f2fs: trigger correct checkpoint during umount
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_SYNC,
104 CP_DISCARD,
105 };
106
107 struct cp_control {
108 int reason;
109 __u64 trim_start;
110 __u64 trim_end;
111 __u64 trim_minlen;
112 __u64 trimmed;
113 };
114
115 /*
116 * For CP/NAT/SIT/SSA readahead
117 */
118 enum {
119 META_CP,
120 META_NAT,
121 META_SIT,
122 META_SSA,
123 META_POR,
124 };
125
126 /* for the list of ino */
127 enum {
128 ORPHAN_INO, /* for orphan ino list */
129 APPEND_INO, /* for append ino list */
130 UPDATE_INO, /* for update ino list */
131 MAX_INO_ENTRY, /* max. list */
132 };
133
134 struct ino_entry {
135 struct list_head list; /* list head */
136 nid_t ino; /* inode number */
137 };
138
139 /*
140 * for the list of directory inodes or gc inodes.
141 * NOTE: there are two slab users for this structure, if we add/modify/delete
142 * fields in structure for one of slab users, it may affect fields or size of
143 * other one, in this condition, it's better to split both of slab and related
144 * data structure.
145 */
146 struct inode_entry {
147 struct list_head list; /* list head */
148 struct inode *inode; /* vfs inode pointer */
149 };
150
151 /* for the list of blockaddresses to be discarded */
152 struct discard_entry {
153 struct list_head list; /* list head */
154 block_t blkaddr; /* block address to be discarded */
155 int len; /* # of consecutive blocks of the discard */
156 };
157
158 /* for the list of fsync inodes, used only during recovery */
159 struct fsync_inode_entry {
160 struct list_head list; /* list head */
161 struct inode *inode; /* vfs inode pointer */
162 block_t blkaddr; /* block address locating the last fsync */
163 block_t last_dentry; /* block address locating the last dentry */
164 block_t last_inode; /* block address locating the last inode */
165 };
166
167 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
168 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
169
170 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
171 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
172 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
173 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
174
175 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
176 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
177
178 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 int before = nats_in_cursum(rs);
181 rs->n_nats = cpu_to_le16(before + i);
182 return before;
183 }
184
185 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 int before = sits_in_cursum(rs);
188 rs->n_sits = cpu_to_le16(before + i);
189 return before;
190 }
191
192 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
193 int type)
194 {
195 if (type == NAT_JOURNAL)
196 return size <= MAX_NAT_JENTRIES(sum);
197 return size <= MAX_SIT_JENTRIES(sum);
198 }
199
200 /*
201 * ioctl commands
202 */
203 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
204 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
205
206 #define F2FS_IOCTL_MAGIC 0xf5
207 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
208 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
209 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
210 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
211 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
212
213 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
214 /*
215 * ioctl commands in 32 bit emulation
216 */
217 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
218 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
219 #endif
220
221 /*
222 * For INODE and NODE manager
223 */
224 /* for directory operations */
225 struct f2fs_dentry_ptr {
226 const void *bitmap;
227 struct f2fs_dir_entry *dentry;
228 __u8 (*filename)[F2FS_SLOT_LEN];
229 int max;
230 };
231
232 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
233 void *src, int type)
234 {
235 if (type == 1) {
236 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
237 d->max = NR_DENTRY_IN_BLOCK;
238 d->bitmap = &t->dentry_bitmap;
239 d->dentry = t->dentry;
240 d->filename = t->filename;
241 } else {
242 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
243 d->max = NR_INLINE_DENTRY;
244 d->bitmap = &t->dentry_bitmap;
245 d->dentry = t->dentry;
246 d->filename = t->filename;
247 }
248 }
249
250 /*
251 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
252 * as its node offset to distinguish from index node blocks.
253 * But some bits are used to mark the node block.
254 */
255 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
256 >> OFFSET_BIT_SHIFT)
257 enum {
258 ALLOC_NODE, /* allocate a new node page if needed */
259 LOOKUP_NODE, /* look up a node without readahead */
260 LOOKUP_NODE_RA, /*
261 * look up a node with readahead called
262 * by get_data_block.
263 */
264 };
265
266 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
267
268 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
269
270 /* for in-memory extent cache entry */
271 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
272
273 struct extent_info {
274 rwlock_t ext_lock; /* rwlock for consistency */
275 unsigned int fofs; /* start offset in a file */
276 u32 blk_addr; /* start block address of the extent */
277 unsigned int len; /* length of the extent */
278 };
279
280 /*
281 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
282 */
283 #define FADVISE_COLD_BIT 0x01
284 #define FADVISE_LOST_PINO_BIT 0x02
285
286 #define DEF_DIR_LEVEL 0
287
288 struct f2fs_inode_info {
289 struct inode vfs_inode; /* serve a vfs inode */
290 unsigned long i_flags; /* keep an inode flags for ioctl */
291 unsigned char i_advise; /* use to give file attribute hints */
292 unsigned char i_dir_level; /* use for dentry level for large dir */
293 unsigned int i_current_depth; /* use only in directory structure */
294 unsigned int i_pino; /* parent inode number */
295 umode_t i_acl_mode; /* keep file acl mode temporarily */
296
297 /* Use below internally in f2fs*/
298 unsigned long flags; /* use to pass per-file flags */
299 struct rw_semaphore i_sem; /* protect fi info */
300 atomic_t dirty_pages; /* # of dirty pages */
301 f2fs_hash_t chash; /* hash value of given file name */
302 unsigned int clevel; /* maximum level of given file name */
303 nid_t i_xattr_nid; /* node id that contains xattrs */
304 unsigned long long xattr_ver; /* cp version of xattr modification */
305 struct extent_info ext; /* in-memory extent cache entry */
306 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
307
308 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
309 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
310 struct mutex inmem_lock; /* lock for inmemory pages */
311 };
312
313 static inline void get_extent_info(struct extent_info *ext,
314 struct f2fs_extent i_ext)
315 {
316 write_lock(&ext->ext_lock);
317 ext->fofs = le32_to_cpu(i_ext.fofs);
318 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
319 ext->len = le32_to_cpu(i_ext.len);
320 write_unlock(&ext->ext_lock);
321 }
322
323 static inline void set_raw_extent(struct extent_info *ext,
324 struct f2fs_extent *i_ext)
325 {
326 read_lock(&ext->ext_lock);
327 i_ext->fofs = cpu_to_le32(ext->fofs);
328 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
329 i_ext->len = cpu_to_le32(ext->len);
330 read_unlock(&ext->ext_lock);
331 }
332
333 struct f2fs_nm_info {
334 block_t nat_blkaddr; /* base disk address of NAT */
335 nid_t max_nid; /* maximum possible node ids */
336 nid_t available_nids; /* maximum available node ids */
337 nid_t next_scan_nid; /* the next nid to be scanned */
338 unsigned int ram_thresh; /* control the memory footprint */
339
340 /* NAT cache management */
341 struct radix_tree_root nat_root;/* root of the nat entry cache */
342 struct radix_tree_root nat_set_root;/* root of the nat set cache */
343 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
344 struct list_head nat_entries; /* cached nat entry list (clean) */
345 unsigned int nat_cnt; /* the # of cached nat entries */
346 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
347
348 /* free node ids management */
349 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
350 struct list_head free_nid_list; /* a list for free nids */
351 spinlock_t free_nid_list_lock; /* protect free nid list */
352 unsigned int fcnt; /* the number of free node id */
353 struct mutex build_lock; /* lock for build free nids */
354
355 /* for checkpoint */
356 char *nat_bitmap; /* NAT bitmap pointer */
357 int bitmap_size; /* bitmap size */
358 };
359
360 /*
361 * this structure is used as one of function parameters.
362 * all the information are dedicated to a given direct node block determined
363 * by the data offset in a file.
364 */
365 struct dnode_of_data {
366 struct inode *inode; /* vfs inode pointer */
367 struct page *inode_page; /* its inode page, NULL is possible */
368 struct page *node_page; /* cached direct node page */
369 nid_t nid; /* node id of the direct node block */
370 unsigned int ofs_in_node; /* data offset in the node page */
371 bool inode_page_locked; /* inode page is locked or not */
372 block_t data_blkaddr; /* block address of the node block */
373 };
374
375 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
376 struct page *ipage, struct page *npage, nid_t nid)
377 {
378 memset(dn, 0, sizeof(*dn));
379 dn->inode = inode;
380 dn->inode_page = ipage;
381 dn->node_page = npage;
382 dn->nid = nid;
383 }
384
385 /*
386 * For SIT manager
387 *
388 * By default, there are 6 active log areas across the whole main area.
389 * When considering hot and cold data separation to reduce cleaning overhead,
390 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
391 * respectively.
392 * In the current design, you should not change the numbers intentionally.
393 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
394 * logs individually according to the underlying devices. (default: 6)
395 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
396 * data and 8 for node logs.
397 */
398 #define NR_CURSEG_DATA_TYPE (3)
399 #define NR_CURSEG_NODE_TYPE (3)
400 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
401
402 enum {
403 CURSEG_HOT_DATA = 0, /* directory entry blocks */
404 CURSEG_WARM_DATA, /* data blocks */
405 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
406 CURSEG_HOT_NODE, /* direct node blocks of directory files */
407 CURSEG_WARM_NODE, /* direct node blocks of normal files */
408 CURSEG_COLD_NODE, /* indirect node blocks */
409 NO_CHECK_TYPE,
410 CURSEG_DIRECT_IO, /* to use for the direct IO path */
411 };
412
413 struct flush_cmd {
414 struct completion wait;
415 struct llist_node llnode;
416 int ret;
417 };
418
419 struct flush_cmd_control {
420 struct task_struct *f2fs_issue_flush; /* flush thread */
421 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
422 struct llist_head issue_list; /* list for command issue */
423 struct llist_node *dispatch_list; /* list for command dispatch */
424 };
425
426 struct f2fs_sm_info {
427 struct sit_info *sit_info; /* whole segment information */
428 struct free_segmap_info *free_info; /* free segment information */
429 struct dirty_seglist_info *dirty_info; /* dirty segment information */
430 struct curseg_info *curseg_array; /* active segment information */
431
432 block_t seg0_blkaddr; /* block address of 0'th segment */
433 block_t main_blkaddr; /* start block address of main area */
434 block_t ssa_blkaddr; /* start block address of SSA area */
435
436 unsigned int segment_count; /* total # of segments */
437 unsigned int main_segments; /* # of segments in main area */
438 unsigned int reserved_segments; /* # of reserved segments */
439 unsigned int ovp_segments; /* # of overprovision segments */
440
441 /* a threshold to reclaim prefree segments */
442 unsigned int rec_prefree_segments;
443
444 /* for small discard management */
445 struct list_head discard_list; /* 4KB discard list */
446 int nr_discards; /* # of discards in the list */
447 int max_discards; /* max. discards to be issued */
448
449 struct list_head sit_entry_set; /* sit entry set list */
450
451 unsigned int ipu_policy; /* in-place-update policy */
452 unsigned int min_ipu_util; /* in-place-update threshold */
453 unsigned int min_fsync_blocks; /* threshold for fsync */
454
455 /* for flush command control */
456 struct flush_cmd_control *cmd_control_info;
457
458 };
459
460 /*
461 * For superblock
462 */
463 /*
464 * COUNT_TYPE for monitoring
465 *
466 * f2fs monitors the number of several block types such as on-writeback,
467 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
468 */
469 enum count_type {
470 F2FS_WRITEBACK,
471 F2FS_DIRTY_DENTS,
472 F2FS_DIRTY_NODES,
473 F2FS_DIRTY_META,
474 F2FS_INMEM_PAGES,
475 NR_COUNT_TYPE,
476 };
477
478 /*
479 * The below are the page types of bios used in submit_bio().
480 * The available types are:
481 * DATA User data pages. It operates as async mode.
482 * NODE Node pages. It operates as async mode.
483 * META FS metadata pages such as SIT, NAT, CP.
484 * NR_PAGE_TYPE The number of page types.
485 * META_FLUSH Make sure the previous pages are written
486 * with waiting the bio's completion
487 * ... Only can be used with META.
488 */
489 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
490 enum page_type {
491 DATA,
492 NODE,
493 META,
494 NR_PAGE_TYPE,
495 META_FLUSH,
496 };
497
498 struct f2fs_io_info {
499 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
500 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
501 block_t blk_addr; /* block address to be written */
502 };
503
504 #define is_read_io(rw) (((rw) & 1) == READ)
505 struct f2fs_bio_info {
506 struct f2fs_sb_info *sbi; /* f2fs superblock */
507 struct bio *bio; /* bios to merge */
508 sector_t last_block_in_bio; /* last block number */
509 struct f2fs_io_info fio; /* store buffered io info. */
510 struct rw_semaphore io_rwsem; /* blocking op for bio */
511 };
512
513 /* for inner inode cache management */
514 struct inode_management {
515 struct radix_tree_root ino_root; /* ino entry array */
516 spinlock_t ino_lock; /* for ino entry lock */
517 struct list_head ino_list; /* inode list head */
518 unsigned long ino_num; /* number of entries */
519 };
520
521 struct f2fs_sb_info {
522 struct super_block *sb; /* pointer to VFS super block */
523 struct proc_dir_entry *s_proc; /* proc entry */
524 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
525 struct f2fs_super_block *raw_super; /* raw super block pointer */
526 int s_dirty; /* dirty flag for checkpoint */
527 bool need_fsck; /* need fsck.f2fs to fix */
528 bool s_closing; /* specify unmounting */
529
530 /* for node-related operations */
531 struct f2fs_nm_info *nm_info; /* node manager */
532 struct inode *node_inode; /* cache node blocks */
533
534 /* for segment-related operations */
535 struct f2fs_sm_info *sm_info; /* segment manager */
536
537 /* for bio operations */
538 struct f2fs_bio_info read_io; /* for read bios */
539 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
540
541 /* for checkpoint */
542 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
543 struct inode *meta_inode; /* cache meta blocks */
544 struct mutex cp_mutex; /* checkpoint procedure lock */
545 struct rw_semaphore cp_rwsem; /* blocking FS operations */
546 struct rw_semaphore node_write; /* locking node writes */
547 struct mutex writepages; /* mutex for writepages() */
548 bool por_doing; /* recovery is doing or not */
549 wait_queue_head_t cp_wait;
550
551 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
552
553 /* for orphan inode, use 0'th array */
554 unsigned int max_orphans; /* max orphan inodes */
555
556 /* for directory inode management */
557 struct list_head dir_inode_list; /* dir inode list */
558 spinlock_t dir_inode_lock; /* for dir inode list lock */
559
560 /* basic filesystem units */
561 unsigned int log_sectors_per_block; /* log2 sectors per block */
562 unsigned int log_blocksize; /* log2 block size */
563 unsigned int blocksize; /* block size */
564 unsigned int root_ino_num; /* root inode number*/
565 unsigned int node_ino_num; /* node inode number*/
566 unsigned int meta_ino_num; /* meta inode number*/
567 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
568 unsigned int blocks_per_seg; /* blocks per segment */
569 unsigned int segs_per_sec; /* segments per section */
570 unsigned int secs_per_zone; /* sections per zone */
571 unsigned int total_sections; /* total section count */
572 unsigned int total_node_count; /* total node block count */
573 unsigned int total_valid_node_count; /* valid node block count */
574 unsigned int total_valid_inode_count; /* valid inode count */
575 int active_logs; /* # of active logs */
576 int dir_level; /* directory level */
577
578 block_t user_block_count; /* # of user blocks */
579 block_t total_valid_block_count; /* # of valid blocks */
580 block_t alloc_valid_block_count; /* # of allocated blocks */
581 block_t last_valid_block_count; /* for recovery */
582 u32 s_next_generation; /* for NFS support */
583 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
584
585 struct f2fs_mount_info mount_opt; /* mount options */
586
587 /* for cleaning operations */
588 struct mutex gc_mutex; /* mutex for GC */
589 struct f2fs_gc_kthread *gc_thread; /* GC thread */
590 unsigned int cur_victim_sec; /* current victim section num */
591
592 /* maximum # of trials to find a victim segment for SSR and GC */
593 unsigned int max_victim_search;
594
595 /*
596 * for stat information.
597 * one is for the LFS mode, and the other is for the SSR mode.
598 */
599 #ifdef CONFIG_F2FS_STAT_FS
600 struct f2fs_stat_info *stat_info; /* FS status information */
601 unsigned int segment_count[2]; /* # of allocated segments */
602 unsigned int block_count[2]; /* # of allocated blocks */
603 atomic_t inplace_count; /* # of inplace update */
604 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
605 atomic_t inline_inode; /* # of inline_data inodes */
606 atomic_t inline_dir; /* # of inline_dentry inodes */
607 int bg_gc; /* background gc calls */
608 unsigned int n_dirty_dirs; /* # of dir inodes */
609 #endif
610 unsigned int last_victim[2]; /* last victim segment # */
611 spinlock_t stat_lock; /* lock for stat operations */
612
613 /* For sysfs suppport */
614 struct kobject s_kobj;
615 struct completion s_kobj_unregister;
616 };
617
618 /*
619 * Inline functions
620 */
621 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
622 {
623 return container_of(inode, struct f2fs_inode_info, vfs_inode);
624 }
625
626 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
627 {
628 return sb->s_fs_info;
629 }
630
631 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
632 {
633 return F2FS_SB(inode->i_sb);
634 }
635
636 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
637 {
638 return F2FS_I_SB(mapping->host);
639 }
640
641 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
642 {
643 return F2FS_M_SB(page->mapping);
644 }
645
646 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
647 {
648 return (struct f2fs_super_block *)(sbi->raw_super);
649 }
650
651 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
652 {
653 return (struct f2fs_checkpoint *)(sbi->ckpt);
654 }
655
656 static inline struct f2fs_node *F2FS_NODE(struct page *page)
657 {
658 return (struct f2fs_node *)page_address(page);
659 }
660
661 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
662 {
663 return &((struct f2fs_node *)page_address(page))->i;
664 }
665
666 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
667 {
668 return (struct f2fs_nm_info *)(sbi->nm_info);
669 }
670
671 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
672 {
673 return (struct f2fs_sm_info *)(sbi->sm_info);
674 }
675
676 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
677 {
678 return (struct sit_info *)(SM_I(sbi)->sit_info);
679 }
680
681 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
682 {
683 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
684 }
685
686 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
687 {
688 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
689 }
690
691 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
692 {
693 return sbi->meta_inode->i_mapping;
694 }
695
696 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
697 {
698 return sbi->node_inode->i_mapping;
699 }
700
701 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
702 {
703 sbi->s_dirty = 1;
704 }
705
706 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
707 {
708 sbi->s_dirty = 0;
709 }
710
711 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
712 {
713 return le64_to_cpu(cp->checkpoint_ver);
714 }
715
716 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
717 {
718 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
719 return ckpt_flags & f;
720 }
721
722 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
723 {
724 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
725 ckpt_flags |= f;
726 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
727 }
728
729 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
730 {
731 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
732 ckpt_flags &= (~f);
733 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
734 }
735
736 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
737 {
738 down_read(&sbi->cp_rwsem);
739 }
740
741 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
742 {
743 up_read(&sbi->cp_rwsem);
744 }
745
746 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
747 {
748 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
749 }
750
751 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
752 {
753 up_write(&sbi->cp_rwsem);
754 }
755
756 /*
757 * Check whether the given nid is within node id range.
758 */
759 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
760 {
761 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
762 return -EINVAL;
763 if (unlikely(nid >= NM_I(sbi)->max_nid))
764 return -EINVAL;
765 return 0;
766 }
767
768 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
769
770 /*
771 * Check whether the inode has blocks or not
772 */
773 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
774 {
775 if (F2FS_I(inode)->i_xattr_nid)
776 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
777 else
778 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
779 }
780
781 static inline bool f2fs_has_xattr_block(unsigned int ofs)
782 {
783 return ofs == XATTR_NODE_OFFSET;
784 }
785
786 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
787 struct inode *inode, blkcnt_t count)
788 {
789 block_t valid_block_count;
790
791 spin_lock(&sbi->stat_lock);
792 valid_block_count =
793 sbi->total_valid_block_count + (block_t)count;
794 if (unlikely(valid_block_count > sbi->user_block_count)) {
795 spin_unlock(&sbi->stat_lock);
796 return false;
797 }
798 inode->i_blocks += count;
799 sbi->total_valid_block_count = valid_block_count;
800 sbi->alloc_valid_block_count += (block_t)count;
801 spin_unlock(&sbi->stat_lock);
802 return true;
803 }
804
805 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
806 struct inode *inode,
807 blkcnt_t count)
808 {
809 spin_lock(&sbi->stat_lock);
810 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
811 f2fs_bug_on(sbi, inode->i_blocks < count);
812 inode->i_blocks -= count;
813 sbi->total_valid_block_count -= (block_t)count;
814 spin_unlock(&sbi->stat_lock);
815 }
816
817 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
818 {
819 atomic_inc(&sbi->nr_pages[count_type]);
820 F2FS_SET_SB_DIRT(sbi);
821 }
822
823 static inline void inode_inc_dirty_pages(struct inode *inode)
824 {
825 atomic_inc(&F2FS_I(inode)->dirty_pages);
826 if (S_ISDIR(inode->i_mode))
827 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
828 }
829
830 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
831 {
832 atomic_dec(&sbi->nr_pages[count_type]);
833 }
834
835 static inline void inode_dec_dirty_pages(struct inode *inode)
836 {
837 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
838 return;
839
840 atomic_dec(&F2FS_I(inode)->dirty_pages);
841
842 if (S_ISDIR(inode->i_mode))
843 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
844 }
845
846 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
847 {
848 return atomic_read(&sbi->nr_pages[count_type]);
849 }
850
851 static inline int get_dirty_pages(struct inode *inode)
852 {
853 return atomic_read(&F2FS_I(inode)->dirty_pages);
854 }
855
856 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
857 {
858 unsigned int pages_per_sec = sbi->segs_per_sec *
859 (1 << sbi->log_blocks_per_seg);
860 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
861 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
862 }
863
864 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
865 {
866 return sbi->total_valid_block_count;
867 }
868
869 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
870 {
871 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
872
873 /* return NAT or SIT bitmap */
874 if (flag == NAT_BITMAP)
875 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
876 else if (flag == SIT_BITMAP)
877 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
878
879 return 0;
880 }
881
882 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
883 {
884 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
885 int offset;
886
887 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
888 if (flag == NAT_BITMAP)
889 return &ckpt->sit_nat_version_bitmap;
890 else
891 return (unsigned char *)ckpt + F2FS_BLKSIZE;
892 } else {
893 offset = (flag == NAT_BITMAP) ?
894 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
895 return &ckpt->sit_nat_version_bitmap + offset;
896 }
897 }
898
899 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
900 {
901 block_t start_addr;
902 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
903 unsigned long long ckpt_version = cur_cp_version(ckpt);
904
905 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
906
907 /*
908 * odd numbered checkpoint should at cp segment 0
909 * and even segment must be at cp segment 1
910 */
911 if (!(ckpt_version & 1))
912 start_addr += sbi->blocks_per_seg;
913
914 return start_addr;
915 }
916
917 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
918 {
919 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
920 }
921
922 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
923 struct inode *inode)
924 {
925 block_t valid_block_count;
926 unsigned int valid_node_count;
927
928 spin_lock(&sbi->stat_lock);
929
930 valid_block_count = sbi->total_valid_block_count + 1;
931 if (unlikely(valid_block_count > sbi->user_block_count)) {
932 spin_unlock(&sbi->stat_lock);
933 return false;
934 }
935
936 valid_node_count = sbi->total_valid_node_count + 1;
937 if (unlikely(valid_node_count > sbi->total_node_count)) {
938 spin_unlock(&sbi->stat_lock);
939 return false;
940 }
941
942 if (inode)
943 inode->i_blocks++;
944
945 sbi->alloc_valid_block_count++;
946 sbi->total_valid_node_count++;
947 sbi->total_valid_block_count++;
948 spin_unlock(&sbi->stat_lock);
949
950 return true;
951 }
952
953 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
954 struct inode *inode)
955 {
956 spin_lock(&sbi->stat_lock);
957
958 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
959 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
960 f2fs_bug_on(sbi, !inode->i_blocks);
961
962 inode->i_blocks--;
963 sbi->total_valid_node_count--;
964 sbi->total_valid_block_count--;
965
966 spin_unlock(&sbi->stat_lock);
967 }
968
969 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
970 {
971 return sbi->total_valid_node_count;
972 }
973
974 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
975 {
976 spin_lock(&sbi->stat_lock);
977 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
978 sbi->total_valid_inode_count++;
979 spin_unlock(&sbi->stat_lock);
980 }
981
982 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
983 {
984 spin_lock(&sbi->stat_lock);
985 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
986 sbi->total_valid_inode_count--;
987 spin_unlock(&sbi->stat_lock);
988 }
989
990 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
991 {
992 return sbi->total_valid_inode_count;
993 }
994
995 static inline void f2fs_put_page(struct page *page, int unlock)
996 {
997 if (!page)
998 return;
999
1000 if (unlock) {
1001 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1002 unlock_page(page);
1003 }
1004 page_cache_release(page);
1005 }
1006
1007 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1008 {
1009 if (dn->node_page)
1010 f2fs_put_page(dn->node_page, 1);
1011 if (dn->inode_page && dn->node_page != dn->inode_page)
1012 f2fs_put_page(dn->inode_page, 0);
1013 dn->node_page = NULL;
1014 dn->inode_page = NULL;
1015 }
1016
1017 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1018 size_t size)
1019 {
1020 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1021 }
1022
1023 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1024 gfp_t flags)
1025 {
1026 void *entry;
1027 retry:
1028 entry = kmem_cache_alloc(cachep, flags);
1029 if (!entry) {
1030 cond_resched();
1031 goto retry;
1032 }
1033
1034 return entry;
1035 }
1036
1037 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1038 unsigned long index, void *item)
1039 {
1040 while (radix_tree_insert(root, index, item))
1041 cond_resched();
1042 }
1043
1044 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1045
1046 static inline bool IS_INODE(struct page *page)
1047 {
1048 struct f2fs_node *p = F2FS_NODE(page);
1049 return RAW_IS_INODE(p);
1050 }
1051
1052 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1053 {
1054 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1055 }
1056
1057 static inline block_t datablock_addr(struct page *node_page,
1058 unsigned int offset)
1059 {
1060 struct f2fs_node *raw_node;
1061 __le32 *addr_array;
1062 raw_node = F2FS_NODE(node_page);
1063 addr_array = blkaddr_in_node(raw_node);
1064 return le32_to_cpu(addr_array[offset]);
1065 }
1066
1067 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1068 {
1069 int mask;
1070
1071 addr += (nr >> 3);
1072 mask = 1 << (7 - (nr & 0x07));
1073 return mask & *addr;
1074 }
1075
1076 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1077 {
1078 int mask;
1079 int ret;
1080
1081 addr += (nr >> 3);
1082 mask = 1 << (7 - (nr & 0x07));
1083 ret = mask & *addr;
1084 *addr |= mask;
1085 return ret;
1086 }
1087
1088 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1089 {
1090 int mask;
1091 int ret;
1092
1093 addr += (nr >> 3);
1094 mask = 1 << (7 - (nr & 0x07));
1095 ret = mask & *addr;
1096 *addr &= ~mask;
1097 return ret;
1098 }
1099
1100 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1101 {
1102 int mask;
1103
1104 addr += (nr >> 3);
1105 mask = 1 << (7 - (nr & 0x07));
1106 *addr ^= mask;
1107 }
1108
1109 /* used for f2fs_inode_info->flags */
1110 enum {
1111 FI_NEW_INODE, /* indicate newly allocated inode */
1112 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1113 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1114 FI_INC_LINK, /* need to increment i_nlink */
1115 FI_ACL_MODE, /* indicate acl mode */
1116 FI_NO_ALLOC, /* should not allocate any blocks */
1117 FI_UPDATE_DIR, /* should update inode block for consistency */
1118 FI_DELAY_IPUT, /* used for the recovery */
1119 FI_NO_EXTENT, /* not to use the extent cache */
1120 FI_INLINE_XATTR, /* used for inline xattr */
1121 FI_INLINE_DATA, /* used for inline data*/
1122 FI_INLINE_DENTRY, /* used for inline dentry */
1123 FI_APPEND_WRITE, /* inode has appended data */
1124 FI_UPDATE_WRITE, /* inode has in-place-update data */
1125 FI_NEED_IPU, /* used for ipu per file */
1126 FI_ATOMIC_FILE, /* indicate atomic file */
1127 FI_VOLATILE_FILE, /* indicate volatile file */
1128 FI_DROP_CACHE, /* drop dirty page cache */
1129 FI_DATA_EXIST, /* indicate data exists */
1130 };
1131
1132 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1133 {
1134 if (!test_bit(flag, &fi->flags))
1135 set_bit(flag, &fi->flags);
1136 }
1137
1138 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1139 {
1140 return test_bit(flag, &fi->flags);
1141 }
1142
1143 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1144 {
1145 if (test_bit(flag, &fi->flags))
1146 clear_bit(flag, &fi->flags);
1147 }
1148
1149 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1150 {
1151 fi->i_acl_mode = mode;
1152 set_inode_flag(fi, FI_ACL_MODE);
1153 }
1154
1155 static inline void get_inline_info(struct f2fs_inode_info *fi,
1156 struct f2fs_inode *ri)
1157 {
1158 if (ri->i_inline & F2FS_INLINE_XATTR)
1159 set_inode_flag(fi, FI_INLINE_XATTR);
1160 if (ri->i_inline & F2FS_INLINE_DATA)
1161 set_inode_flag(fi, FI_INLINE_DATA);
1162 if (ri->i_inline & F2FS_INLINE_DENTRY)
1163 set_inode_flag(fi, FI_INLINE_DENTRY);
1164 if (ri->i_inline & F2FS_DATA_EXIST)
1165 set_inode_flag(fi, FI_DATA_EXIST);
1166 }
1167
1168 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1169 struct f2fs_inode *ri)
1170 {
1171 ri->i_inline = 0;
1172
1173 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1174 ri->i_inline |= F2FS_INLINE_XATTR;
1175 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1176 ri->i_inline |= F2FS_INLINE_DATA;
1177 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1178 ri->i_inline |= F2FS_INLINE_DENTRY;
1179 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1180 ri->i_inline |= F2FS_DATA_EXIST;
1181 }
1182
1183 static inline int f2fs_has_inline_xattr(struct inode *inode)
1184 {
1185 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1186 }
1187
1188 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1189 {
1190 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1191 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1192 return DEF_ADDRS_PER_INODE;
1193 }
1194
1195 static inline void *inline_xattr_addr(struct page *page)
1196 {
1197 struct f2fs_inode *ri = F2FS_INODE(page);
1198 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1199 F2FS_INLINE_XATTR_ADDRS]);
1200 }
1201
1202 static inline int inline_xattr_size(struct inode *inode)
1203 {
1204 if (f2fs_has_inline_xattr(inode))
1205 return F2FS_INLINE_XATTR_ADDRS << 2;
1206 else
1207 return 0;
1208 }
1209
1210 static inline int f2fs_has_inline_data(struct inode *inode)
1211 {
1212 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1213 }
1214
1215 static inline void f2fs_clear_inline_inode(struct inode *inode)
1216 {
1217 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1218 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1219 }
1220
1221 static inline int f2fs_exist_data(struct inode *inode)
1222 {
1223 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1224 }
1225
1226 static inline bool f2fs_is_atomic_file(struct inode *inode)
1227 {
1228 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1229 }
1230
1231 static inline bool f2fs_is_volatile_file(struct inode *inode)
1232 {
1233 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1234 }
1235
1236 static inline bool f2fs_is_drop_cache(struct inode *inode)
1237 {
1238 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1239 }
1240
1241 static inline void *inline_data_addr(struct page *page)
1242 {
1243 struct f2fs_inode *ri = F2FS_INODE(page);
1244 return (void *)&(ri->i_addr[1]);
1245 }
1246
1247 static inline int f2fs_has_inline_dentry(struct inode *inode)
1248 {
1249 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1250 }
1251
1252 static inline void *inline_dentry_addr(struct page *page)
1253 {
1254 struct f2fs_inode *ri = F2FS_INODE(page);
1255 return (void *)&(ri->i_addr[1]);
1256 }
1257
1258 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1259 {
1260 if (!f2fs_has_inline_dentry(dir))
1261 kunmap(page);
1262 }
1263
1264 static inline int f2fs_readonly(struct super_block *sb)
1265 {
1266 return sb->s_flags & MS_RDONLY;
1267 }
1268
1269 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1270 {
1271 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1272 }
1273
1274 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1275 {
1276 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1277 sbi->sb->s_flags |= MS_RDONLY;
1278 }
1279
1280 #define get_inode_mode(i) \
1281 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1282 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1283
1284 /* get offset of first page in next direct node */
1285 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1286 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1287 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1288 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1289
1290 /*
1291 * file.c
1292 */
1293 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1294 void truncate_data_blocks(struct dnode_of_data *);
1295 int truncate_blocks(struct inode *, u64, bool);
1296 void f2fs_truncate(struct inode *);
1297 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1298 int f2fs_setattr(struct dentry *, struct iattr *);
1299 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1300 int truncate_data_blocks_range(struct dnode_of_data *, int);
1301 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1302 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1303
1304 /*
1305 * inode.c
1306 */
1307 void f2fs_set_inode_flags(struct inode *);
1308 struct inode *f2fs_iget(struct super_block *, unsigned long);
1309 int try_to_free_nats(struct f2fs_sb_info *, int);
1310 void update_inode(struct inode *, struct page *);
1311 void update_inode_page(struct inode *);
1312 int f2fs_write_inode(struct inode *, struct writeback_control *);
1313 void f2fs_evict_inode(struct inode *);
1314 void handle_failed_inode(struct inode *);
1315
1316 /*
1317 * namei.c
1318 */
1319 struct dentry *f2fs_get_parent(struct dentry *child);
1320
1321 /*
1322 * dir.c
1323 */
1324 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1325 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1326 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1327 struct f2fs_dentry_ptr *);
1328 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1329 unsigned int);
1330 void do_make_empty_dir(struct inode *, struct inode *,
1331 struct f2fs_dentry_ptr *);
1332 struct page *init_inode_metadata(struct inode *, struct inode *,
1333 const struct qstr *, struct page *);
1334 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1335 int room_for_filename(const void *, int, int);
1336 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1337 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1338 struct page **);
1339 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1340 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1341 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1342 struct page *, struct inode *);
1343 int update_dent_inode(struct inode *, const struct qstr *);
1344 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1345 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1346 struct inode *);
1347 int f2fs_do_tmpfile(struct inode *, struct inode *);
1348 int f2fs_make_empty(struct inode *, struct inode *);
1349 bool f2fs_empty_dir(struct inode *);
1350
1351 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1352 {
1353 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1354 inode);
1355 }
1356
1357 /*
1358 * super.c
1359 */
1360 int f2fs_sync_fs(struct super_block *, int);
1361 extern __printf(3, 4)
1362 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1363
1364 /*
1365 * hash.c
1366 */
1367 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1368
1369 /*
1370 * node.c
1371 */
1372 struct dnode_of_data;
1373 struct node_info;
1374
1375 bool available_free_memory(struct f2fs_sb_info *, int);
1376 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1377 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1378 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1379 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1380 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1381 int truncate_inode_blocks(struct inode *, pgoff_t);
1382 int truncate_xattr_node(struct inode *, struct page *);
1383 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1384 void remove_inode_page(struct inode *);
1385 struct page *new_inode_page(struct inode *);
1386 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1387 void ra_node_page(struct f2fs_sb_info *, nid_t);
1388 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1389 struct page *get_node_page_ra(struct page *, int);
1390 void sync_inode_page(struct dnode_of_data *);
1391 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1392 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1393 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1394 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1395 void recover_inline_xattr(struct inode *, struct page *);
1396 void recover_xattr_data(struct inode *, struct page *, block_t);
1397 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1398 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1399 struct f2fs_summary_block *);
1400 void flush_nat_entries(struct f2fs_sb_info *);
1401 int build_node_manager(struct f2fs_sb_info *);
1402 void destroy_node_manager(struct f2fs_sb_info *);
1403 int __init create_node_manager_caches(void);
1404 void destroy_node_manager_caches(void);
1405
1406 /*
1407 * segment.c
1408 */
1409 void register_inmem_page(struct inode *, struct page *);
1410 void commit_inmem_pages(struct inode *, bool);
1411 void f2fs_balance_fs(struct f2fs_sb_info *);
1412 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1413 int f2fs_issue_flush(struct f2fs_sb_info *);
1414 int create_flush_cmd_control(struct f2fs_sb_info *);
1415 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1416 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1417 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1418 void clear_prefree_segments(struct f2fs_sb_info *);
1419 void release_discard_addrs(struct f2fs_sb_info *);
1420 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1421 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1422 void allocate_new_segments(struct f2fs_sb_info *);
1423 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1424 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1425 void write_meta_page(struct f2fs_sb_info *, struct page *);
1426 void write_node_page(struct f2fs_sb_info *, struct page *,
1427 unsigned int, struct f2fs_io_info *);
1428 void write_data_page(struct page *, struct dnode_of_data *,
1429 struct f2fs_io_info *);
1430 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1431 void recover_data_page(struct f2fs_sb_info *, struct page *,
1432 struct f2fs_summary *, block_t, block_t);
1433 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1434 block_t, block_t *, struct f2fs_summary *, int);
1435 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1436 void write_data_summaries(struct f2fs_sb_info *, block_t);
1437 void write_node_summaries(struct f2fs_sb_info *, block_t);
1438 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1439 int, unsigned int, int);
1440 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1441 int build_segment_manager(struct f2fs_sb_info *);
1442 void destroy_segment_manager(struct f2fs_sb_info *);
1443 int __init create_segment_manager_caches(void);
1444 void destroy_segment_manager_caches(void);
1445
1446 /*
1447 * checkpoint.c
1448 */
1449 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1450 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1451 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1452 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1453 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1454 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1455 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1456 void release_dirty_inode(struct f2fs_sb_info *);
1457 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1458 int acquire_orphan_inode(struct f2fs_sb_info *);
1459 void release_orphan_inode(struct f2fs_sb_info *);
1460 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1461 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1462 void recover_orphan_inodes(struct f2fs_sb_info *);
1463 int get_valid_checkpoint(struct f2fs_sb_info *);
1464 void update_dirty_page(struct inode *, struct page *);
1465 void add_dirty_dir_inode(struct inode *);
1466 void remove_dirty_dir_inode(struct inode *);
1467 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1468 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1469 void init_ino_entry_info(struct f2fs_sb_info *);
1470 int __init create_checkpoint_caches(void);
1471 void destroy_checkpoint_caches(void);
1472
1473 /*
1474 * data.c
1475 */
1476 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1477 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1478 struct f2fs_io_info *);
1479 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1480 struct f2fs_io_info *);
1481 int reserve_new_block(struct dnode_of_data *);
1482 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1483 void update_extent_cache(struct dnode_of_data *);
1484 struct page *find_data_page(struct inode *, pgoff_t, bool);
1485 struct page *get_lock_data_page(struct inode *, pgoff_t);
1486 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1487 int do_write_data_page(struct page *, struct f2fs_io_info *);
1488 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1489
1490 /*
1491 * gc.c
1492 */
1493 int start_gc_thread(struct f2fs_sb_info *);
1494 void stop_gc_thread(struct f2fs_sb_info *);
1495 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1496 int f2fs_gc(struct f2fs_sb_info *);
1497 void build_gc_manager(struct f2fs_sb_info *);
1498
1499 /*
1500 * recovery.c
1501 */
1502 int recover_fsync_data(struct f2fs_sb_info *);
1503 bool space_for_roll_forward(struct f2fs_sb_info *);
1504
1505 /*
1506 * debug.c
1507 */
1508 #ifdef CONFIG_F2FS_STAT_FS
1509 struct f2fs_stat_info {
1510 struct list_head stat_list;
1511 struct f2fs_sb_info *sbi;
1512 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1513 int main_area_segs, main_area_sections, main_area_zones;
1514 int hit_ext, total_ext;
1515 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1516 int nats, dirty_nats, sits, dirty_sits, fnids;
1517 int total_count, utilization;
1518 int bg_gc, inline_inode, inline_dir, inmem_pages;
1519 unsigned int valid_count, valid_node_count, valid_inode_count;
1520 unsigned int bimodal, avg_vblocks;
1521 int util_free, util_valid, util_invalid;
1522 int rsvd_segs, overp_segs;
1523 int dirty_count, node_pages, meta_pages;
1524 int prefree_count, call_count, cp_count;
1525 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1526 int tot_blks, data_blks, node_blks;
1527 int curseg[NR_CURSEG_TYPE];
1528 int cursec[NR_CURSEG_TYPE];
1529 int curzone[NR_CURSEG_TYPE];
1530
1531 unsigned int segment_count[2];
1532 unsigned int block_count[2];
1533 unsigned int inplace_count;
1534 unsigned base_mem, cache_mem, page_mem;
1535 };
1536
1537 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1538 {
1539 return (struct f2fs_stat_info *)sbi->stat_info;
1540 }
1541
1542 #define stat_inc_cp_count(si) ((si)->cp_count++)
1543 #define stat_inc_call_count(si) ((si)->call_count++)
1544 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1545 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1546 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1547 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1548 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1549 #define stat_inc_inline_inode(inode) \
1550 do { \
1551 if (f2fs_has_inline_data(inode)) \
1552 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1553 } while (0)
1554 #define stat_dec_inline_inode(inode) \
1555 do { \
1556 if (f2fs_has_inline_data(inode)) \
1557 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1558 } while (0)
1559 #define stat_inc_inline_dir(inode) \
1560 do { \
1561 if (f2fs_has_inline_dentry(inode)) \
1562 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1563 } while (0)
1564 #define stat_dec_inline_dir(inode) \
1565 do { \
1566 if (f2fs_has_inline_dentry(inode)) \
1567 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1568 } while (0)
1569 #define stat_inc_seg_type(sbi, curseg) \
1570 ((sbi)->segment_count[(curseg)->alloc_type]++)
1571 #define stat_inc_block_count(sbi, curseg) \
1572 ((sbi)->block_count[(curseg)->alloc_type]++)
1573 #define stat_inc_inplace_blocks(sbi) \
1574 (atomic_inc(&(sbi)->inplace_count))
1575 #define stat_inc_seg_count(sbi, type) \
1576 do { \
1577 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1578 (si)->tot_segs++; \
1579 if (type == SUM_TYPE_DATA) \
1580 si->data_segs++; \
1581 else \
1582 si->node_segs++; \
1583 } while (0)
1584
1585 #define stat_inc_tot_blk_count(si, blks) \
1586 (si->tot_blks += (blks))
1587
1588 #define stat_inc_data_blk_count(sbi, blks) \
1589 do { \
1590 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1591 stat_inc_tot_blk_count(si, blks); \
1592 si->data_blks += (blks); \
1593 } while (0)
1594
1595 #define stat_inc_node_blk_count(sbi, blks) \
1596 do { \
1597 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1598 stat_inc_tot_blk_count(si, blks); \
1599 si->node_blks += (blks); \
1600 } while (0)
1601
1602 int f2fs_build_stats(struct f2fs_sb_info *);
1603 void f2fs_destroy_stats(struct f2fs_sb_info *);
1604 void __init f2fs_create_root_stats(void);
1605 void f2fs_destroy_root_stats(void);
1606 #else
1607 #define stat_inc_cp_count(si)
1608 #define stat_inc_call_count(si)
1609 #define stat_inc_bggc_count(si)
1610 #define stat_inc_dirty_dir(sbi)
1611 #define stat_dec_dirty_dir(sbi)
1612 #define stat_inc_total_hit(sb)
1613 #define stat_inc_read_hit(sb)
1614 #define stat_inc_inline_inode(inode)
1615 #define stat_dec_inline_inode(inode)
1616 #define stat_inc_inline_dir(inode)
1617 #define stat_dec_inline_dir(inode)
1618 #define stat_inc_seg_type(sbi, curseg)
1619 #define stat_inc_block_count(sbi, curseg)
1620 #define stat_inc_inplace_blocks(sbi)
1621 #define stat_inc_seg_count(si, type)
1622 #define stat_inc_tot_blk_count(si, blks)
1623 #define stat_inc_data_blk_count(si, blks)
1624 #define stat_inc_node_blk_count(sbi, blks)
1625
1626 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1627 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1628 static inline void __init f2fs_create_root_stats(void) { }
1629 static inline void f2fs_destroy_root_stats(void) { }
1630 #endif
1631
1632 extern const struct file_operations f2fs_dir_operations;
1633 extern const struct file_operations f2fs_file_operations;
1634 extern const struct inode_operations f2fs_file_inode_operations;
1635 extern const struct address_space_operations f2fs_dblock_aops;
1636 extern const struct address_space_operations f2fs_node_aops;
1637 extern const struct address_space_operations f2fs_meta_aops;
1638 extern const struct inode_operations f2fs_dir_inode_operations;
1639 extern const struct inode_operations f2fs_symlink_inode_operations;
1640 extern const struct inode_operations f2fs_special_inode_operations;
1641
1642 /*
1643 * inline.c
1644 */
1645 bool f2fs_may_inline(struct inode *);
1646 void read_inline_data(struct page *, struct page *);
1647 int f2fs_read_inline_data(struct inode *, struct page *);
1648 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1649 int f2fs_convert_inline_inode(struct inode *);
1650 int f2fs_write_inline_data(struct inode *, struct page *);
1651 void truncate_inline_data(struct page *, u64);
1652 bool recover_inline_data(struct inode *, struct page *);
1653 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1654 struct page **);
1655 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1656 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1657 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1658 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1659 struct inode *, struct inode *);
1660 bool f2fs_empty_inline_dir(struct inode *);
1661 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1662 #endif
This page took 0.062613 seconds and 6 git commands to generate.