f2fs: change atomic and volatile write policies
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_SYNC,
104 CP_DISCARD,
105 };
106
107 struct cp_control {
108 int reason;
109 __u64 trim_start;
110 __u64 trim_end;
111 __u64 trim_minlen;
112 __u64 trimmed;
113 };
114
115 /*
116 * For CP/NAT/SIT/SSA readahead
117 */
118 enum {
119 META_CP,
120 META_NAT,
121 META_SIT,
122 META_SSA,
123 META_POR,
124 };
125
126 /* for the list of ino */
127 enum {
128 ORPHAN_INO, /* for orphan ino list */
129 APPEND_INO, /* for append ino list */
130 UPDATE_INO, /* for update ino list */
131 MAX_INO_ENTRY, /* max. list */
132 };
133
134 struct ino_entry {
135 struct list_head list; /* list head */
136 nid_t ino; /* inode number */
137 };
138
139 /* for the list of directory inodes */
140 struct dir_inode_entry {
141 struct list_head list; /* list head */
142 struct inode *inode; /* vfs inode pointer */
143 };
144
145 /* for the list of blockaddresses to be discarded */
146 struct discard_entry {
147 struct list_head list; /* list head */
148 block_t blkaddr; /* block address to be discarded */
149 int len; /* # of consecutive blocks of the discard */
150 };
151
152 /* for the list of fsync inodes, used only during recovery */
153 struct fsync_inode_entry {
154 struct list_head list; /* list head */
155 struct inode *inode; /* vfs inode pointer */
156 block_t blkaddr; /* block address locating the last fsync */
157 block_t last_dentry; /* block address locating the last dentry */
158 block_t last_inode; /* block address locating the last inode */
159 };
160
161 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
162 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
163
164 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
165 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
166 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
167 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
168
169 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
170 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
171
172 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
173 {
174 int before = nats_in_cursum(rs);
175 rs->n_nats = cpu_to_le16(before + i);
176 return before;
177 }
178
179 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
180 {
181 int before = sits_in_cursum(rs);
182 rs->n_sits = cpu_to_le16(before + i);
183 return before;
184 }
185
186 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
187 int type)
188 {
189 if (type == NAT_JOURNAL)
190 return size <= MAX_NAT_JENTRIES(sum);
191 return size <= MAX_SIT_JENTRIES(sum);
192 }
193
194 /*
195 * ioctl commands
196 */
197 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
198 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
199
200 #define F2FS_IOCTL_MAGIC 0xf5
201 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
202 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
203 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
204 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
205 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
206
207 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
208 /*
209 * ioctl commands in 32 bit emulation
210 */
211 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
212 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
213 #endif
214
215 /*
216 * For INODE and NODE manager
217 */
218 /* for directory operations */
219 struct f2fs_dentry_ptr {
220 const void *bitmap;
221 struct f2fs_dir_entry *dentry;
222 __u8 (*filename)[F2FS_SLOT_LEN];
223 int max;
224 };
225
226 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
227 void *src, int type)
228 {
229 if (type == 1) {
230 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
231 d->max = NR_DENTRY_IN_BLOCK;
232 d->bitmap = &t->dentry_bitmap;
233 d->dentry = t->dentry;
234 d->filename = t->filename;
235 } else {
236 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
237 d->max = NR_INLINE_DENTRY;
238 d->bitmap = &t->dentry_bitmap;
239 d->dentry = t->dentry;
240 d->filename = t->filename;
241 }
242 }
243
244 /*
245 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
246 * as its node offset to distinguish from index node blocks.
247 * But some bits are used to mark the node block.
248 */
249 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
250 >> OFFSET_BIT_SHIFT)
251 enum {
252 ALLOC_NODE, /* allocate a new node page if needed */
253 LOOKUP_NODE, /* look up a node without readahead */
254 LOOKUP_NODE_RA, /*
255 * look up a node with readahead called
256 * by get_data_block.
257 */
258 };
259
260 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
261
262 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
263
264 /* for in-memory extent cache entry */
265 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
266
267 struct extent_info {
268 rwlock_t ext_lock; /* rwlock for consistency */
269 unsigned int fofs; /* start offset in a file */
270 u32 blk_addr; /* start block address of the extent */
271 unsigned int len; /* length of the extent */
272 };
273
274 /*
275 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
276 */
277 #define FADVISE_COLD_BIT 0x01
278 #define FADVISE_LOST_PINO_BIT 0x02
279
280 #define DEF_DIR_LEVEL 0
281
282 struct f2fs_inode_info {
283 struct inode vfs_inode; /* serve a vfs inode */
284 unsigned long i_flags; /* keep an inode flags for ioctl */
285 unsigned char i_advise; /* use to give file attribute hints */
286 unsigned char i_dir_level; /* use for dentry level for large dir */
287 unsigned int i_current_depth; /* use only in directory structure */
288 unsigned int i_pino; /* parent inode number */
289 umode_t i_acl_mode; /* keep file acl mode temporarily */
290
291 /* Use below internally in f2fs*/
292 unsigned long flags; /* use to pass per-file flags */
293 struct rw_semaphore i_sem; /* protect fi info */
294 atomic_t dirty_pages; /* # of dirty pages */
295 f2fs_hash_t chash; /* hash value of given file name */
296 unsigned int clevel; /* maximum level of given file name */
297 nid_t i_xattr_nid; /* node id that contains xattrs */
298 unsigned long long xattr_ver; /* cp version of xattr modification */
299 struct extent_info ext; /* in-memory extent cache entry */
300 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
301
302 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
303 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
304 struct mutex inmem_lock; /* lock for inmemory pages */
305 };
306
307 static inline void get_extent_info(struct extent_info *ext,
308 struct f2fs_extent i_ext)
309 {
310 write_lock(&ext->ext_lock);
311 ext->fofs = le32_to_cpu(i_ext.fofs);
312 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
313 ext->len = le32_to_cpu(i_ext.len);
314 write_unlock(&ext->ext_lock);
315 }
316
317 static inline void set_raw_extent(struct extent_info *ext,
318 struct f2fs_extent *i_ext)
319 {
320 read_lock(&ext->ext_lock);
321 i_ext->fofs = cpu_to_le32(ext->fofs);
322 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
323 i_ext->len = cpu_to_le32(ext->len);
324 read_unlock(&ext->ext_lock);
325 }
326
327 struct f2fs_nm_info {
328 block_t nat_blkaddr; /* base disk address of NAT */
329 nid_t max_nid; /* maximum possible node ids */
330 nid_t available_nids; /* maximum available node ids */
331 nid_t next_scan_nid; /* the next nid to be scanned */
332 unsigned int ram_thresh; /* control the memory footprint */
333
334 /* NAT cache management */
335 struct radix_tree_root nat_root;/* root of the nat entry cache */
336 struct radix_tree_root nat_set_root;/* root of the nat set cache */
337 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
338 struct list_head nat_entries; /* cached nat entry list (clean) */
339 unsigned int nat_cnt; /* the # of cached nat entries */
340 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
341
342 /* free node ids management */
343 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
344 struct list_head free_nid_list; /* a list for free nids */
345 spinlock_t free_nid_list_lock; /* protect free nid list */
346 unsigned int fcnt; /* the number of free node id */
347 struct mutex build_lock; /* lock for build free nids */
348
349 /* for checkpoint */
350 char *nat_bitmap; /* NAT bitmap pointer */
351 int bitmap_size; /* bitmap size */
352 };
353
354 /*
355 * this structure is used as one of function parameters.
356 * all the information are dedicated to a given direct node block determined
357 * by the data offset in a file.
358 */
359 struct dnode_of_data {
360 struct inode *inode; /* vfs inode pointer */
361 struct page *inode_page; /* its inode page, NULL is possible */
362 struct page *node_page; /* cached direct node page */
363 nid_t nid; /* node id of the direct node block */
364 unsigned int ofs_in_node; /* data offset in the node page */
365 bool inode_page_locked; /* inode page is locked or not */
366 block_t data_blkaddr; /* block address of the node block */
367 };
368
369 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
370 struct page *ipage, struct page *npage, nid_t nid)
371 {
372 memset(dn, 0, sizeof(*dn));
373 dn->inode = inode;
374 dn->inode_page = ipage;
375 dn->node_page = npage;
376 dn->nid = nid;
377 }
378
379 /*
380 * For SIT manager
381 *
382 * By default, there are 6 active log areas across the whole main area.
383 * When considering hot and cold data separation to reduce cleaning overhead,
384 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
385 * respectively.
386 * In the current design, you should not change the numbers intentionally.
387 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
388 * logs individually according to the underlying devices. (default: 6)
389 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
390 * data and 8 for node logs.
391 */
392 #define NR_CURSEG_DATA_TYPE (3)
393 #define NR_CURSEG_NODE_TYPE (3)
394 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
395
396 enum {
397 CURSEG_HOT_DATA = 0, /* directory entry blocks */
398 CURSEG_WARM_DATA, /* data blocks */
399 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
400 CURSEG_HOT_NODE, /* direct node blocks of directory files */
401 CURSEG_WARM_NODE, /* direct node blocks of normal files */
402 CURSEG_COLD_NODE, /* indirect node blocks */
403 NO_CHECK_TYPE
404 };
405
406 struct flush_cmd {
407 struct completion wait;
408 struct llist_node llnode;
409 int ret;
410 };
411
412 struct flush_cmd_control {
413 struct task_struct *f2fs_issue_flush; /* flush thread */
414 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
415 struct llist_head issue_list; /* list for command issue */
416 struct llist_node *dispatch_list; /* list for command dispatch */
417 };
418
419 struct f2fs_sm_info {
420 struct sit_info *sit_info; /* whole segment information */
421 struct free_segmap_info *free_info; /* free segment information */
422 struct dirty_seglist_info *dirty_info; /* dirty segment information */
423 struct curseg_info *curseg_array; /* active segment information */
424
425 block_t seg0_blkaddr; /* block address of 0'th segment */
426 block_t main_blkaddr; /* start block address of main area */
427 block_t ssa_blkaddr; /* start block address of SSA area */
428
429 unsigned int segment_count; /* total # of segments */
430 unsigned int main_segments; /* # of segments in main area */
431 unsigned int reserved_segments; /* # of reserved segments */
432 unsigned int ovp_segments; /* # of overprovision segments */
433
434 /* a threshold to reclaim prefree segments */
435 unsigned int rec_prefree_segments;
436
437 /* for small discard management */
438 struct list_head discard_list; /* 4KB discard list */
439 int nr_discards; /* # of discards in the list */
440 int max_discards; /* max. discards to be issued */
441
442 struct list_head sit_entry_set; /* sit entry set list */
443
444 unsigned int ipu_policy; /* in-place-update policy */
445 unsigned int min_ipu_util; /* in-place-update threshold */
446 unsigned int min_fsync_blocks; /* threshold for fsync */
447
448 /* for flush command control */
449 struct flush_cmd_control *cmd_control_info;
450
451 };
452
453 /*
454 * For superblock
455 */
456 /*
457 * COUNT_TYPE for monitoring
458 *
459 * f2fs monitors the number of several block types such as on-writeback,
460 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
461 */
462 enum count_type {
463 F2FS_WRITEBACK,
464 F2FS_DIRTY_DENTS,
465 F2FS_DIRTY_NODES,
466 F2FS_DIRTY_META,
467 F2FS_INMEM_PAGES,
468 NR_COUNT_TYPE,
469 };
470
471 /*
472 * The below are the page types of bios used in submit_bio().
473 * The available types are:
474 * DATA User data pages. It operates as async mode.
475 * NODE Node pages. It operates as async mode.
476 * META FS metadata pages such as SIT, NAT, CP.
477 * NR_PAGE_TYPE The number of page types.
478 * META_FLUSH Make sure the previous pages are written
479 * with waiting the bio's completion
480 * ... Only can be used with META.
481 */
482 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
483 enum page_type {
484 DATA,
485 NODE,
486 META,
487 NR_PAGE_TYPE,
488 META_FLUSH,
489 };
490
491 struct f2fs_io_info {
492 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
493 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
494 };
495
496 #define is_read_io(rw) (((rw) & 1) == READ)
497 struct f2fs_bio_info {
498 struct f2fs_sb_info *sbi; /* f2fs superblock */
499 struct bio *bio; /* bios to merge */
500 sector_t last_block_in_bio; /* last block number */
501 struct f2fs_io_info fio; /* store buffered io info. */
502 struct rw_semaphore io_rwsem; /* blocking op for bio */
503 };
504
505 /* for inner inode cache management */
506 struct inode_management {
507 struct radix_tree_root ino_root; /* ino entry array */
508 spinlock_t ino_lock; /* for ino entry lock */
509 struct list_head ino_list; /* inode list head */
510 unsigned long ino_num; /* number of entries */
511 };
512
513 struct f2fs_sb_info {
514 struct super_block *sb; /* pointer to VFS super block */
515 struct proc_dir_entry *s_proc; /* proc entry */
516 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
517 struct f2fs_super_block *raw_super; /* raw super block pointer */
518 int s_dirty; /* dirty flag for checkpoint */
519 bool need_fsck; /* need fsck.f2fs to fix */
520
521 /* for node-related operations */
522 struct f2fs_nm_info *nm_info; /* node manager */
523 struct inode *node_inode; /* cache node blocks */
524
525 /* for segment-related operations */
526 struct f2fs_sm_info *sm_info; /* segment manager */
527
528 /* for bio operations */
529 struct f2fs_bio_info read_io; /* for read bios */
530 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
531
532 /* for checkpoint */
533 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
534 struct inode *meta_inode; /* cache meta blocks */
535 struct mutex cp_mutex; /* checkpoint procedure lock */
536 struct rw_semaphore cp_rwsem; /* blocking FS operations */
537 struct rw_semaphore node_write; /* locking node writes */
538 struct mutex writepages; /* mutex for writepages() */
539 bool por_doing; /* recovery is doing or not */
540 wait_queue_head_t cp_wait;
541
542 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
543
544 /* for orphan inode, use 0'th array */
545 unsigned int max_orphans; /* max orphan inodes */
546
547 /* for directory inode management */
548 struct list_head dir_inode_list; /* dir inode list */
549 spinlock_t dir_inode_lock; /* for dir inode list lock */
550
551 /* basic filesystem units */
552 unsigned int log_sectors_per_block; /* log2 sectors per block */
553 unsigned int log_blocksize; /* log2 block size */
554 unsigned int blocksize; /* block size */
555 unsigned int root_ino_num; /* root inode number*/
556 unsigned int node_ino_num; /* node inode number*/
557 unsigned int meta_ino_num; /* meta inode number*/
558 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
559 unsigned int blocks_per_seg; /* blocks per segment */
560 unsigned int segs_per_sec; /* segments per section */
561 unsigned int secs_per_zone; /* sections per zone */
562 unsigned int total_sections; /* total section count */
563 unsigned int total_node_count; /* total node block count */
564 unsigned int total_valid_node_count; /* valid node block count */
565 unsigned int total_valid_inode_count; /* valid inode count */
566 int active_logs; /* # of active logs */
567 int dir_level; /* directory level */
568
569 block_t user_block_count; /* # of user blocks */
570 block_t total_valid_block_count; /* # of valid blocks */
571 block_t alloc_valid_block_count; /* # of allocated blocks */
572 block_t last_valid_block_count; /* for recovery */
573 u32 s_next_generation; /* for NFS support */
574 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
575
576 struct f2fs_mount_info mount_opt; /* mount options */
577
578 /* for cleaning operations */
579 struct mutex gc_mutex; /* mutex for GC */
580 struct f2fs_gc_kthread *gc_thread; /* GC thread */
581 unsigned int cur_victim_sec; /* current victim section num */
582
583 /* maximum # of trials to find a victim segment for SSR and GC */
584 unsigned int max_victim_search;
585
586 /*
587 * for stat information.
588 * one is for the LFS mode, and the other is for the SSR mode.
589 */
590 #ifdef CONFIG_F2FS_STAT_FS
591 struct f2fs_stat_info *stat_info; /* FS status information */
592 unsigned int segment_count[2]; /* # of allocated segments */
593 unsigned int block_count[2]; /* # of allocated blocks */
594 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
595 atomic_t inline_inode; /* # of inline_data inodes */
596 atomic_t inline_dir; /* # of inline_dentry inodes */
597 int bg_gc; /* background gc calls */
598 unsigned int n_dirty_dirs; /* # of dir inodes */
599 #endif
600 unsigned int last_victim[2]; /* last victim segment # */
601 spinlock_t stat_lock; /* lock for stat operations */
602
603 /* For sysfs suppport */
604 struct kobject s_kobj;
605 struct completion s_kobj_unregister;
606 };
607
608 /*
609 * Inline functions
610 */
611 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
612 {
613 return container_of(inode, struct f2fs_inode_info, vfs_inode);
614 }
615
616 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
617 {
618 return sb->s_fs_info;
619 }
620
621 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
622 {
623 return F2FS_SB(inode->i_sb);
624 }
625
626 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
627 {
628 return F2FS_I_SB(mapping->host);
629 }
630
631 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
632 {
633 return F2FS_M_SB(page->mapping);
634 }
635
636 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
637 {
638 return (struct f2fs_super_block *)(sbi->raw_super);
639 }
640
641 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
642 {
643 return (struct f2fs_checkpoint *)(sbi->ckpt);
644 }
645
646 static inline struct f2fs_node *F2FS_NODE(struct page *page)
647 {
648 return (struct f2fs_node *)page_address(page);
649 }
650
651 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
652 {
653 return &((struct f2fs_node *)page_address(page))->i;
654 }
655
656 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
657 {
658 return (struct f2fs_nm_info *)(sbi->nm_info);
659 }
660
661 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
662 {
663 return (struct f2fs_sm_info *)(sbi->sm_info);
664 }
665
666 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
667 {
668 return (struct sit_info *)(SM_I(sbi)->sit_info);
669 }
670
671 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
672 {
673 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
674 }
675
676 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
677 {
678 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
679 }
680
681 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
682 {
683 return sbi->meta_inode->i_mapping;
684 }
685
686 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
687 {
688 return sbi->node_inode->i_mapping;
689 }
690
691 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
692 {
693 sbi->s_dirty = 1;
694 }
695
696 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
697 {
698 sbi->s_dirty = 0;
699 }
700
701 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
702 {
703 return le64_to_cpu(cp->checkpoint_ver);
704 }
705
706 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
707 {
708 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
709 return ckpt_flags & f;
710 }
711
712 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
713 {
714 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
715 ckpt_flags |= f;
716 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
717 }
718
719 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
720 {
721 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
722 ckpt_flags &= (~f);
723 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
724 }
725
726 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
727 {
728 down_read(&sbi->cp_rwsem);
729 }
730
731 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
732 {
733 up_read(&sbi->cp_rwsem);
734 }
735
736 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
737 {
738 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
739 }
740
741 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
742 {
743 up_write(&sbi->cp_rwsem);
744 }
745
746 /*
747 * Check whether the given nid is within node id range.
748 */
749 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
750 {
751 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
752 return -EINVAL;
753 if (unlikely(nid >= NM_I(sbi)->max_nid))
754 return -EINVAL;
755 return 0;
756 }
757
758 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
759
760 /*
761 * Check whether the inode has blocks or not
762 */
763 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
764 {
765 if (F2FS_I(inode)->i_xattr_nid)
766 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
767 else
768 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
769 }
770
771 static inline bool f2fs_has_xattr_block(unsigned int ofs)
772 {
773 return ofs == XATTR_NODE_OFFSET;
774 }
775
776 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
777 struct inode *inode, blkcnt_t count)
778 {
779 block_t valid_block_count;
780
781 spin_lock(&sbi->stat_lock);
782 valid_block_count =
783 sbi->total_valid_block_count + (block_t)count;
784 if (unlikely(valid_block_count > sbi->user_block_count)) {
785 spin_unlock(&sbi->stat_lock);
786 return false;
787 }
788 inode->i_blocks += count;
789 sbi->total_valid_block_count = valid_block_count;
790 sbi->alloc_valid_block_count += (block_t)count;
791 spin_unlock(&sbi->stat_lock);
792 return true;
793 }
794
795 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
796 struct inode *inode,
797 blkcnt_t count)
798 {
799 spin_lock(&sbi->stat_lock);
800 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
801 f2fs_bug_on(sbi, inode->i_blocks < count);
802 inode->i_blocks -= count;
803 sbi->total_valid_block_count -= (block_t)count;
804 spin_unlock(&sbi->stat_lock);
805 }
806
807 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
808 {
809 atomic_inc(&sbi->nr_pages[count_type]);
810 F2FS_SET_SB_DIRT(sbi);
811 }
812
813 static inline void inode_inc_dirty_pages(struct inode *inode)
814 {
815 atomic_inc(&F2FS_I(inode)->dirty_pages);
816 if (S_ISDIR(inode->i_mode))
817 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
818 }
819
820 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
821 {
822 atomic_dec(&sbi->nr_pages[count_type]);
823 }
824
825 static inline void inode_dec_dirty_pages(struct inode *inode)
826 {
827 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
828 return;
829
830 atomic_dec(&F2FS_I(inode)->dirty_pages);
831
832 if (S_ISDIR(inode->i_mode))
833 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
834 }
835
836 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
837 {
838 return atomic_read(&sbi->nr_pages[count_type]);
839 }
840
841 static inline int get_dirty_pages(struct inode *inode)
842 {
843 return atomic_read(&F2FS_I(inode)->dirty_pages);
844 }
845
846 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
847 {
848 unsigned int pages_per_sec = sbi->segs_per_sec *
849 (1 << sbi->log_blocks_per_seg);
850 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
851 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
852 }
853
854 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
855 {
856 return sbi->total_valid_block_count;
857 }
858
859 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
860 {
861 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
862
863 /* return NAT or SIT bitmap */
864 if (flag == NAT_BITMAP)
865 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
866 else if (flag == SIT_BITMAP)
867 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
868
869 return 0;
870 }
871
872 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
873 {
874 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
875 int offset;
876
877 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
878 if (flag == NAT_BITMAP)
879 return &ckpt->sit_nat_version_bitmap;
880 else
881 return (unsigned char *)ckpt + F2FS_BLKSIZE;
882 } else {
883 offset = (flag == NAT_BITMAP) ?
884 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
885 return &ckpt->sit_nat_version_bitmap + offset;
886 }
887 }
888
889 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
890 {
891 block_t start_addr;
892 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
893 unsigned long long ckpt_version = cur_cp_version(ckpt);
894
895 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
896
897 /*
898 * odd numbered checkpoint should at cp segment 0
899 * and even segment must be at cp segment 1
900 */
901 if (!(ckpt_version & 1))
902 start_addr += sbi->blocks_per_seg;
903
904 return start_addr;
905 }
906
907 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
908 {
909 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
910 }
911
912 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
913 struct inode *inode)
914 {
915 block_t valid_block_count;
916 unsigned int valid_node_count;
917
918 spin_lock(&sbi->stat_lock);
919
920 valid_block_count = sbi->total_valid_block_count + 1;
921 if (unlikely(valid_block_count > sbi->user_block_count)) {
922 spin_unlock(&sbi->stat_lock);
923 return false;
924 }
925
926 valid_node_count = sbi->total_valid_node_count + 1;
927 if (unlikely(valid_node_count > sbi->total_node_count)) {
928 spin_unlock(&sbi->stat_lock);
929 return false;
930 }
931
932 if (inode)
933 inode->i_blocks++;
934
935 sbi->alloc_valid_block_count++;
936 sbi->total_valid_node_count++;
937 sbi->total_valid_block_count++;
938 spin_unlock(&sbi->stat_lock);
939
940 return true;
941 }
942
943 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
944 struct inode *inode)
945 {
946 spin_lock(&sbi->stat_lock);
947
948 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
949 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
950 f2fs_bug_on(sbi, !inode->i_blocks);
951
952 inode->i_blocks--;
953 sbi->total_valid_node_count--;
954 sbi->total_valid_block_count--;
955
956 spin_unlock(&sbi->stat_lock);
957 }
958
959 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
960 {
961 return sbi->total_valid_node_count;
962 }
963
964 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
965 {
966 spin_lock(&sbi->stat_lock);
967 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
968 sbi->total_valid_inode_count++;
969 spin_unlock(&sbi->stat_lock);
970 }
971
972 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
973 {
974 spin_lock(&sbi->stat_lock);
975 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
976 sbi->total_valid_inode_count--;
977 spin_unlock(&sbi->stat_lock);
978 }
979
980 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
981 {
982 return sbi->total_valid_inode_count;
983 }
984
985 static inline void f2fs_put_page(struct page *page, int unlock)
986 {
987 if (!page)
988 return;
989
990 if (unlock) {
991 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
992 unlock_page(page);
993 }
994 page_cache_release(page);
995 }
996
997 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
998 {
999 if (dn->node_page)
1000 f2fs_put_page(dn->node_page, 1);
1001 if (dn->inode_page && dn->node_page != dn->inode_page)
1002 f2fs_put_page(dn->inode_page, 0);
1003 dn->node_page = NULL;
1004 dn->inode_page = NULL;
1005 }
1006
1007 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1008 size_t size)
1009 {
1010 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1011 }
1012
1013 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1014 gfp_t flags)
1015 {
1016 void *entry;
1017 retry:
1018 entry = kmem_cache_alloc(cachep, flags);
1019 if (!entry) {
1020 cond_resched();
1021 goto retry;
1022 }
1023
1024 return entry;
1025 }
1026
1027 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1028 unsigned long index, void *item)
1029 {
1030 while (radix_tree_insert(root, index, item))
1031 cond_resched();
1032 }
1033
1034 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1035
1036 static inline bool IS_INODE(struct page *page)
1037 {
1038 struct f2fs_node *p = F2FS_NODE(page);
1039 return RAW_IS_INODE(p);
1040 }
1041
1042 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1043 {
1044 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1045 }
1046
1047 static inline block_t datablock_addr(struct page *node_page,
1048 unsigned int offset)
1049 {
1050 struct f2fs_node *raw_node;
1051 __le32 *addr_array;
1052 raw_node = F2FS_NODE(node_page);
1053 addr_array = blkaddr_in_node(raw_node);
1054 return le32_to_cpu(addr_array[offset]);
1055 }
1056
1057 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1058 {
1059 int mask;
1060
1061 addr += (nr >> 3);
1062 mask = 1 << (7 - (nr & 0x07));
1063 return mask & *addr;
1064 }
1065
1066 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1067 {
1068 int mask;
1069 int ret;
1070
1071 addr += (nr >> 3);
1072 mask = 1 << (7 - (nr & 0x07));
1073 ret = mask & *addr;
1074 *addr |= mask;
1075 return ret;
1076 }
1077
1078 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1079 {
1080 int mask;
1081 int ret;
1082
1083 addr += (nr >> 3);
1084 mask = 1 << (7 - (nr & 0x07));
1085 ret = mask & *addr;
1086 *addr &= ~mask;
1087 return ret;
1088 }
1089
1090 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1091 {
1092 int mask;
1093
1094 addr += (nr >> 3);
1095 mask = 1 << (7 - (nr & 0x07));
1096 *addr ^= mask;
1097 }
1098
1099 /* used for f2fs_inode_info->flags */
1100 enum {
1101 FI_NEW_INODE, /* indicate newly allocated inode */
1102 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1103 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1104 FI_INC_LINK, /* need to increment i_nlink */
1105 FI_ACL_MODE, /* indicate acl mode */
1106 FI_NO_ALLOC, /* should not allocate any blocks */
1107 FI_UPDATE_DIR, /* should update inode block for consistency */
1108 FI_DELAY_IPUT, /* used for the recovery */
1109 FI_NO_EXTENT, /* not to use the extent cache */
1110 FI_INLINE_XATTR, /* used for inline xattr */
1111 FI_INLINE_DATA, /* used for inline data*/
1112 FI_INLINE_DENTRY, /* used for inline dentry */
1113 FI_APPEND_WRITE, /* inode has appended data */
1114 FI_UPDATE_WRITE, /* inode has in-place-update data */
1115 FI_NEED_IPU, /* used for ipu per file */
1116 FI_ATOMIC_FILE, /* indicate atomic file */
1117 FI_VOLATILE_FILE, /* indicate volatile file */
1118 FI_DROP_CACHE, /* drop dirty page cache */
1119 FI_DATA_EXIST, /* indicate data exists */
1120 };
1121
1122 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1123 {
1124 if (!test_bit(flag, &fi->flags))
1125 set_bit(flag, &fi->flags);
1126 }
1127
1128 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1129 {
1130 return test_bit(flag, &fi->flags);
1131 }
1132
1133 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1134 {
1135 if (test_bit(flag, &fi->flags))
1136 clear_bit(flag, &fi->flags);
1137 }
1138
1139 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1140 {
1141 fi->i_acl_mode = mode;
1142 set_inode_flag(fi, FI_ACL_MODE);
1143 }
1144
1145 static inline void get_inline_info(struct f2fs_inode_info *fi,
1146 struct f2fs_inode *ri)
1147 {
1148 if (ri->i_inline & F2FS_INLINE_XATTR)
1149 set_inode_flag(fi, FI_INLINE_XATTR);
1150 if (ri->i_inline & F2FS_INLINE_DATA)
1151 set_inode_flag(fi, FI_INLINE_DATA);
1152 if (ri->i_inline & F2FS_INLINE_DENTRY)
1153 set_inode_flag(fi, FI_INLINE_DENTRY);
1154 if (ri->i_inline & F2FS_DATA_EXIST)
1155 set_inode_flag(fi, FI_DATA_EXIST);
1156 }
1157
1158 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1159 struct f2fs_inode *ri)
1160 {
1161 ri->i_inline = 0;
1162
1163 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1164 ri->i_inline |= F2FS_INLINE_XATTR;
1165 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1166 ri->i_inline |= F2FS_INLINE_DATA;
1167 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1168 ri->i_inline |= F2FS_INLINE_DENTRY;
1169 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1170 ri->i_inline |= F2FS_DATA_EXIST;
1171 }
1172
1173 static inline int f2fs_has_inline_xattr(struct inode *inode)
1174 {
1175 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1176 }
1177
1178 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1179 {
1180 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1181 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1182 return DEF_ADDRS_PER_INODE;
1183 }
1184
1185 static inline void *inline_xattr_addr(struct page *page)
1186 {
1187 struct f2fs_inode *ri = F2FS_INODE(page);
1188 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1189 F2FS_INLINE_XATTR_ADDRS]);
1190 }
1191
1192 static inline int inline_xattr_size(struct inode *inode)
1193 {
1194 if (f2fs_has_inline_xattr(inode))
1195 return F2FS_INLINE_XATTR_ADDRS << 2;
1196 else
1197 return 0;
1198 }
1199
1200 static inline int f2fs_has_inline_data(struct inode *inode)
1201 {
1202 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1203 }
1204
1205 static inline void f2fs_clear_inline_inode(struct inode *inode)
1206 {
1207 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1208 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1209 }
1210
1211 static inline int f2fs_exist_data(struct inode *inode)
1212 {
1213 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1214 }
1215
1216 static inline bool f2fs_is_atomic_file(struct inode *inode)
1217 {
1218 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1219 }
1220
1221 static inline bool f2fs_is_volatile_file(struct inode *inode)
1222 {
1223 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1224 }
1225
1226 static inline bool f2fs_is_drop_cache(struct inode *inode)
1227 {
1228 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1229 }
1230
1231 static inline void *inline_data_addr(struct page *page)
1232 {
1233 struct f2fs_inode *ri = F2FS_INODE(page);
1234 return (void *)&(ri->i_addr[1]);
1235 }
1236
1237 static inline int f2fs_has_inline_dentry(struct inode *inode)
1238 {
1239 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1240 }
1241
1242 static inline void *inline_dentry_addr(struct page *page)
1243 {
1244 struct f2fs_inode *ri = F2FS_INODE(page);
1245 return (void *)&(ri->i_addr[1]);
1246 }
1247
1248 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1249 {
1250 if (!f2fs_has_inline_dentry(dir))
1251 kunmap(page);
1252 }
1253
1254 static inline int f2fs_readonly(struct super_block *sb)
1255 {
1256 return sb->s_flags & MS_RDONLY;
1257 }
1258
1259 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1260 {
1261 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1262 }
1263
1264 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1265 {
1266 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1267 sbi->sb->s_flags |= MS_RDONLY;
1268 }
1269
1270 #define get_inode_mode(i) \
1271 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1272 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1273
1274 /* get offset of first page in next direct node */
1275 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1276 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1277 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1278 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1279
1280 /*
1281 * file.c
1282 */
1283 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1284 void truncate_data_blocks(struct dnode_of_data *);
1285 int truncate_blocks(struct inode *, u64, bool);
1286 void f2fs_truncate(struct inode *);
1287 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1288 int f2fs_setattr(struct dentry *, struct iattr *);
1289 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1290 int truncate_data_blocks_range(struct dnode_of_data *, int);
1291 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1292 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1293
1294 /*
1295 * inode.c
1296 */
1297 void f2fs_set_inode_flags(struct inode *);
1298 struct inode *f2fs_iget(struct super_block *, unsigned long);
1299 int try_to_free_nats(struct f2fs_sb_info *, int);
1300 void update_inode(struct inode *, struct page *);
1301 void update_inode_page(struct inode *);
1302 int f2fs_write_inode(struct inode *, struct writeback_control *);
1303 void f2fs_evict_inode(struct inode *);
1304 void handle_failed_inode(struct inode *);
1305
1306 /*
1307 * namei.c
1308 */
1309 struct dentry *f2fs_get_parent(struct dentry *child);
1310
1311 /*
1312 * dir.c
1313 */
1314 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1315 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1316 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1317 struct f2fs_dentry_ptr *);
1318 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1319 unsigned int);
1320 void do_make_empty_dir(struct inode *, struct inode *,
1321 struct f2fs_dentry_ptr *);
1322 struct page *init_inode_metadata(struct inode *, struct inode *,
1323 const struct qstr *, struct page *);
1324 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1325 int room_for_filename(const void *, int, int);
1326 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1327 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1328 struct page **);
1329 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1330 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1331 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1332 struct page *, struct inode *);
1333 int update_dent_inode(struct inode *, const struct qstr *);
1334 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1335 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1336 struct inode *);
1337 int f2fs_do_tmpfile(struct inode *, struct inode *);
1338 int f2fs_make_empty(struct inode *, struct inode *);
1339 bool f2fs_empty_dir(struct inode *);
1340
1341 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1342 {
1343 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1344 inode);
1345 }
1346
1347 /*
1348 * super.c
1349 */
1350 int f2fs_sync_fs(struct super_block *, int);
1351 extern __printf(3, 4)
1352 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1353
1354 /*
1355 * hash.c
1356 */
1357 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1358
1359 /*
1360 * node.c
1361 */
1362 struct dnode_of_data;
1363 struct node_info;
1364
1365 bool available_free_memory(struct f2fs_sb_info *, int);
1366 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1367 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1368 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1369 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1370 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1371 int truncate_inode_blocks(struct inode *, pgoff_t);
1372 int truncate_xattr_node(struct inode *, struct page *);
1373 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1374 void remove_inode_page(struct inode *);
1375 struct page *new_inode_page(struct inode *);
1376 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1377 void ra_node_page(struct f2fs_sb_info *, nid_t);
1378 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1379 struct page *get_node_page_ra(struct page *, int);
1380 void sync_inode_page(struct dnode_of_data *);
1381 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1382 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1383 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1384 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1385 void recover_inline_xattr(struct inode *, struct page *);
1386 void recover_xattr_data(struct inode *, struct page *, block_t);
1387 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1388 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1389 struct f2fs_summary_block *);
1390 void flush_nat_entries(struct f2fs_sb_info *);
1391 int build_node_manager(struct f2fs_sb_info *);
1392 void destroy_node_manager(struct f2fs_sb_info *);
1393 int __init create_node_manager_caches(void);
1394 void destroy_node_manager_caches(void);
1395
1396 /*
1397 * segment.c
1398 */
1399 void register_inmem_page(struct inode *, struct page *);
1400 void invalidate_inmem_page(struct inode *, struct page *);
1401 void commit_inmem_pages(struct inode *, bool);
1402 void f2fs_balance_fs(struct f2fs_sb_info *);
1403 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1404 int f2fs_issue_flush(struct f2fs_sb_info *);
1405 int create_flush_cmd_control(struct f2fs_sb_info *);
1406 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1407 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1408 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1409 void clear_prefree_segments(struct f2fs_sb_info *);
1410 void release_discard_addrs(struct f2fs_sb_info *);
1411 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1412 int npages_for_summary_flush(struct f2fs_sb_info *);
1413 void allocate_new_segments(struct f2fs_sb_info *);
1414 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1415 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1416 void write_meta_page(struct f2fs_sb_info *, struct page *);
1417 void write_node_page(struct f2fs_sb_info *, struct page *,
1418 struct f2fs_io_info *, unsigned int, block_t, block_t *);
1419 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1420 struct f2fs_io_info *);
1421 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1422 void recover_data_page(struct f2fs_sb_info *, struct page *,
1423 struct f2fs_summary *, block_t, block_t);
1424 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1425 block_t, block_t *, struct f2fs_summary *, int);
1426 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1427 void write_data_summaries(struct f2fs_sb_info *, block_t);
1428 void write_node_summaries(struct f2fs_sb_info *, block_t);
1429 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1430 int, unsigned int, int);
1431 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1432 int build_segment_manager(struct f2fs_sb_info *);
1433 void destroy_segment_manager(struct f2fs_sb_info *);
1434 int __init create_segment_manager_caches(void);
1435 void destroy_segment_manager_caches(void);
1436
1437 /*
1438 * checkpoint.c
1439 */
1440 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1441 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1442 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1443 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1444 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1445 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1446 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1447 void release_dirty_inode(struct f2fs_sb_info *);
1448 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1449 int acquire_orphan_inode(struct f2fs_sb_info *);
1450 void release_orphan_inode(struct f2fs_sb_info *);
1451 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1452 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1453 void recover_orphan_inodes(struct f2fs_sb_info *);
1454 int get_valid_checkpoint(struct f2fs_sb_info *);
1455 void update_dirty_page(struct inode *, struct page *);
1456 void add_dirty_dir_inode(struct inode *);
1457 void remove_dirty_dir_inode(struct inode *);
1458 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1459 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1460 void init_ino_entry_info(struct f2fs_sb_info *);
1461 int __init create_checkpoint_caches(void);
1462 void destroy_checkpoint_caches(void);
1463
1464 /*
1465 * data.c
1466 */
1467 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1468 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1469 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1470 struct f2fs_io_info *);
1471 int reserve_new_block(struct dnode_of_data *);
1472 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1473 void update_extent_cache(block_t, struct dnode_of_data *);
1474 struct page *find_data_page(struct inode *, pgoff_t, bool);
1475 struct page *get_lock_data_page(struct inode *, pgoff_t);
1476 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1477 int do_write_data_page(struct page *, struct f2fs_io_info *);
1478 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1479
1480 /*
1481 * gc.c
1482 */
1483 int start_gc_thread(struct f2fs_sb_info *);
1484 void stop_gc_thread(struct f2fs_sb_info *);
1485 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1486 int f2fs_gc(struct f2fs_sb_info *);
1487 void build_gc_manager(struct f2fs_sb_info *);
1488 int __init create_gc_caches(void);
1489 void destroy_gc_caches(void);
1490
1491 /*
1492 * recovery.c
1493 */
1494 int recover_fsync_data(struct f2fs_sb_info *);
1495 bool space_for_roll_forward(struct f2fs_sb_info *);
1496
1497 /*
1498 * debug.c
1499 */
1500 #ifdef CONFIG_F2FS_STAT_FS
1501 struct f2fs_stat_info {
1502 struct list_head stat_list;
1503 struct f2fs_sb_info *sbi;
1504 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1505 int main_area_segs, main_area_sections, main_area_zones;
1506 int hit_ext, total_ext;
1507 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1508 int nats, sits, fnids;
1509 int total_count, utilization;
1510 int bg_gc, inline_inode, inline_dir, inmem_pages;
1511 unsigned int valid_count, valid_node_count, valid_inode_count;
1512 unsigned int bimodal, avg_vblocks;
1513 int util_free, util_valid, util_invalid;
1514 int rsvd_segs, overp_segs;
1515 int dirty_count, node_pages, meta_pages;
1516 int prefree_count, call_count, cp_count;
1517 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1518 int tot_blks, data_blks, node_blks;
1519 int curseg[NR_CURSEG_TYPE];
1520 int cursec[NR_CURSEG_TYPE];
1521 int curzone[NR_CURSEG_TYPE];
1522
1523 unsigned int segment_count[2];
1524 unsigned int block_count[2];
1525 unsigned base_mem, cache_mem;
1526 };
1527
1528 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1529 {
1530 return (struct f2fs_stat_info *)sbi->stat_info;
1531 }
1532
1533 #define stat_inc_cp_count(si) ((si)->cp_count++)
1534 #define stat_inc_call_count(si) ((si)->call_count++)
1535 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1536 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1537 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1538 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1539 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1540 #define stat_inc_inline_inode(inode) \
1541 do { \
1542 if (f2fs_has_inline_data(inode)) \
1543 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1544 } while (0)
1545 #define stat_dec_inline_inode(inode) \
1546 do { \
1547 if (f2fs_has_inline_data(inode)) \
1548 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1549 } while (0)
1550 #define stat_inc_inline_dir(inode) \
1551 do { \
1552 if (f2fs_has_inline_dentry(inode)) \
1553 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1554 } while (0)
1555 #define stat_dec_inline_dir(inode) \
1556 do { \
1557 if (f2fs_has_inline_dentry(inode)) \
1558 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1559 } while (0)
1560 #define stat_inc_seg_type(sbi, curseg) \
1561 ((sbi)->segment_count[(curseg)->alloc_type]++)
1562 #define stat_inc_block_count(sbi, curseg) \
1563 ((sbi)->block_count[(curseg)->alloc_type]++)
1564
1565 #define stat_inc_seg_count(sbi, type) \
1566 do { \
1567 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1568 (si)->tot_segs++; \
1569 if (type == SUM_TYPE_DATA) \
1570 si->data_segs++; \
1571 else \
1572 si->node_segs++; \
1573 } while (0)
1574
1575 #define stat_inc_tot_blk_count(si, blks) \
1576 (si->tot_blks += (blks))
1577
1578 #define stat_inc_data_blk_count(sbi, blks) \
1579 do { \
1580 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1581 stat_inc_tot_blk_count(si, blks); \
1582 si->data_blks += (blks); \
1583 } while (0)
1584
1585 #define stat_inc_node_blk_count(sbi, blks) \
1586 do { \
1587 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1588 stat_inc_tot_blk_count(si, blks); \
1589 si->node_blks += (blks); \
1590 } while (0)
1591
1592 int f2fs_build_stats(struct f2fs_sb_info *);
1593 void f2fs_destroy_stats(struct f2fs_sb_info *);
1594 void __init f2fs_create_root_stats(void);
1595 void f2fs_destroy_root_stats(void);
1596 #else
1597 #define stat_inc_cp_count(si)
1598 #define stat_inc_call_count(si)
1599 #define stat_inc_bggc_count(si)
1600 #define stat_inc_dirty_dir(sbi)
1601 #define stat_dec_dirty_dir(sbi)
1602 #define stat_inc_total_hit(sb)
1603 #define stat_inc_read_hit(sb)
1604 #define stat_inc_inline_inode(inode)
1605 #define stat_dec_inline_inode(inode)
1606 #define stat_inc_inline_dir(inode)
1607 #define stat_dec_inline_dir(inode)
1608 #define stat_inc_seg_type(sbi, curseg)
1609 #define stat_inc_block_count(sbi, curseg)
1610 #define stat_inc_seg_count(si, type)
1611 #define stat_inc_tot_blk_count(si, blks)
1612 #define stat_inc_data_blk_count(si, blks)
1613 #define stat_inc_node_blk_count(sbi, blks)
1614
1615 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1616 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1617 static inline void __init f2fs_create_root_stats(void) { }
1618 static inline void f2fs_destroy_root_stats(void) { }
1619 #endif
1620
1621 extern const struct file_operations f2fs_dir_operations;
1622 extern const struct file_operations f2fs_file_operations;
1623 extern const struct inode_operations f2fs_file_inode_operations;
1624 extern const struct address_space_operations f2fs_dblock_aops;
1625 extern const struct address_space_operations f2fs_node_aops;
1626 extern const struct address_space_operations f2fs_meta_aops;
1627 extern const struct inode_operations f2fs_dir_inode_operations;
1628 extern const struct inode_operations f2fs_symlink_inode_operations;
1629 extern const struct inode_operations f2fs_special_inode_operations;
1630
1631 /*
1632 * inline.c
1633 */
1634 bool f2fs_may_inline(struct inode *);
1635 void read_inline_data(struct page *, struct page *);
1636 int f2fs_read_inline_data(struct inode *, struct page *);
1637 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1638 int f2fs_convert_inline_inode(struct inode *);
1639 int f2fs_write_inline_data(struct inode *, struct page *);
1640 void truncate_inline_data(struct page *, u64);
1641 bool recover_inline_data(struct inode *, struct page *);
1642 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1643 struct page **);
1644 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1645 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1646 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1647 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1648 struct inode *, struct inode *);
1649 bool f2fs_empty_inline_dir(struct inode *);
1650 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1651 #endif
This page took 0.191652 seconds and 6 git commands to generate.