f2fs: call mark_inode_dirty_sync for i_field changes
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 struct f2fs_fault_info {
52 atomic_t inject_ops;
53 unsigned int inject_rate;
54 unsigned int inject_type;
55 };
56
57 extern struct f2fs_fault_info f2fs_fault;
58 extern char *fault_name[FAULT_MAX];
59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
60
61 static inline bool time_to_inject(int type)
62 {
63 if (!f2fs_fault.inject_rate)
64 return false;
65 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
66 return false;
67 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
68 return false;
69 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
70 return false;
71 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
72 return false;
73 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
74 return false;
75 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
76 return false;
77
78 atomic_inc(&f2fs_fault.inject_ops);
79 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
80 atomic_set(&f2fs_fault.inject_ops, 0);
81 printk("%sF2FS-fs : inject %s in %pF\n",
82 KERN_INFO,
83 fault_name[type],
84 __builtin_return_address(0));
85 return true;
86 }
87 return false;
88 }
89 #endif
90
91 /*
92 * For mount options
93 */
94 #define F2FS_MOUNT_BG_GC 0x00000001
95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
96 #define F2FS_MOUNT_DISCARD 0x00000004
97 #define F2FS_MOUNT_NOHEAP 0x00000008
98 #define F2FS_MOUNT_XATTR_USER 0x00000010
99 #define F2FS_MOUNT_POSIX_ACL 0x00000020
100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
101 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
102 #define F2FS_MOUNT_INLINE_DATA 0x00000100
103 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
104 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
105 #define F2FS_MOUNT_NOBARRIER 0x00000800
106 #define F2FS_MOUNT_FASTBOOT 0x00001000
107 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
108 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
109 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
110 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
111
112 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
115
116 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
117 typecheck(unsigned long long, b) && \
118 ((long long)((a) - (b)) > 0))
119
120 typedef u32 block_t; /*
121 * should not change u32, since it is the on-disk block
122 * address format, __le32.
123 */
124 typedef u32 nid_t;
125
126 struct f2fs_mount_info {
127 unsigned int opt;
128 };
129
130 #define F2FS_FEATURE_ENCRYPT 0x0001
131
132 #define F2FS_HAS_FEATURE(sb, mask) \
133 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
134 #define F2FS_SET_FEATURE(sb, mask) \
135 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
136 #define F2FS_CLEAR_FEATURE(sb, mask) \
137 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
138
139 /*
140 * For checkpoint manager
141 */
142 enum {
143 NAT_BITMAP,
144 SIT_BITMAP
145 };
146
147 enum {
148 CP_UMOUNT,
149 CP_FASTBOOT,
150 CP_SYNC,
151 CP_RECOVERY,
152 CP_DISCARD,
153 };
154
155 #define DEF_BATCHED_TRIM_SECTIONS 32
156 #define BATCHED_TRIM_SEGMENTS(sbi) \
157 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
158 #define BATCHED_TRIM_BLOCKS(sbi) \
159 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
160 #define DEF_CP_INTERVAL 60 /* 60 secs */
161 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
162
163 struct cp_control {
164 int reason;
165 __u64 trim_start;
166 __u64 trim_end;
167 __u64 trim_minlen;
168 __u64 trimmed;
169 };
170
171 /*
172 * For CP/NAT/SIT/SSA readahead
173 */
174 enum {
175 META_CP,
176 META_NAT,
177 META_SIT,
178 META_SSA,
179 META_POR,
180 };
181
182 /* for the list of ino */
183 enum {
184 ORPHAN_INO, /* for orphan ino list */
185 APPEND_INO, /* for append ino list */
186 UPDATE_INO, /* for update ino list */
187 MAX_INO_ENTRY, /* max. list */
188 };
189
190 struct ino_entry {
191 struct list_head list; /* list head */
192 nid_t ino; /* inode number */
193 };
194
195 /* for the list of inodes to be GCed */
196 struct inode_entry {
197 struct list_head list; /* list head */
198 struct inode *inode; /* vfs inode pointer */
199 };
200
201 /* for the list of blockaddresses to be discarded */
202 struct discard_entry {
203 struct list_head list; /* list head */
204 block_t blkaddr; /* block address to be discarded */
205 int len; /* # of consecutive blocks of the discard */
206 };
207
208 /* for the list of fsync inodes, used only during recovery */
209 struct fsync_inode_entry {
210 struct list_head list; /* list head */
211 struct inode *inode; /* vfs inode pointer */
212 block_t blkaddr; /* block address locating the last fsync */
213 block_t last_dentry; /* block address locating the last dentry */
214 };
215
216 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
217 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
218
219 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
220 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
221 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
222 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
223
224 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
225 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
226
227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
228 {
229 int before = nats_in_cursum(journal);
230 journal->n_nats = cpu_to_le16(before + i);
231 return before;
232 }
233
234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
235 {
236 int before = sits_in_cursum(journal);
237 journal->n_sits = cpu_to_le16(before + i);
238 return before;
239 }
240
241 static inline bool __has_cursum_space(struct f2fs_journal *journal,
242 int size, int type)
243 {
244 if (type == NAT_JOURNAL)
245 return size <= MAX_NAT_JENTRIES(journal);
246 return size <= MAX_SIT_JENTRIES(journal);
247 }
248
249 /*
250 * ioctl commands
251 */
252 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
253 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
254 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
255
256 #define F2FS_IOCTL_MAGIC 0xf5
257 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
259 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
261 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
262 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
263 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
264 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
265
266 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
267 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
269
270 /*
271 * should be same as XFS_IOC_GOINGDOWN.
272 * Flags for going down operation used by FS_IOC_GOINGDOWN
273 */
274 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
275 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
276 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
277 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
278 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
279
280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
281 /*
282 * ioctl commands in 32 bit emulation
283 */
284 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
285 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
286 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
287 #endif
288
289 struct f2fs_defragment {
290 u64 start;
291 u64 len;
292 };
293
294 /*
295 * For INODE and NODE manager
296 */
297 /* for directory operations */
298 struct f2fs_dentry_ptr {
299 struct inode *inode;
300 const void *bitmap;
301 struct f2fs_dir_entry *dentry;
302 __u8 (*filename)[F2FS_SLOT_LEN];
303 int max;
304 };
305
306 static inline void make_dentry_ptr(struct inode *inode,
307 struct f2fs_dentry_ptr *d, void *src, int type)
308 {
309 d->inode = inode;
310
311 if (type == 1) {
312 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
313 d->max = NR_DENTRY_IN_BLOCK;
314 d->bitmap = &t->dentry_bitmap;
315 d->dentry = t->dentry;
316 d->filename = t->filename;
317 } else {
318 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
319 d->max = NR_INLINE_DENTRY;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 }
324 }
325
326 /*
327 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
328 * as its node offset to distinguish from index node blocks.
329 * But some bits are used to mark the node block.
330 */
331 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
332 >> OFFSET_BIT_SHIFT)
333 enum {
334 ALLOC_NODE, /* allocate a new node page if needed */
335 LOOKUP_NODE, /* look up a node without readahead */
336 LOOKUP_NODE_RA, /*
337 * look up a node with readahead called
338 * by get_data_block.
339 */
340 };
341
342 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
343
344 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
345
346 /* vector size for gang look-up from extent cache that consists of radix tree */
347 #define EXT_TREE_VEC_SIZE 64
348
349 /* for in-memory extent cache entry */
350 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
351
352 /* number of extent info in extent cache we try to shrink */
353 #define EXTENT_CACHE_SHRINK_NUMBER 128
354
355 struct extent_info {
356 unsigned int fofs; /* start offset in a file */
357 u32 blk; /* start block address of the extent */
358 unsigned int len; /* length of the extent */
359 };
360
361 struct extent_node {
362 struct rb_node rb_node; /* rb node located in rb-tree */
363 struct list_head list; /* node in global extent list of sbi */
364 struct extent_info ei; /* extent info */
365 struct extent_tree *et; /* extent tree pointer */
366 };
367
368 struct extent_tree {
369 nid_t ino; /* inode number */
370 struct rb_root root; /* root of extent info rb-tree */
371 struct extent_node *cached_en; /* recently accessed extent node */
372 struct extent_info largest; /* largested extent info */
373 struct list_head list; /* to be used by sbi->zombie_list */
374 rwlock_t lock; /* protect extent info rb-tree */
375 atomic_t node_cnt; /* # of extent node in rb-tree*/
376 };
377
378 /*
379 * This structure is taken from ext4_map_blocks.
380 *
381 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
382 */
383 #define F2FS_MAP_NEW (1 << BH_New)
384 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
385 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
386 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
387 F2FS_MAP_UNWRITTEN)
388
389 struct f2fs_map_blocks {
390 block_t m_pblk;
391 block_t m_lblk;
392 unsigned int m_len;
393 unsigned int m_flags;
394 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
395 };
396
397 /* for flag in get_data_block */
398 #define F2FS_GET_BLOCK_READ 0
399 #define F2FS_GET_BLOCK_DIO 1
400 #define F2FS_GET_BLOCK_FIEMAP 2
401 #define F2FS_GET_BLOCK_BMAP 3
402 #define F2FS_GET_BLOCK_PRE_DIO 4
403 #define F2FS_GET_BLOCK_PRE_AIO 5
404
405 /*
406 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
407 */
408 #define FADVISE_COLD_BIT 0x01
409 #define FADVISE_LOST_PINO_BIT 0x02
410 #define FADVISE_ENCRYPT_BIT 0x04
411 #define FADVISE_ENC_NAME_BIT 0x08
412
413 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
414 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
415 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
416 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
417 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
418 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
419 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
420 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
422 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 struct percpu_counter dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444
445 struct list_head dirty_list; /* linked in global dirty list */
446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
447 struct mutex inmem_lock; /* lock for inmemory pages */
448 struct extent_tree *extent_tree; /* cached extent_tree entry */
449 };
450
451 static inline void get_extent_info(struct extent_info *ext,
452 struct f2fs_extent *i_ext)
453 {
454 ext->fofs = le32_to_cpu(i_ext->fofs);
455 ext->blk = le32_to_cpu(i_ext->blk);
456 ext->len = le32_to_cpu(i_ext->len);
457 }
458
459 static inline void set_raw_extent(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 i_ext->fofs = cpu_to_le32(ext->fofs);
463 i_ext->blk = cpu_to_le32(ext->blk);
464 i_ext->len = cpu_to_le32(ext->len);
465 }
466
467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
468 u32 blk, unsigned int len)
469 {
470 ei->fofs = fofs;
471 ei->blk = blk;
472 ei->len = len;
473 }
474
475 static inline bool __is_extent_same(struct extent_info *ei1,
476 struct extent_info *ei2)
477 {
478 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
479 ei1->len == ei2->len);
480 }
481
482 static inline bool __is_extent_mergeable(struct extent_info *back,
483 struct extent_info *front)
484 {
485 return (back->fofs + back->len == front->fofs &&
486 back->blk + back->len == front->blk);
487 }
488
489 static inline bool __is_back_mergeable(struct extent_info *cur,
490 struct extent_info *back)
491 {
492 return __is_extent_mergeable(back, cur);
493 }
494
495 static inline bool __is_front_mergeable(struct extent_info *cur,
496 struct extent_info *front)
497 {
498 return __is_extent_mergeable(cur, front);
499 }
500
501 static inline void __try_update_largest_extent(struct inode *inode,
502 struct extent_tree *et, struct extent_node *en)
503 {
504 if (en->ei.len > et->largest.len) {
505 et->largest = en->ei;
506 mark_inode_dirty_sync(inode);
507 }
508 }
509
510 struct f2fs_nm_info {
511 block_t nat_blkaddr; /* base disk address of NAT */
512 nid_t max_nid; /* maximum possible node ids */
513 nid_t available_nids; /* maximum available node ids */
514 nid_t next_scan_nid; /* the next nid to be scanned */
515 unsigned int ram_thresh; /* control the memory footprint */
516 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
517 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
518
519 /* NAT cache management */
520 struct radix_tree_root nat_root;/* root of the nat entry cache */
521 struct radix_tree_root nat_set_root;/* root of the nat set cache */
522 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
523 struct list_head nat_entries; /* cached nat entry list (clean) */
524 unsigned int nat_cnt; /* the # of cached nat entries */
525 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
526
527 /* free node ids management */
528 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
529 struct list_head free_nid_list; /* a list for free nids */
530 spinlock_t free_nid_list_lock; /* protect free nid list */
531 unsigned int fcnt; /* the number of free node id */
532 struct mutex build_lock; /* lock for build free nids */
533
534 /* for checkpoint */
535 char *nat_bitmap; /* NAT bitmap pointer */
536 int bitmap_size; /* bitmap size */
537 };
538
539 /*
540 * this structure is used as one of function parameters.
541 * all the information are dedicated to a given direct node block determined
542 * by the data offset in a file.
543 */
544 struct dnode_of_data {
545 struct inode *inode; /* vfs inode pointer */
546 struct page *inode_page; /* its inode page, NULL is possible */
547 struct page *node_page; /* cached direct node page */
548 nid_t nid; /* node id of the direct node block */
549 unsigned int ofs_in_node; /* data offset in the node page */
550 bool inode_page_locked; /* inode page is locked or not */
551 bool node_changed; /* is node block changed */
552 char cur_level; /* level of hole node page */
553 char max_level; /* level of current page located */
554 block_t data_blkaddr; /* block address of the node block */
555 };
556
557 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
558 struct page *ipage, struct page *npage, nid_t nid)
559 {
560 memset(dn, 0, sizeof(*dn));
561 dn->inode = inode;
562 dn->inode_page = ipage;
563 dn->node_page = npage;
564 dn->nid = nid;
565 }
566
567 /*
568 * For SIT manager
569 *
570 * By default, there are 6 active log areas across the whole main area.
571 * When considering hot and cold data separation to reduce cleaning overhead,
572 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
573 * respectively.
574 * In the current design, you should not change the numbers intentionally.
575 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
576 * logs individually according to the underlying devices. (default: 6)
577 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
578 * data and 8 for node logs.
579 */
580 #define NR_CURSEG_DATA_TYPE (3)
581 #define NR_CURSEG_NODE_TYPE (3)
582 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
583
584 enum {
585 CURSEG_HOT_DATA = 0, /* directory entry blocks */
586 CURSEG_WARM_DATA, /* data blocks */
587 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
588 CURSEG_HOT_NODE, /* direct node blocks of directory files */
589 CURSEG_WARM_NODE, /* direct node blocks of normal files */
590 CURSEG_COLD_NODE, /* indirect node blocks */
591 NO_CHECK_TYPE,
592 CURSEG_DIRECT_IO, /* to use for the direct IO path */
593 };
594
595 struct flush_cmd {
596 struct completion wait;
597 struct llist_node llnode;
598 int ret;
599 };
600
601 struct flush_cmd_control {
602 struct task_struct *f2fs_issue_flush; /* flush thread */
603 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
604 struct llist_head issue_list; /* list for command issue */
605 struct llist_node *dispatch_list; /* list for command dispatch */
606 };
607
608 struct f2fs_sm_info {
609 struct sit_info *sit_info; /* whole segment information */
610 struct free_segmap_info *free_info; /* free segment information */
611 struct dirty_seglist_info *dirty_info; /* dirty segment information */
612 struct curseg_info *curseg_array; /* active segment information */
613
614 block_t seg0_blkaddr; /* block address of 0'th segment */
615 block_t main_blkaddr; /* start block address of main area */
616 block_t ssa_blkaddr; /* start block address of SSA area */
617
618 unsigned int segment_count; /* total # of segments */
619 unsigned int main_segments; /* # of segments in main area */
620 unsigned int reserved_segments; /* # of reserved segments */
621 unsigned int ovp_segments; /* # of overprovision segments */
622
623 /* a threshold to reclaim prefree segments */
624 unsigned int rec_prefree_segments;
625
626 /* for small discard management */
627 struct list_head discard_list; /* 4KB discard list */
628 int nr_discards; /* # of discards in the list */
629 int max_discards; /* max. discards to be issued */
630
631 /* for batched trimming */
632 unsigned int trim_sections; /* # of sections to trim */
633
634 struct list_head sit_entry_set; /* sit entry set list */
635
636 unsigned int ipu_policy; /* in-place-update policy */
637 unsigned int min_ipu_util; /* in-place-update threshold */
638 unsigned int min_fsync_blocks; /* threshold for fsync */
639
640 /* for flush command control */
641 struct flush_cmd_control *cmd_control_info;
642
643 };
644
645 /*
646 * For superblock
647 */
648 /*
649 * COUNT_TYPE for monitoring
650 *
651 * f2fs monitors the number of several block types such as on-writeback,
652 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
653 */
654 enum count_type {
655 F2FS_DIRTY_DENTS,
656 F2FS_DIRTY_DATA,
657 F2FS_DIRTY_NODES,
658 F2FS_DIRTY_META,
659 F2FS_INMEM_PAGES,
660 NR_COUNT_TYPE,
661 };
662
663 /*
664 * The below are the page types of bios used in submit_bio().
665 * The available types are:
666 * DATA User data pages. It operates as async mode.
667 * NODE Node pages. It operates as async mode.
668 * META FS metadata pages such as SIT, NAT, CP.
669 * NR_PAGE_TYPE The number of page types.
670 * META_FLUSH Make sure the previous pages are written
671 * with waiting the bio's completion
672 * ... Only can be used with META.
673 */
674 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
675 enum page_type {
676 DATA,
677 NODE,
678 META,
679 NR_PAGE_TYPE,
680 META_FLUSH,
681 INMEM, /* the below types are used by tracepoints only. */
682 INMEM_DROP,
683 INMEM_REVOKE,
684 IPU,
685 OPU,
686 };
687
688 struct f2fs_io_info {
689 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
690 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
691 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
692 block_t new_blkaddr; /* new block address to be written */
693 block_t old_blkaddr; /* old block address before Cow */
694 struct page *page; /* page to be written */
695 struct page *encrypted_page; /* encrypted page */
696 };
697
698 #define is_read_io(rw) (((rw) & 1) == READ)
699 struct f2fs_bio_info {
700 struct f2fs_sb_info *sbi; /* f2fs superblock */
701 struct bio *bio; /* bios to merge */
702 sector_t last_block_in_bio; /* last block number */
703 struct f2fs_io_info fio; /* store buffered io info. */
704 struct rw_semaphore io_rwsem; /* blocking op for bio */
705 };
706
707 enum inode_type {
708 DIR_INODE, /* for dirty dir inode */
709 FILE_INODE, /* for dirty regular/symlink inode */
710 NR_INODE_TYPE,
711 };
712
713 /* for inner inode cache management */
714 struct inode_management {
715 struct radix_tree_root ino_root; /* ino entry array */
716 spinlock_t ino_lock; /* for ino entry lock */
717 struct list_head ino_list; /* inode list head */
718 unsigned long ino_num; /* number of entries */
719 };
720
721 /* For s_flag in struct f2fs_sb_info */
722 enum {
723 SBI_IS_DIRTY, /* dirty flag for checkpoint */
724 SBI_IS_CLOSE, /* specify unmounting */
725 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
726 SBI_POR_DOING, /* recovery is doing or not */
727 SBI_NEED_SB_WRITE, /* need to recover superblock */
728 };
729
730 enum {
731 CP_TIME,
732 REQ_TIME,
733 MAX_TIME,
734 };
735
736 #ifdef CONFIG_F2FS_FS_ENCRYPTION
737 #define F2FS_KEY_DESC_PREFIX "f2fs:"
738 #define F2FS_KEY_DESC_PREFIX_SIZE 5
739 #endif
740 struct f2fs_sb_info {
741 struct super_block *sb; /* pointer to VFS super block */
742 struct proc_dir_entry *s_proc; /* proc entry */
743 struct f2fs_super_block *raw_super; /* raw super block pointer */
744 int valid_super_block; /* valid super block no */
745 int s_flag; /* flags for sbi */
746
747 #ifdef CONFIG_F2FS_FS_ENCRYPTION
748 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
749 u8 key_prefix_size;
750 #endif
751 /* for node-related operations */
752 struct f2fs_nm_info *nm_info; /* node manager */
753 struct inode *node_inode; /* cache node blocks */
754
755 /* for segment-related operations */
756 struct f2fs_sm_info *sm_info; /* segment manager */
757
758 /* for bio operations */
759 struct f2fs_bio_info read_io; /* for read bios */
760 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
761
762 /* for checkpoint */
763 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
764 struct inode *meta_inode; /* cache meta blocks */
765 struct mutex cp_mutex; /* checkpoint procedure lock */
766 struct rw_semaphore cp_rwsem; /* blocking FS operations */
767 struct rw_semaphore node_write; /* locking node writes */
768 struct mutex writepages; /* mutex for writepages() */
769 wait_queue_head_t cp_wait;
770 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
771 long interval_time[MAX_TIME]; /* to store thresholds */
772
773 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
774
775 /* for orphan inode, use 0'th array */
776 unsigned int max_orphans; /* max orphan inodes */
777
778 /* for inode management */
779 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
780 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
781
782 /* for extent tree cache */
783 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
784 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
785 struct list_head extent_list; /* lru list for shrinker */
786 spinlock_t extent_lock; /* locking extent lru list */
787 atomic_t total_ext_tree; /* extent tree count */
788 struct list_head zombie_list; /* extent zombie tree list */
789 atomic_t total_zombie_tree; /* extent zombie tree count */
790 atomic_t total_ext_node; /* extent info count */
791
792 /* basic filesystem units */
793 unsigned int log_sectors_per_block; /* log2 sectors per block */
794 unsigned int log_blocksize; /* log2 block size */
795 unsigned int blocksize; /* block size */
796 unsigned int root_ino_num; /* root inode number*/
797 unsigned int node_ino_num; /* node inode number*/
798 unsigned int meta_ino_num; /* meta inode number*/
799 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
800 unsigned int blocks_per_seg; /* blocks per segment */
801 unsigned int segs_per_sec; /* segments per section */
802 unsigned int secs_per_zone; /* sections per zone */
803 unsigned int total_sections; /* total section count */
804 unsigned int total_node_count; /* total node block count */
805 unsigned int total_valid_node_count; /* valid node block count */
806 loff_t max_file_blocks; /* max block index of file */
807 int active_logs; /* # of active logs */
808 int dir_level; /* directory level */
809
810 block_t user_block_count; /* # of user blocks */
811 block_t total_valid_block_count; /* # of valid blocks */
812 block_t discard_blks; /* discard command candidats */
813 block_t last_valid_block_count; /* for recovery */
814 u32 s_next_generation; /* for NFS support */
815 atomic_t nr_wb_bios; /* # of writeback bios */
816
817 /* # of pages, see count_type */
818 struct percpu_counter nr_pages[NR_COUNT_TYPE];
819 /* # of allocated blocks */
820 struct percpu_counter alloc_valid_block_count;
821
822 /* valid inode count */
823 struct percpu_counter total_valid_inode_count;
824
825 struct f2fs_mount_info mount_opt; /* mount options */
826
827 /* for cleaning operations */
828 struct mutex gc_mutex; /* mutex for GC */
829 struct f2fs_gc_kthread *gc_thread; /* GC thread */
830 unsigned int cur_victim_sec; /* current victim section num */
831
832 /* maximum # of trials to find a victim segment for SSR and GC */
833 unsigned int max_victim_search;
834
835 /*
836 * for stat information.
837 * one is for the LFS mode, and the other is for the SSR mode.
838 */
839 #ifdef CONFIG_F2FS_STAT_FS
840 struct f2fs_stat_info *stat_info; /* FS status information */
841 unsigned int segment_count[2]; /* # of allocated segments */
842 unsigned int block_count[2]; /* # of allocated blocks */
843 atomic_t inplace_count; /* # of inplace update */
844 atomic64_t total_hit_ext; /* # of lookup extent cache */
845 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
846 atomic64_t read_hit_largest; /* # of hit largest extent node */
847 atomic64_t read_hit_cached; /* # of hit cached extent node */
848 atomic_t inline_xattr; /* # of inline_xattr inodes */
849 atomic_t inline_inode; /* # of inline_data inodes */
850 atomic_t inline_dir; /* # of inline_dentry inodes */
851 int bg_gc; /* background gc calls */
852 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
853 #endif
854 unsigned int last_victim[2]; /* last victim segment # */
855 spinlock_t stat_lock; /* lock for stat operations */
856
857 /* For sysfs suppport */
858 struct kobject s_kobj;
859 struct completion s_kobj_unregister;
860
861 /* For shrinker support */
862 struct list_head s_list;
863 struct mutex umount_mutex;
864 unsigned int shrinker_run_no;
865
866 /* For write statistics */
867 u64 sectors_written_start;
868 u64 kbytes_written;
869
870 /* Reference to checksum algorithm driver via cryptoapi */
871 struct crypto_shash *s_chksum_driver;
872 };
873
874 /* For write statistics. Suppose sector size is 512 bytes,
875 * and the return value is in kbytes. s is of struct f2fs_sb_info.
876 */
877 #define BD_PART_WRITTEN(s) \
878 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
879 s->sectors_written_start) >> 1)
880
881 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
882 {
883 sbi->last_time[type] = jiffies;
884 }
885
886 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
887 {
888 struct timespec ts = {sbi->interval_time[type], 0};
889 unsigned long interval = timespec_to_jiffies(&ts);
890
891 return time_after(jiffies, sbi->last_time[type] + interval);
892 }
893
894 static inline bool is_idle(struct f2fs_sb_info *sbi)
895 {
896 struct block_device *bdev = sbi->sb->s_bdev;
897 struct request_queue *q = bdev_get_queue(bdev);
898 struct request_list *rl = &q->root_rl;
899
900 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
901 return 0;
902
903 return f2fs_time_over(sbi, REQ_TIME);
904 }
905
906 /*
907 * Inline functions
908 */
909 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
910 unsigned int length)
911 {
912 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
913 u32 *ctx = (u32 *)shash_desc_ctx(shash);
914 int err;
915
916 shash->tfm = sbi->s_chksum_driver;
917 shash->flags = 0;
918 *ctx = F2FS_SUPER_MAGIC;
919
920 err = crypto_shash_update(shash, address, length);
921 BUG_ON(err);
922
923 return *ctx;
924 }
925
926 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
927 void *buf, size_t buf_size)
928 {
929 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
930 }
931
932 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
933 {
934 return container_of(inode, struct f2fs_inode_info, vfs_inode);
935 }
936
937 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
938 {
939 return sb->s_fs_info;
940 }
941
942 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
943 {
944 return F2FS_SB(inode->i_sb);
945 }
946
947 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
948 {
949 return F2FS_I_SB(mapping->host);
950 }
951
952 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
953 {
954 return F2FS_M_SB(page->mapping);
955 }
956
957 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
958 {
959 return (struct f2fs_super_block *)(sbi->raw_super);
960 }
961
962 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
963 {
964 return (struct f2fs_checkpoint *)(sbi->ckpt);
965 }
966
967 static inline struct f2fs_node *F2FS_NODE(struct page *page)
968 {
969 return (struct f2fs_node *)page_address(page);
970 }
971
972 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
973 {
974 return &((struct f2fs_node *)page_address(page))->i;
975 }
976
977 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
978 {
979 return (struct f2fs_nm_info *)(sbi->nm_info);
980 }
981
982 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
983 {
984 return (struct f2fs_sm_info *)(sbi->sm_info);
985 }
986
987 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
988 {
989 return (struct sit_info *)(SM_I(sbi)->sit_info);
990 }
991
992 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
993 {
994 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
995 }
996
997 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
998 {
999 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1000 }
1001
1002 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1003 {
1004 return sbi->meta_inode->i_mapping;
1005 }
1006
1007 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1008 {
1009 return sbi->node_inode->i_mapping;
1010 }
1011
1012 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1013 {
1014 return sbi->s_flag & (0x01 << type);
1015 }
1016
1017 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1018 {
1019 sbi->s_flag |= (0x01 << type);
1020 }
1021
1022 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1023 {
1024 sbi->s_flag &= ~(0x01 << type);
1025 }
1026
1027 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1028 {
1029 return le64_to_cpu(cp->checkpoint_ver);
1030 }
1031
1032 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1033 {
1034 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1035 return ckpt_flags & f;
1036 }
1037
1038 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1039 {
1040 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1041 ckpt_flags |= f;
1042 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1043 }
1044
1045 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1046 {
1047 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1048 ckpt_flags &= (~f);
1049 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1050 }
1051
1052 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1053 {
1054 down_read(&sbi->cp_rwsem);
1055 }
1056
1057 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1058 {
1059 up_read(&sbi->cp_rwsem);
1060 }
1061
1062 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1063 {
1064 down_write(&sbi->cp_rwsem);
1065 }
1066
1067 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1068 {
1069 up_write(&sbi->cp_rwsem);
1070 }
1071
1072 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1073 {
1074 int reason = CP_SYNC;
1075
1076 if (test_opt(sbi, FASTBOOT))
1077 reason = CP_FASTBOOT;
1078 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1079 reason = CP_UMOUNT;
1080 return reason;
1081 }
1082
1083 static inline bool __remain_node_summaries(int reason)
1084 {
1085 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1086 }
1087
1088 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1089 {
1090 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1091 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1092 }
1093
1094 /*
1095 * Check whether the given nid is within node id range.
1096 */
1097 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1098 {
1099 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1100 return -EINVAL;
1101 if (unlikely(nid >= NM_I(sbi)->max_nid))
1102 return -EINVAL;
1103 return 0;
1104 }
1105
1106 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1107
1108 /*
1109 * Check whether the inode has blocks or not
1110 */
1111 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1112 {
1113 if (F2FS_I(inode)->i_xattr_nid)
1114 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1115 else
1116 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1117 }
1118
1119 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1120 {
1121 return ofs == XATTR_NODE_OFFSET;
1122 }
1123
1124 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1125 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1126 struct inode *inode, blkcnt_t *count)
1127 {
1128 block_t valid_block_count;
1129
1130 spin_lock(&sbi->stat_lock);
1131 #ifdef CONFIG_F2FS_FAULT_INJECTION
1132 if (time_to_inject(FAULT_BLOCK)) {
1133 spin_unlock(&sbi->stat_lock);
1134 return false;
1135 }
1136 #endif
1137 valid_block_count =
1138 sbi->total_valid_block_count + (block_t)(*count);
1139 if (unlikely(valid_block_count > sbi->user_block_count)) {
1140 *count = sbi->user_block_count - sbi->total_valid_block_count;
1141 if (!*count) {
1142 spin_unlock(&sbi->stat_lock);
1143 return false;
1144 }
1145 }
1146 /* *count can be recalculated */
1147 f2fs_i_blocks_write(inode, *count, true);
1148 sbi->total_valid_block_count =
1149 sbi->total_valid_block_count + (block_t)(*count);
1150 spin_unlock(&sbi->stat_lock);
1151
1152 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1153 return true;
1154 }
1155
1156 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1157 struct inode *inode,
1158 blkcnt_t count)
1159 {
1160 spin_lock(&sbi->stat_lock);
1161 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1162 f2fs_bug_on(sbi, inode->i_blocks < count);
1163 f2fs_i_blocks_write(inode, count, false);
1164 sbi->total_valid_block_count -= (block_t)count;
1165 spin_unlock(&sbi->stat_lock);
1166 }
1167
1168 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1169 {
1170 percpu_counter_inc(&sbi->nr_pages[count_type]);
1171 set_sbi_flag(sbi, SBI_IS_DIRTY);
1172 }
1173
1174 static inline void inode_inc_dirty_pages(struct inode *inode)
1175 {
1176 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1177 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1178 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1179 }
1180
1181 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1182 {
1183 percpu_counter_dec(&sbi->nr_pages[count_type]);
1184 }
1185
1186 static inline void inode_dec_dirty_pages(struct inode *inode)
1187 {
1188 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1189 !S_ISLNK(inode->i_mode))
1190 return;
1191
1192 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1193 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1194 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1195 }
1196
1197 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1198 {
1199 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1200 }
1201
1202 static inline s64 get_dirty_pages(struct inode *inode)
1203 {
1204 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1205 }
1206
1207 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1208 {
1209 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1210 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1211 sbi->log_blocks_per_seg;
1212
1213 return segs / sbi->segs_per_sec;
1214 }
1215
1216 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1217 {
1218 return sbi->total_valid_block_count;
1219 }
1220
1221 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1222 {
1223 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1224
1225 /* return NAT or SIT bitmap */
1226 if (flag == NAT_BITMAP)
1227 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1228 else if (flag == SIT_BITMAP)
1229 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1230
1231 return 0;
1232 }
1233
1234 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1235 {
1236 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1237 }
1238
1239 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1240 {
1241 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1242 int offset;
1243
1244 if (__cp_payload(sbi) > 0) {
1245 if (flag == NAT_BITMAP)
1246 return &ckpt->sit_nat_version_bitmap;
1247 else
1248 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1249 } else {
1250 offset = (flag == NAT_BITMAP) ?
1251 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1252 return &ckpt->sit_nat_version_bitmap + offset;
1253 }
1254 }
1255
1256 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1257 {
1258 block_t start_addr;
1259 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1260 unsigned long long ckpt_version = cur_cp_version(ckpt);
1261
1262 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1263
1264 /*
1265 * odd numbered checkpoint should at cp segment 0
1266 * and even segment must be at cp segment 1
1267 */
1268 if (!(ckpt_version & 1))
1269 start_addr += sbi->blocks_per_seg;
1270
1271 return start_addr;
1272 }
1273
1274 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1275 {
1276 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1277 }
1278
1279 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1280 struct inode *inode)
1281 {
1282 block_t valid_block_count;
1283 unsigned int valid_node_count;
1284
1285 spin_lock(&sbi->stat_lock);
1286
1287 valid_block_count = sbi->total_valid_block_count + 1;
1288 if (unlikely(valid_block_count > sbi->user_block_count)) {
1289 spin_unlock(&sbi->stat_lock);
1290 return false;
1291 }
1292
1293 valid_node_count = sbi->total_valid_node_count + 1;
1294 if (unlikely(valid_node_count > sbi->total_node_count)) {
1295 spin_unlock(&sbi->stat_lock);
1296 return false;
1297 }
1298
1299 if (inode)
1300 f2fs_i_blocks_write(inode, 1, true);
1301
1302 sbi->total_valid_node_count++;
1303 sbi->total_valid_block_count++;
1304 spin_unlock(&sbi->stat_lock);
1305
1306 percpu_counter_inc(&sbi->alloc_valid_block_count);
1307 return true;
1308 }
1309
1310 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1311 struct inode *inode)
1312 {
1313 spin_lock(&sbi->stat_lock);
1314
1315 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1316 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1317 f2fs_bug_on(sbi, !inode->i_blocks);
1318
1319 f2fs_i_blocks_write(inode, 1, false);
1320 sbi->total_valid_node_count--;
1321 sbi->total_valid_block_count--;
1322
1323 spin_unlock(&sbi->stat_lock);
1324 }
1325
1326 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1327 {
1328 return sbi->total_valid_node_count;
1329 }
1330
1331 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1332 {
1333 percpu_counter_inc(&sbi->total_valid_inode_count);
1334 }
1335
1336 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1337 {
1338 percpu_counter_dec(&sbi->total_valid_inode_count);
1339 }
1340
1341 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1342 {
1343 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1344 }
1345
1346 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1347 pgoff_t index, bool for_write)
1348 {
1349 #ifdef CONFIG_F2FS_FAULT_INJECTION
1350 struct page *page = find_lock_page(mapping, index);
1351 if (page)
1352 return page;
1353
1354 if (time_to_inject(FAULT_PAGE_ALLOC))
1355 return NULL;
1356 #endif
1357 if (!for_write)
1358 return grab_cache_page(mapping, index);
1359 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1360 }
1361
1362 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1363 {
1364 char *src_kaddr = kmap(src);
1365 char *dst_kaddr = kmap(dst);
1366
1367 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1368 kunmap(dst);
1369 kunmap(src);
1370 }
1371
1372 static inline void f2fs_put_page(struct page *page, int unlock)
1373 {
1374 if (!page)
1375 return;
1376
1377 if (unlock) {
1378 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1379 unlock_page(page);
1380 }
1381 put_page(page);
1382 }
1383
1384 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1385 {
1386 if (dn->node_page)
1387 f2fs_put_page(dn->node_page, 1);
1388 if (dn->inode_page && dn->node_page != dn->inode_page)
1389 f2fs_put_page(dn->inode_page, 0);
1390 dn->node_page = NULL;
1391 dn->inode_page = NULL;
1392 }
1393
1394 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1395 size_t size)
1396 {
1397 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1398 }
1399
1400 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1401 gfp_t flags)
1402 {
1403 void *entry;
1404
1405 entry = kmem_cache_alloc(cachep, flags);
1406 if (!entry)
1407 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1408 return entry;
1409 }
1410
1411 static inline struct bio *f2fs_bio_alloc(int npages)
1412 {
1413 struct bio *bio;
1414
1415 /* No failure on bio allocation */
1416 bio = bio_alloc(GFP_NOIO, npages);
1417 if (!bio)
1418 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1419 return bio;
1420 }
1421
1422 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1423 unsigned long index, void *item)
1424 {
1425 while (radix_tree_insert(root, index, item))
1426 cond_resched();
1427 }
1428
1429 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1430
1431 static inline bool IS_INODE(struct page *page)
1432 {
1433 struct f2fs_node *p = F2FS_NODE(page);
1434 return RAW_IS_INODE(p);
1435 }
1436
1437 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1438 {
1439 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1440 }
1441
1442 static inline block_t datablock_addr(struct page *node_page,
1443 unsigned int offset)
1444 {
1445 struct f2fs_node *raw_node;
1446 __le32 *addr_array;
1447 raw_node = F2FS_NODE(node_page);
1448 addr_array = blkaddr_in_node(raw_node);
1449 return le32_to_cpu(addr_array[offset]);
1450 }
1451
1452 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1453 {
1454 int mask;
1455
1456 addr += (nr >> 3);
1457 mask = 1 << (7 - (nr & 0x07));
1458 return mask & *addr;
1459 }
1460
1461 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1462 {
1463 int mask;
1464
1465 addr += (nr >> 3);
1466 mask = 1 << (7 - (nr & 0x07));
1467 *addr |= mask;
1468 }
1469
1470 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1471 {
1472 int mask;
1473
1474 addr += (nr >> 3);
1475 mask = 1 << (7 - (nr & 0x07));
1476 *addr &= ~mask;
1477 }
1478
1479 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1480 {
1481 int mask;
1482 int ret;
1483
1484 addr += (nr >> 3);
1485 mask = 1 << (7 - (nr & 0x07));
1486 ret = mask & *addr;
1487 *addr |= mask;
1488 return ret;
1489 }
1490
1491 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1492 {
1493 int mask;
1494 int ret;
1495
1496 addr += (nr >> 3);
1497 mask = 1 << (7 - (nr & 0x07));
1498 ret = mask & *addr;
1499 *addr &= ~mask;
1500 return ret;
1501 }
1502
1503 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1504 {
1505 int mask;
1506
1507 addr += (nr >> 3);
1508 mask = 1 << (7 - (nr & 0x07));
1509 *addr ^= mask;
1510 }
1511
1512 /* used for f2fs_inode_info->flags */
1513 enum {
1514 FI_NEW_INODE, /* indicate newly allocated inode */
1515 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1516 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1517 FI_INC_LINK, /* need to increment i_nlink */
1518 FI_ACL_MODE, /* indicate acl mode */
1519 FI_NO_ALLOC, /* should not allocate any blocks */
1520 FI_FREE_NID, /* free allocated nide */
1521 FI_UPDATE_DIR, /* should update inode block for consistency */
1522 FI_NO_EXTENT, /* not to use the extent cache */
1523 FI_INLINE_XATTR, /* used for inline xattr */
1524 FI_INLINE_DATA, /* used for inline data*/
1525 FI_INLINE_DENTRY, /* used for inline dentry */
1526 FI_APPEND_WRITE, /* inode has appended data */
1527 FI_UPDATE_WRITE, /* inode has in-place-update data */
1528 FI_NEED_IPU, /* used for ipu per file */
1529 FI_ATOMIC_FILE, /* indicate atomic file */
1530 FI_VOLATILE_FILE, /* indicate volatile file */
1531 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1532 FI_DROP_CACHE, /* drop dirty page cache */
1533 FI_DATA_EXIST, /* indicate data exists */
1534 FI_INLINE_DOTS, /* indicate inline dot dentries */
1535 FI_DO_DEFRAG, /* indicate defragment is running */
1536 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1537 };
1538
1539 static inline void __mark_inode_dirty_flag(struct inode *inode,
1540 int flag, bool set)
1541 {
1542 switch (flag) {
1543 case FI_INLINE_XATTR:
1544 case FI_INLINE_DATA:
1545 case FI_INLINE_DENTRY:
1546 if (set)
1547 return;
1548 case FI_DATA_EXIST:
1549 case FI_INLINE_DOTS:
1550 mark_inode_dirty_sync(inode);
1551 }
1552 }
1553
1554 static inline void set_inode_flag(struct inode *inode, int flag)
1555 {
1556 if (!test_bit(flag, &F2FS_I(inode)->flags))
1557 set_bit(flag, &F2FS_I(inode)->flags);
1558 __mark_inode_dirty_flag(inode, flag, true);
1559 }
1560
1561 static inline int is_inode_flag_set(struct inode *inode, int flag)
1562 {
1563 return test_bit(flag, &F2FS_I(inode)->flags);
1564 }
1565
1566 static inline void clear_inode_flag(struct inode *inode, int flag)
1567 {
1568 if (test_bit(flag, &F2FS_I(inode)->flags))
1569 clear_bit(flag, &F2FS_I(inode)->flags);
1570 __mark_inode_dirty_flag(inode, flag, false);
1571 }
1572
1573 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1574 {
1575 F2FS_I(inode)->i_acl_mode = mode;
1576 set_inode_flag(inode, FI_ACL_MODE);
1577 mark_inode_dirty_sync(inode);
1578 }
1579
1580 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1581 {
1582 if (inc)
1583 inc_nlink(inode);
1584 else
1585 drop_nlink(inode);
1586 mark_inode_dirty_sync(inode);
1587 }
1588
1589 static inline void f2fs_i_blocks_write(struct inode *inode,
1590 blkcnt_t diff, bool add)
1591 {
1592 inode->i_blocks = add ? inode->i_blocks + diff :
1593 inode->i_blocks - diff;
1594 mark_inode_dirty_sync(inode);
1595 }
1596
1597 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1598 {
1599 if (i_size_read(inode) == i_size)
1600 return;
1601
1602 i_size_write(inode, i_size);
1603 mark_inode_dirty_sync(inode);
1604 }
1605
1606 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1607 {
1608 F2FS_I(inode)->i_current_depth = depth;
1609 mark_inode_dirty_sync(inode);
1610 }
1611
1612 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1613 {
1614 F2FS_I(inode)->i_xattr_nid = xnid;
1615 mark_inode_dirty_sync(inode);
1616 }
1617
1618 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1619 {
1620 F2FS_I(inode)->i_pino = pino;
1621 mark_inode_dirty_sync(inode);
1622 }
1623
1624 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1625 {
1626 struct f2fs_inode_info *fi = F2FS_I(inode);
1627
1628 if (ri->i_inline & F2FS_INLINE_XATTR)
1629 set_bit(FI_INLINE_XATTR, &fi->flags);
1630 if (ri->i_inline & F2FS_INLINE_DATA)
1631 set_bit(FI_INLINE_DATA, &fi->flags);
1632 if (ri->i_inline & F2FS_INLINE_DENTRY)
1633 set_bit(FI_INLINE_DENTRY, &fi->flags);
1634 if (ri->i_inline & F2FS_DATA_EXIST)
1635 set_bit(FI_DATA_EXIST, &fi->flags);
1636 if (ri->i_inline & F2FS_INLINE_DOTS)
1637 set_bit(FI_INLINE_DOTS, &fi->flags);
1638 }
1639
1640 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1641 {
1642 ri->i_inline = 0;
1643
1644 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1645 ri->i_inline |= F2FS_INLINE_XATTR;
1646 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1647 ri->i_inline |= F2FS_INLINE_DATA;
1648 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1649 ri->i_inline |= F2FS_INLINE_DENTRY;
1650 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1651 ri->i_inline |= F2FS_DATA_EXIST;
1652 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1653 ri->i_inline |= F2FS_INLINE_DOTS;
1654 }
1655
1656 static inline int f2fs_has_inline_xattr(struct inode *inode)
1657 {
1658 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1659 }
1660
1661 static inline unsigned int addrs_per_inode(struct inode *inode)
1662 {
1663 if (f2fs_has_inline_xattr(inode))
1664 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1665 return DEF_ADDRS_PER_INODE;
1666 }
1667
1668 static inline void *inline_xattr_addr(struct page *page)
1669 {
1670 struct f2fs_inode *ri = F2FS_INODE(page);
1671 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1672 F2FS_INLINE_XATTR_ADDRS]);
1673 }
1674
1675 static inline int inline_xattr_size(struct inode *inode)
1676 {
1677 if (f2fs_has_inline_xattr(inode))
1678 return F2FS_INLINE_XATTR_ADDRS << 2;
1679 else
1680 return 0;
1681 }
1682
1683 static inline int f2fs_has_inline_data(struct inode *inode)
1684 {
1685 return is_inode_flag_set(inode, FI_INLINE_DATA);
1686 }
1687
1688 static inline void f2fs_clear_inline_inode(struct inode *inode)
1689 {
1690 clear_inode_flag(inode, FI_INLINE_DATA);
1691 clear_inode_flag(inode, FI_DATA_EXIST);
1692 }
1693
1694 static inline int f2fs_exist_data(struct inode *inode)
1695 {
1696 return is_inode_flag_set(inode, FI_DATA_EXIST);
1697 }
1698
1699 static inline int f2fs_has_inline_dots(struct inode *inode)
1700 {
1701 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1702 }
1703
1704 static inline bool f2fs_is_atomic_file(struct inode *inode)
1705 {
1706 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1707 }
1708
1709 static inline bool f2fs_is_volatile_file(struct inode *inode)
1710 {
1711 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1712 }
1713
1714 static inline bool f2fs_is_first_block_written(struct inode *inode)
1715 {
1716 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1717 }
1718
1719 static inline bool f2fs_is_drop_cache(struct inode *inode)
1720 {
1721 return is_inode_flag_set(inode, FI_DROP_CACHE);
1722 }
1723
1724 static inline void *inline_data_addr(struct page *page)
1725 {
1726 struct f2fs_inode *ri = F2FS_INODE(page);
1727 return (void *)&(ri->i_addr[1]);
1728 }
1729
1730 static inline int f2fs_has_inline_dentry(struct inode *inode)
1731 {
1732 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1733 }
1734
1735 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1736 {
1737 if (!f2fs_has_inline_dentry(dir))
1738 kunmap(page);
1739 }
1740
1741 static inline int is_file(struct inode *inode, int type)
1742 {
1743 return F2FS_I(inode)->i_advise & type;
1744 }
1745
1746 static inline void set_file(struct inode *inode, int type)
1747 {
1748 F2FS_I(inode)->i_advise |= type;
1749 mark_inode_dirty_sync(inode);
1750 }
1751
1752 static inline void clear_file(struct inode *inode, int type)
1753 {
1754 F2FS_I(inode)->i_advise &= ~type;
1755 mark_inode_dirty_sync(inode);
1756 }
1757
1758 static inline int f2fs_readonly(struct super_block *sb)
1759 {
1760 return sb->s_flags & MS_RDONLY;
1761 }
1762
1763 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1764 {
1765 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1766 }
1767
1768 static inline bool is_dot_dotdot(const struct qstr *str)
1769 {
1770 if (str->len == 1 && str->name[0] == '.')
1771 return true;
1772
1773 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1774 return true;
1775
1776 return false;
1777 }
1778
1779 static inline bool f2fs_may_extent_tree(struct inode *inode)
1780 {
1781 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1782 is_inode_flag_set(inode, FI_NO_EXTENT))
1783 return false;
1784
1785 return S_ISREG(inode->i_mode);
1786 }
1787
1788 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1789 {
1790 #ifdef CONFIG_F2FS_FAULT_INJECTION
1791 if (time_to_inject(FAULT_KMALLOC))
1792 return NULL;
1793 #endif
1794 return kmalloc(size, flags);
1795 }
1796
1797 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1798 {
1799 void *ret;
1800
1801 ret = kmalloc(size, flags | __GFP_NOWARN);
1802 if (!ret)
1803 ret = __vmalloc(size, flags, PAGE_KERNEL);
1804 return ret;
1805 }
1806
1807 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1808 {
1809 void *ret;
1810
1811 ret = kzalloc(size, flags | __GFP_NOWARN);
1812 if (!ret)
1813 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1814 return ret;
1815 }
1816
1817 #define get_inode_mode(i) \
1818 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1819 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1820
1821 /* get offset of first page in next direct node */
1822 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1823 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1824 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1825 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1826
1827 /*
1828 * file.c
1829 */
1830 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1831 void truncate_data_blocks(struct dnode_of_data *);
1832 int truncate_blocks(struct inode *, u64, bool);
1833 int f2fs_truncate(struct inode *, bool);
1834 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1835 int f2fs_setattr(struct dentry *, struct iattr *);
1836 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1837 int truncate_data_blocks_range(struct dnode_of_data *, int);
1838 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1839 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1840
1841 /*
1842 * inode.c
1843 */
1844 void f2fs_set_inode_flags(struct inode *);
1845 struct inode *f2fs_iget(struct super_block *, unsigned long);
1846 int try_to_free_nats(struct f2fs_sb_info *, int);
1847 int update_inode(struct inode *, struct page *);
1848 int update_inode_page(struct inode *);
1849 int f2fs_write_inode(struct inode *, struct writeback_control *);
1850 void f2fs_evict_inode(struct inode *);
1851 void handle_failed_inode(struct inode *);
1852
1853 /*
1854 * namei.c
1855 */
1856 struct dentry *f2fs_get_parent(struct dentry *child);
1857
1858 /*
1859 * dir.c
1860 */
1861 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1862 void set_de_type(struct f2fs_dir_entry *, umode_t);
1863 unsigned char get_de_type(struct f2fs_dir_entry *);
1864 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1865 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1866 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1867 unsigned int, struct fscrypt_str *);
1868 void do_make_empty_dir(struct inode *, struct inode *,
1869 struct f2fs_dentry_ptr *);
1870 struct page *init_inode_metadata(struct inode *, struct inode *,
1871 const struct qstr *, struct page *);
1872 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1873 int room_for_filename(const void *, int, int);
1874 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1875 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1876 struct page **);
1877 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1878 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1879 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1880 struct page *, struct inode *);
1881 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1882 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1883 const struct qstr *, f2fs_hash_t , unsigned int);
1884 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1885 struct inode *, nid_t, umode_t);
1886 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1887 umode_t);
1888 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1889 struct inode *);
1890 int f2fs_do_tmpfile(struct inode *, struct inode *);
1891 bool f2fs_empty_dir(struct inode *);
1892
1893 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1894 {
1895 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1896 inode, inode->i_ino, inode->i_mode);
1897 }
1898
1899 /*
1900 * super.c
1901 */
1902 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1903 int f2fs_sync_fs(struct super_block *, int);
1904 extern __printf(3, 4)
1905 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1906 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1907
1908 /*
1909 * hash.c
1910 */
1911 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1912
1913 /*
1914 * node.c
1915 */
1916 struct dnode_of_data;
1917 struct node_info;
1918
1919 bool available_free_memory(struct f2fs_sb_info *, int);
1920 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1921 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1922 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1923 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1924 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1925 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1926 int truncate_inode_blocks(struct inode *, pgoff_t);
1927 int truncate_xattr_node(struct inode *, struct page *);
1928 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1929 int remove_inode_page(struct inode *);
1930 struct page *new_inode_page(struct inode *);
1931 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1932 void ra_node_page(struct f2fs_sb_info *, nid_t);
1933 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1934 struct page *get_node_page_ra(struct page *, int);
1935 void sync_inode_page(struct dnode_of_data *);
1936 void move_node_page(struct page *, int);
1937 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1938 bool);
1939 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1940 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1941 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1942 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1943 int try_to_free_nids(struct f2fs_sb_info *, int);
1944 void recover_inline_xattr(struct inode *, struct page *);
1945 void recover_xattr_data(struct inode *, struct page *, block_t);
1946 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1947 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1948 struct f2fs_summary_block *);
1949 void flush_nat_entries(struct f2fs_sb_info *);
1950 int build_node_manager(struct f2fs_sb_info *);
1951 void destroy_node_manager(struct f2fs_sb_info *);
1952 int __init create_node_manager_caches(void);
1953 void destroy_node_manager_caches(void);
1954
1955 /*
1956 * segment.c
1957 */
1958 void register_inmem_page(struct inode *, struct page *);
1959 void drop_inmem_pages(struct inode *);
1960 int commit_inmem_pages(struct inode *);
1961 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1962 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1963 int f2fs_issue_flush(struct f2fs_sb_info *);
1964 int create_flush_cmd_control(struct f2fs_sb_info *);
1965 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1966 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1967 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1968 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1969 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1970 void release_discard_addrs(struct f2fs_sb_info *);
1971 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1972 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1973 void allocate_new_segments(struct f2fs_sb_info *);
1974 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1975 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1976 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1977 void write_meta_page(struct f2fs_sb_info *, struct page *);
1978 void write_node_page(unsigned int, struct f2fs_io_info *);
1979 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1980 void rewrite_data_page(struct f2fs_io_info *);
1981 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1982 block_t, block_t, bool, bool);
1983 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1984 block_t, block_t, unsigned char, bool, bool);
1985 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1986 block_t, block_t *, struct f2fs_summary *, int);
1987 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1988 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1989 void write_data_summaries(struct f2fs_sb_info *, block_t);
1990 void write_node_summaries(struct f2fs_sb_info *, block_t);
1991 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1992 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1993 int build_segment_manager(struct f2fs_sb_info *);
1994 void destroy_segment_manager(struct f2fs_sb_info *);
1995 int __init create_segment_manager_caches(void);
1996 void destroy_segment_manager_caches(void);
1997
1998 /*
1999 * checkpoint.c
2000 */
2001 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2002 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2003 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2004 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2005 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2006 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2007 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2008 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2009 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2010 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2011 void release_ino_entry(struct f2fs_sb_info *, bool);
2012 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2013 int acquire_orphan_inode(struct f2fs_sb_info *);
2014 void release_orphan_inode(struct f2fs_sb_info *);
2015 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
2016 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2017 int recover_orphan_inodes(struct f2fs_sb_info *);
2018 int get_valid_checkpoint(struct f2fs_sb_info *);
2019 void update_dirty_page(struct inode *, struct page *);
2020 void remove_dirty_inode(struct inode *);
2021 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2022 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2023 void init_ino_entry_info(struct f2fs_sb_info *);
2024 int __init create_checkpoint_caches(void);
2025 void destroy_checkpoint_caches(void);
2026
2027 /*
2028 * data.c
2029 */
2030 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2031 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2032 struct page *, nid_t, enum page_type, int);
2033 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2034 int f2fs_submit_page_bio(struct f2fs_io_info *);
2035 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2036 void set_data_blkaddr(struct dnode_of_data *);
2037 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2038 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2039 int reserve_new_block(struct dnode_of_data *);
2040 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2041 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2042 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2043 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2044 struct page *find_data_page(struct inode *, pgoff_t);
2045 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2046 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2047 int do_write_data_page(struct f2fs_io_info *);
2048 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2049 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2050 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2051 int f2fs_release_page(struct page *, gfp_t);
2052
2053 /*
2054 * gc.c
2055 */
2056 int start_gc_thread(struct f2fs_sb_info *);
2057 void stop_gc_thread(struct f2fs_sb_info *);
2058 block_t start_bidx_of_node(unsigned int, struct inode *);
2059 int f2fs_gc(struct f2fs_sb_info *, bool);
2060 void build_gc_manager(struct f2fs_sb_info *);
2061
2062 /*
2063 * recovery.c
2064 */
2065 int recover_fsync_data(struct f2fs_sb_info *, bool);
2066 bool space_for_roll_forward(struct f2fs_sb_info *);
2067
2068 /*
2069 * debug.c
2070 */
2071 #ifdef CONFIG_F2FS_STAT_FS
2072 struct f2fs_stat_info {
2073 struct list_head stat_list;
2074 struct f2fs_sb_info *sbi;
2075 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2076 int main_area_segs, main_area_sections, main_area_zones;
2077 unsigned long long hit_largest, hit_cached, hit_rbtree;
2078 unsigned long long hit_total, total_ext;
2079 int ext_tree, zombie_tree, ext_node;
2080 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2081 unsigned int ndirty_dirs, ndirty_files;
2082 int nats, dirty_nats, sits, dirty_sits, fnids;
2083 int total_count, utilization;
2084 int bg_gc, wb_bios;
2085 int inline_xattr, inline_inode, inline_dir, orphans;
2086 unsigned int valid_count, valid_node_count, valid_inode_count;
2087 unsigned int bimodal, avg_vblocks;
2088 int util_free, util_valid, util_invalid;
2089 int rsvd_segs, overp_segs;
2090 int dirty_count, node_pages, meta_pages;
2091 int prefree_count, call_count, cp_count, bg_cp_count;
2092 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2093 int bg_node_segs, bg_data_segs;
2094 int tot_blks, data_blks, node_blks;
2095 int bg_data_blks, bg_node_blks;
2096 int curseg[NR_CURSEG_TYPE];
2097 int cursec[NR_CURSEG_TYPE];
2098 int curzone[NR_CURSEG_TYPE];
2099
2100 unsigned int segment_count[2];
2101 unsigned int block_count[2];
2102 unsigned int inplace_count;
2103 unsigned long long base_mem, cache_mem, page_mem;
2104 };
2105
2106 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2107 {
2108 return (struct f2fs_stat_info *)sbi->stat_info;
2109 }
2110
2111 #define stat_inc_cp_count(si) ((si)->cp_count++)
2112 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2113 #define stat_inc_call_count(si) ((si)->call_count++)
2114 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2115 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2116 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2117 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2118 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2119 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2120 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2121 #define stat_inc_inline_xattr(inode) \
2122 do { \
2123 if (f2fs_has_inline_xattr(inode)) \
2124 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2125 } while (0)
2126 #define stat_dec_inline_xattr(inode) \
2127 do { \
2128 if (f2fs_has_inline_xattr(inode)) \
2129 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2130 } while (0)
2131 #define stat_inc_inline_inode(inode) \
2132 do { \
2133 if (f2fs_has_inline_data(inode)) \
2134 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2135 } while (0)
2136 #define stat_dec_inline_inode(inode) \
2137 do { \
2138 if (f2fs_has_inline_data(inode)) \
2139 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2140 } while (0)
2141 #define stat_inc_inline_dir(inode) \
2142 do { \
2143 if (f2fs_has_inline_dentry(inode)) \
2144 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2145 } while (0)
2146 #define stat_dec_inline_dir(inode) \
2147 do { \
2148 if (f2fs_has_inline_dentry(inode)) \
2149 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2150 } while (0)
2151 #define stat_inc_seg_type(sbi, curseg) \
2152 ((sbi)->segment_count[(curseg)->alloc_type]++)
2153 #define stat_inc_block_count(sbi, curseg) \
2154 ((sbi)->block_count[(curseg)->alloc_type]++)
2155 #define stat_inc_inplace_blocks(sbi) \
2156 (atomic_inc(&(sbi)->inplace_count))
2157 #define stat_inc_seg_count(sbi, type, gc_type) \
2158 do { \
2159 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2160 (si)->tot_segs++; \
2161 if (type == SUM_TYPE_DATA) { \
2162 si->data_segs++; \
2163 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2164 } else { \
2165 si->node_segs++; \
2166 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2167 } \
2168 } while (0)
2169
2170 #define stat_inc_tot_blk_count(si, blks) \
2171 (si->tot_blks += (blks))
2172
2173 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2174 do { \
2175 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2176 stat_inc_tot_blk_count(si, blks); \
2177 si->data_blks += (blks); \
2178 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2179 } while (0)
2180
2181 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2182 do { \
2183 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2184 stat_inc_tot_blk_count(si, blks); \
2185 si->node_blks += (blks); \
2186 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2187 } while (0)
2188
2189 int f2fs_build_stats(struct f2fs_sb_info *);
2190 void f2fs_destroy_stats(struct f2fs_sb_info *);
2191 int __init f2fs_create_root_stats(void);
2192 void f2fs_destroy_root_stats(void);
2193 #else
2194 #define stat_inc_cp_count(si)
2195 #define stat_inc_bg_cp_count(si)
2196 #define stat_inc_call_count(si)
2197 #define stat_inc_bggc_count(si)
2198 #define stat_inc_dirty_inode(sbi, type)
2199 #define stat_dec_dirty_inode(sbi, type)
2200 #define stat_inc_total_hit(sb)
2201 #define stat_inc_rbtree_node_hit(sb)
2202 #define stat_inc_largest_node_hit(sbi)
2203 #define stat_inc_cached_node_hit(sbi)
2204 #define stat_inc_inline_xattr(inode)
2205 #define stat_dec_inline_xattr(inode)
2206 #define stat_inc_inline_inode(inode)
2207 #define stat_dec_inline_inode(inode)
2208 #define stat_inc_inline_dir(inode)
2209 #define stat_dec_inline_dir(inode)
2210 #define stat_inc_seg_type(sbi, curseg)
2211 #define stat_inc_block_count(sbi, curseg)
2212 #define stat_inc_inplace_blocks(sbi)
2213 #define stat_inc_seg_count(sbi, type, gc_type)
2214 #define stat_inc_tot_blk_count(si, blks)
2215 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2216 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2217
2218 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2219 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2220 static inline int __init f2fs_create_root_stats(void) { return 0; }
2221 static inline void f2fs_destroy_root_stats(void) { }
2222 #endif
2223
2224 extern const struct file_operations f2fs_dir_operations;
2225 extern const struct file_operations f2fs_file_operations;
2226 extern const struct inode_operations f2fs_file_inode_operations;
2227 extern const struct address_space_operations f2fs_dblock_aops;
2228 extern const struct address_space_operations f2fs_node_aops;
2229 extern const struct address_space_operations f2fs_meta_aops;
2230 extern const struct inode_operations f2fs_dir_inode_operations;
2231 extern const struct inode_operations f2fs_symlink_inode_operations;
2232 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2233 extern const struct inode_operations f2fs_special_inode_operations;
2234 extern struct kmem_cache *inode_entry_slab;
2235
2236 /*
2237 * inline.c
2238 */
2239 bool f2fs_may_inline_data(struct inode *);
2240 bool f2fs_may_inline_dentry(struct inode *);
2241 void read_inline_data(struct page *, struct page *);
2242 bool truncate_inline_inode(struct page *, u64);
2243 int f2fs_read_inline_data(struct inode *, struct page *);
2244 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2245 int f2fs_convert_inline_inode(struct inode *);
2246 int f2fs_write_inline_data(struct inode *, struct page *);
2247 bool recover_inline_data(struct inode *, struct page *);
2248 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2249 struct fscrypt_name *, struct page **);
2250 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2251 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2252 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2253 nid_t, umode_t);
2254 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2255 struct inode *, struct inode *);
2256 bool f2fs_empty_inline_dir(struct inode *);
2257 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2258 struct fscrypt_str *);
2259 int f2fs_inline_data_fiemap(struct inode *,
2260 struct fiemap_extent_info *, __u64, __u64);
2261
2262 /*
2263 * shrinker.c
2264 */
2265 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2266 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2267 void f2fs_join_shrinker(struct f2fs_sb_info *);
2268 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2269
2270 /*
2271 * extent_cache.c
2272 */
2273 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2274 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2275 unsigned int f2fs_destroy_extent_node(struct inode *);
2276 void f2fs_destroy_extent_tree(struct inode *);
2277 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2278 void f2fs_update_extent_cache(struct dnode_of_data *);
2279 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2280 pgoff_t, block_t, unsigned int);
2281 void init_extent_cache_info(struct f2fs_sb_info *);
2282 int __init create_extent_cache(void);
2283 void destroy_extent_cache(void);
2284
2285 /*
2286 * crypto support
2287 */
2288 static inline bool f2fs_encrypted_inode(struct inode *inode)
2289 {
2290 return file_is_encrypt(inode);
2291 }
2292
2293 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2294 {
2295 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2296 file_set_encrypt(inode);
2297 #endif
2298 }
2299
2300 static inline bool f2fs_bio_encrypted(struct bio *bio)
2301 {
2302 return bio->bi_private != NULL;
2303 }
2304
2305 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2306 {
2307 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2308 }
2309
2310 static inline bool f2fs_may_encrypt(struct inode *inode)
2311 {
2312 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2313 umode_t mode = inode->i_mode;
2314
2315 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2316 #else
2317 return 0;
2318 #endif
2319 }
2320
2321 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2322 #define fscrypt_set_d_op(i)
2323 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2324 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2325 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2326 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2327 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2328 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2329 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2330 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2331 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2332 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2333 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2334 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2335 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2336 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2337 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2338 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2339 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2340 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2341 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2342 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2343 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2344 #endif
2345 #endif
This page took 0.093583 seconds and 6 git commands to generate.