f2fs: add F2FS_INLINE_DOTS to recover missing dot dentries
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define CRCPOLY_LE 0xedb88320
74
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 unsigned char *p = (unsigned char *)buf;
78 __u32 crc = F2FS_SUPER_MAGIC;
79 int i;
80
81 while (len--) {
82 crc ^= *p++;
83 for (i = 0; i < 8; i++)
84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 }
86 return crc;
87 }
88
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93
94 /*
95 * For checkpoint manager
96 */
97 enum {
98 NAT_BITMAP,
99 SIT_BITMAP
100 };
101
102 enum {
103 CP_UMOUNT,
104 CP_FASTBOOT,
105 CP_SYNC,
106 CP_DISCARD,
107 };
108
109 #define DEF_BATCHED_TRIM_SECTIONS 32
110 #define BATCHED_TRIM_SEGMENTS(sbi) \
111 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
112
113 struct cp_control {
114 int reason;
115 __u64 trim_start;
116 __u64 trim_end;
117 __u64 trim_minlen;
118 __u64 trimmed;
119 };
120
121 /*
122 * For CP/NAT/SIT/SSA readahead
123 */
124 enum {
125 META_CP,
126 META_NAT,
127 META_SIT,
128 META_SSA,
129 META_POR,
130 };
131
132 /* for the list of ino */
133 enum {
134 ORPHAN_INO, /* for orphan ino list */
135 APPEND_INO, /* for append ino list */
136 UPDATE_INO, /* for update ino list */
137 MAX_INO_ENTRY, /* max. list */
138 };
139
140 struct ino_entry {
141 struct list_head list; /* list head */
142 nid_t ino; /* inode number */
143 };
144
145 /*
146 * for the list of directory inodes or gc inodes.
147 * NOTE: there are two slab users for this structure, if we add/modify/delete
148 * fields in structure for one of slab users, it may affect fields or size of
149 * other one, in this condition, it's better to split both of slab and related
150 * data structure.
151 */
152 struct inode_entry {
153 struct list_head list; /* list head */
154 struct inode *inode; /* vfs inode pointer */
155 };
156
157 /* for the list of blockaddresses to be discarded */
158 struct discard_entry {
159 struct list_head list; /* list head */
160 block_t blkaddr; /* block address to be discarded */
161 int len; /* # of consecutive blocks of the discard */
162 };
163
164 /* for the list of fsync inodes, used only during recovery */
165 struct fsync_inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 block_t blkaddr; /* block address locating the last fsync */
169 block_t last_dentry; /* block address locating the last dentry */
170 block_t last_inode; /* block address locating the last inode */
171 };
172
173 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
174 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
175
176 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
177 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
178 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
179 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
180
181 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
182 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
183
184 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
185 {
186 int before = nats_in_cursum(rs);
187 rs->n_nats = cpu_to_le16(before + i);
188 return before;
189 }
190
191 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
192 {
193 int before = sits_in_cursum(rs);
194 rs->n_sits = cpu_to_le16(before + i);
195 return before;
196 }
197
198 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
199 int type)
200 {
201 if (type == NAT_JOURNAL)
202 return size <= MAX_NAT_JENTRIES(sum);
203 return size <= MAX_SIT_JENTRIES(sum);
204 }
205
206 /*
207 * ioctl commands
208 */
209 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
210 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
211 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
212
213 #define F2FS_IOCTL_MAGIC 0xf5
214 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
215 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
216 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
217 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
218 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
219
220 /*
221 * should be same as XFS_IOC_GOINGDOWN.
222 * Flags for going down operation used by FS_IOC_GOINGDOWN
223 */
224 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
225 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
226 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
227 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
228
229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
230 /*
231 * ioctl commands in 32 bit emulation
232 */
233 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
234 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
235 #endif
236
237 /*
238 * For INODE and NODE manager
239 */
240 /* for directory operations */
241 struct f2fs_dentry_ptr {
242 const void *bitmap;
243 struct f2fs_dir_entry *dentry;
244 __u8 (*filename)[F2FS_SLOT_LEN];
245 int max;
246 };
247
248 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
249 void *src, int type)
250 {
251 if (type == 1) {
252 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
253 d->max = NR_DENTRY_IN_BLOCK;
254 d->bitmap = &t->dentry_bitmap;
255 d->dentry = t->dentry;
256 d->filename = t->filename;
257 } else {
258 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
259 d->max = NR_INLINE_DENTRY;
260 d->bitmap = &t->dentry_bitmap;
261 d->dentry = t->dentry;
262 d->filename = t->filename;
263 }
264 }
265
266 /*
267 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
268 * as its node offset to distinguish from index node blocks.
269 * But some bits are used to mark the node block.
270 */
271 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
272 >> OFFSET_BIT_SHIFT)
273 enum {
274 ALLOC_NODE, /* allocate a new node page if needed */
275 LOOKUP_NODE, /* look up a node without readahead */
276 LOOKUP_NODE_RA, /*
277 * look up a node with readahead called
278 * by get_data_block.
279 */
280 };
281
282 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
283
284 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
285
286 /* vector size for gang look-up from extent cache that consists of radix tree */
287 #define EXT_TREE_VEC_SIZE 64
288
289 /* for in-memory extent cache entry */
290 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
291
292 /* number of extent info in extent cache we try to shrink */
293 #define EXTENT_CACHE_SHRINK_NUMBER 128
294
295 struct extent_info {
296 unsigned int fofs; /* start offset in a file */
297 u32 blk; /* start block address of the extent */
298 unsigned int len; /* length of the extent */
299 };
300
301 struct extent_node {
302 struct rb_node rb_node; /* rb node located in rb-tree */
303 struct list_head list; /* node in global extent list of sbi */
304 struct extent_info ei; /* extent info */
305 };
306
307 struct extent_tree {
308 nid_t ino; /* inode number */
309 struct rb_root root; /* root of extent info rb-tree */
310 struct extent_node *cached_en; /* recently accessed extent node */
311 rwlock_t lock; /* protect extent info rb-tree */
312 atomic_t refcount; /* reference count of rb-tree */
313 unsigned int count; /* # of extent node in rb-tree*/
314 };
315
316 /*
317 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
318 */
319 #define FADVISE_COLD_BIT 0x01
320 #define FADVISE_LOST_PINO_BIT 0x02
321
322 #define DEF_DIR_LEVEL 0
323
324 struct f2fs_inode_info {
325 struct inode vfs_inode; /* serve a vfs inode */
326 unsigned long i_flags; /* keep an inode flags for ioctl */
327 unsigned char i_advise; /* use to give file attribute hints */
328 unsigned char i_dir_level; /* use for dentry level for large dir */
329 unsigned int i_current_depth; /* use only in directory structure */
330 unsigned int i_pino; /* parent inode number */
331 umode_t i_acl_mode; /* keep file acl mode temporarily */
332
333 /* Use below internally in f2fs*/
334 unsigned long flags; /* use to pass per-file flags */
335 struct rw_semaphore i_sem; /* protect fi info */
336 atomic_t dirty_pages; /* # of dirty pages */
337 f2fs_hash_t chash; /* hash value of given file name */
338 unsigned int clevel; /* maximum level of given file name */
339 nid_t i_xattr_nid; /* node id that contains xattrs */
340 unsigned long long xattr_ver; /* cp version of xattr modification */
341 struct extent_info ext; /* in-memory extent cache entry */
342 rwlock_t ext_lock; /* rwlock for single extent cache */
343 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
344
345 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
346 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
347 struct mutex inmem_lock; /* lock for inmemory pages */
348 };
349
350 static inline void get_extent_info(struct extent_info *ext,
351 struct f2fs_extent i_ext)
352 {
353 ext->fofs = le32_to_cpu(i_ext.fofs);
354 ext->blk = le32_to_cpu(i_ext.blk);
355 ext->len = le32_to_cpu(i_ext.len);
356 }
357
358 static inline void set_raw_extent(struct extent_info *ext,
359 struct f2fs_extent *i_ext)
360 {
361 i_ext->fofs = cpu_to_le32(ext->fofs);
362 i_ext->blk = cpu_to_le32(ext->blk);
363 i_ext->len = cpu_to_le32(ext->len);
364 }
365
366 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
367 u32 blk, unsigned int len)
368 {
369 ei->fofs = fofs;
370 ei->blk = blk;
371 ei->len = len;
372 }
373
374 static inline bool __is_extent_same(struct extent_info *ei1,
375 struct extent_info *ei2)
376 {
377 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
378 ei1->len == ei2->len);
379 }
380
381 static inline bool __is_extent_mergeable(struct extent_info *back,
382 struct extent_info *front)
383 {
384 return (back->fofs + back->len == front->fofs &&
385 back->blk + back->len == front->blk);
386 }
387
388 static inline bool __is_back_mergeable(struct extent_info *cur,
389 struct extent_info *back)
390 {
391 return __is_extent_mergeable(back, cur);
392 }
393
394 static inline bool __is_front_mergeable(struct extent_info *cur,
395 struct extent_info *front)
396 {
397 return __is_extent_mergeable(cur, front);
398 }
399
400 struct f2fs_nm_info {
401 block_t nat_blkaddr; /* base disk address of NAT */
402 nid_t max_nid; /* maximum possible node ids */
403 nid_t available_nids; /* maximum available node ids */
404 nid_t next_scan_nid; /* the next nid to be scanned */
405 unsigned int ram_thresh; /* control the memory footprint */
406
407 /* NAT cache management */
408 struct radix_tree_root nat_root;/* root of the nat entry cache */
409 struct radix_tree_root nat_set_root;/* root of the nat set cache */
410 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
411 struct list_head nat_entries; /* cached nat entry list (clean) */
412 unsigned int nat_cnt; /* the # of cached nat entries */
413 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
414
415 /* free node ids management */
416 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
417 struct list_head free_nid_list; /* a list for free nids */
418 spinlock_t free_nid_list_lock; /* protect free nid list */
419 unsigned int fcnt; /* the number of free node id */
420 struct mutex build_lock; /* lock for build free nids */
421
422 /* for checkpoint */
423 char *nat_bitmap; /* NAT bitmap pointer */
424 int bitmap_size; /* bitmap size */
425 };
426
427 /*
428 * this structure is used as one of function parameters.
429 * all the information are dedicated to a given direct node block determined
430 * by the data offset in a file.
431 */
432 struct dnode_of_data {
433 struct inode *inode; /* vfs inode pointer */
434 struct page *inode_page; /* its inode page, NULL is possible */
435 struct page *node_page; /* cached direct node page */
436 nid_t nid; /* node id of the direct node block */
437 unsigned int ofs_in_node; /* data offset in the node page */
438 bool inode_page_locked; /* inode page is locked or not */
439 block_t data_blkaddr; /* block address of the node block */
440 };
441
442 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
443 struct page *ipage, struct page *npage, nid_t nid)
444 {
445 memset(dn, 0, sizeof(*dn));
446 dn->inode = inode;
447 dn->inode_page = ipage;
448 dn->node_page = npage;
449 dn->nid = nid;
450 }
451
452 /*
453 * For SIT manager
454 *
455 * By default, there are 6 active log areas across the whole main area.
456 * When considering hot and cold data separation to reduce cleaning overhead,
457 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
458 * respectively.
459 * In the current design, you should not change the numbers intentionally.
460 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
461 * logs individually according to the underlying devices. (default: 6)
462 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
463 * data and 8 for node logs.
464 */
465 #define NR_CURSEG_DATA_TYPE (3)
466 #define NR_CURSEG_NODE_TYPE (3)
467 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
468
469 enum {
470 CURSEG_HOT_DATA = 0, /* directory entry blocks */
471 CURSEG_WARM_DATA, /* data blocks */
472 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
473 CURSEG_HOT_NODE, /* direct node blocks of directory files */
474 CURSEG_WARM_NODE, /* direct node blocks of normal files */
475 CURSEG_COLD_NODE, /* indirect node blocks */
476 NO_CHECK_TYPE,
477 CURSEG_DIRECT_IO, /* to use for the direct IO path */
478 };
479
480 struct flush_cmd {
481 struct completion wait;
482 struct llist_node llnode;
483 int ret;
484 };
485
486 struct flush_cmd_control {
487 struct task_struct *f2fs_issue_flush; /* flush thread */
488 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
489 struct llist_head issue_list; /* list for command issue */
490 struct llist_node *dispatch_list; /* list for command dispatch */
491 };
492
493 struct f2fs_sm_info {
494 struct sit_info *sit_info; /* whole segment information */
495 struct free_segmap_info *free_info; /* free segment information */
496 struct dirty_seglist_info *dirty_info; /* dirty segment information */
497 struct curseg_info *curseg_array; /* active segment information */
498
499 block_t seg0_blkaddr; /* block address of 0'th segment */
500 block_t main_blkaddr; /* start block address of main area */
501 block_t ssa_blkaddr; /* start block address of SSA area */
502
503 unsigned int segment_count; /* total # of segments */
504 unsigned int main_segments; /* # of segments in main area */
505 unsigned int reserved_segments; /* # of reserved segments */
506 unsigned int ovp_segments; /* # of overprovision segments */
507
508 /* a threshold to reclaim prefree segments */
509 unsigned int rec_prefree_segments;
510
511 /* for small discard management */
512 struct list_head discard_list; /* 4KB discard list */
513 int nr_discards; /* # of discards in the list */
514 int max_discards; /* max. discards to be issued */
515
516 /* for batched trimming */
517 unsigned int trim_sections; /* # of sections to trim */
518
519 struct list_head sit_entry_set; /* sit entry set list */
520
521 unsigned int ipu_policy; /* in-place-update policy */
522 unsigned int min_ipu_util; /* in-place-update threshold */
523 unsigned int min_fsync_blocks; /* threshold for fsync */
524
525 /* for flush command control */
526 struct flush_cmd_control *cmd_control_info;
527
528 };
529
530 /*
531 * For superblock
532 */
533 /*
534 * COUNT_TYPE for monitoring
535 *
536 * f2fs monitors the number of several block types such as on-writeback,
537 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
538 */
539 enum count_type {
540 F2FS_WRITEBACK,
541 F2FS_DIRTY_DENTS,
542 F2FS_DIRTY_NODES,
543 F2FS_DIRTY_META,
544 F2FS_INMEM_PAGES,
545 NR_COUNT_TYPE,
546 };
547
548 /*
549 * The below are the page types of bios used in submit_bio().
550 * The available types are:
551 * DATA User data pages. It operates as async mode.
552 * NODE Node pages. It operates as async mode.
553 * META FS metadata pages such as SIT, NAT, CP.
554 * NR_PAGE_TYPE The number of page types.
555 * META_FLUSH Make sure the previous pages are written
556 * with waiting the bio's completion
557 * ... Only can be used with META.
558 */
559 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
560 enum page_type {
561 DATA,
562 NODE,
563 META,
564 NR_PAGE_TYPE,
565 META_FLUSH,
566 INMEM, /* the below types are used by tracepoints only. */
567 INMEM_DROP,
568 IPU,
569 OPU,
570 };
571
572 struct f2fs_io_info {
573 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
574 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
575 block_t blk_addr; /* block address to be written */
576 };
577
578 #define is_read_io(rw) (((rw) & 1) == READ)
579 struct f2fs_bio_info {
580 struct f2fs_sb_info *sbi; /* f2fs superblock */
581 struct bio *bio; /* bios to merge */
582 sector_t last_block_in_bio; /* last block number */
583 struct f2fs_io_info fio; /* store buffered io info. */
584 struct rw_semaphore io_rwsem; /* blocking op for bio */
585 };
586
587 /* for inner inode cache management */
588 struct inode_management {
589 struct radix_tree_root ino_root; /* ino entry array */
590 spinlock_t ino_lock; /* for ino entry lock */
591 struct list_head ino_list; /* inode list head */
592 unsigned long ino_num; /* number of entries */
593 };
594
595 /* For s_flag in struct f2fs_sb_info */
596 enum {
597 SBI_IS_DIRTY, /* dirty flag for checkpoint */
598 SBI_IS_CLOSE, /* specify unmounting */
599 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
600 SBI_POR_DOING, /* recovery is doing or not */
601 };
602
603 struct f2fs_sb_info {
604 struct super_block *sb; /* pointer to VFS super block */
605 struct proc_dir_entry *s_proc; /* proc entry */
606 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
607 struct f2fs_super_block *raw_super; /* raw super block pointer */
608 int s_flag; /* flags for sbi */
609
610 /* for node-related operations */
611 struct f2fs_nm_info *nm_info; /* node manager */
612 struct inode *node_inode; /* cache node blocks */
613
614 /* for segment-related operations */
615 struct f2fs_sm_info *sm_info; /* segment manager */
616
617 /* for bio operations */
618 struct f2fs_bio_info read_io; /* for read bios */
619 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
620
621 /* for checkpoint */
622 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
623 struct inode *meta_inode; /* cache meta blocks */
624 struct mutex cp_mutex; /* checkpoint procedure lock */
625 struct rw_semaphore cp_rwsem; /* blocking FS operations */
626 struct rw_semaphore node_write; /* locking node writes */
627 wait_queue_head_t cp_wait;
628
629 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
630
631 /* for orphan inode, use 0'th array */
632 unsigned int max_orphans; /* max orphan inodes */
633
634 /* for directory inode management */
635 struct list_head dir_inode_list; /* dir inode list */
636 spinlock_t dir_inode_lock; /* for dir inode list lock */
637
638 /* for extent tree cache */
639 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
640 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
641 struct list_head extent_list; /* lru list for shrinker */
642 spinlock_t extent_lock; /* locking extent lru list */
643 int total_ext_tree; /* extent tree count */
644 atomic_t total_ext_node; /* extent info count */
645
646 /* basic filesystem units */
647 unsigned int log_sectors_per_block; /* log2 sectors per block */
648 unsigned int log_blocksize; /* log2 block size */
649 unsigned int blocksize; /* block size */
650 unsigned int root_ino_num; /* root inode number*/
651 unsigned int node_ino_num; /* node inode number*/
652 unsigned int meta_ino_num; /* meta inode number*/
653 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
654 unsigned int blocks_per_seg; /* blocks per segment */
655 unsigned int segs_per_sec; /* segments per section */
656 unsigned int secs_per_zone; /* sections per zone */
657 unsigned int total_sections; /* total section count */
658 unsigned int total_node_count; /* total node block count */
659 unsigned int total_valid_node_count; /* valid node block count */
660 unsigned int total_valid_inode_count; /* valid inode count */
661 int active_logs; /* # of active logs */
662 int dir_level; /* directory level */
663
664 block_t user_block_count; /* # of user blocks */
665 block_t total_valid_block_count; /* # of valid blocks */
666 block_t alloc_valid_block_count; /* # of allocated blocks */
667 block_t last_valid_block_count; /* for recovery */
668 u32 s_next_generation; /* for NFS support */
669 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
670
671 struct f2fs_mount_info mount_opt; /* mount options */
672
673 /* for cleaning operations */
674 struct mutex gc_mutex; /* mutex for GC */
675 struct f2fs_gc_kthread *gc_thread; /* GC thread */
676 unsigned int cur_victim_sec; /* current victim section num */
677
678 /* maximum # of trials to find a victim segment for SSR and GC */
679 unsigned int max_victim_search;
680
681 /*
682 * for stat information.
683 * one is for the LFS mode, and the other is for the SSR mode.
684 */
685 #ifdef CONFIG_F2FS_STAT_FS
686 struct f2fs_stat_info *stat_info; /* FS status information */
687 unsigned int segment_count[2]; /* # of allocated segments */
688 unsigned int block_count[2]; /* # of allocated blocks */
689 atomic_t inplace_count; /* # of inplace update */
690 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
691 atomic_t inline_inode; /* # of inline_data inodes */
692 atomic_t inline_dir; /* # of inline_dentry inodes */
693 int bg_gc; /* background gc calls */
694 unsigned int n_dirty_dirs; /* # of dir inodes */
695 #endif
696 unsigned int last_victim[2]; /* last victim segment # */
697 spinlock_t stat_lock; /* lock for stat operations */
698
699 /* For sysfs suppport */
700 struct kobject s_kobj;
701 struct completion s_kobj_unregister;
702 };
703
704 /*
705 * Inline functions
706 */
707 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
708 {
709 return container_of(inode, struct f2fs_inode_info, vfs_inode);
710 }
711
712 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
713 {
714 return sb->s_fs_info;
715 }
716
717 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
718 {
719 return F2FS_SB(inode->i_sb);
720 }
721
722 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
723 {
724 return F2FS_I_SB(mapping->host);
725 }
726
727 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
728 {
729 return F2FS_M_SB(page->mapping);
730 }
731
732 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
733 {
734 return (struct f2fs_super_block *)(sbi->raw_super);
735 }
736
737 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
738 {
739 return (struct f2fs_checkpoint *)(sbi->ckpt);
740 }
741
742 static inline struct f2fs_node *F2FS_NODE(struct page *page)
743 {
744 return (struct f2fs_node *)page_address(page);
745 }
746
747 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
748 {
749 return &((struct f2fs_node *)page_address(page))->i;
750 }
751
752 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
753 {
754 return (struct f2fs_nm_info *)(sbi->nm_info);
755 }
756
757 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
758 {
759 return (struct f2fs_sm_info *)(sbi->sm_info);
760 }
761
762 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
763 {
764 return (struct sit_info *)(SM_I(sbi)->sit_info);
765 }
766
767 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
768 {
769 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
770 }
771
772 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
773 {
774 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
775 }
776
777 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
778 {
779 return sbi->meta_inode->i_mapping;
780 }
781
782 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
783 {
784 return sbi->node_inode->i_mapping;
785 }
786
787 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
788 {
789 return sbi->s_flag & (0x01 << type);
790 }
791
792 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
793 {
794 sbi->s_flag |= (0x01 << type);
795 }
796
797 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
798 {
799 sbi->s_flag &= ~(0x01 << type);
800 }
801
802 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
803 {
804 return le64_to_cpu(cp->checkpoint_ver);
805 }
806
807 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
808 {
809 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
810 return ckpt_flags & f;
811 }
812
813 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
814 {
815 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
816 ckpt_flags |= f;
817 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
818 }
819
820 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
821 {
822 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
823 ckpt_flags &= (~f);
824 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
825 }
826
827 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
828 {
829 down_read(&sbi->cp_rwsem);
830 }
831
832 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
833 {
834 up_read(&sbi->cp_rwsem);
835 }
836
837 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
838 {
839 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
840 }
841
842 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
843 {
844 up_write(&sbi->cp_rwsem);
845 }
846
847 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
848 {
849 int reason = CP_SYNC;
850
851 if (test_opt(sbi, FASTBOOT))
852 reason = CP_FASTBOOT;
853 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
854 reason = CP_UMOUNT;
855 return reason;
856 }
857
858 static inline bool __remain_node_summaries(int reason)
859 {
860 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
861 }
862
863 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
864 {
865 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
866 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
867 }
868
869 /*
870 * Check whether the given nid is within node id range.
871 */
872 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
873 {
874 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
875 return -EINVAL;
876 if (unlikely(nid >= NM_I(sbi)->max_nid))
877 return -EINVAL;
878 return 0;
879 }
880
881 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
882
883 /*
884 * Check whether the inode has blocks or not
885 */
886 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
887 {
888 if (F2FS_I(inode)->i_xattr_nid)
889 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
890 else
891 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
892 }
893
894 static inline bool f2fs_has_xattr_block(unsigned int ofs)
895 {
896 return ofs == XATTR_NODE_OFFSET;
897 }
898
899 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
900 struct inode *inode, blkcnt_t count)
901 {
902 block_t valid_block_count;
903
904 spin_lock(&sbi->stat_lock);
905 valid_block_count =
906 sbi->total_valid_block_count + (block_t)count;
907 if (unlikely(valid_block_count > sbi->user_block_count)) {
908 spin_unlock(&sbi->stat_lock);
909 return false;
910 }
911 inode->i_blocks += count;
912 sbi->total_valid_block_count = valid_block_count;
913 sbi->alloc_valid_block_count += (block_t)count;
914 spin_unlock(&sbi->stat_lock);
915 return true;
916 }
917
918 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
919 struct inode *inode,
920 blkcnt_t count)
921 {
922 spin_lock(&sbi->stat_lock);
923 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
924 f2fs_bug_on(sbi, inode->i_blocks < count);
925 inode->i_blocks -= count;
926 sbi->total_valid_block_count -= (block_t)count;
927 spin_unlock(&sbi->stat_lock);
928 }
929
930 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
931 {
932 atomic_inc(&sbi->nr_pages[count_type]);
933 set_sbi_flag(sbi, SBI_IS_DIRTY);
934 }
935
936 static inline void inode_inc_dirty_pages(struct inode *inode)
937 {
938 atomic_inc(&F2FS_I(inode)->dirty_pages);
939 if (S_ISDIR(inode->i_mode))
940 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
941 }
942
943 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
944 {
945 atomic_dec(&sbi->nr_pages[count_type]);
946 }
947
948 static inline void inode_dec_dirty_pages(struct inode *inode)
949 {
950 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
951 return;
952
953 atomic_dec(&F2FS_I(inode)->dirty_pages);
954
955 if (S_ISDIR(inode->i_mode))
956 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
957 }
958
959 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
960 {
961 return atomic_read(&sbi->nr_pages[count_type]);
962 }
963
964 static inline int get_dirty_pages(struct inode *inode)
965 {
966 return atomic_read(&F2FS_I(inode)->dirty_pages);
967 }
968
969 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
970 {
971 unsigned int pages_per_sec = sbi->segs_per_sec *
972 (1 << sbi->log_blocks_per_seg);
973 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
974 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
975 }
976
977 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
978 {
979 return sbi->total_valid_block_count;
980 }
981
982 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
983 {
984 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
985
986 /* return NAT or SIT bitmap */
987 if (flag == NAT_BITMAP)
988 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
989 else if (flag == SIT_BITMAP)
990 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
991
992 return 0;
993 }
994
995 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
996 {
997 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
998 }
999
1000 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1001 {
1002 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1003 int offset;
1004
1005 if (__cp_payload(sbi) > 0) {
1006 if (flag == NAT_BITMAP)
1007 return &ckpt->sit_nat_version_bitmap;
1008 else
1009 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1010 } else {
1011 offset = (flag == NAT_BITMAP) ?
1012 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1013 return &ckpt->sit_nat_version_bitmap + offset;
1014 }
1015 }
1016
1017 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1018 {
1019 block_t start_addr;
1020 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1021 unsigned long long ckpt_version = cur_cp_version(ckpt);
1022
1023 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1024
1025 /*
1026 * odd numbered checkpoint should at cp segment 0
1027 * and even segment must be at cp segment 1
1028 */
1029 if (!(ckpt_version & 1))
1030 start_addr += sbi->blocks_per_seg;
1031
1032 return start_addr;
1033 }
1034
1035 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1036 {
1037 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1038 }
1039
1040 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1041 struct inode *inode)
1042 {
1043 block_t valid_block_count;
1044 unsigned int valid_node_count;
1045
1046 spin_lock(&sbi->stat_lock);
1047
1048 valid_block_count = sbi->total_valid_block_count + 1;
1049 if (unlikely(valid_block_count > sbi->user_block_count)) {
1050 spin_unlock(&sbi->stat_lock);
1051 return false;
1052 }
1053
1054 valid_node_count = sbi->total_valid_node_count + 1;
1055 if (unlikely(valid_node_count > sbi->total_node_count)) {
1056 spin_unlock(&sbi->stat_lock);
1057 return false;
1058 }
1059
1060 if (inode)
1061 inode->i_blocks++;
1062
1063 sbi->alloc_valid_block_count++;
1064 sbi->total_valid_node_count++;
1065 sbi->total_valid_block_count++;
1066 spin_unlock(&sbi->stat_lock);
1067
1068 return true;
1069 }
1070
1071 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1072 struct inode *inode)
1073 {
1074 spin_lock(&sbi->stat_lock);
1075
1076 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1077 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1078 f2fs_bug_on(sbi, !inode->i_blocks);
1079
1080 inode->i_blocks--;
1081 sbi->total_valid_node_count--;
1082 sbi->total_valid_block_count--;
1083
1084 spin_unlock(&sbi->stat_lock);
1085 }
1086
1087 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1088 {
1089 return sbi->total_valid_node_count;
1090 }
1091
1092 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1093 {
1094 spin_lock(&sbi->stat_lock);
1095 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1096 sbi->total_valid_inode_count++;
1097 spin_unlock(&sbi->stat_lock);
1098 }
1099
1100 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1101 {
1102 spin_lock(&sbi->stat_lock);
1103 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1104 sbi->total_valid_inode_count--;
1105 spin_unlock(&sbi->stat_lock);
1106 }
1107
1108 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1109 {
1110 return sbi->total_valid_inode_count;
1111 }
1112
1113 static inline void f2fs_put_page(struct page *page, int unlock)
1114 {
1115 if (!page)
1116 return;
1117
1118 if (unlock) {
1119 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1120 unlock_page(page);
1121 }
1122 page_cache_release(page);
1123 }
1124
1125 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1126 {
1127 if (dn->node_page)
1128 f2fs_put_page(dn->node_page, 1);
1129 if (dn->inode_page && dn->node_page != dn->inode_page)
1130 f2fs_put_page(dn->inode_page, 0);
1131 dn->node_page = NULL;
1132 dn->inode_page = NULL;
1133 }
1134
1135 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1136 size_t size)
1137 {
1138 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1139 }
1140
1141 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1142 gfp_t flags)
1143 {
1144 void *entry;
1145 retry:
1146 entry = kmem_cache_alloc(cachep, flags);
1147 if (!entry) {
1148 cond_resched();
1149 goto retry;
1150 }
1151
1152 return entry;
1153 }
1154
1155 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1156 unsigned long index, void *item)
1157 {
1158 while (radix_tree_insert(root, index, item))
1159 cond_resched();
1160 }
1161
1162 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1163
1164 static inline bool IS_INODE(struct page *page)
1165 {
1166 struct f2fs_node *p = F2FS_NODE(page);
1167 return RAW_IS_INODE(p);
1168 }
1169
1170 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1171 {
1172 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1173 }
1174
1175 static inline block_t datablock_addr(struct page *node_page,
1176 unsigned int offset)
1177 {
1178 struct f2fs_node *raw_node;
1179 __le32 *addr_array;
1180 raw_node = F2FS_NODE(node_page);
1181 addr_array = blkaddr_in_node(raw_node);
1182 return le32_to_cpu(addr_array[offset]);
1183 }
1184
1185 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1186 {
1187 int mask;
1188
1189 addr += (nr >> 3);
1190 mask = 1 << (7 - (nr & 0x07));
1191 return mask & *addr;
1192 }
1193
1194 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1195 {
1196 int mask;
1197 int ret;
1198
1199 addr += (nr >> 3);
1200 mask = 1 << (7 - (nr & 0x07));
1201 ret = mask & *addr;
1202 *addr |= mask;
1203 return ret;
1204 }
1205
1206 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1207 {
1208 int mask;
1209 int ret;
1210
1211 addr += (nr >> 3);
1212 mask = 1 << (7 - (nr & 0x07));
1213 ret = mask & *addr;
1214 *addr &= ~mask;
1215 return ret;
1216 }
1217
1218 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1219 {
1220 int mask;
1221
1222 addr += (nr >> 3);
1223 mask = 1 << (7 - (nr & 0x07));
1224 *addr ^= mask;
1225 }
1226
1227 /* used for f2fs_inode_info->flags */
1228 enum {
1229 FI_NEW_INODE, /* indicate newly allocated inode */
1230 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1231 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1232 FI_INC_LINK, /* need to increment i_nlink */
1233 FI_ACL_MODE, /* indicate acl mode */
1234 FI_NO_ALLOC, /* should not allocate any blocks */
1235 FI_UPDATE_DIR, /* should update inode block for consistency */
1236 FI_DELAY_IPUT, /* used for the recovery */
1237 FI_NO_EXTENT, /* not to use the extent cache */
1238 FI_INLINE_XATTR, /* used for inline xattr */
1239 FI_INLINE_DATA, /* used for inline data*/
1240 FI_INLINE_DENTRY, /* used for inline dentry */
1241 FI_APPEND_WRITE, /* inode has appended data */
1242 FI_UPDATE_WRITE, /* inode has in-place-update data */
1243 FI_NEED_IPU, /* used for ipu per file */
1244 FI_ATOMIC_FILE, /* indicate atomic file */
1245 FI_VOLATILE_FILE, /* indicate volatile file */
1246 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1247 FI_DROP_CACHE, /* drop dirty page cache */
1248 FI_DATA_EXIST, /* indicate data exists */
1249 FI_INLINE_DOTS, /* indicate inline dot dentries */
1250 };
1251
1252 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1253 {
1254 if (!test_bit(flag, &fi->flags))
1255 set_bit(flag, &fi->flags);
1256 }
1257
1258 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1259 {
1260 return test_bit(flag, &fi->flags);
1261 }
1262
1263 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1264 {
1265 if (test_bit(flag, &fi->flags))
1266 clear_bit(flag, &fi->flags);
1267 }
1268
1269 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1270 {
1271 fi->i_acl_mode = mode;
1272 set_inode_flag(fi, FI_ACL_MODE);
1273 }
1274
1275 static inline void get_inline_info(struct f2fs_inode_info *fi,
1276 struct f2fs_inode *ri)
1277 {
1278 if (ri->i_inline & F2FS_INLINE_XATTR)
1279 set_inode_flag(fi, FI_INLINE_XATTR);
1280 if (ri->i_inline & F2FS_INLINE_DATA)
1281 set_inode_flag(fi, FI_INLINE_DATA);
1282 if (ri->i_inline & F2FS_INLINE_DENTRY)
1283 set_inode_flag(fi, FI_INLINE_DENTRY);
1284 if (ri->i_inline & F2FS_DATA_EXIST)
1285 set_inode_flag(fi, FI_DATA_EXIST);
1286 if (ri->i_inline & F2FS_INLINE_DOTS)
1287 set_inode_flag(fi, FI_INLINE_DOTS);
1288 }
1289
1290 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1291 struct f2fs_inode *ri)
1292 {
1293 ri->i_inline = 0;
1294
1295 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1296 ri->i_inline |= F2FS_INLINE_XATTR;
1297 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1298 ri->i_inline |= F2FS_INLINE_DATA;
1299 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1300 ri->i_inline |= F2FS_INLINE_DENTRY;
1301 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1302 ri->i_inline |= F2FS_DATA_EXIST;
1303 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1304 ri->i_inline |= F2FS_INLINE_DOTS;
1305 }
1306
1307 static inline int f2fs_has_inline_xattr(struct inode *inode)
1308 {
1309 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1310 }
1311
1312 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1313 {
1314 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1315 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1316 return DEF_ADDRS_PER_INODE;
1317 }
1318
1319 static inline void *inline_xattr_addr(struct page *page)
1320 {
1321 struct f2fs_inode *ri = F2FS_INODE(page);
1322 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1323 F2FS_INLINE_XATTR_ADDRS]);
1324 }
1325
1326 static inline int inline_xattr_size(struct inode *inode)
1327 {
1328 if (f2fs_has_inline_xattr(inode))
1329 return F2FS_INLINE_XATTR_ADDRS << 2;
1330 else
1331 return 0;
1332 }
1333
1334 static inline int f2fs_has_inline_data(struct inode *inode)
1335 {
1336 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1337 }
1338
1339 static inline void f2fs_clear_inline_inode(struct inode *inode)
1340 {
1341 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1342 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1343 }
1344
1345 static inline int f2fs_exist_data(struct inode *inode)
1346 {
1347 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1348 }
1349
1350 static inline int f2fs_has_inline_dots(struct inode *inode)
1351 {
1352 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1353 }
1354
1355 static inline bool f2fs_is_atomic_file(struct inode *inode)
1356 {
1357 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1358 }
1359
1360 static inline bool f2fs_is_volatile_file(struct inode *inode)
1361 {
1362 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1363 }
1364
1365 static inline bool f2fs_is_first_block_written(struct inode *inode)
1366 {
1367 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1368 }
1369
1370 static inline bool f2fs_is_drop_cache(struct inode *inode)
1371 {
1372 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1373 }
1374
1375 static inline void *inline_data_addr(struct page *page)
1376 {
1377 struct f2fs_inode *ri = F2FS_INODE(page);
1378 return (void *)&(ri->i_addr[1]);
1379 }
1380
1381 static inline int f2fs_has_inline_dentry(struct inode *inode)
1382 {
1383 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1384 }
1385
1386 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1387 {
1388 if (!f2fs_has_inline_dentry(dir))
1389 kunmap(page);
1390 }
1391
1392 static inline int f2fs_readonly(struct super_block *sb)
1393 {
1394 return sb->s_flags & MS_RDONLY;
1395 }
1396
1397 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1398 {
1399 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1400 }
1401
1402 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1403 {
1404 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1405 sbi->sb->s_flags |= MS_RDONLY;
1406 }
1407
1408 #define get_inode_mode(i) \
1409 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1410 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1411
1412 /* get offset of first page in next direct node */
1413 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1414 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1415 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1416 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1417
1418 /*
1419 * file.c
1420 */
1421 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1422 void truncate_data_blocks(struct dnode_of_data *);
1423 int truncate_blocks(struct inode *, u64, bool);
1424 void f2fs_truncate(struct inode *);
1425 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1426 int f2fs_setattr(struct dentry *, struct iattr *);
1427 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1428 int truncate_data_blocks_range(struct dnode_of_data *, int);
1429 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1430 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1431
1432 /*
1433 * inode.c
1434 */
1435 void f2fs_set_inode_flags(struct inode *);
1436 struct inode *f2fs_iget(struct super_block *, unsigned long);
1437 int try_to_free_nats(struct f2fs_sb_info *, int);
1438 void update_inode(struct inode *, struct page *);
1439 void update_inode_page(struct inode *);
1440 int f2fs_write_inode(struct inode *, struct writeback_control *);
1441 void f2fs_evict_inode(struct inode *);
1442 void handle_failed_inode(struct inode *);
1443
1444 /*
1445 * namei.c
1446 */
1447 struct dentry *f2fs_get_parent(struct dentry *child);
1448
1449 /*
1450 * dir.c
1451 */
1452 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1453 void set_de_type(struct f2fs_dir_entry *, umode_t);
1454 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1455 struct f2fs_dentry_ptr *);
1456 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1457 unsigned int);
1458 void do_make_empty_dir(struct inode *, struct inode *,
1459 struct f2fs_dentry_ptr *);
1460 struct page *init_inode_metadata(struct inode *, struct inode *,
1461 const struct qstr *, struct page *);
1462 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1463 int room_for_filename(const void *, int, int);
1464 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1465 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1466 struct page **);
1467 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1468 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1469 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1470 struct page *, struct inode *);
1471 int update_dent_inode(struct inode *, const struct qstr *);
1472 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1473 const struct qstr *, f2fs_hash_t , unsigned int);
1474 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1475 umode_t);
1476 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1477 struct inode *);
1478 int f2fs_do_tmpfile(struct inode *, struct inode *);
1479 int f2fs_make_empty(struct inode *, struct inode *);
1480 bool f2fs_empty_dir(struct inode *);
1481
1482 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1483 {
1484 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1485 inode, inode->i_ino, inode->i_mode);
1486 }
1487
1488 /*
1489 * super.c
1490 */
1491 int f2fs_sync_fs(struct super_block *, int);
1492 extern __printf(3, 4)
1493 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1494
1495 /*
1496 * hash.c
1497 */
1498 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1499
1500 /*
1501 * node.c
1502 */
1503 struct dnode_of_data;
1504 struct node_info;
1505
1506 bool available_free_memory(struct f2fs_sb_info *, int);
1507 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1508 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1509 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1510 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1511 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1512 int truncate_inode_blocks(struct inode *, pgoff_t);
1513 int truncate_xattr_node(struct inode *, struct page *);
1514 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1515 void remove_inode_page(struct inode *);
1516 struct page *new_inode_page(struct inode *);
1517 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1518 void ra_node_page(struct f2fs_sb_info *, nid_t);
1519 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1520 struct page *get_node_page_ra(struct page *, int);
1521 void sync_inode_page(struct dnode_of_data *);
1522 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1523 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1524 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1525 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1526 void recover_inline_xattr(struct inode *, struct page *);
1527 void recover_xattr_data(struct inode *, struct page *, block_t);
1528 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1529 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1530 struct f2fs_summary_block *);
1531 void flush_nat_entries(struct f2fs_sb_info *);
1532 int build_node_manager(struct f2fs_sb_info *);
1533 void destroy_node_manager(struct f2fs_sb_info *);
1534 int __init create_node_manager_caches(void);
1535 void destroy_node_manager_caches(void);
1536
1537 /*
1538 * segment.c
1539 */
1540 void register_inmem_page(struct inode *, struct page *);
1541 void commit_inmem_pages(struct inode *, bool);
1542 void f2fs_balance_fs(struct f2fs_sb_info *);
1543 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1544 int f2fs_issue_flush(struct f2fs_sb_info *);
1545 int create_flush_cmd_control(struct f2fs_sb_info *);
1546 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1547 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1548 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1549 void clear_prefree_segments(struct f2fs_sb_info *);
1550 void release_discard_addrs(struct f2fs_sb_info *);
1551 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1552 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1553 void allocate_new_segments(struct f2fs_sb_info *);
1554 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1555 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1556 void write_meta_page(struct f2fs_sb_info *, struct page *);
1557 void write_node_page(struct f2fs_sb_info *, struct page *,
1558 unsigned int, struct f2fs_io_info *);
1559 void write_data_page(struct page *, struct dnode_of_data *,
1560 struct f2fs_io_info *);
1561 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1562 void recover_data_page(struct f2fs_sb_info *, struct page *,
1563 struct f2fs_summary *, block_t, block_t);
1564 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1565 block_t, block_t *, struct f2fs_summary *, int);
1566 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1567 void write_data_summaries(struct f2fs_sb_info *, block_t);
1568 void write_node_summaries(struct f2fs_sb_info *, block_t);
1569 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1570 int, unsigned int, int);
1571 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1572 int build_segment_manager(struct f2fs_sb_info *);
1573 void destroy_segment_manager(struct f2fs_sb_info *);
1574 int __init create_segment_manager_caches(void);
1575 void destroy_segment_manager_caches(void);
1576
1577 /*
1578 * checkpoint.c
1579 */
1580 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1581 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1582 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1583 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1584 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1585 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1586 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1587 void release_dirty_inode(struct f2fs_sb_info *);
1588 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1589 int acquire_orphan_inode(struct f2fs_sb_info *);
1590 void release_orphan_inode(struct f2fs_sb_info *);
1591 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1592 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1593 void recover_orphan_inodes(struct f2fs_sb_info *);
1594 int get_valid_checkpoint(struct f2fs_sb_info *);
1595 void update_dirty_page(struct inode *, struct page *);
1596 void add_dirty_dir_inode(struct inode *);
1597 void remove_dirty_dir_inode(struct inode *);
1598 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1599 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1600 void init_ino_entry_info(struct f2fs_sb_info *);
1601 int __init create_checkpoint_caches(void);
1602 void destroy_checkpoint_caches(void);
1603
1604 /*
1605 * data.c
1606 */
1607 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1608 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1609 struct f2fs_io_info *);
1610 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1611 struct f2fs_io_info *);
1612 void set_data_blkaddr(struct dnode_of_data *);
1613 int reserve_new_block(struct dnode_of_data *);
1614 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1615 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1616 void f2fs_destroy_extent_tree(struct inode *);
1617 void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1618 void f2fs_update_extent_cache(struct dnode_of_data *);
1619 void f2fs_preserve_extent_tree(struct inode *);
1620 struct page *find_data_page(struct inode *, pgoff_t, bool);
1621 struct page *get_lock_data_page(struct inode *, pgoff_t);
1622 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1623 int do_write_data_page(struct page *, struct f2fs_io_info *);
1624 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1625 void init_extent_cache_info(struct f2fs_sb_info *);
1626 int __init create_extent_cache(void);
1627 void destroy_extent_cache(void);
1628 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1629 int f2fs_release_page(struct page *, gfp_t);
1630
1631 /*
1632 * gc.c
1633 */
1634 int start_gc_thread(struct f2fs_sb_info *);
1635 void stop_gc_thread(struct f2fs_sb_info *);
1636 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1637 int f2fs_gc(struct f2fs_sb_info *);
1638 void build_gc_manager(struct f2fs_sb_info *);
1639
1640 /*
1641 * recovery.c
1642 */
1643 int recover_fsync_data(struct f2fs_sb_info *);
1644 bool space_for_roll_forward(struct f2fs_sb_info *);
1645
1646 /*
1647 * debug.c
1648 */
1649 #ifdef CONFIG_F2FS_STAT_FS
1650 struct f2fs_stat_info {
1651 struct list_head stat_list;
1652 struct f2fs_sb_info *sbi;
1653 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1654 int main_area_segs, main_area_sections, main_area_zones;
1655 int hit_ext, total_ext, ext_tree, ext_node;
1656 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1657 int nats, dirty_nats, sits, dirty_sits, fnids;
1658 int total_count, utilization;
1659 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1660 unsigned int valid_count, valid_node_count, valid_inode_count;
1661 unsigned int bimodal, avg_vblocks;
1662 int util_free, util_valid, util_invalid;
1663 int rsvd_segs, overp_segs;
1664 int dirty_count, node_pages, meta_pages;
1665 int prefree_count, call_count, cp_count;
1666 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1667 int bg_node_segs, bg_data_segs;
1668 int tot_blks, data_blks, node_blks;
1669 int bg_data_blks, bg_node_blks;
1670 int curseg[NR_CURSEG_TYPE];
1671 int cursec[NR_CURSEG_TYPE];
1672 int curzone[NR_CURSEG_TYPE];
1673
1674 unsigned int segment_count[2];
1675 unsigned int block_count[2];
1676 unsigned int inplace_count;
1677 unsigned base_mem, cache_mem, page_mem;
1678 };
1679
1680 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1681 {
1682 return (struct f2fs_stat_info *)sbi->stat_info;
1683 }
1684
1685 #define stat_inc_cp_count(si) ((si)->cp_count++)
1686 #define stat_inc_call_count(si) ((si)->call_count++)
1687 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1688 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1689 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1690 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1691 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1692 #define stat_inc_inline_inode(inode) \
1693 do { \
1694 if (f2fs_has_inline_data(inode)) \
1695 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1696 } while (0)
1697 #define stat_dec_inline_inode(inode) \
1698 do { \
1699 if (f2fs_has_inline_data(inode)) \
1700 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1701 } while (0)
1702 #define stat_inc_inline_dir(inode) \
1703 do { \
1704 if (f2fs_has_inline_dentry(inode)) \
1705 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1706 } while (0)
1707 #define stat_dec_inline_dir(inode) \
1708 do { \
1709 if (f2fs_has_inline_dentry(inode)) \
1710 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1711 } while (0)
1712 #define stat_inc_seg_type(sbi, curseg) \
1713 ((sbi)->segment_count[(curseg)->alloc_type]++)
1714 #define stat_inc_block_count(sbi, curseg) \
1715 ((sbi)->block_count[(curseg)->alloc_type]++)
1716 #define stat_inc_inplace_blocks(sbi) \
1717 (atomic_inc(&(sbi)->inplace_count))
1718 #define stat_inc_seg_count(sbi, type, gc_type) \
1719 do { \
1720 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1721 (si)->tot_segs++; \
1722 if (type == SUM_TYPE_DATA) { \
1723 si->data_segs++; \
1724 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1725 } else { \
1726 si->node_segs++; \
1727 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1728 } \
1729 } while (0)
1730
1731 #define stat_inc_tot_blk_count(si, blks) \
1732 (si->tot_blks += (blks))
1733
1734 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1735 do { \
1736 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1737 stat_inc_tot_blk_count(si, blks); \
1738 si->data_blks += (blks); \
1739 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1740 } while (0)
1741
1742 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1743 do { \
1744 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1745 stat_inc_tot_blk_count(si, blks); \
1746 si->node_blks += (blks); \
1747 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1748 } while (0)
1749
1750 int f2fs_build_stats(struct f2fs_sb_info *);
1751 void f2fs_destroy_stats(struct f2fs_sb_info *);
1752 void __init f2fs_create_root_stats(void);
1753 void f2fs_destroy_root_stats(void);
1754 #else
1755 #define stat_inc_cp_count(si)
1756 #define stat_inc_call_count(si)
1757 #define stat_inc_bggc_count(si)
1758 #define stat_inc_dirty_dir(sbi)
1759 #define stat_dec_dirty_dir(sbi)
1760 #define stat_inc_total_hit(sb)
1761 #define stat_inc_read_hit(sb)
1762 #define stat_inc_inline_inode(inode)
1763 #define stat_dec_inline_inode(inode)
1764 #define stat_inc_inline_dir(inode)
1765 #define stat_dec_inline_dir(inode)
1766 #define stat_inc_seg_type(sbi, curseg)
1767 #define stat_inc_block_count(sbi, curseg)
1768 #define stat_inc_inplace_blocks(sbi)
1769 #define stat_inc_seg_count(sbi, type, gc_type)
1770 #define stat_inc_tot_blk_count(si, blks)
1771 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1772 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1773
1774 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1775 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1776 static inline void __init f2fs_create_root_stats(void) { }
1777 static inline void f2fs_destroy_root_stats(void) { }
1778 #endif
1779
1780 extern const struct file_operations f2fs_dir_operations;
1781 extern const struct file_operations f2fs_file_operations;
1782 extern const struct inode_operations f2fs_file_inode_operations;
1783 extern const struct address_space_operations f2fs_dblock_aops;
1784 extern const struct address_space_operations f2fs_node_aops;
1785 extern const struct address_space_operations f2fs_meta_aops;
1786 extern const struct inode_operations f2fs_dir_inode_operations;
1787 extern const struct inode_operations f2fs_symlink_inode_operations;
1788 extern const struct inode_operations f2fs_special_inode_operations;
1789 extern struct kmem_cache *inode_entry_slab;
1790
1791 /*
1792 * inline.c
1793 */
1794 bool f2fs_may_inline(struct inode *);
1795 void read_inline_data(struct page *, struct page *);
1796 bool truncate_inline_inode(struct page *, u64);
1797 int f2fs_read_inline_data(struct inode *, struct page *);
1798 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1799 int f2fs_convert_inline_inode(struct inode *);
1800 int f2fs_write_inline_data(struct inode *, struct page *);
1801 bool recover_inline_data(struct inode *, struct page *);
1802 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1803 struct page **);
1804 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1805 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1806 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1807 nid_t, umode_t);
1808 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1809 struct inode *, struct inode *);
1810 bool f2fs_empty_inline_dir(struct inode *);
1811 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1812 #endif
This page took 0.091392 seconds and 6 git commands to generate.