_count; /* valid inode count */
651 int active_logs; /* # of active logs */
652 int dir_level; /* directory level */
653
654 block_t user_block_count; /* # of user blocks */
655 block_t total_valid_block_count; /* # of valid blocks */
656 block_t alloc_valid_block_count; /* # of allocated blocks */
657 block_t last_valid_block_count; /* for recovery */
658 u32 s_next_generation; /* for NFS support */
659 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
660
661 struct f2fs_mount_info mount_opt; /* mount options */
662
663 /* for cleaning operations */
664 struct mutex gc_mutex; /* mutex for GC */
665 struct f2fs_gc_kthread *gc_thread; /* GC thread */
666 unsigned int cur_victim_sec; /* current victim section num */
667
668 /* maximum # of trials to find a victim segment for SSR and GC */
669 unsigned int max_victim_search;
670
671 /*
672 * for stat information.
673 * one is for the LFS mode, and the other is for the SSR mode.
674 */
675 #ifdef CONFIG_F2FS_STAT_FS
676 struct f2fs_stat_info *stat_info; /* FS status information */
677 unsigned int segment_count[2]; /* # of allocated segments */
678 unsigned int block_count[2]; /* # of allocated blocks */
679 atomic_t inplace_count; /* # of inplace update */
680 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
681 atomic_t inline_inode; /* # of inline_data inodes */
682 atomic_t inline_dir; /* # of inline_dentry inodes */
683 int bg_gc; /* background gc calls */
684 unsigned int n_dirty_dirs; /* # of dir inodes */
685 #endif
686 unsigned int last_victim[2]; /* last victim segment # */
687 spinlock_t stat_lock; /* lock for stat operations */
688
689 /* For sysfs suppport */
690 struct kobject s_kobj;
691 struct completion s_kobj_unregister;
692 };
693
694 /*
695 * Inline functions
696 */
697 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
698 {
699 return container_of(inode, struct f2fs_inode_info, vfs_inode);
700 }
701
702 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
703 {
704 return sb->s_fs_info;
705 }
706
707 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
708 {
709 return F2FS_SB(inode->i_sb);
710 }
711
712 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
713 {
714 return F2FS_I_SB(mapping->host);
715 }
716
717 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
718 {
719 return F2FS_M_SB(page->mapping);
720 }
721
722 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
723 {
724 return (struct f2fs_super_block *)(sbi->raw_super);
725 }
726
727 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
728 {
729 return (struct f2fs_checkpoint *)(sbi->ckpt);
730 }
731
732 static inline struct f2fs_node *F2FS_NODE(struct page *page)
733 {
734 return (struct f2fs_node *)page_address(page);
735 }
736
737 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
738 {
739 return &((struct f2fs_node *)page_address(page))->i;
740 }
741
742 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
743 {
744 return (struct f2fs_nm_info *)(sbi->nm_info);
745 }
746
747 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
748 {
749 return (struct f2fs_sm_info *)(sbi->sm_info);
750 }
751
752 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
753 {
754 return (struct sit_info *)(SM_I(sbi)->sit_info);
755 }
756
757 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
758 {
759 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
760 }
761
762 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
763 {
764 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
765 }
766
767 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
768 {
769 return sbi->meta_inode->i_mapping;
770 }
771
772 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
773 {
774 return sbi->node_inode->i_mapping;
775 }
776
777 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
778 {
779 return sbi->s_flag & (0x01 << type);
780 }
781
782 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
783 {
784 sbi->s_flag |= (0x01 << type);
785 }
786
787 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
788 {
789 sbi->s_flag &= ~(0x01 << type);
790 }
791
792 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
793 {
794 return le64_to_cpu(cp->checkpoint_ver);
795 }
796
797 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
798 {
799 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
800 return ckpt_flags & f;
801 }
802
803 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
804 {
805 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
806 ckpt_flags |= f;
807 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
808 }
809
810 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
811 {
812 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
813 ckpt_flags &= (~f);
814 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
815 }
816
817 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
818 {
819 down_read(&sbi->cp_rwsem);
820 }
821
822 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
823 {
824 up_read(&sbi->cp_rwsem);
825 }
826
827 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
828 {
829 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
830 }
831
832 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
833 {
834 up_write(&sbi->cp_rwsem);
835 }
836
837 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
838 {
839 int reason = CP_SYNC;
840
841 if (test_opt(sbi, FASTBOOT))
842 reason = CP_FASTBOOT;
843 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
844 reason = CP_UMOUNT;
845 return reason;
846 }
847
848 static inline bool __remain_node_summaries(int reason)
849 {
850 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
851 }
852
853 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
854 {
855 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
856 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
857 }
858
859 /*
860 * Check whether the given nid is within node id range.
861 */
862 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
863 {
864 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
865 return -EINVAL;
866 if (unlikely(nid >= NM_I(sbi)->max_nid))
867 return -EINVAL;
868 return 0;
869 }
870
871 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
872
873 /*
874 * Check whether the inode has blocks or not
875 */
876 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
877 {
878 if (F2FS_I(inode)->i_xattr_nid)
879 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
880 else
881 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
882 }
883
884 static inline bool f2fs_has_xattr_block(unsigned int ofs)
885 {
886 return ofs == XATTR_NODE_OFFSET;
887 }
888
889 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
890 struct inode *inode, blkcnt_t count)
891 {
892 block_t valid_block_count;
893
894 spin_lock(&sbi->stat_lock);
895 valid_block_count =
896 sbi->total_valid_block_count + (block_t)count;
897 if (unlikely(valid_block_count > sbi->user_block_count)) {
898 spin_unlock(&sbi->stat_lock);
899 return false;
900 }
901 inode->i_blocks += count;
902 sbi->total_valid_block_count = valid_block_count;
903 sbi->alloc_valid_block_count += (block_t)count;
904 spin_unlock(&sbi->stat_lock);
905 return true;
906 }
907
908 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
909 struct inode *inode,
910 blkcnt_t count)
911 {
912 spin_lock(&sbi->stat_lock);
913 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
914 f2fs_bug_on(sbi, inode->i_blocks < count);
915 inode->i_blocks -= count;
916 sbi->total_valid_block_count -= (block_t)count;
917 spin_unlock(&sbi->stat_lock);
918 }
919
920 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
921 {
922 atomic_inc(&sbi->nr_pages[count_type]);
923 set_sbi_flag(sbi, SBI_IS_DIRTY);
924 }
925
926 static inline void inode_inc_dirty_pages(struct inode *inode)
927 {
928 atomic_inc(&F2FS_I(inode)->dirty_pages);
929 if (S_ISDIR(inode->i_mode))
930 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
931 }
932
933 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
934 {
935 atomic_dec(&sbi->nr_pages[count_type]);
936 }
937
938 static inline void inode_dec_dirty_pages(struct inode *inode)
939 {
940 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
941 return;
942
943 atomic_dec(&F2FS_I(inode)->dirty_pages);
944
945 if (S_ISDIR(inode->i_mode))
946 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
947 }
948
949 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
950 {
951 return atomic_read(&sbi->nr_pages[count_type]);
952 }
953
954 static inline int get_dirty_pages(struct inode *inode)
955 {
956 return atomic_read(&F2FS_I(inode)->dirty_pages);
957 }
958
959 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
960 {
961 unsigned int pages_per_sec = sbi->segs_per_sec *
962 (1 << sbi->log_blocks_per_seg);
963 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
964 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
965 }
966
967 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
968 {
969 return sbi->total_valid_block_count;
970 }
971
972 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
973 {
974 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
975
976 /* return NAT or SIT bitmap */
977 if (flag == NAT_BITMAP)
978 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
979 else if (flag == SIT_BITMAP)
980 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
981
982 return 0;
983 }
984
985 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
986 {
987 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
988 int offset;
989
990 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
991 if (flag == NAT_BITMAP)
992 return &ckpt->sit_nat_version_bitmap;
993 else
994 return (unsigned char *)ckpt + F2FS_BLKSIZE;
995 } else {
996 offset = (flag == NAT_BITMAP) ?
997 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
998 return &ckpt->sit_nat_version_bitmap + offset;
999 }
1000 }
1001
1002 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1003 {
1004 block_t start_addr;
1005 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1006 unsigned long long ckpt_version = cur_cp_version(ckpt);
1007
1008 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1009
1010 /*
1011 * odd numbered checkpoint should at cp segment 0
1012 * and even segment must be at cp segment 1
1013 */
1014 if (!(ckpt_version & 1))
1015 start_addr += sbi->blocks_per_seg;
1016
1017 return start_addr;
1018 }
1019
1020 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1021 {
1022 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1023 }
1024
1025 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1026 struct inode *inode)
1027 {
1028 block_t valid_block_count;
1029 unsigned int valid_node_count;
1030
1031 spin_lock(&sbi->stat_lock);
1032
1033 valid_block_count = sbi->total_valid_block_count + 1;
1034 if (unlikely(valid_block_count > sbi->user_block_count)) {
1035 spin_unlock(&sbi->stat_lock);
1036 return false;
1037 }
1038
1039 valid_node_count = sbi->total_valid_node_count + 1;
1040 if (unlikely(valid_node_count > sbi->total_node_count)) {
1041 spin_unlock(&sbi->stat_lock);
1042 return false;
1043 }
1044
1045 if (inode)
1046 inode->i_blocks++;
1047
1048 sbi->alloc_valid_block_count++;
1049 sbi->total_valid_node_count++;
1050 sbi->total_valid_block_count++;
1051 spin_unlock(&sbi->stat_lock);
1052
1053 return true;
1054 }
1055
1056 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1057 struct inode *inode)
1058 {
1059 spin_lock(&sbi->stat_lock);
1060
1061 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1062 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1063 f2fs_bug_on(sbi, !inode->i_blocks);
1064
1065 inode->i_blocks--;
1066 sbi->total_valid_node_count--;
1067 sbi->total_valid_block_count--;
1068
1069 spin_unlock(&sbi->stat_lock);
1070 }
1071
1072 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1073 {
1074 return sbi->total_valid_node_count;
1075 }
1076
1077 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1078 {
1079 spin_lock(&sbi->stat_lock);
1080 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1081 sbi->total_valid_inode_count++;
1082 spin_unlock(&sbi->stat_lock);
1083 }
1084
1085 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1086 {
1087 spin_lock(&sbi->stat_lock);
1088 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1089 sbi->total_valid_inode_count--;
1090 spin_unlock(&sbi->stat_lock);
1091 }
1092
1093 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1094 {
1095 return sbi->total_valid_inode_count;
1096 }
1097
1098 static inline void f2fs_put_page(struct page *page, int unlock)
1099 {
1100 if (!page)
1101 return;
1102
1103 if (unlock) {
1104 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1105 unlock_page(page);
1106 }
1107 page_cache_release(page);
1108 }
1109
1110 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1111 {
1112 if (dn->node_page)
1113 f2fs_put_page(dn->node_page, 1);
1114 if (dn->inode_page && dn->node_page != dn->inode_page)
1115 f2fs_put_page(dn->inode_page, 0);
1116 dn->node_page = NULL;
1117 dn->inode_page = NULL;
1118 }
1119
1120 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1121 size_t size)
1122 {
1123 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1124 }
1125
1126 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1127 gfp_t flags)
1128 {
1129 void *entry;
1130 retry:
1131 entry = kmem_cache_alloc(cachep, flags);
1132 if (!entry) {
1133 cond_resched();
1134 goto retry;
1135 }
1136
1137 return entry;
1138 }
1139
1140 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1141 unsigned long index, void *item)
1142 {
1143 while (radix_tree_insert(root, index, item))
1144 cond_resched();
1145 }
1146
1147 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1148
1149 static inline bool IS_INODE(struct page *page)
1150 {
1151 struct f2fs_node *p = F2FS_NODE(page);
1152 return RAW_IS_INODE(p);
1153 }
1154
1155 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1156 {
1157 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1158 }
1159
1160 static inline block_t datablock_addr(struct page *node_page,
1161 unsigned int offset)
1162 {
1163 struct f2fs_node *raw_node;
1164 __le32 *addr_array;
1165 raw_node = F2FS_NODE(node_page);
1166 addr_array = blkaddr_in_node(raw_node);
1167 return le32_to_cpu(addr_array[offset]);
1168 }
1169
1170 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1171 {
1172 int mask;
1173
1174 addr += (nr >> 3);
1175 mask = 1 << (7 - (nr & 0x07));
1176 return mask & *addr;
1177 }
1178
1179 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1180 {
1181 int mask;
1182 int ret;
1183
1184 addr += (nr >> 3);
1185 mask = 1 << (7 - (nr & 0x07));
1186 ret = mask & *addr;
1187 *addr |= mask;
1188 return ret;
1189 }
1190
1191 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1192 {
1193 int mask;
1194 int ret;
1195
1196 addr += (nr >> 3);
1197 mask = 1 << (7 - (nr & 0x07));
1198 ret = mask & *addr;
1199 *addr &= ~mask;
1200 return ret;
1201 }
1202
1203 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1204 {
1205 int mask;
1206
1207 addr += (nr >> 3);
1208 mask = 1 << (7 - (nr & 0x07));
1209 *addr ^= mask;
1210 }
1211
1212 /* used for f2fs_inode_info->flags */
1213 enum {
1214 FI_NEW_INODE, /* indicate newly allocated inode */
1215 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1216 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1217 FI_INC_LINK, /* need to increment i_nlink */
1218 FI_ACL_MODE, /* indicate acl mode */
1219 FI_NO_ALLOC, /* should not allocate any blocks */
1220 FI_UPDATE_DIR, /* should update inode block for consistency */
1221 FI_DELAY_IPUT, /* used for the recovery */
1222 FI_NO_EXTENT, /* not to use the extent cache */
1223 FI_INLINE_XATTR, /* used for inline xattr */
1224 FI_INLINE_DATA, /* used for inline data*/
1225 FI_INLINE_DENTRY, /* used for inline dentry */
1226 FI_APPEND_WRITE, /* inode has appended data */
1227 FI_UPDATE_WRITE, /* inode has in-place-update data */
1228 FI_NEED_IPU, /* used for ipu per file */
1229 FI_ATOMIC_FILE, /* indicate atomic file */
1230 FI_VOLATILE_FILE, /* indicate volatile file */
1231 FI_DROP_CACHE, /* drop dirty page cache */
1232 FI_DATA_EXIST, /* indicate data exists */
1233 };
1234
1235 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1236 {
1237 if (!test_bit(flag, &fi->flags))
1238 set_bit(flag, &fi->flags);
1239 }
1240
1241 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1242 {
1243 return test_bit(flag, &fi->flags);
1244 }
1245
1246 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1247 {
1248 if (test_bit(flag, &fi->flags))
1249 clear_bit(flag, &fi->flags);
1250 }
1251
1252 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1253 {
1254 fi->i_acl_mode = mode;
1255 set_inode_flag(fi, FI_ACL_MODE);
1256 }
1257
1258 static inline void get_inline_info(struct f2fs_inode_info *fi,
1259 struct f2fs_inode *ri)
1260 {
1261 if (ri->i_inline & F2FS_INLINE_XATTR)
1262 set_inode_flag(fi, FI_INLINE_XATTR);
1263 if (ri->i_inline & F2FS_INLINE_DATA)
1264 set_inode_flag(fi, FI_INLINE_DATA);
1265 if (ri->i_inline & F2FS_INLINE_DENTRY)
1266 set_inode_flag(fi, FI_INLINE_DENTRY);
1267 if (ri->i_inline & F2FS_DATA_EXIST)
1268 set_inode_flag(fi, FI_DATA_EXIST);
1269 }
1270
1271 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1272 struct f2fs_inode *ri)
1273 {
1274 ri->i_inline = 0;
1275
1276 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1277 ri->i_inline |= F2FS_INLINE_XATTR;
1278 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1279 ri->i_inline |= F2FS_INLINE_DATA;
1280 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1281 ri->i_inline |= F2FS_INLINE_DENTRY;
1282 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1283 ri->i_inline |= F2FS_DATA_EXIST;
1284 }
1285
1286 static inline int f2fs_has_inline_xattr(struct inode *inode)
1287 {
1288 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1289 }
1290
1291 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1292 {
1293 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1294 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1295 return DEF_ADDRS_PER_INODE;
1296 }
1297
1298 static inline void *inline_xattr_addr(struct page *page)
1299 {
1300 struct f2fs_inode *ri = F2FS_INODE(page);
1301 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1302 F2FS_INLINE_XATTR_ADDRS]);
1303 }
1304
1305 static inline int inline_xattr_size(struct inode *inode)
1306 {
1307 if (f2fs_has_inline_xattr(inode))
1308 return F2FS_INLINE_XATTR_ADDRS << 2;
1309 else
1310 return 0;
1311 }
1312
1313 static inline int f2fs_has_inline_data(struct inode *inode)
1314 {
1315 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1316 }
1317
1318 static inline void f2fs_clear_inline_inode(struct inode *inode)
1319 {
1320 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1321 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1322 }
1323
1324 static inline int f2fs_exist_data(struct inode *inode)
1325 {
1326 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1327 }
1328
1329 static inline bool f2fs_is_atomic_file(struct inode *inode)
1330 {
1331 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1332 }
1333
1334 static inline bool f2fs_is_volatile_file(struct inode *inode)
1335 {
1336 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1337 }
1338
1339 static inline bool f2fs_is_drop_cache(struct inode *inode)
1340 {
1341 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1342 }
1343
1344 static inline void *inline_data_addr(struct page *page)
1345 {
1346 struct f2fs_inode *ri = F2FS_INODE(page);
1347 return (void *)&(ri->i_addr[1]);
1348 }
1349
1350 static inline int f2fs_has_inline_dentry(struct inode *inode)
1351 {
1352 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1353 }
1354
1355 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1356 {
1357 if (!f2fs_has_inline_dentry(dir))
1358 kunmap(page);
1359 }
1360
1361 static inline int f2fs_readonly(struct super_block *sb)
1362 {
1363 return sb->s_flags & MS_RDONLY;
1364 }
1365
1366 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1367 {
1368 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1369 }
1370
1371 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1372 {
1373 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1374 sbi->sb->s_flags |= MS_RDONLY;
1375 }
1376
1377 #define get_inode_mode(i) \
1378 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1379 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1380
1381 /* get offset of first page in next direct node */
1382 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1383 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1384 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1385 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1386
1387 /*
1388 * file.c
1389 */
1390 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1391 void truncate_data_blocks(struct dnode_of_data *);
1392 int truncate_blocks(struct inode *, u64, bool);
1393 void f2fs_truncate(struct inode *);
1394 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1395 int f2fs_setattr(struct dentry *, struct iattr *);
1396 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1397 int truncate_data_blocks_range(struct dnode_of_data *, int);
1398 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1399 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1400
1401 /*
1402 * inode.c
1403 */
1404 void f2fs_set_inode_flags(struct inode *);
1405 struct inode *f2fs_iget(struct super_block *, unsigned long);
1406 int try_to_free_nats(struct f2fs_sb_info *, int);
1407 void update_inode(struct inode *, struct page *);
1408 void update_inode_page(struct inode *);
1409 int f2fs_write_inode(struct inode *, struct writeback_control *);
1410 void f2fs_evict_inode(struct inode *);
1411 void handle_failed_inode(struct inode *);
1412
1413 /*
1414 * namei.c
1415 */
1416 struct dentry *f2fs_get_parent(struct dentry *child);
1417
1418 /*
1419 * dir.c
1420 */
1421 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1422 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1423 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1424 struct f2fs_dentry_ptr *);
1425 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1426 unsigned int);
1427 void do_make_empty_dir(struct inode *, struct inode *,
1428 struct f2fs_dentry_ptr *);
1429 struct page *init_inode_metadata(struct inode *, struct inode *,
1430 const struct qstr *, struct page *);
1431 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1432 int room_for_filename(const void *, int, int);
1433 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1434 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1435 struct page **);
1436 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1437 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1438 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1439 struct page *, struct inode *);
1440 int update_dent_inode(struct inode *, const struct qstr *);
1441 void f2fs_update_dentry(struct inode *, struct f2fs_dentry_ptr *,
1442 const struct qstr *, f2fs_hash_t , unsigned int);
1443 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1444 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1445 struct inode *);
1446 int f2fs_do_tmpfile(struct inode *, struct inode *);
1447 int f2fs_make_empty(struct inode *, struct inode *);
1448 bool f2fs_empty_dir(struct inode *);
1449
1450 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1451 {
1452 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1453 inode);
1454 }
1455
1456 /*
1457 * super.c
1458 */
1459 int f2fs_sync_fs(struct super_block *, int);
1460 extern __printf(3, 4)
1461 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1462
1463 /*
1464 * hash.c
1465 */
1466 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1467
1468 /*
1469 * node.c
1470 */
1471 struct dnode_of_data;
1472 struct node_info;
1473
1474 bool available_free_memory(struct f2fs_sb_info *, int);
1475 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1476 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1477 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1478 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1479 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1480 int truncate_inode_blocks(struct inode *, pgoff_t);
1481 int truncate_xattr_node(struct inode *, struct page *);
1482 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1483 void remove_inode_page(struct inode *);
1484 struct page *new_inode_page(struct inode *);
1485 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1486 void ra_node_page(struct f2fs_sb_info *, nid_t);
1487 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1488 struct page *get_node_page_ra(struct page *, int);
1489 void sync_inode_page(struct dnode_of_data *);
1490 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1491 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1492 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1493 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1494 void recover_inline_xattr(struct inode *, struct page *);
1495 void recover_xattr_data(struct inode *, struct page *, block_t);
1496 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1497 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1498 struct f2fs_summary_block *);
1499 void flush_nat_entries(struct f2fs_sb_info *);
1500 int build_node_manager(struct f2fs_sb_info *);
1501 void destroy_node_manager(struct f2fs_sb_info *);
1502 int __init create_node_manager_caches(void);
1503 void destroy_node_manager_caches(void);
1504
1505 /*
1506 * segment.c
1507 */
1508 void register_inmem_page(struct inode *, struct page *);
1509 void commit_inmem_pages(struct inode *, bool);
1510 void f2fs_balance_fs(struct f2fs_sb_info *);
1511 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1512 int f2fs_issue_flush(struct f2fs_sb_info *);
1513 int create_flush_cmd_control(struct f2fs_sb_info *);
1514 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1515 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1516 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1517 void clear_prefree_segments(struct f2fs_sb_info *);
1518 void release_discard_addrs(struct f2fs_sb_info *);
1519 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1520 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1521 void allocate_new_segments(struct f2fs_sb_info *);
1522 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1523 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1524 void write_meta_page(struct f2fs_sb_info *, struct page *);
1525 void write_node_page(struct f2fs_sb_info *, struct page *,
1526 unsigned int, struct f2fs_io_info *);
1527 void write_data_page(struct page *, struct dnode_of_data *,
1528 struct f2fs_io_info *);
1529 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1530 void recover_data_page(struct f2fs_sb_info *, struct page *,
1531 struct f2fs_summary *, block_t, block_t);
1532 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1533 block_t, block_t *, struct f2fs_summary *, int);
1534 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1535 void write_data_summaries(struct f2fs_sb_info *, block_t);
1536 void write_node_summaries(struct f2fs_sb_info *, block_t);
1537 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1538 int, unsigned int, int);
1539 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1540 int build_segment_manager(struct f2fs_sb_info *);
1541 void destroy_segment_manager(struct f2fs_sb_info *);
1542 int __init create_segment_manager_caches(void);
1543 void destroy_segment_manager_caches(void);
1544
1545 /*
1546 * checkpoint.c
1547 */
1548 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1549 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1550 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1551 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1552 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1553 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1554 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1555 void release_dirty_inode(struct f2fs_sb_info *);
1556 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1557 int acquire_orphan_inode(struct f2fs_sb_info *);
1558 void release_orphan_inode(struct f2fs_sb_info *);
1559 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1560 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1561 void recover_orphan_inodes(struct f2fs_sb_info *);
1562 int get_valid_checkpoint(struct f2fs_sb_info *);
1563 void update_dirty_page(struct inode *, struct page *);
1564 void add_dirty_dir_inode(struct inode *);
1565 void remove_dirty_dir_inode(struct inode *);
1566 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1567 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1568 void init_ino_entry_info(struct f2fs_sb_info *);
1569 int __init create_checkpoint_caches(void);
1570 void destroy_checkpoint_caches(void);
1571
1572 /*
1573 * data.c
1574 */
1575 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1576 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1577 struct f2fs_io_info *);
1578 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1579 struct f2fs_io_info *);
1580 int reserve_new_block(struct dnode_of_data *);
1581 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1582 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1583 void f2fs_destroy_extent_tree(struct inode *);
1584 void f2fs_update_extent_cache(struct dnode_of_data *);
1585 struct page *find_data_page(struct inode *, pgoff_t, bool);
1586 struct page *get_lock_data_page(struct inode *, pgoff_t);
1587 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1588 int do_write_data_page(struct page *, struct f2fs_io_info *);
1589 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1590 void init_extent_cache_info(struct f2fs_sb_info *);
1591 int __init create_extent_cache(void);
1592 void destroy_extent_cache(void);
1593 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1594 int f2fs_release_page(struct page *, gfp_t);
1595
1596 /*
1597 * gc.c
1598 */
1599 int start_gc_thread(struct f2fs_sb_info *);
1600 void stop_gc_thread(struct f2fs_sb_info *);
1601 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1602 int f2fs_gc(struct f2fs_sb_info *);
1603 void build_gc_manager(struct f2fs_sb_info *);
1604
1605 /*
1606 * recovery.c
1607 */
1608 int recover_fsync_data(struct f2fs_sb_info *);
1609 bool space_for_roll_forward(struct f2fs_sb_info *);
1610
1611 /*
1612 * debug.c
1613 */
1614 #ifdef CONFIG_F2FS_STAT_FS
1615 struct f2fs_stat_info {
1616 struct list_head stat_list;
1617 struct f2fs_sb_info *sbi;
1618 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1619 int main_area_segs, main_area_sections, main_area_zones;
1620 int hit_ext, total_ext, ext_tree, ext_node;
1621 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1622 int nats, dirty_nats, sits, dirty_sits, fnids;
1623 int total_count, utilization;
1624 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1625 unsigned int valid_count, valid_node_count, valid_inode_count;
1626 unsigned int bimodal, avg_vblocks;
1627 int util_free, util_valid, util_invalid;
1628 int rsvd_segs, overp_segs;
1629 int dirty_count, node_pages, meta_pages;
1630 int prefree_count, call_count, cp_count;
1631 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1632 int tot_blks, data_blks, node_blks;
1633 int curseg[NR_CURSEG_TYPE];
1634 int cursec[NR_CURSEG_TYPE];
1635 int curzone[NR_CURSEG_TYPE];
1636
1637 unsigned int segment_count[2];
1638 unsigned int block_count[2];
1639 unsigned int inplace_count;
1640 unsigned base_mem, cache_mem, page_mem;
1641 };
1642
1643 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1644 {
1645 return (struct f2fs_stat_info *)sbi->stat_info;
1646 }
1647
1648 #define stat_inc_cp_count(si) ((si)->cp_count++)
1649 #define stat_inc_call_count(si) ((si)->call_count++)
1650 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1651 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1652 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1653 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1654 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1655 #define stat_inc_inline_inode(inode) \
1656 do { \
1657 if (f2fs_has_inline_data(inode)) \
1658 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1659 } while (0)
1660 #define stat_dec_inline_inode(inode) \
1661 do { \
1662 if (f2fs_has_inline_data(inode)) \
1663 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1664 } while (0)
1665 #define stat_inc_inline_dir(inode) \
1666 do { \
1667 if (f2fs_has_inline_dentry(inode)) \
1668 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1669 } while (0)
1670 #define stat_dec_inline_dir(inode) \
1671 do { \
1672 if (f2fs_has_inline_dentry(inode)) \
1673 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1674 } while (0)
1675 #define stat_inc_seg_type(sbi, curseg) \
1676 ((sbi)->segment_count[(curseg)->alloc_type]++)
1677 #define stat_inc_block_count(sbi, curseg) \
1678 ((sbi)->block_count[(curseg)->alloc_type]++)
1679 #define stat_inc_inplace_blocks(sbi) \
1680 (atomic_inc(&(sbi)->inplace_count))
1681 #define stat_inc_seg_count(sbi, type) \
1682 do { \
1683 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1684 (si)->tot_segs++; \
1685 if (type == SUM_TYPE_DATA) \
1686 si->data_segs++; \
1687 else \
1688 si->node_segs++; \
1689 } while (0)
1690
1691 #define stat_inc_tot_blk_count(si, blks) \
1692 (si->tot_blks += (blks))
1693
1694 #define stat_inc_data_blk_count(sbi, blks) \
1695 do { \
1696 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1697 stat_inc_tot_blk_count(si, blks); \
1698 si->data_blks += (blks); \
1699 } while (0)
1700
1701 #define stat_inc_node_blk_count(sbi, blks) \
1702 do { \
1703 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1704 stat_inc_tot_blk_count(si, blks); \
1705 si->node_blks += (blks); \
1706 } while (0)
1707
1708 int f2fs_build_stats(struct f2fs_sb_info *);
1709 void f2fs_destroy_stats(struct f2fs_sb_info *);
1710 void __init f2fs_create_root_stats(void);
1711 void f2fs_destroy_root_stats(void);
1712 #else
1713 #define stat_inc_cp_count(si)
1714 #define stat_inc_call_count(si)
1715 #define stat_inc_bggc_count(si)
1716 #define stat_inc_dirty_dir(sbi)
1717 #define stat_dec_dirty_dir(sbi)
1718 #define stat_inc_total_hit(sb)
1719 #define stat_inc_read_hit(sb)
1720 #define stat_inc_inline_inode(inode)
1721 #define stat_dec_inline_inode(inode)
1722 #define stat_inc_inline_dir(inode)
1723 #define stat_dec_inline_dir(inode)
1724 #define stat_inc_seg_type(sbi, curseg)
1725 #define stat_inc_block_count(sbi, curseg)
1726 #define stat_inc_inplace_blocks(sbi)
1727 #define stat_inc_seg_count(si, type)
1728 #define stat_inc_tot_blk_count(si, blks)
1729 #define stat_inc_data_blk_count(si, blks)
1730 #define stat_inc_node_blk_count(sbi, blks)
1731
1732 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1733 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1734 static inline void __init f2fs_create_root_stats(void) { }
1735 static inline void f2fs_destroy_root_stats(void) { }
1736 #endif
1737
1738 extern const struct file_operations f2fs_dir_operations;
1739 extern const struct file_operations f2fs_file_operations;
1740 extern const struct inode_operations f2fs_file_inode_operations;
1741 extern const struct address_space_operations f2fs_dblock_aops;
1742 extern const struct address_space_operations f2fs_node_aops;
1743 extern const struct address_space_operations f2fs_meta_aops;
1744 extern const struct inode_operations f2fs_dir_inode_operations;
1745 extern const struct inode_operations f2fs_symlink_inode_operations;
1746 extern const struct inode_operations f2fs_special_inode_operations;
1747 extern struct kmem_cache *inode_entry_slab;
1748
1749 /*
1750 * inline.c
1751 */
1752 bool f2fs_may_inline(struct inode *);
1753 void read_inline_data(struct page *, struct page *);
1754 int f2fs_read_inline_data(struct inode *, struct page *);
1755 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1756 int f2fs_convert_inline_inode(struct inode *);
1757 int f2fs_write_inline_data(struct inode *, struct page *);
1758 bool recover_inline_data(struct inode *, struct page *);
1759 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1760 struct page **);
1761 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1762 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1763 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1764 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1765 struct inode *, struct inode *);
1766 bool f2fs_empty_inline_dir(struct inode *);
1767 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1768 #endif
This page took 0.071531 seconds and 6 git commands to generate.