f2fs: use percpu_counter for page counters
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_MAX,
49 };
50
51 struct f2fs_fault_info {
52 atomic_t inject_ops;
53 unsigned int inject_rate;
54 unsigned int inject_type;
55 };
56
57 extern struct f2fs_fault_info f2fs_fault;
58 extern char *fault_name[FAULT_MAX];
59 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
60
61 static inline bool time_to_inject(int type)
62 {
63 if (!f2fs_fault.inject_rate)
64 return false;
65 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
66 return false;
67 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
68 return false;
69 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
70 return false;
71 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
72 return false;
73 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
74 return false;
75 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
76 return false;
77
78 atomic_inc(&f2fs_fault.inject_ops);
79 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
80 atomic_set(&f2fs_fault.inject_ops, 0);
81 printk("%sF2FS-fs : inject %s in %pF\n",
82 KERN_INFO,
83 fault_name[type],
84 __builtin_return_address(0));
85 return true;
86 }
87 return false;
88 }
89 #endif
90
91 /*
92 * For mount options
93 */
94 #define F2FS_MOUNT_BG_GC 0x00000001
95 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
96 #define F2FS_MOUNT_DISCARD 0x00000004
97 #define F2FS_MOUNT_NOHEAP 0x00000008
98 #define F2FS_MOUNT_XATTR_USER 0x00000010
99 #define F2FS_MOUNT_POSIX_ACL 0x00000020
100 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
101 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
102 #define F2FS_MOUNT_INLINE_DATA 0x00000100
103 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
104 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
105 #define F2FS_MOUNT_NOBARRIER 0x00000800
106 #define F2FS_MOUNT_FASTBOOT 0x00001000
107 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
108 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
109 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
110 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
111
112 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
113 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
114 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
115
116 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
117 typecheck(unsigned long long, b) && \
118 ((long long)((a) - (b)) > 0))
119
120 typedef u32 block_t; /*
121 * should not change u32, since it is the on-disk block
122 * address format, __le32.
123 */
124 typedef u32 nid_t;
125
126 struct f2fs_mount_info {
127 unsigned int opt;
128 };
129
130 #define F2FS_FEATURE_ENCRYPT 0x0001
131
132 #define F2FS_HAS_FEATURE(sb, mask) \
133 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
134 #define F2FS_SET_FEATURE(sb, mask) \
135 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
136 #define F2FS_CLEAR_FEATURE(sb, mask) \
137 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
138
139 /*
140 * For checkpoint manager
141 */
142 enum {
143 NAT_BITMAP,
144 SIT_BITMAP
145 };
146
147 enum {
148 CP_UMOUNT,
149 CP_FASTBOOT,
150 CP_SYNC,
151 CP_RECOVERY,
152 CP_DISCARD,
153 };
154
155 #define DEF_BATCHED_TRIM_SECTIONS 32
156 #define BATCHED_TRIM_SEGMENTS(sbi) \
157 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
158 #define BATCHED_TRIM_BLOCKS(sbi) \
159 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
160 #define DEF_CP_INTERVAL 60 /* 60 secs */
161 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
162
163 struct cp_control {
164 int reason;
165 __u64 trim_start;
166 __u64 trim_end;
167 __u64 trim_minlen;
168 __u64 trimmed;
169 };
170
171 /*
172 * For CP/NAT/SIT/SSA readahead
173 */
174 enum {
175 META_CP,
176 META_NAT,
177 META_SIT,
178 META_SSA,
179 META_POR,
180 };
181
182 /* for the list of ino */
183 enum {
184 ORPHAN_INO, /* for orphan ino list */
185 APPEND_INO, /* for append ino list */
186 UPDATE_INO, /* for update ino list */
187 MAX_INO_ENTRY, /* max. list */
188 };
189
190 struct ino_entry {
191 struct list_head list; /* list head */
192 nid_t ino; /* inode number */
193 };
194
195 /* for the list of inodes to be GCed */
196 struct inode_entry {
197 struct list_head list; /* list head */
198 struct inode *inode; /* vfs inode pointer */
199 };
200
201 /* for the list of blockaddresses to be discarded */
202 struct discard_entry {
203 struct list_head list; /* list head */
204 block_t blkaddr; /* block address to be discarded */
205 int len; /* # of consecutive blocks of the discard */
206 };
207
208 /* for the list of fsync inodes, used only during recovery */
209 struct fsync_inode_entry {
210 struct list_head list; /* list head */
211 struct inode *inode; /* vfs inode pointer */
212 block_t blkaddr; /* block address locating the last fsync */
213 block_t last_dentry; /* block address locating the last dentry */
214 };
215
216 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
217 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
218
219 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
220 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
221 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
222 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
223
224 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
225 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
226
227 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
228 {
229 int before = nats_in_cursum(journal);
230 journal->n_nats = cpu_to_le16(before + i);
231 return before;
232 }
233
234 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
235 {
236 int before = sits_in_cursum(journal);
237 journal->n_sits = cpu_to_le16(before + i);
238 return before;
239 }
240
241 static inline bool __has_cursum_space(struct f2fs_journal *journal,
242 int size, int type)
243 {
244 if (type == NAT_JOURNAL)
245 return size <= MAX_NAT_JENTRIES(journal);
246 return size <= MAX_SIT_JENTRIES(journal);
247 }
248
249 /*
250 * ioctl commands
251 */
252 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
253 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
254 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
255
256 #define F2FS_IOCTL_MAGIC 0xf5
257 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
258 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
259 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
260 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
261 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
262 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
263 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
264 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
265
266 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
267 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
268 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
269
270 /*
271 * should be same as XFS_IOC_GOINGDOWN.
272 * Flags for going down operation used by FS_IOC_GOINGDOWN
273 */
274 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
275 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
276 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
277 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
278 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
279
280 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
281 /*
282 * ioctl commands in 32 bit emulation
283 */
284 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
285 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
286 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
287 #endif
288
289 struct f2fs_defragment {
290 u64 start;
291 u64 len;
292 };
293
294 /*
295 * For INODE and NODE manager
296 */
297 /* for directory operations */
298 struct f2fs_dentry_ptr {
299 struct inode *inode;
300 const void *bitmap;
301 struct f2fs_dir_entry *dentry;
302 __u8 (*filename)[F2FS_SLOT_LEN];
303 int max;
304 };
305
306 static inline void make_dentry_ptr(struct inode *inode,
307 struct f2fs_dentry_ptr *d, void *src, int type)
308 {
309 d->inode = inode;
310
311 if (type == 1) {
312 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
313 d->max = NR_DENTRY_IN_BLOCK;
314 d->bitmap = &t->dentry_bitmap;
315 d->dentry = t->dentry;
316 d->filename = t->filename;
317 } else {
318 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
319 d->max = NR_INLINE_DENTRY;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 }
324 }
325
326 /*
327 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
328 * as its node offset to distinguish from index node blocks.
329 * But some bits are used to mark the node block.
330 */
331 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
332 >> OFFSET_BIT_SHIFT)
333 enum {
334 ALLOC_NODE, /* allocate a new node page if needed */
335 LOOKUP_NODE, /* look up a node without readahead */
336 LOOKUP_NODE_RA, /*
337 * look up a node with readahead called
338 * by get_data_block.
339 */
340 };
341
342 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
343
344 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
345
346 /* vector size for gang look-up from extent cache that consists of radix tree */
347 #define EXT_TREE_VEC_SIZE 64
348
349 /* for in-memory extent cache entry */
350 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
351
352 /* number of extent info in extent cache we try to shrink */
353 #define EXTENT_CACHE_SHRINK_NUMBER 128
354
355 struct extent_info {
356 unsigned int fofs; /* start offset in a file */
357 u32 blk; /* start block address of the extent */
358 unsigned int len; /* length of the extent */
359 };
360
361 struct extent_node {
362 struct rb_node rb_node; /* rb node located in rb-tree */
363 struct list_head list; /* node in global extent list of sbi */
364 struct extent_info ei; /* extent info */
365 struct extent_tree *et; /* extent tree pointer */
366 };
367
368 struct extent_tree {
369 nid_t ino; /* inode number */
370 struct rb_root root; /* root of extent info rb-tree */
371 struct extent_node *cached_en; /* recently accessed extent node */
372 struct extent_info largest; /* largested extent info */
373 struct list_head list; /* to be used by sbi->zombie_list */
374 rwlock_t lock; /* protect extent info rb-tree */
375 atomic_t node_cnt; /* # of extent node in rb-tree*/
376 };
377
378 /*
379 * This structure is taken from ext4_map_blocks.
380 *
381 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
382 */
383 #define F2FS_MAP_NEW (1 << BH_New)
384 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
385 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
386 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
387 F2FS_MAP_UNWRITTEN)
388
389 struct f2fs_map_blocks {
390 block_t m_pblk;
391 block_t m_lblk;
392 unsigned int m_len;
393 unsigned int m_flags;
394 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
395 };
396
397 /* for flag in get_data_block */
398 #define F2FS_GET_BLOCK_READ 0
399 #define F2FS_GET_BLOCK_DIO 1
400 #define F2FS_GET_BLOCK_FIEMAP 2
401 #define F2FS_GET_BLOCK_BMAP 3
402 #define F2FS_GET_BLOCK_PRE_DIO 4
403 #define F2FS_GET_BLOCK_PRE_AIO 5
404
405 /*
406 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
407 */
408 #define FADVISE_COLD_BIT 0x01
409 #define FADVISE_LOST_PINO_BIT 0x02
410 #define FADVISE_ENCRYPT_BIT 0x04
411 #define FADVISE_ENC_NAME_BIT 0x08
412
413 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
414 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
415 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
416 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
417 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
418 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
419 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
420 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
421 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
422 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
423 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 atomic_t dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444
445 struct list_head dirty_list; /* linked in global dirty list */
446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
447 struct mutex inmem_lock; /* lock for inmemory pages */
448 struct extent_tree *extent_tree; /* cached extent_tree entry */
449 };
450
451 static inline void get_extent_info(struct extent_info *ext,
452 struct f2fs_extent *i_ext)
453 {
454 ext->fofs = le32_to_cpu(i_ext->fofs);
455 ext->blk = le32_to_cpu(i_ext->blk);
456 ext->len = le32_to_cpu(i_ext->len);
457 }
458
459 static inline void set_raw_extent(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 i_ext->fofs = cpu_to_le32(ext->fofs);
463 i_ext->blk = cpu_to_le32(ext->blk);
464 i_ext->len = cpu_to_le32(ext->len);
465 }
466
467 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
468 u32 blk, unsigned int len)
469 {
470 ei->fofs = fofs;
471 ei->blk = blk;
472 ei->len = len;
473 }
474
475 static inline bool __is_extent_same(struct extent_info *ei1,
476 struct extent_info *ei2)
477 {
478 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
479 ei1->len == ei2->len);
480 }
481
482 static inline bool __is_extent_mergeable(struct extent_info *back,
483 struct extent_info *front)
484 {
485 return (back->fofs + back->len == front->fofs &&
486 back->blk + back->len == front->blk);
487 }
488
489 static inline bool __is_back_mergeable(struct extent_info *cur,
490 struct extent_info *back)
491 {
492 return __is_extent_mergeable(back, cur);
493 }
494
495 static inline bool __is_front_mergeable(struct extent_info *cur,
496 struct extent_info *front)
497 {
498 return __is_extent_mergeable(cur, front);
499 }
500
501 static inline void __try_update_largest_extent(struct extent_tree *et,
502 struct extent_node *en)
503 {
504 if (en->ei.len > et->largest.len)
505 et->largest = en->ei;
506 }
507
508 struct f2fs_nm_info {
509 block_t nat_blkaddr; /* base disk address of NAT */
510 nid_t max_nid; /* maximum possible node ids */
511 nid_t available_nids; /* maximum available node ids */
512 nid_t next_scan_nid; /* the next nid to be scanned */
513 unsigned int ram_thresh; /* control the memory footprint */
514 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
515 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
516
517 /* NAT cache management */
518 struct radix_tree_root nat_root;/* root of the nat entry cache */
519 struct radix_tree_root nat_set_root;/* root of the nat set cache */
520 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
521 struct list_head nat_entries; /* cached nat entry list (clean) */
522 unsigned int nat_cnt; /* the # of cached nat entries */
523 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
524
525 /* free node ids management */
526 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
527 struct list_head free_nid_list; /* a list for free nids */
528 spinlock_t free_nid_list_lock; /* protect free nid list */
529 unsigned int fcnt; /* the number of free node id */
530 struct mutex build_lock; /* lock for build free nids */
531
532 /* for checkpoint */
533 char *nat_bitmap; /* NAT bitmap pointer */
534 int bitmap_size; /* bitmap size */
535 };
536
537 /*
538 * this structure is used as one of function parameters.
539 * all the information are dedicated to a given direct node block determined
540 * by the data offset in a file.
541 */
542 struct dnode_of_data {
543 struct inode *inode; /* vfs inode pointer */
544 struct page *inode_page; /* its inode page, NULL is possible */
545 struct page *node_page; /* cached direct node page */
546 nid_t nid; /* node id of the direct node block */
547 unsigned int ofs_in_node; /* data offset in the node page */
548 bool inode_page_locked; /* inode page is locked or not */
549 bool node_changed; /* is node block changed */
550 char cur_level; /* level of hole node page */
551 char max_level; /* level of current page located */
552 block_t data_blkaddr; /* block address of the node block */
553 };
554
555 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
556 struct page *ipage, struct page *npage, nid_t nid)
557 {
558 memset(dn, 0, sizeof(*dn));
559 dn->inode = inode;
560 dn->inode_page = ipage;
561 dn->node_page = npage;
562 dn->nid = nid;
563 }
564
565 /*
566 * For SIT manager
567 *
568 * By default, there are 6 active log areas across the whole main area.
569 * When considering hot and cold data separation to reduce cleaning overhead,
570 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
571 * respectively.
572 * In the current design, you should not change the numbers intentionally.
573 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
574 * logs individually according to the underlying devices. (default: 6)
575 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
576 * data and 8 for node logs.
577 */
578 #define NR_CURSEG_DATA_TYPE (3)
579 #define NR_CURSEG_NODE_TYPE (3)
580 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
581
582 enum {
583 CURSEG_HOT_DATA = 0, /* directory entry blocks */
584 CURSEG_WARM_DATA, /* data blocks */
585 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
586 CURSEG_HOT_NODE, /* direct node blocks of directory files */
587 CURSEG_WARM_NODE, /* direct node blocks of normal files */
588 CURSEG_COLD_NODE, /* indirect node blocks */
589 NO_CHECK_TYPE,
590 CURSEG_DIRECT_IO, /* to use for the direct IO path */
591 };
592
593 struct flush_cmd {
594 struct completion wait;
595 struct llist_node llnode;
596 int ret;
597 };
598
599 struct flush_cmd_control {
600 struct task_struct *f2fs_issue_flush; /* flush thread */
601 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
602 struct llist_head issue_list; /* list for command issue */
603 struct llist_node *dispatch_list; /* list for command dispatch */
604 };
605
606 struct f2fs_sm_info {
607 struct sit_info *sit_info; /* whole segment information */
608 struct free_segmap_info *free_info; /* free segment information */
609 struct dirty_seglist_info *dirty_info; /* dirty segment information */
610 struct curseg_info *curseg_array; /* active segment information */
611
612 block_t seg0_blkaddr; /* block address of 0'th segment */
613 block_t main_blkaddr; /* start block address of main area */
614 block_t ssa_blkaddr; /* start block address of SSA area */
615
616 unsigned int segment_count; /* total # of segments */
617 unsigned int main_segments; /* # of segments in main area */
618 unsigned int reserved_segments; /* # of reserved segments */
619 unsigned int ovp_segments; /* # of overprovision segments */
620
621 /* a threshold to reclaim prefree segments */
622 unsigned int rec_prefree_segments;
623
624 /* for small discard management */
625 struct list_head discard_list; /* 4KB discard list */
626 int nr_discards; /* # of discards in the list */
627 int max_discards; /* max. discards to be issued */
628
629 /* for batched trimming */
630 unsigned int trim_sections; /* # of sections to trim */
631
632 struct list_head sit_entry_set; /* sit entry set list */
633
634 unsigned int ipu_policy; /* in-place-update policy */
635 unsigned int min_ipu_util; /* in-place-update threshold */
636 unsigned int min_fsync_blocks; /* threshold for fsync */
637
638 /* for flush command control */
639 struct flush_cmd_control *cmd_control_info;
640
641 };
642
643 /*
644 * For superblock
645 */
646 /*
647 * COUNT_TYPE for monitoring
648 *
649 * f2fs monitors the number of several block types such as on-writeback,
650 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
651 */
652 enum count_type {
653 F2FS_DIRTY_DENTS,
654 F2FS_DIRTY_DATA,
655 F2FS_DIRTY_NODES,
656 F2FS_DIRTY_META,
657 F2FS_INMEM_PAGES,
658 NR_COUNT_TYPE,
659 };
660
661 /*
662 * The below are the page types of bios used in submit_bio().
663 * The available types are:
664 * DATA User data pages. It operates as async mode.
665 * NODE Node pages. It operates as async mode.
666 * META FS metadata pages such as SIT, NAT, CP.
667 * NR_PAGE_TYPE The number of page types.
668 * META_FLUSH Make sure the previous pages are written
669 * with waiting the bio's completion
670 * ... Only can be used with META.
671 */
672 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
673 enum page_type {
674 DATA,
675 NODE,
676 META,
677 NR_PAGE_TYPE,
678 META_FLUSH,
679 INMEM, /* the below types are used by tracepoints only. */
680 INMEM_DROP,
681 INMEM_REVOKE,
682 IPU,
683 OPU,
684 };
685
686 struct f2fs_io_info {
687 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
688 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
689 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
690 block_t new_blkaddr; /* new block address to be written */
691 block_t old_blkaddr; /* old block address before Cow */
692 struct page *page; /* page to be written */
693 struct page *encrypted_page; /* encrypted page */
694 };
695
696 #define is_read_io(rw) (((rw) & 1) == READ)
697 struct f2fs_bio_info {
698 struct f2fs_sb_info *sbi; /* f2fs superblock */
699 struct bio *bio; /* bios to merge */
700 sector_t last_block_in_bio; /* last block number */
701 struct f2fs_io_info fio; /* store buffered io info. */
702 struct rw_semaphore io_rwsem; /* blocking op for bio */
703 };
704
705 enum inode_type {
706 DIR_INODE, /* for dirty dir inode */
707 FILE_INODE, /* for dirty regular/symlink inode */
708 NR_INODE_TYPE,
709 };
710
711 /* for inner inode cache management */
712 struct inode_management {
713 struct radix_tree_root ino_root; /* ino entry array */
714 spinlock_t ino_lock; /* for ino entry lock */
715 struct list_head ino_list; /* inode list head */
716 unsigned long ino_num; /* number of entries */
717 };
718
719 /* For s_flag in struct f2fs_sb_info */
720 enum {
721 SBI_IS_DIRTY, /* dirty flag for checkpoint */
722 SBI_IS_CLOSE, /* specify unmounting */
723 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
724 SBI_POR_DOING, /* recovery is doing or not */
725 SBI_NEED_SB_WRITE, /* need to recover superblock */
726 };
727
728 enum {
729 CP_TIME,
730 REQ_TIME,
731 MAX_TIME,
732 };
733
734 #ifdef CONFIG_F2FS_FS_ENCRYPTION
735 #define F2FS_KEY_DESC_PREFIX "f2fs:"
736 #define F2FS_KEY_DESC_PREFIX_SIZE 5
737 #endif
738 struct f2fs_sb_info {
739 struct super_block *sb; /* pointer to VFS super block */
740 struct proc_dir_entry *s_proc; /* proc entry */
741 struct f2fs_super_block *raw_super; /* raw super block pointer */
742 int valid_super_block; /* valid super block no */
743 int s_flag; /* flags for sbi */
744
745 #ifdef CONFIG_F2FS_FS_ENCRYPTION
746 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
747 u8 key_prefix_size;
748 #endif
749 /* for node-related operations */
750 struct f2fs_nm_info *nm_info; /* node manager */
751 struct inode *node_inode; /* cache node blocks */
752
753 /* for segment-related operations */
754 struct f2fs_sm_info *sm_info; /* segment manager */
755
756 /* for bio operations */
757 struct f2fs_bio_info read_io; /* for read bios */
758 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
759
760 /* for checkpoint */
761 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
762 struct inode *meta_inode; /* cache meta blocks */
763 struct mutex cp_mutex; /* checkpoint procedure lock */
764 struct rw_semaphore cp_rwsem; /* blocking FS operations */
765 struct rw_semaphore node_write; /* locking node writes */
766 struct mutex writepages; /* mutex for writepages() */
767 wait_queue_head_t cp_wait;
768 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
769 long interval_time[MAX_TIME]; /* to store thresholds */
770
771 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
772
773 /* for orphan inode, use 0'th array */
774 unsigned int max_orphans; /* max orphan inodes */
775
776 /* for inode management */
777 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
778 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
779
780 /* for extent tree cache */
781 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
782 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
783 struct list_head extent_list; /* lru list for shrinker */
784 spinlock_t extent_lock; /* locking extent lru list */
785 atomic_t total_ext_tree; /* extent tree count */
786 struct list_head zombie_list; /* extent zombie tree list */
787 atomic_t total_zombie_tree; /* extent zombie tree count */
788 atomic_t total_ext_node; /* extent info count */
789
790 /* basic filesystem units */
791 unsigned int log_sectors_per_block; /* log2 sectors per block */
792 unsigned int log_blocksize; /* log2 block size */
793 unsigned int blocksize; /* block size */
794 unsigned int root_ino_num; /* root inode number*/
795 unsigned int node_ino_num; /* node inode number*/
796 unsigned int meta_ino_num; /* meta inode number*/
797 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
798 unsigned int blocks_per_seg; /* blocks per segment */
799 unsigned int segs_per_sec; /* segments per section */
800 unsigned int secs_per_zone; /* sections per zone */
801 unsigned int total_sections; /* total section count */
802 unsigned int total_node_count; /* total node block count */
803 unsigned int total_valid_node_count; /* valid node block count */
804 unsigned int total_valid_inode_count; /* valid inode count */
805 loff_t max_file_blocks; /* max block index of file */
806 int active_logs; /* # of active logs */
807 int dir_level; /* directory level */
808
809 block_t user_block_count; /* # of user blocks */
810 block_t total_valid_block_count; /* # of valid blocks */
811 block_t alloc_valid_block_count; /* # of allocated blocks */
812 block_t discard_blks; /* discard command candidats */
813 block_t last_valid_block_count; /* for recovery */
814 u32 s_next_generation; /* for NFS support */
815 atomic_t nr_wb_bios; /* # of writeback bios */
816
817 /* # of pages, see count_type */
818 struct percpu_counter nr_pages[NR_COUNT_TYPE];
819
820 struct f2fs_mount_info mount_opt; /* mount options */
821
822 /* for cleaning operations */
823 struct mutex gc_mutex; /* mutex for GC */
824 struct f2fs_gc_kthread *gc_thread; /* GC thread */
825 unsigned int cur_victim_sec; /* current victim section num */
826
827 /* maximum # of trials to find a victim segment for SSR and GC */
828 unsigned int max_victim_search;
829
830 /*
831 * for stat information.
832 * one is for the LFS mode, and the other is for the SSR mode.
833 */
834 #ifdef CONFIG_F2FS_STAT_FS
835 struct f2fs_stat_info *stat_info; /* FS status information */
836 unsigned int segment_count[2]; /* # of allocated segments */
837 unsigned int block_count[2]; /* # of allocated blocks */
838 atomic_t inplace_count; /* # of inplace update */
839 atomic64_t total_hit_ext; /* # of lookup extent cache */
840 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
841 atomic64_t read_hit_largest; /* # of hit largest extent node */
842 atomic64_t read_hit_cached; /* # of hit cached extent node */
843 atomic_t inline_xattr; /* # of inline_xattr inodes */
844 atomic_t inline_inode; /* # of inline_data inodes */
845 atomic_t inline_dir; /* # of inline_dentry inodes */
846 int bg_gc; /* background gc calls */
847 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
848 #endif
849 unsigned int last_victim[2]; /* last victim segment # */
850 spinlock_t stat_lock; /* lock for stat operations */
851
852 /* For sysfs suppport */
853 struct kobject s_kobj;
854 struct completion s_kobj_unregister;
855
856 /* For shrinker support */
857 struct list_head s_list;
858 struct mutex umount_mutex;
859 unsigned int shrinker_run_no;
860
861 /* For write statistics */
862 u64 sectors_written_start;
863 u64 kbytes_written;
864
865 /* Reference to checksum algorithm driver via cryptoapi */
866 struct crypto_shash *s_chksum_driver;
867 };
868
869 /* For write statistics. Suppose sector size is 512 bytes,
870 * and the return value is in kbytes. s is of struct f2fs_sb_info.
871 */
872 #define BD_PART_WRITTEN(s) \
873 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
874 s->sectors_written_start) >> 1)
875
876 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
877 {
878 sbi->last_time[type] = jiffies;
879 }
880
881 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
882 {
883 struct timespec ts = {sbi->interval_time[type], 0};
884 unsigned long interval = timespec_to_jiffies(&ts);
885
886 return time_after(jiffies, sbi->last_time[type] + interval);
887 }
888
889 static inline bool is_idle(struct f2fs_sb_info *sbi)
890 {
891 struct block_device *bdev = sbi->sb->s_bdev;
892 struct request_queue *q = bdev_get_queue(bdev);
893 struct request_list *rl = &q->root_rl;
894
895 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
896 return 0;
897
898 return f2fs_time_over(sbi, REQ_TIME);
899 }
900
901 /*
902 * Inline functions
903 */
904 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
905 unsigned int length)
906 {
907 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
908 u32 *ctx = (u32 *)shash_desc_ctx(shash);
909 int err;
910
911 shash->tfm = sbi->s_chksum_driver;
912 shash->flags = 0;
913 *ctx = F2FS_SUPER_MAGIC;
914
915 err = crypto_shash_update(shash, address, length);
916 BUG_ON(err);
917
918 return *ctx;
919 }
920
921 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
922 void *buf, size_t buf_size)
923 {
924 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
925 }
926
927 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
928 {
929 return container_of(inode, struct f2fs_inode_info, vfs_inode);
930 }
931
932 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
933 {
934 return sb->s_fs_info;
935 }
936
937 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
938 {
939 return F2FS_SB(inode->i_sb);
940 }
941
942 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
943 {
944 return F2FS_I_SB(mapping->host);
945 }
946
947 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
948 {
949 return F2FS_M_SB(page->mapping);
950 }
951
952 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
953 {
954 return (struct f2fs_super_block *)(sbi->raw_super);
955 }
956
957 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
958 {
959 return (struct f2fs_checkpoint *)(sbi->ckpt);
960 }
961
962 static inline struct f2fs_node *F2FS_NODE(struct page *page)
963 {
964 return (struct f2fs_node *)page_address(page);
965 }
966
967 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
968 {
969 return &((struct f2fs_node *)page_address(page))->i;
970 }
971
972 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
973 {
974 return (struct f2fs_nm_info *)(sbi->nm_info);
975 }
976
977 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
978 {
979 return (struct f2fs_sm_info *)(sbi->sm_info);
980 }
981
982 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
983 {
984 return (struct sit_info *)(SM_I(sbi)->sit_info);
985 }
986
987 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
988 {
989 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
990 }
991
992 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
993 {
994 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
995 }
996
997 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
998 {
999 return sbi->meta_inode->i_mapping;
1000 }
1001
1002 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1003 {
1004 return sbi->node_inode->i_mapping;
1005 }
1006
1007 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1008 {
1009 return sbi->s_flag & (0x01 << type);
1010 }
1011
1012 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1013 {
1014 sbi->s_flag |= (0x01 << type);
1015 }
1016
1017 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1018 {
1019 sbi->s_flag &= ~(0x01 << type);
1020 }
1021
1022 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1023 {
1024 return le64_to_cpu(cp->checkpoint_ver);
1025 }
1026
1027 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1028 {
1029 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1030 return ckpt_flags & f;
1031 }
1032
1033 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1034 {
1035 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1036 ckpt_flags |= f;
1037 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1038 }
1039
1040 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1041 {
1042 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1043 ckpt_flags &= (~f);
1044 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1045 }
1046
1047 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1048 {
1049 down_read(&sbi->cp_rwsem);
1050 }
1051
1052 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1053 {
1054 up_read(&sbi->cp_rwsem);
1055 }
1056
1057 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1058 {
1059 down_write(&sbi->cp_rwsem);
1060 }
1061
1062 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1063 {
1064 up_write(&sbi->cp_rwsem);
1065 }
1066
1067 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1068 {
1069 int reason = CP_SYNC;
1070
1071 if (test_opt(sbi, FASTBOOT))
1072 reason = CP_FASTBOOT;
1073 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1074 reason = CP_UMOUNT;
1075 return reason;
1076 }
1077
1078 static inline bool __remain_node_summaries(int reason)
1079 {
1080 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1081 }
1082
1083 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1084 {
1085 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1086 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1087 }
1088
1089 /*
1090 * Check whether the given nid is within node id range.
1091 */
1092 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1093 {
1094 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1095 return -EINVAL;
1096 if (unlikely(nid >= NM_I(sbi)->max_nid))
1097 return -EINVAL;
1098 return 0;
1099 }
1100
1101 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1102
1103 /*
1104 * Check whether the inode has blocks or not
1105 */
1106 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1107 {
1108 if (F2FS_I(inode)->i_xattr_nid)
1109 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1110 else
1111 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1112 }
1113
1114 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1115 {
1116 return ofs == XATTR_NODE_OFFSET;
1117 }
1118
1119 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1120 struct inode *inode, blkcnt_t *count)
1121 {
1122 block_t valid_block_count;
1123
1124 spin_lock(&sbi->stat_lock);
1125 #ifdef CONFIG_F2FS_FAULT_INJECTION
1126 if (time_to_inject(FAULT_BLOCK)) {
1127 spin_unlock(&sbi->stat_lock);
1128 return false;
1129 }
1130 #endif
1131 valid_block_count =
1132 sbi->total_valid_block_count + (block_t)(*count);
1133 if (unlikely(valid_block_count > sbi->user_block_count)) {
1134 *count = sbi->user_block_count - sbi->total_valid_block_count;
1135 if (!*count) {
1136 spin_unlock(&sbi->stat_lock);
1137 return false;
1138 }
1139 }
1140 /* *count can be recalculated */
1141 inode->i_blocks += *count;
1142 sbi->total_valid_block_count =
1143 sbi->total_valid_block_count + (block_t)(*count);
1144 sbi->alloc_valid_block_count += (block_t)(*count);
1145 spin_unlock(&sbi->stat_lock);
1146 return true;
1147 }
1148
1149 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1150 struct inode *inode,
1151 blkcnt_t count)
1152 {
1153 spin_lock(&sbi->stat_lock);
1154 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1155 f2fs_bug_on(sbi, inode->i_blocks < count);
1156 inode->i_blocks -= count;
1157 sbi->total_valid_block_count -= (block_t)count;
1158 spin_unlock(&sbi->stat_lock);
1159 }
1160
1161 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1162 {
1163 percpu_counter_inc(&sbi->nr_pages[count_type]);
1164 set_sbi_flag(sbi, SBI_IS_DIRTY);
1165 }
1166
1167 static inline void inode_inc_dirty_pages(struct inode *inode)
1168 {
1169 atomic_inc(&F2FS_I(inode)->dirty_pages);
1170 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1171 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1172 }
1173
1174 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1175 {
1176 percpu_counter_dec(&sbi->nr_pages[count_type]);
1177 }
1178
1179 static inline void inode_dec_dirty_pages(struct inode *inode)
1180 {
1181 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1182 !S_ISLNK(inode->i_mode))
1183 return;
1184
1185 atomic_dec(&F2FS_I(inode)->dirty_pages);
1186 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1187 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1188 }
1189
1190 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1191 {
1192 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1193 }
1194
1195 static inline int get_dirty_pages(struct inode *inode)
1196 {
1197 return atomic_read(&F2FS_I(inode)->dirty_pages);
1198 }
1199
1200 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1201 {
1202 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1203 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1204 sbi->log_blocks_per_seg;
1205
1206 return segs / sbi->segs_per_sec;
1207 }
1208
1209 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1210 {
1211 return sbi->total_valid_block_count;
1212 }
1213
1214 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1215 {
1216 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1217
1218 /* return NAT or SIT bitmap */
1219 if (flag == NAT_BITMAP)
1220 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1221 else if (flag == SIT_BITMAP)
1222 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1223
1224 return 0;
1225 }
1226
1227 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1228 {
1229 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1230 }
1231
1232 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1233 {
1234 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1235 int offset;
1236
1237 if (__cp_payload(sbi) > 0) {
1238 if (flag == NAT_BITMAP)
1239 return &ckpt->sit_nat_version_bitmap;
1240 else
1241 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1242 } else {
1243 offset = (flag == NAT_BITMAP) ?
1244 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1245 return &ckpt->sit_nat_version_bitmap + offset;
1246 }
1247 }
1248
1249 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1250 {
1251 block_t start_addr;
1252 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1253 unsigned long long ckpt_version = cur_cp_version(ckpt);
1254
1255 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1256
1257 /*
1258 * odd numbered checkpoint should at cp segment 0
1259 * and even segment must be at cp segment 1
1260 */
1261 if (!(ckpt_version & 1))
1262 start_addr += sbi->blocks_per_seg;
1263
1264 return start_addr;
1265 }
1266
1267 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1268 {
1269 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1270 }
1271
1272 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1273 struct inode *inode)
1274 {
1275 block_t valid_block_count;
1276 unsigned int valid_node_count;
1277
1278 spin_lock(&sbi->stat_lock);
1279
1280 valid_block_count = sbi->total_valid_block_count + 1;
1281 if (unlikely(valid_block_count > sbi->user_block_count)) {
1282 spin_unlock(&sbi->stat_lock);
1283 return false;
1284 }
1285
1286 valid_node_count = sbi->total_valid_node_count + 1;
1287 if (unlikely(valid_node_count > sbi->total_node_count)) {
1288 spin_unlock(&sbi->stat_lock);
1289 return false;
1290 }
1291
1292 if (inode)
1293 inode->i_blocks++;
1294
1295 sbi->alloc_valid_block_count++;
1296 sbi->total_valid_node_count++;
1297 sbi->total_valid_block_count++;
1298 spin_unlock(&sbi->stat_lock);
1299
1300 return true;
1301 }
1302
1303 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1304 struct inode *inode)
1305 {
1306 spin_lock(&sbi->stat_lock);
1307
1308 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1309 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1310 f2fs_bug_on(sbi, !inode->i_blocks);
1311
1312 inode->i_blocks--;
1313 sbi->total_valid_node_count--;
1314 sbi->total_valid_block_count--;
1315
1316 spin_unlock(&sbi->stat_lock);
1317 }
1318
1319 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1320 {
1321 return sbi->total_valid_node_count;
1322 }
1323
1324 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1325 {
1326 spin_lock(&sbi->stat_lock);
1327 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1328 sbi->total_valid_inode_count++;
1329 spin_unlock(&sbi->stat_lock);
1330 }
1331
1332 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1333 {
1334 spin_lock(&sbi->stat_lock);
1335 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1336 sbi->total_valid_inode_count--;
1337 spin_unlock(&sbi->stat_lock);
1338 }
1339
1340 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1341 {
1342 return sbi->total_valid_inode_count;
1343 }
1344
1345 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1346 pgoff_t index, bool for_write)
1347 {
1348 #ifdef CONFIG_F2FS_FAULT_INJECTION
1349 struct page *page = find_lock_page(mapping, index);
1350 if (page)
1351 return page;
1352
1353 if (time_to_inject(FAULT_PAGE_ALLOC))
1354 return NULL;
1355 #endif
1356 if (!for_write)
1357 return grab_cache_page(mapping, index);
1358 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1359 }
1360
1361 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1362 {
1363 char *src_kaddr = kmap(src);
1364 char *dst_kaddr = kmap(dst);
1365
1366 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1367 kunmap(dst);
1368 kunmap(src);
1369 }
1370
1371 static inline void f2fs_put_page(struct page *page, int unlock)
1372 {
1373 if (!page)
1374 return;
1375
1376 if (unlock) {
1377 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1378 unlock_page(page);
1379 }
1380 put_page(page);
1381 }
1382
1383 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1384 {
1385 if (dn->node_page)
1386 f2fs_put_page(dn->node_page, 1);
1387 if (dn->inode_page && dn->node_page != dn->inode_page)
1388 f2fs_put_page(dn->inode_page, 0);
1389 dn->node_page = NULL;
1390 dn->inode_page = NULL;
1391 }
1392
1393 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1394 size_t size)
1395 {
1396 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1397 }
1398
1399 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1400 gfp_t flags)
1401 {
1402 void *entry;
1403
1404 entry = kmem_cache_alloc(cachep, flags);
1405 if (!entry)
1406 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1407 return entry;
1408 }
1409
1410 static inline struct bio *f2fs_bio_alloc(int npages)
1411 {
1412 struct bio *bio;
1413
1414 /* No failure on bio allocation */
1415 bio = bio_alloc(GFP_NOIO, npages);
1416 if (!bio)
1417 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1418 return bio;
1419 }
1420
1421 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1422 unsigned long index, void *item)
1423 {
1424 while (radix_tree_insert(root, index, item))
1425 cond_resched();
1426 }
1427
1428 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1429
1430 static inline bool IS_INODE(struct page *page)
1431 {
1432 struct f2fs_node *p = F2FS_NODE(page);
1433 return RAW_IS_INODE(p);
1434 }
1435
1436 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1437 {
1438 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1439 }
1440
1441 static inline block_t datablock_addr(struct page *node_page,
1442 unsigned int offset)
1443 {
1444 struct f2fs_node *raw_node;
1445 __le32 *addr_array;
1446 raw_node = F2FS_NODE(node_page);
1447 addr_array = blkaddr_in_node(raw_node);
1448 return le32_to_cpu(addr_array[offset]);
1449 }
1450
1451 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1452 {
1453 int mask;
1454
1455 addr += (nr >> 3);
1456 mask = 1 << (7 - (nr & 0x07));
1457 return mask & *addr;
1458 }
1459
1460 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1461 {
1462 int mask;
1463
1464 addr += (nr >> 3);
1465 mask = 1 << (7 - (nr & 0x07));
1466 *addr |= mask;
1467 }
1468
1469 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1470 {
1471 int mask;
1472
1473 addr += (nr >> 3);
1474 mask = 1 << (7 - (nr & 0x07));
1475 *addr &= ~mask;
1476 }
1477
1478 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1479 {
1480 int mask;
1481 int ret;
1482
1483 addr += (nr >> 3);
1484 mask = 1 << (7 - (nr & 0x07));
1485 ret = mask & *addr;
1486 *addr |= mask;
1487 return ret;
1488 }
1489
1490 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1491 {
1492 int mask;
1493 int ret;
1494
1495 addr += (nr >> 3);
1496 mask = 1 << (7 - (nr & 0x07));
1497 ret = mask & *addr;
1498 *addr &= ~mask;
1499 return ret;
1500 }
1501
1502 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1503 {
1504 int mask;
1505
1506 addr += (nr >> 3);
1507 mask = 1 << (7 - (nr & 0x07));
1508 *addr ^= mask;
1509 }
1510
1511 /* used for f2fs_inode_info->flags */
1512 enum {
1513 FI_NEW_INODE, /* indicate newly allocated inode */
1514 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1515 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1516 FI_INC_LINK, /* need to increment i_nlink */
1517 FI_ACL_MODE, /* indicate acl mode */
1518 FI_NO_ALLOC, /* should not allocate any blocks */
1519 FI_FREE_NID, /* free allocated nide */
1520 FI_UPDATE_DIR, /* should update inode block for consistency */
1521 FI_NO_EXTENT, /* not to use the extent cache */
1522 FI_INLINE_XATTR, /* used for inline xattr */
1523 FI_INLINE_DATA, /* used for inline data*/
1524 FI_INLINE_DENTRY, /* used for inline dentry */
1525 FI_APPEND_WRITE, /* inode has appended data */
1526 FI_UPDATE_WRITE, /* inode has in-place-update data */
1527 FI_NEED_IPU, /* used for ipu per file */
1528 FI_ATOMIC_FILE, /* indicate atomic file */
1529 FI_VOLATILE_FILE, /* indicate volatile file */
1530 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1531 FI_DROP_CACHE, /* drop dirty page cache */
1532 FI_DATA_EXIST, /* indicate data exists */
1533 FI_INLINE_DOTS, /* indicate inline dot dentries */
1534 FI_DO_DEFRAG, /* indicate defragment is running */
1535 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1536 };
1537
1538 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1539 {
1540 if (!test_bit(flag, &fi->flags))
1541 set_bit(flag, &fi->flags);
1542 }
1543
1544 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1545 {
1546 return test_bit(flag, &fi->flags);
1547 }
1548
1549 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1550 {
1551 if (test_bit(flag, &fi->flags))
1552 clear_bit(flag, &fi->flags);
1553 }
1554
1555 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1556 {
1557 fi->i_acl_mode = mode;
1558 set_inode_flag(fi, FI_ACL_MODE);
1559 }
1560
1561 static inline void get_inline_info(struct f2fs_inode_info *fi,
1562 struct f2fs_inode *ri)
1563 {
1564 if (ri->i_inline & F2FS_INLINE_XATTR)
1565 set_inode_flag(fi, FI_INLINE_XATTR);
1566 if (ri->i_inline & F2FS_INLINE_DATA)
1567 set_inode_flag(fi, FI_INLINE_DATA);
1568 if (ri->i_inline & F2FS_INLINE_DENTRY)
1569 set_inode_flag(fi, FI_INLINE_DENTRY);
1570 if (ri->i_inline & F2FS_DATA_EXIST)
1571 set_inode_flag(fi, FI_DATA_EXIST);
1572 if (ri->i_inline & F2FS_INLINE_DOTS)
1573 set_inode_flag(fi, FI_INLINE_DOTS);
1574 }
1575
1576 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1577 struct f2fs_inode *ri)
1578 {
1579 ri->i_inline = 0;
1580
1581 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1582 ri->i_inline |= F2FS_INLINE_XATTR;
1583 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1584 ri->i_inline |= F2FS_INLINE_DATA;
1585 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1586 ri->i_inline |= F2FS_INLINE_DENTRY;
1587 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1588 ri->i_inline |= F2FS_DATA_EXIST;
1589 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1590 ri->i_inline |= F2FS_INLINE_DOTS;
1591 }
1592
1593 static inline int f2fs_has_inline_xattr(struct inode *inode)
1594 {
1595 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1596 }
1597
1598 static inline unsigned int addrs_per_inode(struct inode *inode)
1599 {
1600 if (f2fs_has_inline_xattr(inode))
1601 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1602 return DEF_ADDRS_PER_INODE;
1603 }
1604
1605 static inline void *inline_xattr_addr(struct page *page)
1606 {
1607 struct f2fs_inode *ri = F2FS_INODE(page);
1608 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1609 F2FS_INLINE_XATTR_ADDRS]);
1610 }
1611
1612 static inline int inline_xattr_size(struct inode *inode)
1613 {
1614 if (f2fs_has_inline_xattr(inode))
1615 return F2FS_INLINE_XATTR_ADDRS << 2;
1616 else
1617 return 0;
1618 }
1619
1620 static inline int f2fs_has_inline_data(struct inode *inode)
1621 {
1622 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1623 }
1624
1625 static inline void f2fs_clear_inline_inode(struct inode *inode)
1626 {
1627 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1628 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1629 }
1630
1631 static inline int f2fs_exist_data(struct inode *inode)
1632 {
1633 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1634 }
1635
1636 static inline int f2fs_has_inline_dots(struct inode *inode)
1637 {
1638 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1639 }
1640
1641 static inline bool f2fs_is_atomic_file(struct inode *inode)
1642 {
1643 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1644 }
1645
1646 static inline bool f2fs_is_volatile_file(struct inode *inode)
1647 {
1648 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1649 }
1650
1651 static inline bool f2fs_is_first_block_written(struct inode *inode)
1652 {
1653 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1654 }
1655
1656 static inline bool f2fs_is_drop_cache(struct inode *inode)
1657 {
1658 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1659 }
1660
1661 static inline void *inline_data_addr(struct page *page)
1662 {
1663 struct f2fs_inode *ri = F2FS_INODE(page);
1664 return (void *)&(ri->i_addr[1]);
1665 }
1666
1667 static inline int f2fs_has_inline_dentry(struct inode *inode)
1668 {
1669 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1670 }
1671
1672 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1673 {
1674 if (!f2fs_has_inline_dentry(dir))
1675 kunmap(page);
1676 }
1677
1678 static inline int is_file(struct inode *inode, int type)
1679 {
1680 return F2FS_I(inode)->i_advise & type;
1681 }
1682
1683 static inline void set_file(struct inode *inode, int type)
1684 {
1685 F2FS_I(inode)->i_advise |= type;
1686 }
1687
1688 static inline void clear_file(struct inode *inode, int type)
1689 {
1690 F2FS_I(inode)->i_advise &= ~type;
1691 }
1692
1693 static inline int f2fs_readonly(struct super_block *sb)
1694 {
1695 return sb->s_flags & MS_RDONLY;
1696 }
1697
1698 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1699 {
1700 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1701 }
1702
1703 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1704 {
1705 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1706 sbi->sb->s_flags |= MS_RDONLY;
1707 }
1708
1709 static inline bool is_dot_dotdot(const struct qstr *str)
1710 {
1711 if (str->len == 1 && str->name[0] == '.')
1712 return true;
1713
1714 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1715 return true;
1716
1717 return false;
1718 }
1719
1720 static inline bool f2fs_may_extent_tree(struct inode *inode)
1721 {
1722 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1723 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1724 return false;
1725
1726 return S_ISREG(inode->i_mode);
1727 }
1728
1729 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1730 {
1731 #ifdef CONFIG_F2FS_FAULT_INJECTION
1732 if (time_to_inject(FAULT_KMALLOC))
1733 return NULL;
1734 #endif
1735 return kmalloc(size, flags);
1736 }
1737
1738 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1739 {
1740 void *ret;
1741
1742 ret = kmalloc(size, flags | __GFP_NOWARN);
1743 if (!ret)
1744 ret = __vmalloc(size, flags, PAGE_KERNEL);
1745 return ret;
1746 }
1747
1748 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1749 {
1750 void *ret;
1751
1752 ret = kzalloc(size, flags | __GFP_NOWARN);
1753 if (!ret)
1754 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1755 return ret;
1756 }
1757
1758 #define get_inode_mode(i) \
1759 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1760 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1761
1762 /* get offset of first page in next direct node */
1763 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1764 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1765 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1766 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1767
1768 /*
1769 * file.c
1770 */
1771 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1772 void truncate_data_blocks(struct dnode_of_data *);
1773 int truncate_blocks(struct inode *, u64, bool);
1774 int f2fs_truncate(struct inode *, bool);
1775 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1776 int f2fs_setattr(struct dentry *, struct iattr *);
1777 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1778 int truncate_data_blocks_range(struct dnode_of_data *, int);
1779 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1780 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1781
1782 /*
1783 * inode.c
1784 */
1785 void f2fs_set_inode_flags(struct inode *);
1786 struct inode *f2fs_iget(struct super_block *, unsigned long);
1787 int try_to_free_nats(struct f2fs_sb_info *, int);
1788 int update_inode(struct inode *, struct page *);
1789 int update_inode_page(struct inode *);
1790 int f2fs_write_inode(struct inode *, struct writeback_control *);
1791 void f2fs_evict_inode(struct inode *);
1792 void handle_failed_inode(struct inode *);
1793
1794 /*
1795 * namei.c
1796 */
1797 struct dentry *f2fs_get_parent(struct dentry *child);
1798
1799 /*
1800 * dir.c
1801 */
1802 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1803 void set_de_type(struct f2fs_dir_entry *, umode_t);
1804 unsigned char get_de_type(struct f2fs_dir_entry *);
1805 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1806 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1807 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1808 unsigned int, struct fscrypt_str *);
1809 void do_make_empty_dir(struct inode *, struct inode *,
1810 struct f2fs_dentry_ptr *);
1811 struct page *init_inode_metadata(struct inode *, struct inode *,
1812 const struct qstr *, struct page *);
1813 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1814 int room_for_filename(const void *, int, int);
1815 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1816 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1817 struct page **);
1818 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1819 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1820 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1821 struct page *, struct inode *);
1822 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1823 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1824 const struct qstr *, f2fs_hash_t , unsigned int);
1825 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1826 struct inode *, nid_t, umode_t);
1827 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1828 umode_t);
1829 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1830 struct inode *);
1831 int f2fs_do_tmpfile(struct inode *, struct inode *);
1832 bool f2fs_empty_dir(struct inode *);
1833
1834 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1835 {
1836 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1837 inode, inode->i_ino, inode->i_mode);
1838 }
1839
1840 /*
1841 * super.c
1842 */
1843 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1844 int f2fs_sync_fs(struct super_block *, int);
1845 extern __printf(3, 4)
1846 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1847 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1848
1849 /*
1850 * hash.c
1851 */
1852 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1853
1854 /*
1855 * node.c
1856 */
1857 struct dnode_of_data;
1858 struct node_info;
1859
1860 bool available_free_memory(struct f2fs_sb_info *, int);
1861 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1862 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1863 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1864 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1865 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1866 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1867 int truncate_inode_blocks(struct inode *, pgoff_t);
1868 int truncate_xattr_node(struct inode *, struct page *);
1869 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1870 int remove_inode_page(struct inode *);
1871 struct page *new_inode_page(struct inode *);
1872 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1873 void ra_node_page(struct f2fs_sb_info *, nid_t);
1874 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1875 struct page *get_node_page_ra(struct page *, int);
1876 void sync_inode_page(struct dnode_of_data *);
1877 void move_node_page(struct page *, int);
1878 int fsync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *,
1879 bool);
1880 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1881 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1882 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1883 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1884 int try_to_free_nids(struct f2fs_sb_info *, int);
1885 void recover_inline_xattr(struct inode *, struct page *);
1886 void recover_xattr_data(struct inode *, struct page *, block_t);
1887 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1888 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1889 struct f2fs_summary_block *);
1890 void flush_nat_entries(struct f2fs_sb_info *);
1891 int build_node_manager(struct f2fs_sb_info *);
1892 void destroy_node_manager(struct f2fs_sb_info *);
1893 int __init create_node_manager_caches(void);
1894 void destroy_node_manager_caches(void);
1895
1896 /*
1897 * segment.c
1898 */
1899 void register_inmem_page(struct inode *, struct page *);
1900 void drop_inmem_pages(struct inode *);
1901 int commit_inmem_pages(struct inode *);
1902 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1903 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1904 int f2fs_issue_flush(struct f2fs_sb_info *);
1905 int create_flush_cmd_control(struct f2fs_sb_info *);
1906 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1907 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1908 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1909 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1910 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1911 void release_discard_addrs(struct f2fs_sb_info *);
1912 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1913 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1914 void allocate_new_segments(struct f2fs_sb_info *);
1915 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1916 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1917 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1918 void write_meta_page(struct f2fs_sb_info *, struct page *);
1919 void write_node_page(unsigned int, struct f2fs_io_info *);
1920 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1921 void rewrite_data_page(struct f2fs_io_info *);
1922 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
1923 block_t, block_t, bool, bool);
1924 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1925 block_t, block_t, unsigned char, bool, bool);
1926 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1927 block_t, block_t *, struct f2fs_summary *, int);
1928 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1929 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1930 void write_data_summaries(struct f2fs_sb_info *, block_t);
1931 void write_node_summaries(struct f2fs_sb_info *, block_t);
1932 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
1933 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1934 int build_segment_manager(struct f2fs_sb_info *);
1935 void destroy_segment_manager(struct f2fs_sb_info *);
1936 int __init create_segment_manager_caches(void);
1937 void destroy_segment_manager_caches(void);
1938
1939 /*
1940 * checkpoint.c
1941 */
1942 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1943 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1944 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1945 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1946 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1947 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1948 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1949 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1950 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1951 void release_ino_entry(struct f2fs_sb_info *, bool);
1952 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1953 int acquire_orphan_inode(struct f2fs_sb_info *);
1954 void release_orphan_inode(struct f2fs_sb_info *);
1955 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1956 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1957 int recover_orphan_inodes(struct f2fs_sb_info *);
1958 int get_valid_checkpoint(struct f2fs_sb_info *);
1959 void update_dirty_page(struct inode *, struct page *);
1960 void remove_dirty_inode(struct inode *);
1961 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1962 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1963 void init_ino_entry_info(struct f2fs_sb_info *);
1964 int __init create_checkpoint_caches(void);
1965 void destroy_checkpoint_caches(void);
1966
1967 /*
1968 * data.c
1969 */
1970 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1971 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1972 struct page *, nid_t, enum page_type, int);
1973 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
1974 int f2fs_submit_page_bio(struct f2fs_io_info *);
1975 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1976 void set_data_blkaddr(struct dnode_of_data *);
1977 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
1978 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
1979 int reserve_new_block(struct dnode_of_data *);
1980 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1981 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1982 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1983 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1984 struct page *find_data_page(struct inode *, pgoff_t);
1985 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1986 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1987 int do_write_data_page(struct f2fs_io_info *);
1988 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1989 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1990 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1991 int f2fs_release_page(struct page *, gfp_t);
1992
1993 /*
1994 * gc.c
1995 */
1996 int start_gc_thread(struct f2fs_sb_info *);
1997 void stop_gc_thread(struct f2fs_sb_info *);
1998 block_t start_bidx_of_node(unsigned int, struct inode *);
1999 int f2fs_gc(struct f2fs_sb_info *, bool);
2000 void build_gc_manager(struct f2fs_sb_info *);
2001
2002 /*
2003 * recovery.c
2004 */
2005 int recover_fsync_data(struct f2fs_sb_info *, bool);
2006 bool space_for_roll_forward(struct f2fs_sb_info *);
2007
2008 /*
2009 * debug.c
2010 */
2011 #ifdef CONFIG_F2FS_STAT_FS
2012 struct f2fs_stat_info {
2013 struct list_head stat_list;
2014 struct f2fs_sb_info *sbi;
2015 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2016 int main_area_segs, main_area_sections, main_area_zones;
2017 unsigned long long hit_largest, hit_cached, hit_rbtree;
2018 unsigned long long hit_total, total_ext;
2019 int ext_tree, zombie_tree, ext_node;
2020 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2021 unsigned int ndirty_dirs, ndirty_files;
2022 int nats, dirty_nats, sits, dirty_sits, fnids;
2023 int total_count, utilization;
2024 int bg_gc, wb_bios;
2025 int inline_xattr, inline_inode, inline_dir, orphans;
2026 unsigned int valid_count, valid_node_count, valid_inode_count;
2027 unsigned int bimodal, avg_vblocks;
2028 int util_free, util_valid, util_invalid;
2029 int rsvd_segs, overp_segs;
2030 int dirty_count, node_pages, meta_pages;
2031 int prefree_count, call_count, cp_count, bg_cp_count;
2032 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2033 int bg_node_segs, bg_data_segs;
2034 int tot_blks, data_blks, node_blks;
2035 int bg_data_blks, bg_node_blks;
2036 int curseg[NR_CURSEG_TYPE];
2037 int cursec[NR_CURSEG_TYPE];
2038 int curzone[NR_CURSEG_TYPE];
2039
2040 unsigned int segment_count[2];
2041 unsigned int block_count[2];
2042 unsigned int inplace_count;
2043 unsigned long long base_mem, cache_mem, page_mem;
2044 };
2045
2046 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2047 {
2048 return (struct f2fs_stat_info *)sbi->stat_info;
2049 }
2050
2051 #define stat_inc_cp_count(si) ((si)->cp_count++)
2052 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2053 #define stat_inc_call_count(si) ((si)->call_count++)
2054 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2055 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2056 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2057 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2058 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2059 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2060 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2061 #define stat_inc_inline_xattr(inode) \
2062 do { \
2063 if (f2fs_has_inline_xattr(inode)) \
2064 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2065 } while (0)
2066 #define stat_dec_inline_xattr(inode) \
2067 do { \
2068 if (f2fs_has_inline_xattr(inode)) \
2069 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2070 } while (0)
2071 #define stat_inc_inline_inode(inode) \
2072 do { \
2073 if (f2fs_has_inline_data(inode)) \
2074 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2075 } while (0)
2076 #define stat_dec_inline_inode(inode) \
2077 do { \
2078 if (f2fs_has_inline_data(inode)) \
2079 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2080 } while (0)
2081 #define stat_inc_inline_dir(inode) \
2082 do { \
2083 if (f2fs_has_inline_dentry(inode)) \
2084 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2085 } while (0)
2086 #define stat_dec_inline_dir(inode) \
2087 do { \
2088 if (f2fs_has_inline_dentry(inode)) \
2089 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2090 } while (0)
2091 #define stat_inc_seg_type(sbi, curseg) \
2092 ((sbi)->segment_count[(curseg)->alloc_type]++)
2093 #define stat_inc_block_count(sbi, curseg) \
2094 ((sbi)->block_count[(curseg)->alloc_type]++)
2095 #define stat_inc_inplace_blocks(sbi) \
2096 (atomic_inc(&(sbi)->inplace_count))
2097 #define stat_inc_seg_count(sbi, type, gc_type) \
2098 do { \
2099 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2100 (si)->tot_segs++; \
2101 if (type == SUM_TYPE_DATA) { \
2102 si->data_segs++; \
2103 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2104 } else { \
2105 si->node_segs++; \
2106 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2107 } \
2108 } while (0)
2109
2110 #define stat_inc_tot_blk_count(si, blks) \
2111 (si->tot_blks += (blks))
2112
2113 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2114 do { \
2115 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2116 stat_inc_tot_blk_count(si, blks); \
2117 si->data_blks += (blks); \
2118 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2119 } while (0)
2120
2121 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2122 do { \
2123 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2124 stat_inc_tot_blk_count(si, blks); \
2125 si->node_blks += (blks); \
2126 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2127 } while (0)
2128
2129 int f2fs_build_stats(struct f2fs_sb_info *);
2130 void f2fs_destroy_stats(struct f2fs_sb_info *);
2131 int __init f2fs_create_root_stats(void);
2132 void f2fs_destroy_root_stats(void);
2133 #else
2134 #define stat_inc_cp_count(si)
2135 #define stat_inc_bg_cp_count(si)
2136 #define stat_inc_call_count(si)
2137 #define stat_inc_bggc_count(si)
2138 #define stat_inc_dirty_inode(sbi, type)
2139 #define stat_dec_dirty_inode(sbi, type)
2140 #define stat_inc_total_hit(sb)
2141 #define stat_inc_rbtree_node_hit(sb)
2142 #define stat_inc_largest_node_hit(sbi)
2143 #define stat_inc_cached_node_hit(sbi)
2144 #define stat_inc_inline_xattr(inode)
2145 #define stat_dec_inline_xattr(inode)
2146 #define stat_inc_inline_inode(inode)
2147 #define stat_dec_inline_inode(inode)
2148 #define stat_inc_inline_dir(inode)
2149 #define stat_dec_inline_dir(inode)
2150 #define stat_inc_seg_type(sbi, curseg)
2151 #define stat_inc_block_count(sbi, curseg)
2152 #define stat_inc_inplace_blocks(sbi)
2153 #define stat_inc_seg_count(sbi, type, gc_type)
2154 #define stat_inc_tot_blk_count(si, blks)
2155 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2156 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2157
2158 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2159 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2160 static inline int __init f2fs_create_root_stats(void) { return 0; }
2161 static inline void f2fs_destroy_root_stats(void) { }
2162 #endif
2163
2164 extern const struct file_operations f2fs_dir_operations;
2165 extern const struct file_operations f2fs_file_operations;
2166 extern const struct inode_operations f2fs_file_inode_operations;
2167 extern const struct address_space_operations f2fs_dblock_aops;
2168 extern const struct address_space_operations f2fs_node_aops;
2169 extern const struct address_space_operations f2fs_meta_aops;
2170 extern const struct inode_operations f2fs_dir_inode_operations;
2171 extern const struct inode_operations f2fs_symlink_inode_operations;
2172 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2173 extern const struct inode_operations f2fs_special_inode_operations;
2174 extern struct kmem_cache *inode_entry_slab;
2175
2176 /*
2177 * inline.c
2178 */
2179 bool f2fs_may_inline_data(struct inode *);
2180 bool f2fs_may_inline_dentry(struct inode *);
2181 void read_inline_data(struct page *, struct page *);
2182 bool truncate_inline_inode(struct page *, u64);
2183 int f2fs_read_inline_data(struct inode *, struct page *);
2184 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2185 int f2fs_convert_inline_inode(struct inode *);
2186 int f2fs_write_inline_data(struct inode *, struct page *);
2187 bool recover_inline_data(struct inode *, struct page *);
2188 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2189 struct fscrypt_name *, struct page **);
2190 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2191 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2192 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2193 nid_t, umode_t);
2194 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2195 struct inode *, struct inode *);
2196 bool f2fs_empty_inline_dir(struct inode *);
2197 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2198 struct fscrypt_str *);
2199 int f2fs_inline_data_fiemap(struct inode *,
2200 struct fiemap_extent_info *, __u64, __u64);
2201
2202 /*
2203 * shrinker.c
2204 */
2205 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2206 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2207 void f2fs_join_shrinker(struct f2fs_sb_info *);
2208 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2209
2210 /*
2211 * extent_cache.c
2212 */
2213 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2214 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2215 unsigned int f2fs_destroy_extent_node(struct inode *);
2216 void f2fs_destroy_extent_tree(struct inode *);
2217 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2218 void f2fs_update_extent_cache(struct dnode_of_data *);
2219 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2220 pgoff_t, block_t, unsigned int);
2221 void init_extent_cache_info(struct f2fs_sb_info *);
2222 int __init create_extent_cache(void);
2223 void destroy_extent_cache(void);
2224
2225 /*
2226 * crypto support
2227 */
2228 static inline bool f2fs_encrypted_inode(struct inode *inode)
2229 {
2230 return file_is_encrypt(inode);
2231 }
2232
2233 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2234 {
2235 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2236 file_set_encrypt(inode);
2237 #endif
2238 }
2239
2240 static inline bool f2fs_bio_encrypted(struct bio *bio)
2241 {
2242 return bio->bi_private != NULL;
2243 }
2244
2245 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2246 {
2247 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2248 }
2249
2250 static inline bool f2fs_may_encrypt(struct inode *inode)
2251 {
2252 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2253 umode_t mode = inode->i_mode;
2254
2255 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2256 #else
2257 return 0;
2258 #endif
2259 }
2260
2261 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2262 #define fscrypt_set_d_op(i)
2263 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2264 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2265 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2266 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2267 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2268 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2269 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2270 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2271 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2272 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2273 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2274 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2275 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2276 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2277 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2278 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2279 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2280 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2281 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2282 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2283 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2284 #endif
2285 #endif
This page took 0.076473 seconds and 6 git commands to generate.