f2fs: introduce get_next_page_offset to speed up SEEK_DATA
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition) \
31 do { \
32 if (unlikely(condition)) { \
33 WARN_ON(1); \
34 set_sbi_flag(sbi, SBI_NEED_FSCK); \
35 } \
36 } while (0)
37 #define f2fs_down_write(x, y) down_write(x)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 #define CRCPOLY_LE 0xedb88320
88
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 unsigned char *p = (unsigned char *)buf;
92 __u32 crc = F2FS_SUPER_MAGIC;
93 int i;
94
95 while (len--) {
96 crc ^= *p++;
97 for (i = 0; i < 8; i++)
98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 }
100 return crc;
101 }
102
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107
108 /*
109 * For checkpoint manager
110 */
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 enum {
117 CP_UMOUNT,
118 CP_FASTBOOT,
119 CP_SYNC,
120 CP_RECOVERY,
121 CP_DISCARD,
122 };
123
124 #define DEF_BATCHED_TRIM_SECTIONS 32
125 #define BATCHED_TRIM_SEGMENTS(sbi) \
126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi) \
128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL 60 /* 60 secs */
130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
131
132 struct cp_control {
133 int reason;
134 __u64 trim_start;
135 __u64 trim_end;
136 __u64 trim_minlen;
137 __u64 trimmed;
138 };
139
140 /*
141 * For CP/NAT/SIT/SSA readahead
142 */
143 enum {
144 META_CP,
145 META_NAT,
146 META_SIT,
147 META_SSA,
148 META_POR,
149 };
150
151 /* for the list of ino */
152 enum {
153 ORPHAN_INO, /* for orphan ino list */
154 APPEND_INO, /* for append ino list */
155 UPDATE_INO, /* for update ino list */
156 MAX_INO_ENTRY, /* max. list */
157 };
158
159 struct ino_entry {
160 struct list_head list; /* list head */
161 nid_t ino; /* inode number */
162 };
163
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
188
189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 int before = nats_in_cursum(rs);
200 rs->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 int before = sits_in_cursum(rs);
207 rs->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(sum);
216 return size <= MAX_SIT_JENTRIES(sum);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
235
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
237 _IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
239 _IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
241 _IOW('f', 21, struct f2fs_encryption_policy)
242
243 /*
244 * should be same as XFS_IOC_GOINGDOWN.
245 * Flags for going down operation used by FS_IOC_GOINGDOWN
246 */
247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
252
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255 * ioctl commands in 32 bit emulation
256 */
257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
260 #endif
261
262 struct f2fs_defragment {
263 u64 start;
264 u64 len;
265 };
266
267 /*
268 * For INODE and NODE manager
269 */
270 /* for directory operations */
271 struct f2fs_str {
272 unsigned char *name;
273 u32 len;
274 };
275
276 struct f2fs_filename {
277 const struct qstr *usr_fname;
278 struct f2fs_str disk_name;
279 f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 struct f2fs_str crypto_buf;
282 #endif
283 };
284
285 #define FSTR_INIT(n, l) { .name = n, .len = l }
286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p) ((p)->disk_name.name)
288 #define fname_len(p) ((p)->disk_name.len)
289
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 };
387
388 /* for flag in get_data_block */
389 #define F2FS_GET_BLOCK_READ 0
390 #define F2FS_GET_BLOCK_DIO 1
391 #define F2FS_GET_BLOCK_FIEMAP 2
392 #define F2FS_GET_BLOCK_BMAP 3
393
394 /*
395 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
396 */
397 #define FADVISE_COLD_BIT 0x01
398 #define FADVISE_LOST_PINO_BIT 0x02
399 #define FADVISE_ENCRYPT_BIT 0x04
400 #define FADVISE_ENC_NAME_BIT 0x08
401
402 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
403 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
404 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
405 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
406 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
407 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
409 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
410 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
411 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
412 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
413
414 /* Encryption algorithms */
415 #define F2FS_ENCRYPTION_MODE_INVALID 0
416 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
417 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
418 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
419 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
420
421 #include "f2fs_crypto.h"
422
423 #define DEF_DIR_LEVEL 0
424
425 struct f2fs_inode_info {
426 struct inode vfs_inode; /* serve a vfs inode */
427 unsigned long i_flags; /* keep an inode flags for ioctl */
428 unsigned char i_advise; /* use to give file attribute hints */
429 unsigned char i_dir_level; /* use for dentry level for large dir */
430 unsigned int i_current_depth; /* use only in directory structure */
431 unsigned int i_pino; /* parent inode number */
432 umode_t i_acl_mode; /* keep file acl mode temporarily */
433
434 /* Use below internally in f2fs*/
435 unsigned long flags; /* use to pass per-file flags */
436 struct rw_semaphore i_sem; /* protect fi info */
437 atomic_t dirty_pages; /* # of dirty pages */
438 f2fs_hash_t chash; /* hash value of given file name */
439 unsigned int clevel; /* maximum level of given file name */
440 nid_t i_xattr_nid; /* node id that contains xattrs */
441 unsigned long long xattr_ver; /* cp version of xattr modification */
442
443 struct list_head dirty_list; /* linked in global dirty list */
444 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
445 struct mutex inmem_lock; /* lock for inmemory pages */
446
447 struct extent_tree *extent_tree; /* cached extent_tree entry */
448
449 #ifdef CONFIG_F2FS_FS_ENCRYPTION
450 /* Encryption params */
451 struct f2fs_crypt_info *i_crypt_info;
452 #endif
453 };
454
455 static inline void get_extent_info(struct extent_info *ext,
456 struct f2fs_extent i_ext)
457 {
458 ext->fofs = le32_to_cpu(i_ext.fofs);
459 ext->blk = le32_to_cpu(i_ext.blk);
460 ext->len = le32_to_cpu(i_ext.len);
461 }
462
463 static inline void set_raw_extent(struct extent_info *ext,
464 struct f2fs_extent *i_ext)
465 {
466 i_ext->fofs = cpu_to_le32(ext->fofs);
467 i_ext->blk = cpu_to_le32(ext->blk);
468 i_ext->len = cpu_to_le32(ext->len);
469 }
470
471 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
472 u32 blk, unsigned int len)
473 {
474 ei->fofs = fofs;
475 ei->blk = blk;
476 ei->len = len;
477 }
478
479 static inline bool __is_extent_same(struct extent_info *ei1,
480 struct extent_info *ei2)
481 {
482 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
483 ei1->len == ei2->len);
484 }
485
486 static inline bool __is_extent_mergeable(struct extent_info *back,
487 struct extent_info *front)
488 {
489 return (back->fofs + back->len == front->fofs &&
490 back->blk + back->len == front->blk);
491 }
492
493 static inline bool __is_back_mergeable(struct extent_info *cur,
494 struct extent_info *back)
495 {
496 return __is_extent_mergeable(back, cur);
497 }
498
499 static inline bool __is_front_mergeable(struct extent_info *cur,
500 struct extent_info *front)
501 {
502 return __is_extent_mergeable(cur, front);
503 }
504
505 static inline void __try_update_largest_extent(struct extent_tree *et,
506 struct extent_node *en)
507 {
508 if (en->ei.len > et->largest.len)
509 et->largest = en->ei;
510 }
511
512 struct f2fs_nm_info {
513 block_t nat_blkaddr; /* base disk address of NAT */
514 nid_t max_nid; /* maximum possible node ids */
515 nid_t available_nids; /* maximum available node ids */
516 nid_t next_scan_nid; /* the next nid to be scanned */
517 unsigned int ram_thresh; /* control the memory footprint */
518 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
519 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
520
521 /* NAT cache management */
522 struct radix_tree_root nat_root;/* root of the nat entry cache */
523 struct radix_tree_root nat_set_root;/* root of the nat set cache */
524 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
525 struct list_head nat_entries; /* cached nat entry list (clean) */
526 unsigned int nat_cnt; /* the # of cached nat entries */
527 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
528
529 /* free node ids management */
530 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
531 struct list_head free_nid_list; /* a list for free nids */
532 spinlock_t free_nid_list_lock; /* protect free nid list */
533 unsigned int fcnt; /* the number of free node id */
534 struct mutex build_lock; /* lock for build free nids */
535
536 /* for checkpoint */
537 char *nat_bitmap; /* NAT bitmap pointer */
538 int bitmap_size; /* bitmap size */
539 };
540
541 /*
542 * this structure is used as one of function parameters.
543 * all the information are dedicated to a given direct node block determined
544 * by the data offset in a file.
545 */
546 struct dnode_of_data {
547 struct inode *inode; /* vfs inode pointer */
548 struct page *inode_page; /* its inode page, NULL is possible */
549 struct page *node_page; /* cached direct node page */
550 nid_t nid; /* node id of the direct node block */
551 unsigned int ofs_in_node; /* data offset in the node page */
552 bool inode_page_locked; /* inode page is locked or not */
553 bool node_changed; /* is node block changed */
554 char cur_level; /* level of hole node page */
555 char max_level; /* level of current page located */
556 block_t data_blkaddr; /* block address of the node block */
557 };
558
559 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
560 struct page *ipage, struct page *npage, nid_t nid)
561 {
562 memset(dn, 0, sizeof(*dn));
563 dn->inode = inode;
564 dn->inode_page = ipage;
565 dn->node_page = npage;
566 dn->nid = nid;
567 }
568
569 /*
570 * For SIT manager
571 *
572 * By default, there are 6 active log areas across the whole main area.
573 * When considering hot and cold data separation to reduce cleaning overhead,
574 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
575 * respectively.
576 * In the current design, you should not change the numbers intentionally.
577 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
578 * logs individually according to the underlying devices. (default: 6)
579 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
580 * data and 8 for node logs.
581 */
582 #define NR_CURSEG_DATA_TYPE (3)
583 #define NR_CURSEG_NODE_TYPE (3)
584 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
585
586 enum {
587 CURSEG_HOT_DATA = 0, /* directory entry blocks */
588 CURSEG_WARM_DATA, /* data blocks */
589 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
590 CURSEG_HOT_NODE, /* direct node blocks of directory files */
591 CURSEG_WARM_NODE, /* direct node blocks of normal files */
592 CURSEG_COLD_NODE, /* indirect node blocks */
593 NO_CHECK_TYPE,
594 CURSEG_DIRECT_IO, /* to use for the direct IO path */
595 };
596
597 struct flush_cmd {
598 struct completion wait;
599 struct llist_node llnode;
600 int ret;
601 };
602
603 struct flush_cmd_control {
604 struct task_struct *f2fs_issue_flush; /* flush thread */
605 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
606 struct llist_head issue_list; /* list for command issue */
607 struct llist_node *dispatch_list; /* list for command dispatch */
608 };
609
610 struct f2fs_sm_info {
611 struct sit_info *sit_info; /* whole segment information */
612 struct free_segmap_info *free_info; /* free segment information */
613 struct dirty_seglist_info *dirty_info; /* dirty segment information */
614 struct curseg_info *curseg_array; /* active segment information */
615
616 block_t seg0_blkaddr; /* block address of 0'th segment */
617 block_t main_blkaddr; /* start block address of main area */
618 block_t ssa_blkaddr; /* start block address of SSA area */
619
620 unsigned int segment_count; /* total # of segments */
621 unsigned int main_segments; /* # of segments in main area */
622 unsigned int reserved_segments; /* # of reserved segments */
623 unsigned int ovp_segments; /* # of overprovision segments */
624
625 /* a threshold to reclaim prefree segments */
626 unsigned int rec_prefree_segments;
627
628 /* for small discard management */
629 struct list_head discard_list; /* 4KB discard list */
630 int nr_discards; /* # of discards in the list */
631 int max_discards; /* max. discards to be issued */
632
633 /* for batched trimming */
634 unsigned int trim_sections; /* # of sections to trim */
635
636 struct list_head sit_entry_set; /* sit entry set list */
637
638 unsigned int ipu_policy; /* in-place-update policy */
639 unsigned int min_ipu_util; /* in-place-update threshold */
640 unsigned int min_fsync_blocks; /* threshold for fsync */
641
642 /* for flush command control */
643 struct flush_cmd_control *cmd_control_info;
644
645 };
646
647 /*
648 * For superblock
649 */
650 /*
651 * COUNT_TYPE for monitoring
652 *
653 * f2fs monitors the number of several block types such as on-writeback,
654 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
655 */
656 enum count_type {
657 F2FS_WRITEBACK,
658 F2FS_DIRTY_DENTS,
659 F2FS_DIRTY_DATA,
660 F2FS_DIRTY_NODES,
661 F2FS_DIRTY_META,
662 F2FS_INMEM_PAGES,
663 NR_COUNT_TYPE,
664 };
665
666 /*
667 * The below are the page types of bios used in submit_bio().
668 * The available types are:
669 * DATA User data pages. It operates as async mode.
670 * NODE Node pages. It operates as async mode.
671 * META FS metadata pages such as SIT, NAT, CP.
672 * NR_PAGE_TYPE The number of page types.
673 * META_FLUSH Make sure the previous pages are written
674 * with waiting the bio's completion
675 * ... Only can be used with META.
676 */
677 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
678 enum page_type {
679 DATA,
680 NODE,
681 META,
682 NR_PAGE_TYPE,
683 META_FLUSH,
684 INMEM, /* the below types are used by tracepoints only. */
685 INMEM_DROP,
686 IPU,
687 OPU,
688 };
689
690 struct f2fs_io_info {
691 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
692 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
693 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
694 block_t blk_addr; /* block address to be written */
695 struct page *page; /* page to be written */
696 struct page *encrypted_page; /* encrypted page */
697 };
698
699 #define is_read_io(rw) (((rw) & 1) == READ)
700 struct f2fs_bio_info {
701 struct f2fs_sb_info *sbi; /* f2fs superblock */
702 struct bio *bio; /* bios to merge */
703 sector_t last_block_in_bio; /* last block number */
704 struct f2fs_io_info fio; /* store buffered io info. */
705 struct rw_semaphore io_rwsem; /* blocking op for bio */
706 };
707
708 enum inode_type {
709 DIR_INODE, /* for dirty dir inode */
710 FILE_INODE, /* for dirty regular/symlink inode */
711 NR_INODE_TYPE,
712 };
713
714 /* for inner inode cache management */
715 struct inode_management {
716 struct radix_tree_root ino_root; /* ino entry array */
717 spinlock_t ino_lock; /* for ino entry lock */
718 struct list_head ino_list; /* inode list head */
719 unsigned long ino_num; /* number of entries */
720 };
721
722 /* For s_flag in struct f2fs_sb_info */
723 enum {
724 SBI_IS_DIRTY, /* dirty flag for checkpoint */
725 SBI_IS_CLOSE, /* specify unmounting */
726 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
727 SBI_POR_DOING, /* recovery is doing or not */
728 };
729
730 enum {
731 CP_TIME,
732 REQ_TIME,
733 MAX_TIME,
734 };
735
736 struct f2fs_sb_info {
737 struct super_block *sb; /* pointer to VFS super block */
738 struct proc_dir_entry *s_proc; /* proc entry */
739 struct f2fs_super_block *raw_super; /* raw super block pointer */
740 int valid_super_block; /* valid super block no */
741 int s_flag; /* flags for sbi */
742
743 /* for node-related operations */
744 struct f2fs_nm_info *nm_info; /* node manager */
745 struct inode *node_inode; /* cache node blocks */
746
747 /* for segment-related operations */
748 struct f2fs_sm_info *sm_info; /* segment manager */
749
750 /* for bio operations */
751 struct f2fs_bio_info read_io; /* for read bios */
752 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
753
754 /* for checkpoint */
755 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
756 struct inode *meta_inode; /* cache meta blocks */
757 struct mutex cp_mutex; /* checkpoint procedure lock */
758 struct rw_semaphore cp_rwsem; /* blocking FS operations */
759 struct rw_semaphore node_write; /* locking node writes */
760 struct mutex writepages; /* mutex for writepages() */
761 wait_queue_head_t cp_wait;
762 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
763 long interval_time[MAX_TIME]; /* to store thresholds */
764
765 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
766
767 /* for orphan inode, use 0'th array */
768 unsigned int max_orphans; /* max orphan inodes */
769
770 /* for inode management */
771 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
772 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
773
774 /* for extent tree cache */
775 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
776 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
777 struct list_head extent_list; /* lru list for shrinker */
778 spinlock_t extent_lock; /* locking extent lru list */
779 atomic_t total_ext_tree; /* extent tree count */
780 struct list_head zombie_list; /* extent zombie tree list */
781 atomic_t total_zombie_tree; /* extent zombie tree count */
782 atomic_t total_ext_node; /* extent info count */
783
784 /* basic filesystem units */
785 unsigned int log_sectors_per_block; /* log2 sectors per block */
786 unsigned int log_blocksize; /* log2 block size */
787 unsigned int blocksize; /* block size */
788 unsigned int root_ino_num; /* root inode number*/
789 unsigned int node_ino_num; /* node inode number*/
790 unsigned int meta_ino_num; /* meta inode number*/
791 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
792 unsigned int blocks_per_seg; /* blocks per segment */
793 unsigned int segs_per_sec; /* segments per section */
794 unsigned int secs_per_zone; /* sections per zone */
795 unsigned int total_sections; /* total section count */
796 unsigned int total_node_count; /* total node block count */
797 unsigned int total_valid_node_count; /* valid node block count */
798 unsigned int total_valid_inode_count; /* valid inode count */
799 loff_t max_file_blocks; /* max block index of file */
800 int active_logs; /* # of active logs */
801 int dir_level; /* directory level */
802
803 block_t user_block_count; /* # of user blocks */
804 block_t total_valid_block_count; /* # of valid blocks */
805 block_t alloc_valid_block_count; /* # of allocated blocks */
806 block_t discard_blks; /* discard command candidats */
807 block_t last_valid_block_count; /* for recovery */
808 u32 s_next_generation; /* for NFS support */
809 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
810
811 struct f2fs_mount_info mount_opt; /* mount options */
812
813 /* for cleaning operations */
814 struct mutex gc_mutex; /* mutex for GC */
815 struct f2fs_gc_kthread *gc_thread; /* GC thread */
816 unsigned int cur_victim_sec; /* current victim section num */
817
818 /* maximum # of trials to find a victim segment for SSR and GC */
819 unsigned int max_victim_search;
820
821 /*
822 * for stat information.
823 * one is for the LFS mode, and the other is for the SSR mode.
824 */
825 #ifdef CONFIG_F2FS_STAT_FS
826 struct f2fs_stat_info *stat_info; /* FS status information */
827 unsigned int segment_count[2]; /* # of allocated segments */
828 unsigned int block_count[2]; /* # of allocated blocks */
829 atomic_t inplace_count; /* # of inplace update */
830 atomic64_t total_hit_ext; /* # of lookup extent cache */
831 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
832 atomic64_t read_hit_largest; /* # of hit largest extent node */
833 atomic64_t read_hit_cached; /* # of hit cached extent node */
834 atomic_t inline_xattr; /* # of inline_xattr inodes */
835 atomic_t inline_inode; /* # of inline_data inodes */
836 atomic_t inline_dir; /* # of inline_dentry inodes */
837 int bg_gc; /* background gc calls */
838 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
839 #endif
840 unsigned int last_victim[2]; /* last victim segment # */
841 spinlock_t stat_lock; /* lock for stat operations */
842
843 /* For sysfs suppport */
844 struct kobject s_kobj;
845 struct completion s_kobj_unregister;
846
847 /* For shrinker support */
848 struct list_head s_list;
849 struct mutex umount_mutex;
850 unsigned int shrinker_run_no;
851
852 /* For write statistics */
853 u64 sectors_written_start;
854 u64 kbytes_written;
855 };
856
857 /* For write statistics. Suppose sector size is 512 bytes,
858 * and the return value is in kbytes. s is of struct f2fs_sb_info.
859 */
860 #define BD_PART_WRITTEN(s) \
861 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
862 s->sectors_written_start) >> 1)
863
864 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
865 {
866 sbi->last_time[type] = jiffies;
867 }
868
869 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
870 {
871 struct timespec ts = {sbi->interval_time[type], 0};
872 unsigned long interval = timespec_to_jiffies(&ts);
873
874 return time_after(jiffies, sbi->last_time[type] + interval);
875 }
876
877 static inline bool is_idle(struct f2fs_sb_info *sbi)
878 {
879 struct block_device *bdev = sbi->sb->s_bdev;
880 struct request_queue *q = bdev_get_queue(bdev);
881 struct request_list *rl = &q->root_rl;
882
883 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
884 return 0;
885
886 return f2fs_time_over(sbi, REQ_TIME);
887 }
888
889 /*
890 * Inline functions
891 */
892 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
893 {
894 return container_of(inode, struct f2fs_inode_info, vfs_inode);
895 }
896
897 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
898 {
899 return sb->s_fs_info;
900 }
901
902 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
903 {
904 return F2FS_SB(inode->i_sb);
905 }
906
907 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
908 {
909 return F2FS_I_SB(mapping->host);
910 }
911
912 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
913 {
914 return F2FS_M_SB(page->mapping);
915 }
916
917 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
918 {
919 return (struct f2fs_super_block *)(sbi->raw_super);
920 }
921
922 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
923 {
924 return (struct f2fs_checkpoint *)(sbi->ckpt);
925 }
926
927 static inline struct f2fs_node *F2FS_NODE(struct page *page)
928 {
929 return (struct f2fs_node *)page_address(page);
930 }
931
932 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
933 {
934 return &((struct f2fs_node *)page_address(page))->i;
935 }
936
937 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
938 {
939 return (struct f2fs_nm_info *)(sbi->nm_info);
940 }
941
942 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
943 {
944 return (struct f2fs_sm_info *)(sbi->sm_info);
945 }
946
947 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
948 {
949 return (struct sit_info *)(SM_I(sbi)->sit_info);
950 }
951
952 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
953 {
954 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
955 }
956
957 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
958 {
959 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
960 }
961
962 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
963 {
964 return sbi->meta_inode->i_mapping;
965 }
966
967 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
968 {
969 return sbi->node_inode->i_mapping;
970 }
971
972 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
973 {
974 return sbi->s_flag & (0x01 << type);
975 }
976
977 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
978 {
979 sbi->s_flag |= (0x01 << type);
980 }
981
982 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
983 {
984 sbi->s_flag &= ~(0x01 << type);
985 }
986
987 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
988 {
989 return le64_to_cpu(cp->checkpoint_ver);
990 }
991
992 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
993 {
994 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
995 return ckpt_flags & f;
996 }
997
998 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
999 {
1000 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1001 ckpt_flags |= f;
1002 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1003 }
1004
1005 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1006 {
1007 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1008 ckpt_flags &= (~f);
1009 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1010 }
1011
1012 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1013 {
1014 down_read(&sbi->cp_rwsem);
1015 }
1016
1017 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1018 {
1019 up_read(&sbi->cp_rwsem);
1020 }
1021
1022 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1023 {
1024 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1025 }
1026
1027 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1028 {
1029 up_write(&sbi->cp_rwsem);
1030 }
1031
1032 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1033 {
1034 int reason = CP_SYNC;
1035
1036 if (test_opt(sbi, FASTBOOT))
1037 reason = CP_FASTBOOT;
1038 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1039 reason = CP_UMOUNT;
1040 return reason;
1041 }
1042
1043 static inline bool __remain_node_summaries(int reason)
1044 {
1045 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1046 }
1047
1048 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1049 {
1050 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1051 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1052 }
1053
1054 /*
1055 * Check whether the given nid is within node id range.
1056 */
1057 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1058 {
1059 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1060 return -EINVAL;
1061 if (unlikely(nid >= NM_I(sbi)->max_nid))
1062 return -EINVAL;
1063 return 0;
1064 }
1065
1066 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1067
1068 /*
1069 * Check whether the inode has blocks or not
1070 */
1071 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1072 {
1073 if (F2FS_I(inode)->i_xattr_nid)
1074 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1075 else
1076 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1077 }
1078
1079 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1080 {
1081 return ofs == XATTR_NODE_OFFSET;
1082 }
1083
1084 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1085 struct inode *inode, blkcnt_t count)
1086 {
1087 block_t valid_block_count;
1088
1089 spin_lock(&sbi->stat_lock);
1090 valid_block_count =
1091 sbi->total_valid_block_count + (block_t)count;
1092 if (unlikely(valid_block_count > sbi->user_block_count)) {
1093 spin_unlock(&sbi->stat_lock);
1094 return false;
1095 }
1096 inode->i_blocks += count;
1097 sbi->total_valid_block_count = valid_block_count;
1098 sbi->alloc_valid_block_count += (block_t)count;
1099 spin_unlock(&sbi->stat_lock);
1100 return true;
1101 }
1102
1103 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1104 struct inode *inode,
1105 blkcnt_t count)
1106 {
1107 spin_lock(&sbi->stat_lock);
1108 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1109 f2fs_bug_on(sbi, inode->i_blocks < count);
1110 inode->i_blocks -= count;
1111 sbi->total_valid_block_count -= (block_t)count;
1112 spin_unlock(&sbi->stat_lock);
1113 }
1114
1115 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1116 {
1117 atomic_inc(&sbi->nr_pages[count_type]);
1118 set_sbi_flag(sbi, SBI_IS_DIRTY);
1119 }
1120
1121 static inline void inode_inc_dirty_pages(struct inode *inode)
1122 {
1123 atomic_inc(&F2FS_I(inode)->dirty_pages);
1124 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1125 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1126 }
1127
1128 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1129 {
1130 atomic_dec(&sbi->nr_pages[count_type]);
1131 }
1132
1133 static inline void inode_dec_dirty_pages(struct inode *inode)
1134 {
1135 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1136 !S_ISLNK(inode->i_mode))
1137 return;
1138
1139 atomic_dec(&F2FS_I(inode)->dirty_pages);
1140 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1141 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1142 }
1143
1144 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1145 {
1146 return atomic_read(&sbi->nr_pages[count_type]);
1147 }
1148
1149 static inline int get_dirty_pages(struct inode *inode)
1150 {
1151 return atomic_read(&F2FS_I(inode)->dirty_pages);
1152 }
1153
1154 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1155 {
1156 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1157 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1158 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1159 }
1160
1161 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1162 {
1163 return sbi->total_valid_block_count;
1164 }
1165
1166 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1167 {
1168 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1169
1170 /* return NAT or SIT bitmap */
1171 if (flag == NAT_BITMAP)
1172 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1173 else if (flag == SIT_BITMAP)
1174 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1175
1176 return 0;
1177 }
1178
1179 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1180 {
1181 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1182 }
1183
1184 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1185 {
1186 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1187 int offset;
1188
1189 if (__cp_payload(sbi) > 0) {
1190 if (flag == NAT_BITMAP)
1191 return &ckpt->sit_nat_version_bitmap;
1192 else
1193 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1194 } else {
1195 offset = (flag == NAT_BITMAP) ?
1196 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1197 return &ckpt->sit_nat_version_bitmap + offset;
1198 }
1199 }
1200
1201 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1202 {
1203 block_t start_addr;
1204 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1205 unsigned long long ckpt_version = cur_cp_version(ckpt);
1206
1207 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1208
1209 /*
1210 * odd numbered checkpoint should at cp segment 0
1211 * and even segment must be at cp segment 1
1212 */
1213 if (!(ckpt_version & 1))
1214 start_addr += sbi->blocks_per_seg;
1215
1216 return start_addr;
1217 }
1218
1219 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1220 {
1221 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1222 }
1223
1224 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1225 struct inode *inode)
1226 {
1227 block_t valid_block_count;
1228 unsigned int valid_node_count;
1229
1230 spin_lock(&sbi->stat_lock);
1231
1232 valid_block_count = sbi->total_valid_block_count + 1;
1233 if (unlikely(valid_block_count > sbi->user_block_count)) {
1234 spin_unlock(&sbi->stat_lock);
1235 return false;
1236 }
1237
1238 valid_node_count = sbi->total_valid_node_count + 1;
1239 if (unlikely(valid_node_count > sbi->total_node_count)) {
1240 spin_unlock(&sbi->stat_lock);
1241 return false;
1242 }
1243
1244 if (inode)
1245 inode->i_blocks++;
1246
1247 sbi->alloc_valid_block_count++;
1248 sbi->total_valid_node_count++;
1249 sbi->total_valid_block_count++;
1250 spin_unlock(&sbi->stat_lock);
1251
1252 return true;
1253 }
1254
1255 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1256 struct inode *inode)
1257 {
1258 spin_lock(&sbi->stat_lock);
1259
1260 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1261 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1262 f2fs_bug_on(sbi, !inode->i_blocks);
1263
1264 inode->i_blocks--;
1265 sbi->total_valid_node_count--;
1266 sbi->total_valid_block_count--;
1267
1268 spin_unlock(&sbi->stat_lock);
1269 }
1270
1271 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1272 {
1273 return sbi->total_valid_node_count;
1274 }
1275
1276 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1277 {
1278 spin_lock(&sbi->stat_lock);
1279 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1280 sbi->total_valid_inode_count++;
1281 spin_unlock(&sbi->stat_lock);
1282 }
1283
1284 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1285 {
1286 spin_lock(&sbi->stat_lock);
1287 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1288 sbi->total_valid_inode_count--;
1289 spin_unlock(&sbi->stat_lock);
1290 }
1291
1292 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1293 {
1294 return sbi->total_valid_inode_count;
1295 }
1296
1297 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1298 pgoff_t index, bool for_write)
1299 {
1300 if (!for_write)
1301 return grab_cache_page(mapping, index);
1302 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1303 }
1304
1305 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1306 {
1307 char *src_kaddr = kmap(src);
1308 char *dst_kaddr = kmap(dst);
1309
1310 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1311 kunmap(dst);
1312 kunmap(src);
1313 }
1314
1315 static inline void f2fs_put_page(struct page *page, int unlock)
1316 {
1317 if (!page)
1318 return;
1319
1320 if (unlock) {
1321 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1322 unlock_page(page);
1323 }
1324 page_cache_release(page);
1325 }
1326
1327 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1328 {
1329 if (dn->node_page)
1330 f2fs_put_page(dn->node_page, 1);
1331 if (dn->inode_page && dn->node_page != dn->inode_page)
1332 f2fs_put_page(dn->inode_page, 0);
1333 dn->node_page = NULL;
1334 dn->inode_page = NULL;
1335 }
1336
1337 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1338 size_t size)
1339 {
1340 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1341 }
1342
1343 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1344 gfp_t flags)
1345 {
1346 void *entry;
1347
1348 entry = kmem_cache_alloc(cachep, flags);
1349 if (!entry)
1350 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1351 return entry;
1352 }
1353
1354 static inline struct bio *f2fs_bio_alloc(int npages)
1355 {
1356 struct bio *bio;
1357
1358 /* No failure on bio allocation */
1359 bio = bio_alloc(GFP_NOIO, npages);
1360 if (!bio)
1361 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1362 return bio;
1363 }
1364
1365 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1366 unsigned long index, void *item)
1367 {
1368 while (radix_tree_insert(root, index, item))
1369 cond_resched();
1370 }
1371
1372 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1373
1374 static inline bool IS_INODE(struct page *page)
1375 {
1376 struct f2fs_node *p = F2FS_NODE(page);
1377 return RAW_IS_INODE(p);
1378 }
1379
1380 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1381 {
1382 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1383 }
1384
1385 static inline block_t datablock_addr(struct page *node_page,
1386 unsigned int offset)
1387 {
1388 struct f2fs_node *raw_node;
1389 __le32 *addr_array;
1390 raw_node = F2FS_NODE(node_page);
1391 addr_array = blkaddr_in_node(raw_node);
1392 return le32_to_cpu(addr_array[offset]);
1393 }
1394
1395 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1396 {
1397 int mask;
1398
1399 addr += (nr >> 3);
1400 mask = 1 << (7 - (nr & 0x07));
1401 return mask & *addr;
1402 }
1403
1404 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1405 {
1406 int mask;
1407
1408 addr += (nr >> 3);
1409 mask = 1 << (7 - (nr & 0x07));
1410 *addr |= mask;
1411 }
1412
1413 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1414 {
1415 int mask;
1416
1417 addr += (nr >> 3);
1418 mask = 1 << (7 - (nr & 0x07));
1419 *addr &= ~mask;
1420 }
1421
1422 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1423 {
1424 int mask;
1425 int ret;
1426
1427 addr += (nr >> 3);
1428 mask = 1 << (7 - (nr & 0x07));
1429 ret = mask & *addr;
1430 *addr |= mask;
1431 return ret;
1432 }
1433
1434 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1435 {
1436 int mask;
1437 int ret;
1438
1439 addr += (nr >> 3);
1440 mask = 1 << (7 - (nr & 0x07));
1441 ret = mask & *addr;
1442 *addr &= ~mask;
1443 return ret;
1444 }
1445
1446 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1447 {
1448 int mask;
1449
1450 addr += (nr >> 3);
1451 mask = 1 << (7 - (nr & 0x07));
1452 *addr ^= mask;
1453 }
1454
1455 /* used for f2fs_inode_info->flags */
1456 enum {
1457 FI_NEW_INODE, /* indicate newly allocated inode */
1458 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1459 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1460 FI_INC_LINK, /* need to increment i_nlink */
1461 FI_ACL_MODE, /* indicate acl mode */
1462 FI_NO_ALLOC, /* should not allocate any blocks */
1463 FI_FREE_NID, /* free allocated nide */
1464 FI_UPDATE_DIR, /* should update inode block for consistency */
1465 FI_DELAY_IPUT, /* used for the recovery */
1466 FI_NO_EXTENT, /* not to use the extent cache */
1467 FI_INLINE_XATTR, /* used for inline xattr */
1468 FI_INLINE_DATA, /* used for inline data*/
1469 FI_INLINE_DENTRY, /* used for inline dentry */
1470 FI_APPEND_WRITE, /* inode has appended data */
1471 FI_UPDATE_WRITE, /* inode has in-place-update data */
1472 FI_NEED_IPU, /* used for ipu per file */
1473 FI_ATOMIC_FILE, /* indicate atomic file */
1474 FI_VOLATILE_FILE, /* indicate volatile file */
1475 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1476 FI_DROP_CACHE, /* drop dirty page cache */
1477 FI_DATA_EXIST, /* indicate data exists */
1478 FI_INLINE_DOTS, /* indicate inline dot dentries */
1479 FI_DO_DEFRAG, /* indicate defragment is running */
1480 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1481 };
1482
1483 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1484 {
1485 if (!test_bit(flag, &fi->flags))
1486 set_bit(flag, &fi->flags);
1487 }
1488
1489 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1490 {
1491 return test_bit(flag, &fi->flags);
1492 }
1493
1494 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1495 {
1496 if (test_bit(flag, &fi->flags))
1497 clear_bit(flag, &fi->flags);
1498 }
1499
1500 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1501 {
1502 fi->i_acl_mode = mode;
1503 set_inode_flag(fi, FI_ACL_MODE);
1504 }
1505
1506 static inline void get_inline_info(struct f2fs_inode_info *fi,
1507 struct f2fs_inode *ri)
1508 {
1509 if (ri->i_inline & F2FS_INLINE_XATTR)
1510 set_inode_flag(fi, FI_INLINE_XATTR);
1511 if (ri->i_inline & F2FS_INLINE_DATA)
1512 set_inode_flag(fi, FI_INLINE_DATA);
1513 if (ri->i_inline & F2FS_INLINE_DENTRY)
1514 set_inode_flag(fi, FI_INLINE_DENTRY);
1515 if (ri->i_inline & F2FS_DATA_EXIST)
1516 set_inode_flag(fi, FI_DATA_EXIST);
1517 if (ri->i_inline & F2FS_INLINE_DOTS)
1518 set_inode_flag(fi, FI_INLINE_DOTS);
1519 }
1520
1521 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1522 struct f2fs_inode *ri)
1523 {
1524 ri->i_inline = 0;
1525
1526 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1527 ri->i_inline |= F2FS_INLINE_XATTR;
1528 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1529 ri->i_inline |= F2FS_INLINE_DATA;
1530 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1531 ri->i_inline |= F2FS_INLINE_DENTRY;
1532 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1533 ri->i_inline |= F2FS_DATA_EXIST;
1534 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1535 ri->i_inline |= F2FS_INLINE_DOTS;
1536 }
1537
1538 static inline int f2fs_has_inline_xattr(struct inode *inode)
1539 {
1540 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1541 }
1542
1543 static inline unsigned int addrs_per_inode(struct inode *inode)
1544 {
1545 if (f2fs_has_inline_xattr(inode))
1546 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1547 return DEF_ADDRS_PER_INODE;
1548 }
1549
1550 static inline void *inline_xattr_addr(struct page *page)
1551 {
1552 struct f2fs_inode *ri = F2FS_INODE(page);
1553 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1554 F2FS_INLINE_XATTR_ADDRS]);
1555 }
1556
1557 static inline int inline_xattr_size(struct inode *inode)
1558 {
1559 if (f2fs_has_inline_xattr(inode))
1560 return F2FS_INLINE_XATTR_ADDRS << 2;
1561 else
1562 return 0;
1563 }
1564
1565 static inline int f2fs_has_inline_data(struct inode *inode)
1566 {
1567 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1568 }
1569
1570 static inline void f2fs_clear_inline_inode(struct inode *inode)
1571 {
1572 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1573 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1574 }
1575
1576 static inline int f2fs_exist_data(struct inode *inode)
1577 {
1578 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1579 }
1580
1581 static inline int f2fs_has_inline_dots(struct inode *inode)
1582 {
1583 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1584 }
1585
1586 static inline bool f2fs_is_atomic_file(struct inode *inode)
1587 {
1588 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1589 }
1590
1591 static inline bool f2fs_is_volatile_file(struct inode *inode)
1592 {
1593 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1594 }
1595
1596 static inline bool f2fs_is_first_block_written(struct inode *inode)
1597 {
1598 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1599 }
1600
1601 static inline bool f2fs_is_drop_cache(struct inode *inode)
1602 {
1603 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1604 }
1605
1606 static inline void *inline_data_addr(struct page *page)
1607 {
1608 struct f2fs_inode *ri = F2FS_INODE(page);
1609 return (void *)&(ri->i_addr[1]);
1610 }
1611
1612 static inline int f2fs_has_inline_dentry(struct inode *inode)
1613 {
1614 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1615 }
1616
1617 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1618 {
1619 if (!f2fs_has_inline_dentry(dir))
1620 kunmap(page);
1621 }
1622
1623 static inline int is_file(struct inode *inode, int type)
1624 {
1625 return F2FS_I(inode)->i_advise & type;
1626 }
1627
1628 static inline void set_file(struct inode *inode, int type)
1629 {
1630 F2FS_I(inode)->i_advise |= type;
1631 }
1632
1633 static inline void clear_file(struct inode *inode, int type)
1634 {
1635 F2FS_I(inode)->i_advise &= ~type;
1636 }
1637
1638 static inline int f2fs_readonly(struct super_block *sb)
1639 {
1640 return sb->s_flags & MS_RDONLY;
1641 }
1642
1643 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1644 {
1645 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1646 }
1647
1648 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1649 {
1650 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1651 sbi->sb->s_flags |= MS_RDONLY;
1652 }
1653
1654 static inline bool is_dot_dotdot(const struct qstr *str)
1655 {
1656 if (str->len == 1 && str->name[0] == '.')
1657 return true;
1658
1659 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1660 return true;
1661
1662 return false;
1663 }
1664
1665 static inline bool f2fs_may_extent_tree(struct inode *inode)
1666 {
1667 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1668 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1669 return false;
1670
1671 return S_ISREG(inode->i_mode);
1672 }
1673
1674 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1675 {
1676 void *ret;
1677
1678 ret = kmalloc(size, flags | __GFP_NOWARN);
1679 if (!ret)
1680 ret = __vmalloc(size, flags, PAGE_KERNEL);
1681 return ret;
1682 }
1683
1684 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1685 {
1686 void *ret;
1687
1688 ret = kzalloc(size, flags | __GFP_NOWARN);
1689 if (!ret)
1690 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1691 return ret;
1692 }
1693
1694 #define get_inode_mode(i) \
1695 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1696 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1697
1698 /* get offset of first page in next direct node */
1699 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1700 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1701 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1702 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1703
1704 /*
1705 * file.c
1706 */
1707 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1708 void truncate_data_blocks(struct dnode_of_data *);
1709 int truncate_blocks(struct inode *, u64, bool);
1710 int f2fs_truncate(struct inode *, bool);
1711 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1712 int f2fs_setattr(struct dentry *, struct iattr *);
1713 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1714 int truncate_data_blocks_range(struct dnode_of_data *, int);
1715 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1716 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1717
1718 /*
1719 * inode.c
1720 */
1721 void f2fs_set_inode_flags(struct inode *);
1722 struct inode *f2fs_iget(struct super_block *, unsigned long);
1723 int try_to_free_nats(struct f2fs_sb_info *, int);
1724 int update_inode(struct inode *, struct page *);
1725 int update_inode_page(struct inode *);
1726 int f2fs_write_inode(struct inode *, struct writeback_control *);
1727 void f2fs_evict_inode(struct inode *);
1728 void handle_failed_inode(struct inode *);
1729
1730 /*
1731 * namei.c
1732 */
1733 struct dentry *f2fs_get_parent(struct dentry *child);
1734
1735 /*
1736 * dir.c
1737 */
1738 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1739 void set_de_type(struct f2fs_dir_entry *, umode_t);
1740
1741 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1742 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1743 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1744 unsigned int, struct f2fs_str *);
1745 void do_make_empty_dir(struct inode *, struct inode *,
1746 struct f2fs_dentry_ptr *);
1747 struct page *init_inode_metadata(struct inode *, struct inode *,
1748 const struct qstr *, struct page *);
1749 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1750 int room_for_filename(const void *, int, int);
1751 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1752 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1753 struct page **);
1754 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1755 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1756 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1757 struct page *, struct inode *);
1758 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1759 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1760 const struct qstr *, f2fs_hash_t , unsigned int);
1761 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1762 umode_t);
1763 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1764 struct inode *);
1765 int f2fs_do_tmpfile(struct inode *, struct inode *);
1766 bool f2fs_empty_dir(struct inode *);
1767
1768 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1769 {
1770 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1771 inode, inode->i_ino, inode->i_mode);
1772 }
1773
1774 /*
1775 * super.c
1776 */
1777 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1778 int f2fs_sync_fs(struct super_block *, int);
1779 extern __printf(3, 4)
1780 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1781
1782 /*
1783 * hash.c
1784 */
1785 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1786
1787 /*
1788 * node.c
1789 */
1790 struct dnode_of_data;
1791 struct node_info;
1792
1793 bool available_free_memory(struct f2fs_sb_info *, int);
1794 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1795 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1796 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1797 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1798 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1799 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1800 int truncate_inode_blocks(struct inode *, pgoff_t);
1801 int truncate_xattr_node(struct inode *, struct page *);
1802 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1803 int remove_inode_page(struct inode *);
1804 struct page *new_inode_page(struct inode *);
1805 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1806 void ra_node_page(struct f2fs_sb_info *, nid_t);
1807 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1808 struct page *get_node_page_ra(struct page *, int);
1809 void sync_inode_page(struct dnode_of_data *);
1810 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1811 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1812 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1813 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1814 int try_to_free_nids(struct f2fs_sb_info *, int);
1815 void recover_inline_xattr(struct inode *, struct page *);
1816 void recover_xattr_data(struct inode *, struct page *, block_t);
1817 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1818 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1819 struct f2fs_summary_block *);
1820 void flush_nat_entries(struct f2fs_sb_info *);
1821 int build_node_manager(struct f2fs_sb_info *);
1822 void destroy_node_manager(struct f2fs_sb_info *);
1823 int __init create_node_manager_caches(void);
1824 void destroy_node_manager_caches(void);
1825
1826 /*
1827 * segment.c
1828 */
1829 void register_inmem_page(struct inode *, struct page *);
1830 int commit_inmem_pages(struct inode *, bool);
1831 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1832 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1833 int f2fs_issue_flush(struct f2fs_sb_info *);
1834 int create_flush_cmd_control(struct f2fs_sb_info *);
1835 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1836 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1837 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1838 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1839 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1840 void release_discard_addrs(struct f2fs_sb_info *);
1841 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1842 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1843 void allocate_new_segments(struct f2fs_sb_info *);
1844 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1845 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1846 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1847 void write_meta_page(struct f2fs_sb_info *, struct page *);
1848 void write_node_page(unsigned int, struct f2fs_io_info *);
1849 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1850 void rewrite_data_page(struct f2fs_io_info *);
1851 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1852 block_t, block_t, unsigned char, bool);
1853 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1854 block_t, block_t *, struct f2fs_summary *, int);
1855 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1856 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1857 void write_data_summaries(struct f2fs_sb_info *, block_t);
1858 void write_node_summaries(struct f2fs_sb_info *, block_t);
1859 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1860 int, unsigned int, int);
1861 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1862 int build_segment_manager(struct f2fs_sb_info *);
1863 void destroy_segment_manager(struct f2fs_sb_info *);
1864 int __init create_segment_manager_caches(void);
1865 void destroy_segment_manager_caches(void);
1866
1867 /*
1868 * checkpoint.c
1869 */
1870 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1871 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1872 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1873 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1874 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1875 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1876 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1877 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1878 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1879 void release_ino_entry(struct f2fs_sb_info *);
1880 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1881 int acquire_orphan_inode(struct f2fs_sb_info *);
1882 void release_orphan_inode(struct f2fs_sb_info *);
1883 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1884 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1885 int recover_orphan_inodes(struct f2fs_sb_info *);
1886 int get_valid_checkpoint(struct f2fs_sb_info *);
1887 void update_dirty_page(struct inode *, struct page *);
1888 void add_dirty_dir_inode(struct inode *);
1889 void remove_dirty_inode(struct inode *);
1890 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1891 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1892 void init_ino_entry_info(struct f2fs_sb_info *);
1893 int __init create_checkpoint_caches(void);
1894 void destroy_checkpoint_caches(void);
1895
1896 /*
1897 * data.c
1898 */
1899 bool is_merged_page(struct f2fs_sb_info *, struct page *, enum page_type);
1900 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1901 int f2fs_submit_page_bio(struct f2fs_io_info *);
1902 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1903 void set_data_blkaddr(struct dnode_of_data *);
1904 int reserve_new_block(struct dnode_of_data *);
1905 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1906 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1907 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1908 struct page *find_data_page(struct inode *, pgoff_t);
1909 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1910 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1911 int do_write_data_page(struct f2fs_io_info *);
1912 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1913 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1914 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1915 int f2fs_release_page(struct page *, gfp_t);
1916
1917 /*
1918 * gc.c
1919 */
1920 int start_gc_thread(struct f2fs_sb_info *);
1921 void stop_gc_thread(struct f2fs_sb_info *);
1922 block_t start_bidx_of_node(unsigned int, struct inode *);
1923 int f2fs_gc(struct f2fs_sb_info *, bool);
1924 void build_gc_manager(struct f2fs_sb_info *);
1925
1926 /*
1927 * recovery.c
1928 */
1929 int recover_fsync_data(struct f2fs_sb_info *);
1930 bool space_for_roll_forward(struct f2fs_sb_info *);
1931
1932 /*
1933 * debug.c
1934 */
1935 #ifdef CONFIG_F2FS_STAT_FS
1936 struct f2fs_stat_info {
1937 struct list_head stat_list;
1938 struct f2fs_sb_info *sbi;
1939 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1940 int main_area_segs, main_area_sections, main_area_zones;
1941 unsigned long long hit_largest, hit_cached, hit_rbtree;
1942 unsigned long long hit_total, total_ext;
1943 int ext_tree, zombie_tree, ext_node;
1944 int ndirty_node, ndirty_meta;
1945 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1946 int nats, dirty_nats, sits, dirty_sits, fnids;
1947 int total_count, utilization;
1948 int bg_gc, inmem_pages, wb_pages;
1949 int inline_xattr, inline_inode, inline_dir;
1950 unsigned int valid_count, valid_node_count, valid_inode_count;
1951 unsigned int bimodal, avg_vblocks;
1952 int util_free, util_valid, util_invalid;
1953 int rsvd_segs, overp_segs;
1954 int dirty_count, node_pages, meta_pages;
1955 int prefree_count, call_count, cp_count, bg_cp_count;
1956 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1957 int bg_node_segs, bg_data_segs;
1958 int tot_blks, data_blks, node_blks;
1959 int bg_data_blks, bg_node_blks;
1960 int curseg[NR_CURSEG_TYPE];
1961 int cursec[NR_CURSEG_TYPE];
1962 int curzone[NR_CURSEG_TYPE];
1963
1964 unsigned int segment_count[2];
1965 unsigned int block_count[2];
1966 unsigned int inplace_count;
1967 unsigned long long base_mem, cache_mem, page_mem;
1968 };
1969
1970 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1971 {
1972 return (struct f2fs_stat_info *)sbi->stat_info;
1973 }
1974
1975 #define stat_inc_cp_count(si) ((si)->cp_count++)
1976 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1977 #define stat_inc_call_count(si) ((si)->call_count++)
1978 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1979 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1980 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1981 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1982 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1983 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1984 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1985 #define stat_inc_inline_xattr(inode) \
1986 do { \
1987 if (f2fs_has_inline_xattr(inode)) \
1988 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1989 } while (0)
1990 #define stat_dec_inline_xattr(inode) \
1991 do { \
1992 if (f2fs_has_inline_xattr(inode)) \
1993 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1994 } while (0)
1995 #define stat_inc_inline_inode(inode) \
1996 do { \
1997 if (f2fs_has_inline_data(inode)) \
1998 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1999 } while (0)
2000 #define stat_dec_inline_inode(inode) \
2001 do { \
2002 if (f2fs_has_inline_data(inode)) \
2003 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2004 } while (0)
2005 #define stat_inc_inline_dir(inode) \
2006 do { \
2007 if (f2fs_has_inline_dentry(inode)) \
2008 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2009 } while (0)
2010 #define stat_dec_inline_dir(inode) \
2011 do { \
2012 if (f2fs_has_inline_dentry(inode)) \
2013 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2014 } while (0)
2015 #define stat_inc_seg_type(sbi, curseg) \
2016 ((sbi)->segment_count[(curseg)->alloc_type]++)
2017 #define stat_inc_block_count(sbi, curseg) \
2018 ((sbi)->block_count[(curseg)->alloc_type]++)
2019 #define stat_inc_inplace_blocks(sbi) \
2020 (atomic_inc(&(sbi)->inplace_count))
2021 #define stat_inc_seg_count(sbi, type, gc_type) \
2022 do { \
2023 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2024 (si)->tot_segs++; \
2025 if (type == SUM_TYPE_DATA) { \
2026 si->data_segs++; \
2027 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2028 } else { \
2029 si->node_segs++; \
2030 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2031 } \
2032 } while (0)
2033
2034 #define stat_inc_tot_blk_count(si, blks) \
2035 (si->tot_blks += (blks))
2036
2037 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2038 do { \
2039 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2040 stat_inc_tot_blk_count(si, blks); \
2041 si->data_blks += (blks); \
2042 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2043 } while (0)
2044
2045 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2046 do { \
2047 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2048 stat_inc_tot_blk_count(si, blks); \
2049 si->node_blks += (blks); \
2050 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2051 } while (0)
2052
2053 int f2fs_build_stats(struct f2fs_sb_info *);
2054 void f2fs_destroy_stats(struct f2fs_sb_info *);
2055 int __init f2fs_create_root_stats(void);
2056 void f2fs_destroy_root_stats(void);
2057 #else
2058 #define stat_inc_cp_count(si)
2059 #define stat_inc_bg_cp_count(si)
2060 #define stat_inc_call_count(si)
2061 #define stat_inc_bggc_count(si)
2062 #define stat_inc_dirty_inode(sbi, type)
2063 #define stat_dec_dirty_inode(sbi, type)
2064 #define stat_inc_total_hit(sb)
2065 #define stat_inc_rbtree_node_hit(sb)
2066 #define stat_inc_largest_node_hit(sbi)
2067 #define stat_inc_cached_node_hit(sbi)
2068 #define stat_inc_inline_xattr(inode)
2069 #define stat_dec_inline_xattr(inode)
2070 #define stat_inc_inline_inode(inode)
2071 #define stat_dec_inline_inode(inode)
2072 #define stat_inc_inline_dir(inode)
2073 #define stat_dec_inline_dir(inode)
2074 #define stat_inc_seg_type(sbi, curseg)
2075 #define stat_inc_block_count(sbi, curseg)
2076 #define stat_inc_inplace_blocks(sbi)
2077 #define stat_inc_seg_count(sbi, type, gc_type)
2078 #define stat_inc_tot_blk_count(si, blks)
2079 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2080 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2081
2082 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2083 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2084 static inline int __init f2fs_create_root_stats(void) { return 0; }
2085 static inline void f2fs_destroy_root_stats(void) { }
2086 #endif
2087
2088 extern const struct file_operations f2fs_dir_operations;
2089 extern const struct file_operations f2fs_file_operations;
2090 extern const struct inode_operations f2fs_file_inode_operations;
2091 extern const struct address_space_operations f2fs_dblock_aops;
2092 extern const struct address_space_operations f2fs_node_aops;
2093 extern const struct address_space_operations f2fs_meta_aops;
2094 extern const struct inode_operations f2fs_dir_inode_operations;
2095 extern const struct inode_operations f2fs_symlink_inode_operations;
2096 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2097 extern const struct inode_operations f2fs_special_inode_operations;
2098 extern struct kmem_cache *inode_entry_slab;
2099
2100 /*
2101 * inline.c
2102 */
2103 bool f2fs_may_inline_data(struct inode *);
2104 bool f2fs_may_inline_dentry(struct inode *);
2105 void read_inline_data(struct page *, struct page *);
2106 bool truncate_inline_inode(struct page *, u64);
2107 int f2fs_read_inline_data(struct inode *, struct page *);
2108 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2109 int f2fs_convert_inline_inode(struct inode *);
2110 int f2fs_write_inline_data(struct inode *, struct page *);
2111 bool recover_inline_data(struct inode *, struct page *);
2112 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2113 struct f2fs_filename *, struct page **);
2114 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2115 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2116 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2117 nid_t, umode_t);
2118 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2119 struct inode *, struct inode *);
2120 bool f2fs_empty_inline_dir(struct inode *);
2121 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2122 struct f2fs_str *);
2123 int f2fs_inline_data_fiemap(struct inode *,
2124 struct fiemap_extent_info *, __u64, __u64);
2125
2126 /*
2127 * shrinker.c
2128 */
2129 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2130 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2131 void f2fs_join_shrinker(struct f2fs_sb_info *);
2132 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2133
2134 /*
2135 * extent_cache.c
2136 */
2137 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2138 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2139 unsigned int f2fs_destroy_extent_node(struct inode *);
2140 void f2fs_destroy_extent_tree(struct inode *);
2141 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2142 void f2fs_update_extent_cache(struct dnode_of_data *);
2143 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2144 pgoff_t, block_t, unsigned int);
2145 void init_extent_cache_info(struct f2fs_sb_info *);
2146 int __init create_extent_cache(void);
2147 void destroy_extent_cache(void);
2148
2149 /*
2150 * crypto support
2151 */
2152 static inline int f2fs_encrypted_inode(struct inode *inode)
2153 {
2154 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2155 return file_is_encrypt(inode);
2156 #else
2157 return 0;
2158 #endif
2159 }
2160
2161 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2162 {
2163 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2164 file_set_encrypt(inode);
2165 #endif
2166 }
2167
2168 static inline bool f2fs_bio_encrypted(struct bio *bio)
2169 {
2170 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2171 return unlikely(bio->bi_private != NULL);
2172 #else
2173 return false;
2174 #endif
2175 }
2176
2177 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2178 {
2179 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2180 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2181 #else
2182 return 0;
2183 #endif
2184 }
2185
2186 static inline bool f2fs_may_encrypt(struct inode *inode)
2187 {
2188 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2189 umode_t mode = inode->i_mode;
2190
2191 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2192 #else
2193 return 0;
2194 #endif
2195 }
2196
2197 /* crypto_policy.c */
2198 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2199 struct inode *);
2200 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2201 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2202 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2203
2204 /* crypt.c */
2205 extern struct kmem_cache *f2fs_crypt_info_cachep;
2206 bool f2fs_valid_contents_enc_mode(uint32_t);
2207 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2208 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2209 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2210 struct page *f2fs_encrypt(struct inode *, struct page *);
2211 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2212 int f2fs_decrypt_one(struct inode *, struct page *);
2213 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2214
2215 /* crypto_key.c */
2216 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2217 int _f2fs_get_encryption_info(struct inode *inode);
2218
2219 /* crypto_fname.c */
2220 bool f2fs_valid_filenames_enc_mode(uint32_t);
2221 u32 f2fs_fname_crypto_round_up(u32, u32);
2222 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2223 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2224 const struct f2fs_str *, struct f2fs_str *);
2225 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2226 struct f2fs_str *);
2227
2228 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2229 void f2fs_restore_and_release_control_page(struct page **);
2230 void f2fs_restore_control_page(struct page *);
2231
2232 int __init f2fs_init_crypto(void);
2233 int f2fs_crypto_initialize(void);
2234 void f2fs_exit_crypto(void);
2235
2236 int f2fs_has_encryption_key(struct inode *);
2237
2238 static inline int f2fs_get_encryption_info(struct inode *inode)
2239 {
2240 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2241
2242 if (!ci ||
2243 (ci->ci_keyring_key &&
2244 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2245 (1 << KEY_FLAG_REVOKED) |
2246 (1 << KEY_FLAG_DEAD)))))
2247 return _f2fs_get_encryption_info(inode);
2248 return 0;
2249 }
2250
2251 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2252 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2253 int lookup, struct f2fs_filename *);
2254 void f2fs_fname_free_filename(struct f2fs_filename *);
2255 #else
2256 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2257 static inline void f2fs_restore_control_page(struct page *p) { }
2258
2259 static inline int __init f2fs_init_crypto(void) { return 0; }
2260 static inline void f2fs_exit_crypto(void) { }
2261
2262 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2263 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2264 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2265
2266 static inline int f2fs_fname_setup_filename(struct inode *dir,
2267 const struct qstr *iname,
2268 int lookup, struct f2fs_filename *fname)
2269 {
2270 memset(fname, 0, sizeof(struct f2fs_filename));
2271 fname->usr_fname = iname;
2272 fname->disk_name.name = (unsigned char *)iname->name;
2273 fname->disk_name.len = iname->len;
2274 return 0;
2275 }
2276
2277 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2278 #endif
2279 #endif
This page took 0.077535 seconds and 6 git commands to generate.