f2fs: show extent tree, node stat info in debugfs
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define CRCPOLY_LE 0xedb88320
74
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 unsigned char *p = (unsigned char *)buf;
78 __u32 crc = F2FS_SUPER_MAGIC;
79 int i;
80
81 while (len--) {
82 crc ^= *p++;
83 for (i = 0; i < 8; i++)
84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 }
86 return crc;
87 }
88
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93
94 /*
95 * For checkpoint manager
96 */
97 enum {
98 NAT_BITMAP,
99 SIT_BITMAP
100 };
101
102 enum {
103 CP_UMOUNT,
104 CP_FASTBOOT,
105 CP_SYNC,
106 CP_DISCARD,
107 };
108
109 #define DEF_BATCHED_TRIM_SECTIONS 32
110 #define BATCHED_TRIM_SEGMENTS(sbi) \
111 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
112
113 struct cp_control {
114 int reason;
115 __u64 trim_start;
116 __u64 trim_end;
117 __u64 trim_minlen;
118 __u64 trimmed;
119 };
120
121 /*
122 * For CP/NAT/SIT/SSA readahead
123 */
124 enum {
125 META_CP,
126 META_NAT,
127 META_SIT,
128 META_SSA,
129 META_POR,
130 };
131
132 /* for the list of ino */
133 enum {
134 ORPHAN_INO, /* for orphan ino list */
135 APPEND_INO, /* for append ino list */
136 UPDATE_INO, /* for update ino list */
137 MAX_INO_ENTRY, /* max. list */
138 };
139
140 struct ino_entry {
141 struct list_head list; /* list head */
142 nid_t ino; /* inode number */
143 };
144
145 /*
146 * for the list of directory inodes or gc inodes.
147 * NOTE: there are two slab users for this structure, if we add/modify/delete
148 * fields in structure for one of slab users, it may affect fields or size of
149 * other one, in this condition, it's better to split both of slab and related
150 * data structure.
151 */
152 struct inode_entry {
153 struct list_head list; /* list head */
154 struct inode *inode; /* vfs inode pointer */
155 };
156
157 /* for the list of blockaddresses to be discarded */
158 struct discard_entry {
159 struct list_head list; /* list head */
160 block_t blkaddr; /* block address to be discarded */
161 int len; /* # of consecutive blocks of the discard */
162 };
163
164 /* for the list of fsync inodes, used only during recovery */
165 struct fsync_inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 block_t blkaddr; /* block address locating the last fsync */
169 block_t last_dentry; /* block address locating the last dentry */
170 block_t last_inode; /* block address locating the last inode */
171 };
172
173 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
174 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
175
176 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
177 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
178 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
179 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
180
181 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
182 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
183
184 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
185 {
186 int before = nats_in_cursum(rs);
187 rs->n_nats = cpu_to_le16(before + i);
188 return before;
189 }
190
191 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
192 {
193 int before = sits_in_cursum(rs);
194 rs->n_sits = cpu_to_le16(before + i);
195 return before;
196 }
197
198 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
199 int type)
200 {
201 if (type == NAT_JOURNAL)
202 return size <= MAX_NAT_JENTRIES(sum);
203 return size <= MAX_SIT_JENTRIES(sum);
204 }
205
206 /*
207 * ioctl commands
208 */
209 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
210 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
211 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
212
213 #define F2FS_IOCTL_MAGIC 0xf5
214 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
215 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
216 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
217 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
218 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
219
220 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
221 /*
222 * ioctl commands in 32 bit emulation
223 */
224 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
225 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
226 #endif
227
228 /*
229 * For INODE and NODE manager
230 */
231 /* for directory operations */
232 struct f2fs_dentry_ptr {
233 const void *bitmap;
234 struct f2fs_dir_entry *dentry;
235 __u8 (*filename)[F2FS_SLOT_LEN];
236 int max;
237 };
238
239 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
240 void *src, int type)
241 {
242 if (type == 1) {
243 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
244 d->max = NR_DENTRY_IN_BLOCK;
245 d->bitmap = &t->dentry_bitmap;
246 d->dentry = t->dentry;
247 d->filename = t->filename;
248 } else {
249 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
250 d->max = NR_INLINE_DENTRY;
251 d->bitmap = &t->dentry_bitmap;
252 d->dentry = t->dentry;
253 d->filename = t->filename;
254 }
255 }
256
257 /*
258 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
259 * as its node offset to distinguish from index node blocks.
260 * But some bits are used to mark the node block.
261 */
262 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
263 >> OFFSET_BIT_SHIFT)
264 enum {
265 ALLOC_NODE, /* allocate a new node page if needed */
266 LOOKUP_NODE, /* look up a node without readahead */
267 LOOKUP_NODE_RA, /*
268 * look up a node with readahead called
269 * by get_data_block.
270 */
271 };
272
273 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
274
275 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
276
277 /* vector size for gang look-up from extent cache that consists of radix tree */
278 #define EXT_TREE_VEC_SIZE 64
279
280 /* for in-memory extent cache entry */
281 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
282
283 /* number of extent info in extent cache we try to shrink */
284 #define EXTENT_CACHE_SHRINK_NUMBER 128
285
286 struct extent_info {
287 unsigned int fofs; /* start offset in a file */
288 u32 blk; /* start block address of the extent */
289 unsigned int len; /* length of the extent */
290 };
291
292 struct extent_node {
293 struct rb_node rb_node; /* rb node located in rb-tree */
294 struct list_head list; /* node in global extent list of sbi */
295 struct extent_info ei; /* extent info */
296 };
297
298 struct extent_tree {
299 nid_t ino; /* inode number */
300 struct rb_root root; /* root of extent info rb-tree */
301 rwlock_t lock; /* protect extent info rb-tree */
302 atomic_t refcount; /* reference count of rb-tree */
303 unsigned int count; /* # of extent node in rb-tree*/
304 };
305
306 /*
307 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
308 */
309 #define FADVISE_COLD_BIT 0x01
310 #define FADVISE_LOST_PINO_BIT 0x02
311
312 #define DEF_DIR_LEVEL 0
313
314 struct f2fs_inode_info {
315 struct inode vfs_inode; /* serve a vfs inode */
316 unsigned long i_flags; /* keep an inode flags for ioctl */
317 unsigned char i_advise; /* use to give file attribute hints */
318 unsigned char i_dir_level; /* use for dentry level for large dir */
319 unsigned int i_current_depth; /* use only in directory structure */
320 unsigned int i_pino; /* parent inode number */
321 umode_t i_acl_mode; /* keep file acl mode temporarily */
322
323 /* Use below internally in f2fs*/
324 unsigned long flags; /* use to pass per-file flags */
325 struct rw_semaphore i_sem; /* protect fi info */
326 atomic_t dirty_pages; /* # of dirty pages */
327 f2fs_hash_t chash; /* hash value of given file name */
328 unsigned int clevel; /* maximum level of given file name */
329 nid_t i_xattr_nid; /* node id that contains xattrs */
330 unsigned long long xattr_ver; /* cp version of xattr modification */
331 struct extent_info ext; /* in-memory extent cache entry */
332 rwlock_t ext_lock; /* rwlock for single extent cache */
333 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
334
335 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
336 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
337 struct mutex inmem_lock; /* lock for inmemory pages */
338 };
339
340 static inline void get_extent_info(struct extent_info *ext,
341 struct f2fs_extent i_ext)
342 {
343 ext->fofs = le32_to_cpu(i_ext.fofs);
344 ext->blk = le32_to_cpu(i_ext.blk);
345 ext->len = le32_to_cpu(i_ext.len);
346 }
347
348 static inline void set_raw_extent(struct extent_info *ext,
349 struct f2fs_extent *i_ext)
350 {
351 i_ext->fofs = cpu_to_le32(ext->fofs);
352 i_ext->blk = cpu_to_le32(ext->blk);
353 i_ext->len = cpu_to_le32(ext->len);
354 }
355
356 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
357 u32 blk, unsigned int len)
358 {
359 ei->fofs = fofs;
360 ei->blk = blk;
361 ei->len = len;
362 }
363
364 static inline bool __is_extent_mergeable(struct extent_info *back,
365 struct extent_info *front)
366 {
367 return (back->fofs + back->len == front->fofs &&
368 back->blk + back->len == front->blk);
369 }
370
371 static inline bool __is_back_mergeable(struct extent_info *cur,
372 struct extent_info *back)
373 {
374 return __is_extent_mergeable(back, cur);
375 }
376
377 static inline bool __is_front_mergeable(struct extent_info *cur,
378 struct extent_info *front)
379 {
380 return __is_extent_mergeable(cur, front);
381 }
382
383 struct f2fs_nm_info {
384 block_t nat_blkaddr; /* base disk address of NAT */
385 nid_t max_nid; /* maximum possible node ids */
386 nid_t available_nids; /* maximum available node ids */
387 nid_t next_scan_nid; /* the next nid to be scanned */
388 unsigned int ram_thresh; /* control the memory footprint */
389
390 /* NAT cache management */
391 struct radix_tree_root nat_root;/* root of the nat entry cache */
392 struct radix_tree_root nat_set_root;/* root of the nat set cache */
393 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
394 struct list_head nat_entries; /* cached nat entry list (clean) */
395 unsigned int nat_cnt; /* the # of cached nat entries */
396 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
397
398 /* free node ids management */
399 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
400 struct list_head free_nid_list; /* a list for free nids */
401 spinlock_t free_nid_list_lock; /* protect free nid list */
402 unsigned int fcnt; /* the number of free node id */
403 struct mutex build_lock; /* lock for build free nids */
404
405 /* for checkpoint */
406 char *nat_bitmap; /* NAT bitmap pointer */
407 int bitmap_size; /* bitmap size */
408 };
409
410 /*
411 * this structure is used as one of function parameters.
412 * all the information are dedicated to a given direct node block determined
413 * by the data offset in a file.
414 */
415 struct dnode_of_data {
416 struct inode *inode; /* vfs inode pointer */
417 struct page *inode_page; /* its inode page, NULL is possible */
418 struct page *node_page; /* cached direct node page */
419 nid_t nid; /* node id of the direct node block */
420 unsigned int ofs_in_node; /* data offset in the node page */
421 bool inode_page_locked; /* inode page is locked or not */
422 block_t data_blkaddr; /* block address of the node block */
423 };
424
425 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
426 struct page *ipage, struct page *npage, nid_t nid)
427 {
428 memset(dn, 0, sizeof(*dn));
429 dn->inode = inode;
430 dn->inode_page = ipage;
431 dn->node_page = npage;
432 dn->nid = nid;
433 }
434
435 /*
436 * For SIT manager
437 *
438 * By default, there are 6 active log areas across the whole main area.
439 * When considering hot and cold data separation to reduce cleaning overhead,
440 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
441 * respectively.
442 * In the current design, you should not change the numbers intentionally.
443 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
444 * logs individually according to the underlying devices. (default: 6)
445 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
446 * data and 8 for node logs.
447 */
448 #define NR_CURSEG_DATA_TYPE (3)
449 #define NR_CURSEG_NODE_TYPE (3)
450 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
451
452 enum {
453 CURSEG_HOT_DATA = 0, /* directory entry blocks */
454 CURSEG_WARM_DATA, /* data blocks */
455 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
456 CURSEG_HOT_NODE, /* direct node blocks of directory files */
457 CURSEG_WARM_NODE, /* direct node blocks of normal files */
458 CURSEG_COLD_NODE, /* indirect node blocks */
459 NO_CHECK_TYPE,
460 CURSEG_DIRECT_IO, /* to use for the direct IO path */
461 };
462
463 struct flush_cmd {
464 struct completion wait;
465 struct llist_node llnode;
466 int ret;
467 };
468
469 struct flush_cmd_control {
470 struct task_struct *f2fs_issue_flush; /* flush thread */
471 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
472 struct llist_head issue_list; /* list for command issue */
473 struct llist_node *dispatch_list; /* list for command dispatch */
474 };
475
476 struct f2fs_sm_info {
477 struct sit_info *sit_info; /* whole segment information */
478 struct free_segmap_info *free_info; /* free segment information */
479 struct dirty_seglist_info *dirty_info; /* dirty segment information */
480 struct curseg_info *curseg_array; /* active segment information */
481
482 block_t seg0_blkaddr; /* block address of 0'th segment */
483 block_t main_blkaddr; /* start block address of main area */
484 block_t ssa_blkaddr; /* start block address of SSA area */
485
486 unsigned int segment_count; /* total # of segments */
487 unsigned int main_segments; /* # of segments in main area */
488 unsigned int reserved_segments; /* # of reserved segments */
489 unsigned int ovp_segments; /* # of overprovision segments */
490
491 /* a threshold to reclaim prefree segments */
492 unsigned int rec_prefree_segments;
493
494 /* for small discard management */
495 struct list_head discard_list; /* 4KB discard list */
496 int nr_discards; /* # of discards in the list */
497 int max_discards; /* max. discards to be issued */
498
499 /* for batched trimming */
500 unsigned int trim_sections; /* # of sections to trim */
501
502 struct list_head sit_entry_set; /* sit entry set list */
503
504 unsigned int ipu_policy; /* in-place-update policy */
505 unsigned int min_ipu_util; /* in-place-update threshold */
506 unsigned int min_fsync_blocks; /* threshold for fsync */
507
508 /* for flush command control */
509 struct flush_cmd_control *cmd_control_info;
510
511 };
512
513 /*
514 * For superblock
515 */
516 /*
517 * COUNT_TYPE for monitoring
518 *
519 * f2fs monitors the number of several block types such as on-writeback,
520 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
521 */
522 enum count_type {
523 F2FS_WRITEBACK,
524 F2FS_DIRTY_DENTS,
525 F2FS_DIRTY_NODES,
526 F2FS_DIRTY_META,
527 F2FS_INMEM_PAGES,
528 NR_COUNT_TYPE,
529 };
530
531 /*
532 * The below are the page types of bios used in submit_bio().
533 * The available types are:
534 * DATA User data pages. It operates as async mode.
535 * NODE Node pages. It operates as async mode.
536 * META FS metadata pages such as SIT, NAT, CP.
537 * NR_PAGE_TYPE The number of page types.
538 * META_FLUSH Make sure the previous pages are written
539 * with waiting the bio's completion
540 * ... Only can be used with META.
541 */
542 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
543 enum page_type {
544 DATA,
545 NODE,
546 META,
547 NR_PAGE_TYPE,
548 META_FLUSH,
549 };
550
551 struct f2fs_io_info {
552 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
553 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
554 block_t blk_addr; /* block address to be written */
555 };
556
557 #define is_read_io(rw) (((rw) & 1) == READ)
558 struct f2fs_bio_info {
559 struct f2fs_sb_info *sbi; /* f2fs superblock */
560 struct bio *bio; /* bios to merge */
561 sector_t last_block_in_bio; /* last block number */
562 struct f2fs_io_info fio; /* store buffered io info. */
563 struct rw_semaphore io_rwsem; /* blocking op for bio */
564 };
565
566 /* for inner inode cache management */
567 struct inode_management {
568 struct radix_tree_root ino_root; /* ino entry array */
569 spinlock_t ino_lock; /* for ino entry lock */
570 struct list_head ino_list; /* inode list head */
571 unsigned long ino_num; /* number of entries */
572 };
573
574 /* For s_flag in struct f2fs_sb_info */
575 enum {
576 SBI_IS_DIRTY, /* dirty flag for checkpoint */
577 SBI_IS_CLOSE, /* specify unmounting */
578 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
579 SBI_POR_DOING, /* recovery is doing or not */
580 };
581
582 struct f2fs_sb_info {
583 struct super_block *sb; /* pointer to VFS super block */
584 struct proc_dir_entry *s_proc; /* proc entry */
585 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
586 struct f2fs_super_block *raw_super; /* raw super block pointer */
587 int s_flag; /* flags for sbi */
588
589 /* for node-related operations */
590 struct f2fs_nm_info *nm_info; /* node manager */
591 struct inode *node_inode; /* cache node blocks */
592
593 /* for segment-related operations */
594 struct f2fs_sm_info *sm_info; /* segment manager */
595
596 /* for bio operations */
597 struct f2fs_bio_info read_io; /* for read bios */
598 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
599
600 /* for checkpoint */
601 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
602 struct inode *meta_inode; /* cache meta blocks */
603 struct mutex cp_mutex; /* checkpoint procedure lock */
604 struct rw_semaphore cp_rwsem; /* blocking FS operations */
605 struct rw_semaphore node_write; /* locking node writes */
606 struct mutex writepages; /* mutex for writepages() */
607 wait_queue_head_t cp_wait;
608
609 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
610
611 /* for orphan inode, use 0'th array */
612 unsigned int max_orphans; /* max orphan inodes */
613
614 /* for directory inode management */
615 struct list_head dir_inode_list; /* dir inode list */
616 spinlock_t dir_inode_lock; /* for dir inode list lock */
617
618 /* for extent tree cache */
619 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
620 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
621 struct list_head extent_list; /* lru list for shrinker */
622 spinlock_t extent_lock; /* locking extent lru list */
623 int total_ext_tree; /* extent tree count */
624 atomic_t total_ext_node; /* extent info count */
625
626 /* basic filesystem units */
627 unsigned int log_sectors_per_block; /* log2 sectors per block */
628 unsigned int log_blocksize; /* log2 block size */
629 unsigned int blocksize; /* block size */
630 unsigned int root_ino_num; /* root inode number*/
631 unsigned int node_ino_num; /* node inode number*/
632 unsigned int meta_ino_num; /* meta inode number*/
633 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
634 unsigned int blocks_per_seg; /* blocks per segment */
635 unsigned int segs_per_sec; /* segments per section */
636 unsigned int secs_per_zone; /* sections per zone */
637 unsigned int total_sections; /* total section count */
638 unsigned int total_node_count; /* total node block count */
639 unsigned int total_valid_node_count; /* valid node block count */
640 unsigned int total_valid_inode_count; /* valid inode count */
641 int active_logs; /* # of active logs */
642 int dir_level; /* directory level */
643
644 block_t user_block_count; /* # of user blocks */
645 block_t total_valid_block_count; /* # of valid blocks */
646 block_t alloc_valid_block_count; /* # of allocated blocks */
647 block_t last_valid_block_count; /* for recovery */
648 u32 s_next_generation; /* for NFS support */
649 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
650
651 struct f2fs_mount_info mount_opt; /* mount options */
652
653 /* for cleaning operations */
654 struct mutex gc_mutex; /* mutex for GC */
655 struct f2fs_gc_kthread *gc_thread; /* GC thread */
656 unsigned int cur_victim_sec; /* current victim section num */
657
658 /* maximum # of trials to find a victim segment for SSR and GC */
659 unsigned int max_victim_search;
660
661 /*
662 * for stat information.
663 * one is for the LFS mode, and the other is for the SSR mode.
664 */
665 #ifdef CONFIG_F2FS_STAT_FS
666 struct f2fs_stat_info *stat_info; /* FS status information */
667 unsigned int segment_count[2]; /* # of allocated segments */
668 unsigned int block_count[2]; /* # of allocated blocks */
669 atomic_t inplace_count; /* # of inplace update */
670 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
671 atomic_t inline_inode; /* # of inline_data inodes */
672 atomic_t inline_dir; /* # of inline_dentry inodes */
673 int bg_gc; /* background gc calls */
674 unsigned int n_dirty_dirs; /* # of dir inodes */
675 #endif
676 unsigned int last_victim[2]; /* last victim segment # */
677 spinlock_t stat_lock; /* lock for stat operations */
678
679 /* For sysfs suppport */
680 struct kobject s_kobj;
681 struct completion s_kobj_unregister;
682 };
683
684 /*
685 * Inline functions
686 */
687 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
688 {
689 return container_of(inode, struct f2fs_inode_info, vfs_inode);
690 }
691
692 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
693 {
694 return sb->s_fs_info;
695 }
696
697 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
698 {
699 return F2FS_SB(inode->i_sb);
700 }
701
702 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
703 {
704 return F2FS_I_SB(mapping->host);
705 }
706
707 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
708 {
709 return F2FS_M_SB(page->mapping);
710 }
711
712 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
713 {
714 return (struct f2fs_super_block *)(sbi->raw_super);
715 }
716
717 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
718 {
719 return (struct f2fs_checkpoint *)(sbi->ckpt);
720 }
721
722 static inline struct f2fs_node *F2FS_NODE(struct page *page)
723 {
724 return (struct f2fs_node *)page_address(page);
725 }
726
727 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
728 {
729 return &((struct f2fs_node *)page_address(page))->i;
730 }
731
732 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
733 {
734 return (struct f2fs_nm_info *)(sbi->nm_info);
735 }
736
737 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
738 {
739 return (struct f2fs_sm_info *)(sbi->sm_info);
740 }
741
742 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
743 {
744 return (struct sit_info *)(SM_I(sbi)->sit_info);
745 }
746
747 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
748 {
749 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
750 }
751
752 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
753 {
754 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
755 }
756
757 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
758 {
759 return sbi->meta_inode->i_mapping;
760 }
761
762 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
763 {
764 return sbi->node_inode->i_mapping;
765 }
766
767 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
768 {
769 return sbi->s_flag & (0x01 << type);
770 }
771
772 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
773 {
774 sbi->s_flag |= (0x01 << type);
775 }
776
777 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
778 {
779 sbi->s_flag &= ~(0x01 << type);
780 }
781
782 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
783 {
784 return le64_to_cpu(cp->checkpoint_ver);
785 }
786
787 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
788 {
789 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
790 return ckpt_flags & f;
791 }
792
793 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
794 {
795 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
796 ckpt_flags |= f;
797 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
798 }
799
800 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
801 {
802 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
803 ckpt_flags &= (~f);
804 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
805 }
806
807 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
808 {
809 down_read(&sbi->cp_rwsem);
810 }
811
812 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
813 {
814 up_read(&sbi->cp_rwsem);
815 }
816
817 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
818 {
819 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
820 }
821
822 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
823 {
824 up_write(&sbi->cp_rwsem);
825 }
826
827 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
828 {
829 int reason = CP_SYNC;
830
831 if (test_opt(sbi, FASTBOOT))
832 reason = CP_FASTBOOT;
833 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
834 reason = CP_UMOUNT;
835 return reason;
836 }
837
838 static inline bool __remain_node_summaries(int reason)
839 {
840 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
841 }
842
843 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
844 {
845 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
846 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
847 }
848
849 /*
850 * Check whether the given nid is within node id range.
851 */
852 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
853 {
854 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
855 return -EINVAL;
856 if (unlikely(nid >= NM_I(sbi)->max_nid))
857 return -EINVAL;
858 return 0;
859 }
860
861 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
862
863 /*
864 * Check whether the inode has blocks or not
865 */
866 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
867 {
868 if (F2FS_I(inode)->i_xattr_nid)
869 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
870 else
871 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
872 }
873
874 static inline bool f2fs_has_xattr_block(unsigned int ofs)
875 {
876 return ofs == XATTR_NODE_OFFSET;
877 }
878
879 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
880 struct inode *inode, blkcnt_t count)
881 {
882 block_t valid_block_count;
883
884 spin_lock(&sbi->stat_lock);
885 valid_block_count =
886 sbi->total_valid_block_count + (block_t)count;
887 if (unlikely(valid_block_count > sbi->user_block_count)) {
888 spin_unlock(&sbi->stat_lock);
889 return false;
890 }
891 inode->i_blocks += count;
892 sbi->total_valid_block_count = valid_block_count;
893 sbi->alloc_valid_block_count += (block_t)count;
894 spin_unlock(&sbi->stat_lock);
895 return true;
896 }
897
898 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
899 struct inode *inode,
900 blkcnt_t count)
901 {
902 spin_lock(&sbi->stat_lock);
903 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
904 f2fs_bug_on(sbi, inode->i_blocks < count);
905 inode->i_blocks -= count;
906 sbi->total_valid_block_count -= (block_t)count;
907 spin_unlock(&sbi->stat_lock);
908 }
909
910 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
911 {
912 atomic_inc(&sbi->nr_pages[count_type]);
913 set_sbi_flag(sbi, SBI_IS_DIRTY);
914 }
915
916 static inline void inode_inc_dirty_pages(struct inode *inode)
917 {
918 atomic_inc(&F2FS_I(inode)->dirty_pages);
919 if (S_ISDIR(inode->i_mode))
920 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
921 }
922
923 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
924 {
925 atomic_dec(&sbi->nr_pages[count_type]);
926 }
927
928 static inline void inode_dec_dirty_pages(struct inode *inode)
929 {
930 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
931 return;
932
933 atomic_dec(&F2FS_I(inode)->dirty_pages);
934
935 if (S_ISDIR(inode->i_mode))
936 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
937 }
938
939 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
940 {
941 return atomic_read(&sbi->nr_pages[count_type]);
942 }
943
944 static inline int get_dirty_pages(struct inode *inode)
945 {
946 return atomic_read(&F2FS_I(inode)->dirty_pages);
947 }
948
949 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
950 {
951 unsigned int pages_per_sec = sbi->segs_per_sec *
952 (1 << sbi->log_blocks_per_seg);
953 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
954 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
955 }
956
957 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
958 {
959 return sbi->total_valid_block_count;
960 }
961
962 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
963 {
964 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
965
966 /* return NAT or SIT bitmap */
967 if (flag == NAT_BITMAP)
968 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
969 else if (flag == SIT_BITMAP)
970 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
971
972 return 0;
973 }
974
975 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
976 {
977 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
978 int offset;
979
980 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
981 if (flag == NAT_BITMAP)
982 return &ckpt->sit_nat_version_bitmap;
983 else
984 return (unsigned char *)ckpt + F2FS_BLKSIZE;
985 } else {
986 offset = (flag == NAT_BITMAP) ?
987 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
988 return &ckpt->sit_nat_version_bitmap + offset;
989 }
990 }
991
992 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
993 {
994 block_t start_addr;
995 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
996 unsigned long long ckpt_version = cur_cp_version(ckpt);
997
998 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
999
1000 /*
1001 * odd numbered checkpoint should at cp segment 0
1002 * and even segment must be at cp segment 1
1003 */
1004 if (!(ckpt_version & 1))
1005 start_addr += sbi->blocks_per_seg;
1006
1007 return start_addr;
1008 }
1009
1010 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1011 {
1012 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1013 }
1014
1015 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1016 struct inode *inode)
1017 {
1018 block_t valid_block_count;
1019 unsigned int valid_node_count;
1020
1021 spin_lock(&sbi->stat_lock);
1022
1023 valid_block_count = sbi->total_valid_block_count + 1;
1024 if (unlikely(valid_block_count > sbi->user_block_count)) {
1025 spin_unlock(&sbi->stat_lock);
1026 return false;
1027 }
1028
1029 valid_node_count = sbi->total_valid_node_count + 1;
1030 if (unlikely(valid_node_count > sbi->total_node_count)) {
1031 spin_unlock(&sbi->stat_lock);
1032 return false;
1033 }
1034
1035 if (inode)
1036 inode->i_blocks++;
1037
1038 sbi->alloc_valid_block_count++;
1039 sbi->total_valid_node_count++;
1040 sbi->total_valid_block_count++;
1041 spin_unlock(&sbi->stat_lock);
1042
1043 return true;
1044 }
1045
1046 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1047 struct inode *inode)
1048 {
1049 spin_lock(&sbi->stat_lock);
1050
1051 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1052 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1053 f2fs_bug_on(sbi, !inode->i_blocks);
1054
1055 inode->i_blocks--;
1056 sbi->total_valid_node_count--;
1057 sbi->total_valid_block_count--;
1058
1059 spin_unlock(&sbi->stat_lock);
1060 }
1061
1062 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1063 {
1064 return sbi->total_valid_node_count;
1065 }
1066
1067 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1068 {
1069 spin_lock(&sbi->stat_lock);
1070 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1071 sbi->total_valid_inode_count++;
1072 spin_unlock(&sbi->stat_lock);
1073 }
1074
1075 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1076 {
1077 spin_lock(&sbi->stat_lock);
1078 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1079 sbi->total_valid_inode_count--;
1080 spin_unlock(&sbi->stat_lock);
1081 }
1082
1083 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1084 {
1085 return sbi->total_valid_inode_count;
1086 }
1087
1088 static inline void f2fs_put_page(struct page *page, int unlock)
1089 {
1090 if (!page)
1091 return;
1092
1093 if (unlock) {
1094 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1095 unlock_page(page);
1096 }
1097 page_cache_release(page);
1098 }
1099
1100 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1101 {
1102 if (dn->node_page)
1103 f2fs_put_page(dn->node_page, 1);
1104 if (dn->inode_page && dn->node_page != dn->inode_page)
1105 f2fs_put_page(dn->inode_page, 0);
1106 dn->node_page = NULL;
1107 dn->inode_page = NULL;
1108 }
1109
1110 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1111 size_t size)
1112 {
1113 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1114 }
1115
1116 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1117 gfp_t flags)
1118 {
1119 void *entry;
1120 retry:
1121 entry = kmem_cache_alloc(cachep, flags);
1122 if (!entry) {
1123 cond_resched();
1124 goto retry;
1125 }
1126
1127 return entry;
1128 }
1129
1130 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1131 unsigned long index, void *item)
1132 {
1133 while (radix_tree_insert(root, index, item))
1134 cond_resched();
1135 }
1136
1137 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1138
1139 static inline bool IS_INODE(struct page *page)
1140 {
1141 struct f2fs_node *p = F2FS_NODE(page);
1142 return RAW_IS_INODE(p);
1143 }
1144
1145 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1146 {
1147 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1148 }
1149
1150 static inline block_t datablock_addr(struct page *node_page,
1151 unsigned int offset)
1152 {
1153 struct f2fs_node *raw_node;
1154 __le32 *addr_array;
1155 raw_node = F2FS_NODE(node_page);
1156 addr_array = blkaddr_in_node(raw_node);
1157 return le32_to_cpu(addr_array[offset]);
1158 }
1159
1160 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1161 {
1162 int mask;
1163
1164 addr += (nr >> 3);
1165 mask = 1 << (7 - (nr & 0x07));
1166 return mask & *addr;
1167 }
1168
1169 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1170 {
1171 int mask;
1172 int ret;
1173
1174 addr += (nr >> 3);
1175 mask = 1 << (7 - (nr & 0x07));
1176 ret = mask & *addr;
1177 *addr |= mask;
1178 return ret;
1179 }
1180
1181 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1182 {
1183 int mask;
1184 int ret;
1185
1186 addr += (nr >> 3);
1187 mask = 1 << (7 - (nr & 0x07));
1188 ret = mask & *addr;
1189 *addr &= ~mask;
1190 return ret;
1191 }
1192
1193 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1194 {
1195 int mask;
1196
1197 addr += (nr >> 3);
1198 mask = 1 << (7 - (nr & 0x07));
1199 *addr ^= mask;
1200 }
1201
1202 /* used for f2fs_inode_info->flags */
1203 enum {
1204 FI_NEW_INODE, /* indicate newly allocated inode */
1205 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1206 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1207 FI_INC_LINK, /* need to increment i_nlink */
1208 FI_ACL_MODE, /* indicate acl mode */
1209 FI_NO_ALLOC, /* should not allocate any blocks */
1210 FI_UPDATE_DIR, /* should update inode block for consistency */
1211 FI_DELAY_IPUT, /* used for the recovery */
1212 FI_NO_EXTENT, /* not to use the extent cache */
1213 FI_INLINE_XATTR, /* used for inline xattr */
1214 FI_INLINE_DATA, /* used for inline data*/
1215 FI_INLINE_DENTRY, /* used for inline dentry */
1216 FI_APPEND_WRITE, /* inode has appended data */
1217 FI_UPDATE_WRITE, /* inode has in-place-update data */
1218 FI_NEED_IPU, /* used for ipu per file */
1219 FI_ATOMIC_FILE, /* indicate atomic file */
1220 FI_VOLATILE_FILE, /* indicate volatile file */
1221 FI_DROP_CACHE, /* drop dirty page cache */
1222 FI_DATA_EXIST, /* indicate data exists */
1223 };
1224
1225 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1226 {
1227 if (!test_bit(flag, &fi->flags))
1228 set_bit(flag, &fi->flags);
1229 }
1230
1231 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1232 {
1233 return test_bit(flag, &fi->flags);
1234 }
1235
1236 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1237 {
1238 if (test_bit(flag, &fi->flags))
1239 clear_bit(flag, &fi->flags);
1240 }
1241
1242 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1243 {
1244 fi->i_acl_mode = mode;
1245 set_inode_flag(fi, FI_ACL_MODE);
1246 }
1247
1248 static inline void get_inline_info(struct f2fs_inode_info *fi,
1249 struct f2fs_inode *ri)
1250 {
1251 if (ri->i_inline & F2FS_INLINE_XATTR)
1252 set_inode_flag(fi, FI_INLINE_XATTR);
1253 if (ri->i_inline & F2FS_INLINE_DATA)
1254 set_inode_flag(fi, FI_INLINE_DATA);
1255 if (ri->i_inline & F2FS_INLINE_DENTRY)
1256 set_inode_flag(fi, FI_INLINE_DENTRY);
1257 if (ri->i_inline & F2FS_DATA_EXIST)
1258 set_inode_flag(fi, FI_DATA_EXIST);
1259 }
1260
1261 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1262 struct f2fs_inode *ri)
1263 {
1264 ri->i_inline = 0;
1265
1266 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1267 ri->i_inline |= F2FS_INLINE_XATTR;
1268 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1269 ri->i_inline |= F2FS_INLINE_DATA;
1270 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1271 ri->i_inline |= F2FS_INLINE_DENTRY;
1272 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1273 ri->i_inline |= F2FS_DATA_EXIST;
1274 }
1275
1276 static inline int f2fs_has_inline_xattr(struct inode *inode)
1277 {
1278 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1279 }
1280
1281 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1282 {
1283 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1284 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1285 return DEF_ADDRS_PER_INODE;
1286 }
1287
1288 static inline void *inline_xattr_addr(struct page *page)
1289 {
1290 struct f2fs_inode *ri = F2FS_INODE(page);
1291 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1292 F2FS_INLINE_XATTR_ADDRS]);
1293 }
1294
1295 static inline int inline_xattr_size(struct inode *inode)
1296 {
1297 if (f2fs_has_inline_xattr(inode))
1298 return F2FS_INLINE_XATTR_ADDRS << 2;
1299 else
1300 return 0;
1301 }
1302
1303 static inline int f2fs_has_inline_data(struct inode *inode)
1304 {
1305 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1306 }
1307
1308 static inline void f2fs_clear_inline_inode(struct inode *inode)
1309 {
1310 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1311 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1312 }
1313
1314 static inline int f2fs_exist_data(struct inode *inode)
1315 {
1316 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1317 }
1318
1319 static inline bool f2fs_is_atomic_file(struct inode *inode)
1320 {
1321 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1322 }
1323
1324 static inline bool f2fs_is_volatile_file(struct inode *inode)
1325 {
1326 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1327 }
1328
1329 static inline bool f2fs_is_drop_cache(struct inode *inode)
1330 {
1331 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1332 }
1333
1334 static inline void *inline_data_addr(struct page *page)
1335 {
1336 struct f2fs_inode *ri = F2FS_INODE(page);
1337 return (void *)&(ri->i_addr[1]);
1338 }
1339
1340 static inline int f2fs_has_inline_dentry(struct inode *inode)
1341 {
1342 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1343 }
1344
1345 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1346 {
1347 if (!f2fs_has_inline_dentry(dir))
1348 kunmap(page);
1349 }
1350
1351 static inline int f2fs_readonly(struct super_block *sb)
1352 {
1353 return sb->s_flags & MS_RDONLY;
1354 }
1355
1356 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1357 {
1358 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1359 }
1360
1361 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1362 {
1363 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1364 sbi->sb->s_flags |= MS_RDONLY;
1365 }
1366
1367 #define get_inode_mode(i) \
1368 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1369 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1370
1371 /* get offset of first page in next direct node */
1372 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1373 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1374 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1375 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1376
1377 /*
1378 * file.c
1379 */
1380 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1381 void truncate_data_blocks(struct dnode_of_data *);
1382 int truncate_blocks(struct inode *, u64, bool);
1383 void f2fs_truncate(struct inode *);
1384 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1385 int f2fs_setattr(struct dentry *, struct iattr *);
1386 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1387 int truncate_data_blocks_range(struct dnode_of_data *, int);
1388 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1389 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1390
1391 /*
1392 * inode.c
1393 */
1394 void f2fs_set_inode_flags(struct inode *);
1395 struct inode *f2fs_iget(struct super_block *, unsigned long);
1396 int try_to_free_nats(struct f2fs_sb_info *, int);
1397 void update_inode(struct inode *, struct page *);
1398 void update_inode_page(struct inode *);
1399 int f2fs_write_inode(struct inode *, struct writeback_control *);
1400 void f2fs_evict_inode(struct inode *);
1401 void handle_failed_inode(struct inode *);
1402
1403 /*
1404 * namei.c
1405 */
1406 struct dentry *f2fs_get_parent(struct dentry *child);
1407
1408 /*
1409 * dir.c
1410 */
1411 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1412 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1413 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1414 struct f2fs_dentry_ptr *);
1415 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1416 unsigned int);
1417 void do_make_empty_dir(struct inode *, struct inode *,
1418 struct f2fs_dentry_ptr *);
1419 struct page *init_inode_metadata(struct inode *, struct inode *,
1420 const struct qstr *, struct page *);
1421 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1422 int room_for_filename(const void *, int, int);
1423 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1424 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1425 struct page **);
1426 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1427 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1428 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1429 struct page *, struct inode *);
1430 int update_dent_inode(struct inode *, const struct qstr *);
1431 void f2fs_update_dentry(struct inode *, struct f2fs_dentry_ptr *,
1432 const struct qstr *, f2fs_hash_t , unsigned int);
1433 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1434 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1435 struct inode *);
1436 int f2fs_do_tmpfile(struct inode *, struct inode *);
1437 int f2fs_make_empty(struct inode *, struct inode *);
1438 bool f2fs_empty_dir(struct inode *);
1439
1440 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1441 {
1442 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1443 inode);
1444 }
1445
1446 /*
1447 * super.c
1448 */
1449 int f2fs_sync_fs(struct super_block *, int);
1450 extern __printf(3, 4)
1451 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1452
1453 /*
1454 * hash.c
1455 */
1456 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1457
1458 /*
1459 * node.c
1460 */
1461 struct dnode_of_data;
1462 struct node_info;
1463
1464 bool available_free_memory(struct f2fs_sb_info *, int);
1465 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1466 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1467 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1468 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1469 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1470 int truncate_inode_blocks(struct inode *, pgoff_t);
1471 int truncate_xattr_node(struct inode *, struct page *);
1472 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1473 void remove_inode_page(struct inode *);
1474 struct page *new_inode_page(struct inode *);
1475 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1476 void ra_node_page(struct f2fs_sb_info *, nid_t);
1477 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1478 struct page *get_node_page_ra(struct page *, int);
1479 void sync_inode_page(struct dnode_of_data *);
1480 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1481 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1482 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1483 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1484 void recover_inline_xattr(struct inode *, struct page *);
1485 void recover_xattr_data(struct inode *, struct page *, block_t);
1486 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1487 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1488 struct f2fs_summary_block *);
1489 void flush_nat_entries(struct f2fs_sb_info *);
1490 int build_node_manager(struct f2fs_sb_info *);
1491 void destroy_node_manager(struct f2fs_sb_info *);
1492 int __init create_node_manager_caches(void);
1493 void destroy_node_manager_caches(void);
1494
1495 /*
1496 * segment.c
1497 */
1498 void register_inmem_page(struct inode *, struct page *);
1499 void commit_inmem_pages(struct inode *, bool);
1500 void f2fs_balance_fs(struct f2fs_sb_info *);
1501 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1502 int f2fs_issue_flush(struct f2fs_sb_info *);
1503 int create_flush_cmd_control(struct f2fs_sb_info *);
1504 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1505 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1506 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1507 void clear_prefree_segments(struct f2fs_sb_info *);
1508 void release_discard_addrs(struct f2fs_sb_info *);
1509 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1510 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1511 void allocate_new_segments(struct f2fs_sb_info *);
1512 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1513 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1514 void write_meta_page(struct f2fs_sb_info *, struct page *);
1515 void write_node_page(struct f2fs_sb_info *, struct page *,
1516 unsigned int, struct f2fs_io_info *);
1517 void write_data_page(struct page *, struct dnode_of_data *,
1518 struct f2fs_io_info *);
1519 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1520 void recover_data_page(struct f2fs_sb_info *, struct page *,
1521 struct f2fs_summary *, block_t, block_t);
1522 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1523 block_t, block_t *, struct f2fs_summary *, int);
1524 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1525 void write_data_summaries(struct f2fs_sb_info *, block_t);
1526 void write_node_summaries(struct f2fs_sb_info *, block_t);
1527 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1528 int, unsigned int, int);
1529 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1530 int build_segment_manager(struct f2fs_sb_info *);
1531 void destroy_segment_manager(struct f2fs_sb_info *);
1532 int __init create_segment_manager_caches(void);
1533 void destroy_segment_manager_caches(void);
1534
1535 /*
1536 * checkpoint.c
1537 */
1538 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1539 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1540 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1541 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1542 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1543 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1544 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1545 void release_dirty_inode(struct f2fs_sb_info *);
1546 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1547 int acquire_orphan_inode(struct f2fs_sb_info *);
1548 void release_orphan_inode(struct f2fs_sb_info *);
1549 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1550 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1551 void recover_orphan_inodes(struct f2fs_sb_info *);
1552 int get_valid_checkpoint(struct f2fs_sb_info *);
1553 void update_dirty_page(struct inode *, struct page *);
1554 void add_dirty_dir_inode(struct inode *);
1555 void remove_dirty_dir_inode(struct inode *);
1556 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1557 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1558 void init_ino_entry_info(struct f2fs_sb_info *);
1559 int __init create_checkpoint_caches(void);
1560 void destroy_checkpoint_caches(void);
1561
1562 /*
1563 * data.c
1564 */
1565 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1566 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1567 struct f2fs_io_info *);
1568 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1569 struct f2fs_io_info *);
1570 int reserve_new_block(struct dnode_of_data *);
1571 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1572 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1573 void f2fs_destroy_extent_tree(struct inode *);
1574 void f2fs_update_extent_cache(struct dnode_of_data *);
1575 struct page *find_data_page(struct inode *, pgoff_t, bool);
1576 struct page *get_lock_data_page(struct inode *, pgoff_t);
1577 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1578 int do_write_data_page(struct page *, struct f2fs_io_info *);
1579 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1580 void init_extent_cache_info(struct f2fs_sb_info *);
1581 int __init create_extent_cache(void);
1582 void destroy_extent_cache(void);
1583 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1584 int f2fs_release_page(struct page *, gfp_t);
1585
1586 /*
1587 * gc.c
1588 */
1589 int start_gc_thread(struct f2fs_sb_info *);
1590 void stop_gc_thread(struct f2fs_sb_info *);
1591 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1592 int f2fs_gc(struct f2fs_sb_info *);
1593 void build_gc_manager(struct f2fs_sb_info *);
1594
1595 /*
1596 * recovery.c
1597 */
1598 int recover_fsync_data(struct f2fs_sb_info *);
1599 bool space_for_roll_forward(struct f2fs_sb_info *);
1600
1601 /*
1602 * debug.c
1603 */
1604 #ifdef CONFIG_F2FS_STAT_FS
1605 struct f2fs_stat_info {
1606 struct list_head stat_list;
1607 struct f2fs_sb_info *sbi;
1608 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1609 int main_area_segs, main_area_sections, main_area_zones;
1610 int hit_ext, total_ext, ext_tree, ext_node;
1611 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1612 int nats, dirty_nats, sits, dirty_sits, fnids;
1613 int total_count, utilization;
1614 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1615 unsigned int valid_count, valid_node_count, valid_inode_count;
1616 unsigned int bimodal, avg_vblocks;
1617 int util_free, util_valid, util_invalid;
1618 int rsvd_segs, overp_segs;
1619 int dirty_count, node_pages, meta_pages;
1620 int prefree_count, call_count, cp_count;
1621 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1622 int tot_blks, data_blks, node_blks;
1623 int curseg[NR_CURSEG_TYPE];
1624 int cursec[NR_CURSEG_TYPE];
1625 int curzone[NR_CURSEG_TYPE];
1626
1627 unsigned int segment_count[2];
1628 unsigned int block_count[2];
1629 unsigned int inplace_count;
1630 unsigned base_mem, cache_mem, page_mem;
1631 };
1632
1633 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1634 {
1635 return (struct f2fs_stat_info *)sbi->stat_info;
1636 }
1637
1638 #define stat_inc_cp_count(si) ((si)->cp_count++)
1639 #define stat_inc_call_count(si) ((si)->call_count++)
1640 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1641 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1642 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1643 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1644 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1645 #define stat_inc_inline_inode(inode) \
1646 do { \
1647 if (f2fs_has_inline_data(inode)) \
1648 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1649 } while (0)
1650 #define stat_dec_inline_inode(inode) \
1651 do { \
1652 if (f2fs_has_inline_data(inode)) \
1653 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1654 } while (0)
1655 #define stat_inc_inline_dir(inode) \
1656 do { \
1657 if (f2fs_has_inline_dentry(inode)) \
1658 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1659 } while (0)
1660 #define stat_dec_inline_dir(inode) \
1661 do { \
1662 if (f2fs_has_inline_dentry(inode)) \
1663 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1664 } while (0)
1665 #define stat_inc_seg_type(sbi, curseg) \
1666 ((sbi)->segment_count[(curseg)->alloc_type]++)
1667 #define stat_inc_block_count(sbi, curseg) \
1668 ((sbi)->block_count[(curseg)->alloc_type]++)
1669 #define stat_inc_inplace_blocks(sbi) \
1670 (atomic_inc(&(sbi)->inplace_count))
1671 #define stat_inc_seg_count(sbi, type) \
1672 do { \
1673 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1674 (si)->tot_segs++; \
1675 if (type == SUM_TYPE_DATA) \
1676 si->data_segs++; \
1677 else \
1678 si->node_segs++; \
1679 } while (0)
1680
1681 #define stat_inc_tot_blk_count(si, blks) \
1682 (si->tot_blks += (blks))
1683
1684 #define stat_inc_data_blk_count(sbi, blks) \
1685 do { \
1686 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1687 stat_inc_tot_blk_count(si, blks); \
1688 si->data_blks += (blks); \
1689 } while (0)
1690
1691 #define stat_inc_node_blk_count(sbi, blks) \
1692 do { \
1693 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1694 stat_inc_tot_blk_count(si, blks); \
1695 si->node_blks += (blks); \
1696 } while (0)
1697
1698 int f2fs_build_stats(struct f2fs_sb_info *);
1699 void f2fs_destroy_stats(struct f2fs_sb_info *);
1700 void __init f2fs_create_root_stats(void);
1701 void f2fs_destroy_root_stats(void);
1702 #else
1703 #define stat_inc_cp_count(si)
1704 #define stat_inc_call_count(si)
1705 #define stat_inc_bggc_count(si)
1706 #define stat_inc_dirty_dir(sbi)
1707 #define stat_dec_dirty_dir(sbi)
1708 #define stat_inc_total_hit(sb)
1709 #define stat_inc_read_hit(sb)
1710 #define stat_inc_inline_inode(inode)
1711 #define stat_dec_inline_inode(inode)
1712 #define stat_inc_inline_dir(inode)
1713 #define stat_dec_inline_dir(inode)
1714 #define stat_inc_seg_type(sbi, curseg)
1715 #define stat_inc_block_count(sbi, curseg)
1716 #define stat_inc_inplace_blocks(sbi)
1717 #define stat_inc_seg_count(si, type)
1718 #define stat_inc_tot_blk_count(si, blks)
1719 #define stat_inc_data_blk_count(si, blks)
1720 #define stat_inc_node_blk_count(sbi, blks)
1721
1722 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1723 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1724 static inline void __init f2fs_create_root_stats(void) { }
1725 static inline void f2fs_destroy_root_stats(void) { }
1726 #endif
1727
1728 extern const struct file_operations f2fs_dir_operations;
1729 extern const struct file_operations f2fs_file_operations;
1730 extern const struct inode_operations f2fs_file_inode_operations;
1731 extern const struct address_space_operations f2fs_dblock_aops;
1732 extern const struct address_space_operations f2fs_node_aops;
1733 extern const struct address_space_operations f2fs_meta_aops;
1734 extern const struct inode_operations f2fs_dir_inode_operations;
1735 extern const struct inode_operations f2fs_symlink_inode_operations;
1736 extern const struct inode_operations f2fs_special_inode_operations;
1737 extern struct kmem_cache *inode_entry_slab;
1738
1739 /*
1740 * inline.c
1741 */
1742 bool f2fs_may_inline(struct inode *);
1743 void read_inline_data(struct page *, struct page *);
1744 int f2fs_read_inline_data(struct inode *, struct page *);
1745 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1746 int f2fs_convert_inline_inode(struct inode *);
1747 int f2fs_write_inline_data(struct inode *, struct page *);
1748 bool recover_inline_data(struct inode *, struct page *);
1749 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1750 struct page **);
1751 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1752 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1753 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1754 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1755 struct inode *, struct inode *);
1756 bool f2fs_empty_inline_dir(struct inode *);
1757 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1758 #endif
This page took 0.082183 seconds and 6 git commands to generate.