f2fs: introduce universal lookup/update interface for extent cache
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_FASTBOOT,
104 CP_SYNC,
105 CP_DISCARD,
106 };
107
108 #define DEF_BATCHED_TRIM_SECTIONS 32
109 #define BATCHED_TRIM_SEGMENTS(sbi) \
110 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
111
112 struct cp_control {
113 int reason;
114 __u64 trim_start;
115 __u64 trim_end;
116 __u64 trim_minlen;
117 __u64 trimmed;
118 };
119
120 /*
121 * For CP/NAT/SIT/SSA readahead
122 */
123 enum {
124 META_CP,
125 META_NAT,
126 META_SIT,
127 META_SSA,
128 META_POR,
129 };
130
131 /* for the list of ino */
132 enum {
133 ORPHAN_INO, /* for orphan ino list */
134 APPEND_INO, /* for append ino list */
135 UPDATE_INO, /* for update ino list */
136 MAX_INO_ENTRY, /* max. list */
137 };
138
139 struct ino_entry {
140 struct list_head list; /* list head */
141 nid_t ino; /* inode number */
142 };
143
144 /*
145 * for the list of directory inodes or gc inodes.
146 * NOTE: there are two slab users for this structure, if we add/modify/delete
147 * fields in structure for one of slab users, it may affect fields or size of
148 * other one, in this condition, it's better to split both of slab and related
149 * data structure.
150 */
151 struct inode_entry {
152 struct list_head list; /* list head */
153 struct inode *inode; /* vfs inode pointer */
154 };
155
156 /* for the list of blockaddresses to be discarded */
157 struct discard_entry {
158 struct list_head list; /* list head */
159 block_t blkaddr; /* block address to be discarded */
160 int len; /* # of consecutive blocks of the discard */
161 };
162
163 /* for the list of fsync inodes, used only during recovery */
164 struct fsync_inode_entry {
165 struct list_head list; /* list head */
166 struct inode *inode; /* vfs inode pointer */
167 block_t blkaddr; /* block address locating the last fsync */
168 block_t last_dentry; /* block address locating the last dentry */
169 block_t last_inode; /* block address locating the last inode */
170 };
171
172 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
173 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
174
175 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
176 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
177 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
178 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
179
180 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
181 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
182
183 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
184 {
185 int before = nats_in_cursum(rs);
186 rs->n_nats = cpu_to_le16(before + i);
187 return before;
188 }
189
190 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
191 {
192 int before = sits_in_cursum(rs);
193 rs->n_sits = cpu_to_le16(before + i);
194 return before;
195 }
196
197 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
198 int type)
199 {
200 if (type == NAT_JOURNAL)
201 return size <= MAX_NAT_JENTRIES(sum);
202 return size <= MAX_SIT_JENTRIES(sum);
203 }
204
205 /*
206 * ioctl commands
207 */
208 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
209 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
210 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
211
212 #define F2FS_IOCTL_MAGIC 0xf5
213 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
214 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
215 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
216 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
217 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
218
219 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
220 /*
221 * ioctl commands in 32 bit emulation
222 */
223 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
224 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
225 #endif
226
227 /*
228 * For INODE and NODE manager
229 */
230 /* for directory operations */
231 struct f2fs_dentry_ptr {
232 const void *bitmap;
233 struct f2fs_dir_entry *dentry;
234 __u8 (*filename)[F2FS_SLOT_LEN];
235 int max;
236 };
237
238 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
239 void *src, int type)
240 {
241 if (type == 1) {
242 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
243 d->max = NR_DENTRY_IN_BLOCK;
244 d->bitmap = &t->dentry_bitmap;
245 d->dentry = t->dentry;
246 d->filename = t->filename;
247 } else {
248 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
249 d->max = NR_INLINE_DENTRY;
250 d->bitmap = &t->dentry_bitmap;
251 d->dentry = t->dentry;
252 d->filename = t->filename;
253 }
254 }
255
256 /*
257 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
258 * as its node offset to distinguish from index node blocks.
259 * But some bits are used to mark the node block.
260 */
261 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
262 >> OFFSET_BIT_SHIFT)
263 enum {
264 ALLOC_NODE, /* allocate a new node page if needed */
265 LOOKUP_NODE, /* look up a node without readahead */
266 LOOKUP_NODE_RA, /*
267 * look up a node with readahead called
268 * by get_data_block.
269 */
270 };
271
272 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
273
274 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
275
276 /* for in-memory extent cache entry */
277 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
278
279 struct extent_info {
280 unsigned int fofs; /* start offset in a file */
281 u32 blk; /* start block address of the extent */
282 unsigned int len; /* length of the extent */
283 };
284
285 /*
286 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
287 */
288 #define FADVISE_COLD_BIT 0x01
289 #define FADVISE_LOST_PINO_BIT 0x02
290
291 #define DEF_DIR_LEVEL 0
292
293 struct f2fs_inode_info {
294 struct inode vfs_inode; /* serve a vfs inode */
295 unsigned long i_flags; /* keep an inode flags for ioctl */
296 unsigned char i_advise; /* use to give file attribute hints */
297 unsigned char i_dir_level; /* use for dentry level for large dir */
298 unsigned int i_current_depth; /* use only in directory structure */
299 unsigned int i_pino; /* parent inode number */
300 umode_t i_acl_mode; /* keep file acl mode temporarily */
301
302 /* Use below internally in f2fs*/
303 unsigned long flags; /* use to pass per-file flags */
304 struct rw_semaphore i_sem; /* protect fi info */
305 atomic_t dirty_pages; /* # of dirty pages */
306 f2fs_hash_t chash; /* hash value of given file name */
307 unsigned int clevel; /* maximum level of given file name */
308 nid_t i_xattr_nid; /* node id that contains xattrs */
309 unsigned long long xattr_ver; /* cp version of xattr modification */
310 struct extent_info ext; /* in-memory extent cache entry */
311 rwlock_t ext_lock; /* rwlock for single extent cache */
312 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
313
314 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
315 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
316 struct mutex inmem_lock; /* lock for inmemory pages */
317 };
318
319 static inline void get_extent_info(struct extent_info *ext,
320 struct f2fs_extent i_ext)
321 {
322 ext->fofs = le32_to_cpu(i_ext.fofs);
323 ext->blk = le32_to_cpu(i_ext.blk);
324 ext->len = le32_to_cpu(i_ext.len);
325 }
326
327 static inline void set_raw_extent(struct extent_info *ext,
328 struct f2fs_extent *i_ext)
329 {
330 i_ext->fofs = cpu_to_le32(ext->fofs);
331 i_ext->blk = cpu_to_le32(ext->blk);
332 i_ext->len = cpu_to_le32(ext->len);
333 }
334
335 struct f2fs_nm_info {
336 block_t nat_blkaddr; /* base disk address of NAT */
337 nid_t max_nid; /* maximum possible node ids */
338 nid_t available_nids; /* maximum available node ids */
339 nid_t next_scan_nid; /* the next nid to be scanned */
340 unsigned int ram_thresh; /* control the memory footprint */
341
342 /* NAT cache management */
343 struct radix_tree_root nat_root;/* root of the nat entry cache */
344 struct radix_tree_root nat_set_root;/* root of the nat set cache */
345 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
346 struct list_head nat_entries; /* cached nat entry list (clean) */
347 unsigned int nat_cnt; /* the # of cached nat entries */
348 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
349
350 /* free node ids management */
351 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
352 struct list_head free_nid_list; /* a list for free nids */
353 spinlock_t free_nid_list_lock; /* protect free nid list */
354 unsigned int fcnt; /* the number of free node id */
355 struct mutex build_lock; /* lock for build free nids */
356
357 /* for checkpoint */
358 char *nat_bitmap; /* NAT bitmap pointer */
359 int bitmap_size; /* bitmap size */
360 };
361
362 /*
363 * this structure is used as one of function parameters.
364 * all the information are dedicated to a given direct node block determined
365 * by the data offset in a file.
366 */
367 struct dnode_of_data {
368 struct inode *inode; /* vfs inode pointer */
369 struct page *inode_page; /* its inode page, NULL is possible */
370 struct page *node_page; /* cached direct node page */
371 nid_t nid; /* node id of the direct node block */
372 unsigned int ofs_in_node; /* data offset in the node page */
373 bool inode_page_locked; /* inode page is locked or not */
374 block_t data_blkaddr; /* block address of the node block */
375 };
376
377 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
378 struct page *ipage, struct page *npage, nid_t nid)
379 {
380 memset(dn, 0, sizeof(*dn));
381 dn->inode = inode;
382 dn->inode_page = ipage;
383 dn->node_page = npage;
384 dn->nid = nid;
385 }
386
387 /*
388 * For SIT manager
389 *
390 * By default, there are 6 active log areas across the whole main area.
391 * When considering hot and cold data separation to reduce cleaning overhead,
392 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
393 * respectively.
394 * In the current design, you should not change the numbers intentionally.
395 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
396 * logs individually according to the underlying devices. (default: 6)
397 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
398 * data and 8 for node logs.
399 */
400 #define NR_CURSEG_DATA_TYPE (3)
401 #define NR_CURSEG_NODE_TYPE (3)
402 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
403
404 enum {
405 CURSEG_HOT_DATA = 0, /* directory entry blocks */
406 CURSEG_WARM_DATA, /* data blocks */
407 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
408 CURSEG_HOT_NODE, /* direct node blocks of directory files */
409 CURSEG_WARM_NODE, /* direct node blocks of normal files */
410 CURSEG_COLD_NODE, /* indirect node blocks */
411 NO_CHECK_TYPE,
412 CURSEG_DIRECT_IO, /* to use for the direct IO path */
413 };
414
415 struct flush_cmd {
416 struct completion wait;
417 struct llist_node llnode;
418 int ret;
419 };
420
421 struct flush_cmd_control {
422 struct task_struct *f2fs_issue_flush; /* flush thread */
423 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
424 struct llist_head issue_list; /* list for command issue */
425 struct llist_node *dispatch_list; /* list for command dispatch */
426 };
427
428 struct f2fs_sm_info {
429 struct sit_info *sit_info; /* whole segment information */
430 struct free_segmap_info *free_info; /* free segment information */
431 struct dirty_seglist_info *dirty_info; /* dirty segment information */
432 struct curseg_info *curseg_array; /* active segment information */
433
434 block_t seg0_blkaddr; /* block address of 0'th segment */
435 block_t main_blkaddr; /* start block address of main area */
436 block_t ssa_blkaddr; /* start block address of SSA area */
437
438 unsigned int segment_count; /* total # of segments */
439 unsigned int main_segments; /* # of segments in main area */
440 unsigned int reserved_segments; /* # of reserved segments */
441 unsigned int ovp_segments; /* # of overprovision segments */
442
443 /* a threshold to reclaim prefree segments */
444 unsigned int rec_prefree_segments;
445
446 /* for small discard management */
447 struct list_head discard_list; /* 4KB discard list */
448 int nr_discards; /* # of discards in the list */
449 int max_discards; /* max. discards to be issued */
450
451 /* for batched trimming */
452 unsigned int trim_sections; /* # of sections to trim */
453
454 struct list_head sit_entry_set; /* sit entry set list */
455
456 unsigned int ipu_policy; /* in-place-update policy */
457 unsigned int min_ipu_util; /* in-place-update threshold */
458 unsigned int min_fsync_blocks; /* threshold for fsync */
459
460 /* for flush command control */
461 struct flush_cmd_control *cmd_control_info;
462
463 };
464
465 /*
466 * For superblock
467 */
468 /*
469 * COUNT_TYPE for monitoring
470 *
471 * f2fs monitors the number of several block types such as on-writeback,
472 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
473 */
474 enum count_type {
475 F2FS_WRITEBACK,
476 F2FS_DIRTY_DENTS,
477 F2FS_DIRTY_NODES,
478 F2FS_DIRTY_META,
479 F2FS_INMEM_PAGES,
480 NR_COUNT_TYPE,
481 };
482
483 /*
484 * The below are the page types of bios used in submit_bio().
485 * The available types are:
486 * DATA User data pages. It operates as async mode.
487 * NODE Node pages. It operates as async mode.
488 * META FS metadata pages such as SIT, NAT, CP.
489 * NR_PAGE_TYPE The number of page types.
490 * META_FLUSH Make sure the previous pages are written
491 * with waiting the bio's completion
492 * ... Only can be used with META.
493 */
494 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
495 enum page_type {
496 DATA,
497 NODE,
498 META,
499 NR_PAGE_TYPE,
500 META_FLUSH,
501 };
502
503 struct f2fs_io_info {
504 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
505 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
506 block_t blk_addr; /* block address to be written */
507 };
508
509 #define is_read_io(rw) (((rw) & 1) == READ)
510 struct f2fs_bio_info {
511 struct f2fs_sb_info *sbi; /* f2fs superblock */
512 struct bio *bio; /* bios to merge */
513 sector_t last_block_in_bio; /* last block number */
514 struct f2fs_io_info fio; /* store buffered io info. */
515 struct rw_semaphore io_rwsem; /* blocking op for bio */
516 };
517
518 /* for inner inode cache management */
519 struct inode_management {
520 struct radix_tree_root ino_root; /* ino entry array */
521 spinlock_t ino_lock; /* for ino entry lock */
522 struct list_head ino_list; /* inode list head */
523 unsigned long ino_num; /* number of entries */
524 };
525
526 /* For s_flag in struct f2fs_sb_info */
527 enum {
528 SBI_IS_DIRTY, /* dirty flag for checkpoint */
529 SBI_IS_CLOSE, /* specify unmounting */
530 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
531 SBI_POR_DOING, /* recovery is doing or not */
532 };
533
534 struct f2fs_sb_info {
535 struct super_block *sb; /* pointer to VFS super block */
536 struct proc_dir_entry *s_proc; /* proc entry */
537 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
538 struct f2fs_super_block *raw_super; /* raw super block pointer */
539 int s_flag; /* flags for sbi */
540
541 /* for node-related operations */
542 struct f2fs_nm_info *nm_info; /* node manager */
543 struct inode *node_inode; /* cache node blocks */
544
545 /* for segment-related operations */
546 struct f2fs_sm_info *sm_info; /* segment manager */
547
548 /* for bio operations */
549 struct f2fs_bio_info read_io; /* for read bios */
550 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
551
552 /* for checkpoint */
553 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
554 struct inode *meta_inode; /* cache meta blocks */
555 struct mutex cp_mutex; /* checkpoint procedure lock */
556 struct rw_semaphore cp_rwsem; /* blocking FS operations */
557 struct rw_semaphore node_write; /* locking node writes */
558 struct mutex writepages; /* mutex for writepages() */
559 wait_queue_head_t cp_wait;
560
561 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
562
563 /* for orphan inode, use 0'th array */
564 unsigned int max_orphans; /* max orphan inodes */
565
566 /* for directory inode management */
567 struct list_head dir_inode_list; /* dir inode list */
568 spinlock_t dir_inode_lock; /* for dir inode list lock */
569
570 /* basic filesystem units */
571 unsigned int log_sectors_per_block; /* log2 sectors per block */
572 unsigned int log_blocksize; /* log2 block size */
573 unsigned int blocksize; /* block size */
574 unsigned int root_ino_num; /* root inode number*/
575 unsigned int node_ino_num; /* node inode number*/
576 unsigned int meta_ino_num; /* meta inode number*/
577 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
578 unsigned int blocks_per_seg; /* blocks per segment */
579 unsigned int segs_per_sec; /* segments per section */
580 unsigned int secs_per_zone; /* sections per zone */
581 unsigned int total_sections; /* total section count */
582 unsigned int total_node_count; /* total node block count */
583 unsigned int total_valid_node_count; /* valid node block count */
584 unsigned int total_valid_inode_count; /* valid inode count */
585 int active_logs; /* # of active logs */
586 int dir_level; /* directory level */
587
588 block_t user_block_count; /* # of user blocks */
589 block_t total_valid_block_count; /* # of valid blocks */
590 block_t alloc_valid_block_count; /* # of allocated blocks */
591 block_t last_valid_block_count; /* for recovery */
592 u32 s_next_generation; /* for NFS support */
593 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
594
595 struct f2fs_mount_info mount_opt; /* mount options */
596
597 /* for cleaning operations */
598 struct mutex gc_mutex; /* mutex for GC */
599 struct f2fs_gc_kthread *gc_thread; /* GC thread */
600 unsigned int cur_victim_sec; /* current victim section num */
601
602 /* maximum # of trials to find a victim segment for SSR and GC */
603 unsigned int max_victim_search;
604
605 /*
606 * for stat information.
607 * one is for the LFS mode, and the other is for the SSR mode.
608 */
609 #ifdef CONFIG_F2FS_STAT_FS
610 struct f2fs_stat_info *stat_info; /* FS status information */
611 unsigned int segment_count[2]; /* # of allocated segments */
612 unsigned int block_count[2]; /* # of allocated blocks */
613 atomic_t inplace_count; /* # of inplace update */
614 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
615 atomic_t inline_inode; /* # of inline_data inodes */
616 atomic_t inline_dir; /* # of inline_dentry inodes */
617 int bg_gc; /* background gc calls */
618 unsigned int n_dirty_dirs; /* # of dir inodes */
619 #endif
620 unsigned int last_victim[2]; /* last victim segment # */
621 spinlock_t stat_lock; /* lock for stat operations */
622
623 /* For sysfs suppport */
624 struct kobject s_kobj;
625 struct completion s_kobj_unregister;
626 };
627
628 /*
629 * Inline functions
630 */
631 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
632 {
633 return container_of(inode, struct f2fs_inode_info, vfs_inode);
634 }
635
636 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
637 {
638 return sb->s_fs_info;
639 }
640
641 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
642 {
643 return F2FS_SB(inode->i_sb);
644 }
645
646 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
647 {
648 return F2FS_I_SB(mapping->host);
649 }
650
651 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
652 {
653 return F2FS_M_SB(page->mapping);
654 }
655
656 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
657 {
658 return (struct f2fs_super_block *)(sbi->raw_super);
659 }
660
661 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
662 {
663 return (struct f2fs_checkpoint *)(sbi->ckpt);
664 }
665
666 static inline struct f2fs_node *F2FS_NODE(struct page *page)
667 {
668 return (struct f2fs_node *)page_address(page);
669 }
670
671 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
672 {
673 return &((struct f2fs_node *)page_address(page))->i;
674 }
675
676 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
677 {
678 return (struct f2fs_nm_info *)(sbi->nm_info);
679 }
680
681 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
682 {
683 return (struct f2fs_sm_info *)(sbi->sm_info);
684 }
685
686 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
687 {
688 return (struct sit_info *)(SM_I(sbi)->sit_info);
689 }
690
691 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
692 {
693 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
694 }
695
696 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
697 {
698 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
699 }
700
701 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
702 {
703 return sbi->meta_inode->i_mapping;
704 }
705
706 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
707 {
708 return sbi->node_inode->i_mapping;
709 }
710
711 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
712 {
713 return sbi->s_flag & (0x01 << type);
714 }
715
716 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
717 {
718 sbi->s_flag |= (0x01 << type);
719 }
720
721 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
722 {
723 sbi->s_flag &= ~(0x01 << type);
724 }
725
726 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
727 {
728 return le64_to_cpu(cp->checkpoint_ver);
729 }
730
731 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
732 {
733 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
734 return ckpt_flags & f;
735 }
736
737 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
738 {
739 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
740 ckpt_flags |= f;
741 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
742 }
743
744 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
745 {
746 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
747 ckpt_flags &= (~f);
748 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
749 }
750
751 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
752 {
753 down_read(&sbi->cp_rwsem);
754 }
755
756 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
757 {
758 up_read(&sbi->cp_rwsem);
759 }
760
761 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
762 {
763 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
764 }
765
766 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
767 {
768 up_write(&sbi->cp_rwsem);
769 }
770
771 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
772 {
773 int reason = CP_SYNC;
774
775 if (test_opt(sbi, FASTBOOT))
776 reason = CP_FASTBOOT;
777 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
778 reason = CP_UMOUNT;
779 return reason;
780 }
781
782 static inline bool __remain_node_summaries(int reason)
783 {
784 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
785 }
786
787 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
788 {
789 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
790 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
791 }
792
793 /*
794 * Check whether the given nid is within node id range.
795 */
796 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
797 {
798 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
799 return -EINVAL;
800 if (unlikely(nid >= NM_I(sbi)->max_nid))
801 return -EINVAL;
802 return 0;
803 }
804
805 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
806
807 /*
808 * Check whether the inode has blocks or not
809 */
810 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
811 {
812 if (F2FS_I(inode)->i_xattr_nid)
813 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
814 else
815 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
816 }
817
818 static inline bool f2fs_has_xattr_block(unsigned int ofs)
819 {
820 return ofs == XATTR_NODE_OFFSET;
821 }
822
823 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
824 struct inode *inode, blkcnt_t count)
825 {
826 block_t valid_block_count;
827
828 spin_lock(&sbi->stat_lock);
829 valid_block_count =
830 sbi->total_valid_block_count + (block_t)count;
831 if (unlikely(valid_block_count > sbi->user_block_count)) {
832 spin_unlock(&sbi->stat_lock);
833 return false;
834 }
835 inode->i_blocks += count;
836 sbi->total_valid_block_count = valid_block_count;
837 sbi->alloc_valid_block_count += (block_t)count;
838 spin_unlock(&sbi->stat_lock);
839 return true;
840 }
841
842 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
843 struct inode *inode,
844 blkcnt_t count)
845 {
846 spin_lock(&sbi->stat_lock);
847 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
848 f2fs_bug_on(sbi, inode->i_blocks < count);
849 inode->i_blocks -= count;
850 sbi->total_valid_block_count -= (block_t)count;
851 spin_unlock(&sbi->stat_lock);
852 }
853
854 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
855 {
856 atomic_inc(&sbi->nr_pages[count_type]);
857 set_sbi_flag(sbi, SBI_IS_DIRTY);
858 }
859
860 static inline void inode_inc_dirty_pages(struct inode *inode)
861 {
862 atomic_inc(&F2FS_I(inode)->dirty_pages);
863 if (S_ISDIR(inode->i_mode))
864 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
865 }
866
867 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
868 {
869 atomic_dec(&sbi->nr_pages[count_type]);
870 }
871
872 static inline void inode_dec_dirty_pages(struct inode *inode)
873 {
874 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
875 return;
876
877 atomic_dec(&F2FS_I(inode)->dirty_pages);
878
879 if (S_ISDIR(inode->i_mode))
880 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
881 }
882
883 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
884 {
885 return atomic_read(&sbi->nr_pages[count_type]);
886 }
887
888 static inline int get_dirty_pages(struct inode *inode)
889 {
890 return atomic_read(&F2FS_I(inode)->dirty_pages);
891 }
892
893 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
894 {
895 unsigned int pages_per_sec = sbi->segs_per_sec *
896 (1 << sbi->log_blocks_per_seg);
897 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
898 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
899 }
900
901 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
902 {
903 return sbi->total_valid_block_count;
904 }
905
906 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
907 {
908 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
909
910 /* return NAT or SIT bitmap */
911 if (flag == NAT_BITMAP)
912 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
913 else if (flag == SIT_BITMAP)
914 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
915
916 return 0;
917 }
918
919 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
920 {
921 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
922 int offset;
923
924 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
925 if (flag == NAT_BITMAP)
926 return &ckpt->sit_nat_version_bitmap;
927 else
928 return (unsigned char *)ckpt + F2FS_BLKSIZE;
929 } else {
930 offset = (flag == NAT_BITMAP) ?
931 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
932 return &ckpt->sit_nat_version_bitmap + offset;
933 }
934 }
935
936 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
937 {
938 block_t start_addr;
939 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
940 unsigned long long ckpt_version = cur_cp_version(ckpt);
941
942 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
943
944 /*
945 * odd numbered checkpoint should at cp segment 0
946 * and even segment must be at cp segment 1
947 */
948 if (!(ckpt_version & 1))
949 start_addr += sbi->blocks_per_seg;
950
951 return start_addr;
952 }
953
954 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
955 {
956 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
957 }
958
959 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
960 struct inode *inode)
961 {
962 block_t valid_block_count;
963 unsigned int valid_node_count;
964
965 spin_lock(&sbi->stat_lock);
966
967 valid_block_count = sbi->total_valid_block_count + 1;
968 if (unlikely(valid_block_count > sbi->user_block_count)) {
969 spin_unlock(&sbi->stat_lock);
970 return false;
971 }
972
973 valid_node_count = sbi->total_valid_node_count + 1;
974 if (unlikely(valid_node_count > sbi->total_node_count)) {
975 spin_unlock(&sbi->stat_lock);
976 return false;
977 }
978
979 if (inode)
980 inode->i_blocks++;
981
982 sbi->alloc_valid_block_count++;
983 sbi->total_valid_node_count++;
984 sbi->total_valid_block_count++;
985 spin_unlock(&sbi->stat_lock);
986
987 return true;
988 }
989
990 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
991 struct inode *inode)
992 {
993 spin_lock(&sbi->stat_lock);
994
995 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
996 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
997 f2fs_bug_on(sbi, !inode->i_blocks);
998
999 inode->i_blocks--;
1000 sbi->total_valid_node_count--;
1001 sbi->total_valid_block_count--;
1002
1003 spin_unlock(&sbi->stat_lock);
1004 }
1005
1006 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1007 {
1008 return sbi->total_valid_node_count;
1009 }
1010
1011 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1012 {
1013 spin_lock(&sbi->stat_lock);
1014 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1015 sbi->total_valid_inode_count++;
1016 spin_unlock(&sbi->stat_lock);
1017 }
1018
1019 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1020 {
1021 spin_lock(&sbi->stat_lock);
1022 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1023 sbi->total_valid_inode_count--;
1024 spin_unlock(&sbi->stat_lock);
1025 }
1026
1027 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1028 {
1029 return sbi->total_valid_inode_count;
1030 }
1031
1032 static inline void f2fs_put_page(struct page *page, int unlock)
1033 {
1034 if (!page)
1035 return;
1036
1037 if (unlock) {
1038 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1039 unlock_page(page);
1040 }
1041 page_cache_release(page);
1042 }
1043
1044 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1045 {
1046 if (dn->node_page)
1047 f2fs_put_page(dn->node_page, 1);
1048 if (dn->inode_page && dn->node_page != dn->inode_page)
1049 f2fs_put_page(dn->inode_page, 0);
1050 dn->node_page = NULL;
1051 dn->inode_page = NULL;
1052 }
1053
1054 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1055 size_t size)
1056 {
1057 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1058 }
1059
1060 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1061 gfp_t flags)
1062 {
1063 void *entry;
1064 retry:
1065 entry = kmem_cache_alloc(cachep, flags);
1066 if (!entry) {
1067 cond_resched();
1068 goto retry;
1069 }
1070
1071 return entry;
1072 }
1073
1074 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1075 unsigned long index, void *item)
1076 {
1077 while (radix_tree_insert(root, index, item))
1078 cond_resched();
1079 }
1080
1081 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1082
1083 static inline bool IS_INODE(struct page *page)
1084 {
1085 struct f2fs_node *p = F2FS_NODE(page);
1086 return RAW_IS_INODE(p);
1087 }
1088
1089 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1090 {
1091 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1092 }
1093
1094 static inline block_t datablock_addr(struct page *node_page,
1095 unsigned int offset)
1096 {
1097 struct f2fs_node *raw_node;
1098 __le32 *addr_array;
1099 raw_node = F2FS_NODE(node_page);
1100 addr_array = blkaddr_in_node(raw_node);
1101 return le32_to_cpu(addr_array[offset]);
1102 }
1103
1104 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1105 {
1106 int mask;
1107
1108 addr += (nr >> 3);
1109 mask = 1 << (7 - (nr & 0x07));
1110 return mask & *addr;
1111 }
1112
1113 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1114 {
1115 int mask;
1116 int ret;
1117
1118 addr += (nr >> 3);
1119 mask = 1 << (7 - (nr & 0x07));
1120 ret = mask & *addr;
1121 *addr |= mask;
1122 return ret;
1123 }
1124
1125 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1126 {
1127 int mask;
1128 int ret;
1129
1130 addr += (nr >> 3);
1131 mask = 1 << (7 - (nr & 0x07));
1132 ret = mask & *addr;
1133 *addr &= ~mask;
1134 return ret;
1135 }
1136
1137 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1138 {
1139 int mask;
1140
1141 addr += (nr >> 3);
1142 mask = 1 << (7 - (nr & 0x07));
1143 *addr ^= mask;
1144 }
1145
1146 /* used for f2fs_inode_info->flags */
1147 enum {
1148 FI_NEW_INODE, /* indicate newly allocated inode */
1149 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1150 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1151 FI_INC_LINK, /* need to increment i_nlink */
1152 FI_ACL_MODE, /* indicate acl mode */
1153 FI_NO_ALLOC, /* should not allocate any blocks */
1154 FI_UPDATE_DIR, /* should update inode block for consistency */
1155 FI_DELAY_IPUT, /* used for the recovery */
1156 FI_NO_EXTENT, /* not to use the extent cache */
1157 FI_INLINE_XATTR, /* used for inline xattr */
1158 FI_INLINE_DATA, /* used for inline data*/
1159 FI_INLINE_DENTRY, /* used for inline dentry */
1160 FI_APPEND_WRITE, /* inode has appended data */
1161 FI_UPDATE_WRITE, /* inode has in-place-update data */
1162 FI_NEED_IPU, /* used for ipu per file */
1163 FI_ATOMIC_FILE, /* indicate atomic file */
1164 FI_VOLATILE_FILE, /* indicate volatile file */
1165 FI_DROP_CACHE, /* drop dirty page cache */
1166 FI_DATA_EXIST, /* indicate data exists */
1167 };
1168
1169 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1170 {
1171 if (!test_bit(flag, &fi->flags))
1172 set_bit(flag, &fi->flags);
1173 }
1174
1175 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1176 {
1177 return test_bit(flag, &fi->flags);
1178 }
1179
1180 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1181 {
1182 if (test_bit(flag, &fi->flags))
1183 clear_bit(flag, &fi->flags);
1184 }
1185
1186 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1187 {
1188 fi->i_acl_mode = mode;
1189 set_inode_flag(fi, FI_ACL_MODE);
1190 }
1191
1192 static inline void get_inline_info(struct f2fs_inode_info *fi,
1193 struct f2fs_inode *ri)
1194 {
1195 if (ri->i_inline & F2FS_INLINE_XATTR)
1196 set_inode_flag(fi, FI_INLINE_XATTR);
1197 if (ri->i_inline & F2FS_INLINE_DATA)
1198 set_inode_flag(fi, FI_INLINE_DATA);
1199 if (ri->i_inline & F2FS_INLINE_DENTRY)
1200 set_inode_flag(fi, FI_INLINE_DENTRY);
1201 if (ri->i_inline & F2FS_DATA_EXIST)
1202 set_inode_flag(fi, FI_DATA_EXIST);
1203 }
1204
1205 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1206 struct f2fs_inode *ri)
1207 {
1208 ri->i_inline = 0;
1209
1210 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1211 ri->i_inline |= F2FS_INLINE_XATTR;
1212 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1213 ri->i_inline |= F2FS_INLINE_DATA;
1214 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1215 ri->i_inline |= F2FS_INLINE_DENTRY;
1216 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1217 ri->i_inline |= F2FS_DATA_EXIST;
1218 }
1219
1220 static inline int f2fs_has_inline_xattr(struct inode *inode)
1221 {
1222 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1223 }
1224
1225 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1226 {
1227 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1228 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1229 return DEF_ADDRS_PER_INODE;
1230 }
1231
1232 static inline void *inline_xattr_addr(struct page *page)
1233 {
1234 struct f2fs_inode *ri = F2FS_INODE(page);
1235 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1236 F2FS_INLINE_XATTR_ADDRS]);
1237 }
1238
1239 static inline int inline_xattr_size(struct inode *inode)
1240 {
1241 if (f2fs_has_inline_xattr(inode))
1242 return F2FS_INLINE_XATTR_ADDRS << 2;
1243 else
1244 return 0;
1245 }
1246
1247 static inline int f2fs_has_inline_data(struct inode *inode)
1248 {
1249 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1250 }
1251
1252 static inline void f2fs_clear_inline_inode(struct inode *inode)
1253 {
1254 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1255 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1256 }
1257
1258 static inline int f2fs_exist_data(struct inode *inode)
1259 {
1260 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1261 }
1262
1263 static inline bool f2fs_is_atomic_file(struct inode *inode)
1264 {
1265 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1266 }
1267
1268 static inline bool f2fs_is_volatile_file(struct inode *inode)
1269 {
1270 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1271 }
1272
1273 static inline bool f2fs_is_drop_cache(struct inode *inode)
1274 {
1275 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1276 }
1277
1278 static inline void *inline_data_addr(struct page *page)
1279 {
1280 struct f2fs_inode *ri = F2FS_INODE(page);
1281 return (void *)&(ri->i_addr[1]);
1282 }
1283
1284 static inline int f2fs_has_inline_dentry(struct inode *inode)
1285 {
1286 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1287 }
1288
1289 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1290 {
1291 if (!f2fs_has_inline_dentry(dir))
1292 kunmap(page);
1293 }
1294
1295 static inline int f2fs_readonly(struct super_block *sb)
1296 {
1297 return sb->s_flags & MS_RDONLY;
1298 }
1299
1300 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1301 {
1302 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1303 }
1304
1305 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1306 {
1307 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1308 sbi->sb->s_flags |= MS_RDONLY;
1309 }
1310
1311 #define get_inode_mode(i) \
1312 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1313 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1314
1315 /* get offset of first page in next direct node */
1316 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1317 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1318 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1319 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1320
1321 /*
1322 * file.c
1323 */
1324 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1325 void truncate_data_blocks(struct dnode_of_data *);
1326 int truncate_blocks(struct inode *, u64, bool);
1327 void f2fs_truncate(struct inode *);
1328 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1329 int f2fs_setattr(struct dentry *, struct iattr *);
1330 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1331 int truncate_data_blocks_range(struct dnode_of_data *, int);
1332 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1333 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1334
1335 /*
1336 * inode.c
1337 */
1338 void f2fs_set_inode_flags(struct inode *);
1339 struct inode *f2fs_iget(struct super_block *, unsigned long);
1340 int try_to_free_nats(struct f2fs_sb_info *, int);
1341 void update_inode(struct inode *, struct page *);
1342 void update_inode_page(struct inode *);
1343 int f2fs_write_inode(struct inode *, struct writeback_control *);
1344 void f2fs_evict_inode(struct inode *);
1345 void handle_failed_inode(struct inode *);
1346
1347 /*
1348 * namei.c
1349 */
1350 struct dentry *f2fs_get_parent(struct dentry *child);
1351
1352 /*
1353 * dir.c
1354 */
1355 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1356 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1357 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1358 struct f2fs_dentry_ptr *);
1359 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1360 unsigned int);
1361 void do_make_empty_dir(struct inode *, struct inode *,
1362 struct f2fs_dentry_ptr *);
1363 struct page *init_inode_metadata(struct inode *, struct inode *,
1364 const struct qstr *, struct page *);
1365 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1366 int room_for_filename(const void *, int, int);
1367 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1368 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1369 struct page **);
1370 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1371 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1372 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1373 struct page *, struct inode *);
1374 int update_dent_inode(struct inode *, const struct qstr *);
1375 void f2fs_update_dentry(struct inode *, struct f2fs_dentry_ptr *,
1376 const struct qstr *, f2fs_hash_t , unsigned int);
1377 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1378 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1379 struct inode *);
1380 int f2fs_do_tmpfile(struct inode *, struct inode *);
1381 int f2fs_make_empty(struct inode *, struct inode *);
1382 bool f2fs_empty_dir(struct inode *);
1383
1384 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1385 {
1386 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1387 inode);
1388 }
1389
1390 /*
1391 * super.c
1392 */
1393 int f2fs_sync_fs(struct super_block *, int);
1394 extern __printf(3, 4)
1395 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1396
1397 /*
1398 * hash.c
1399 */
1400 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1401
1402 /*
1403 * node.c
1404 */
1405 struct dnode_of_data;
1406 struct node_info;
1407
1408 bool available_free_memory(struct f2fs_sb_info *, int);
1409 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1410 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1411 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1412 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1413 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1414 int truncate_inode_blocks(struct inode *, pgoff_t);
1415 int truncate_xattr_node(struct inode *, struct page *);
1416 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1417 void remove_inode_page(struct inode *);
1418 struct page *new_inode_page(struct inode *);
1419 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1420 void ra_node_page(struct f2fs_sb_info *, nid_t);
1421 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1422 struct page *get_node_page_ra(struct page *, int);
1423 void sync_inode_page(struct dnode_of_data *);
1424 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1425 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1426 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1427 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1428 void recover_inline_xattr(struct inode *, struct page *);
1429 void recover_xattr_data(struct inode *, struct page *, block_t);
1430 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1431 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1432 struct f2fs_summary_block *);
1433 void flush_nat_entries(struct f2fs_sb_info *);
1434 int build_node_manager(struct f2fs_sb_info *);
1435 void destroy_node_manager(struct f2fs_sb_info *);
1436 int __init create_node_manager_caches(void);
1437 void destroy_node_manager_caches(void);
1438
1439 /*
1440 * segment.c
1441 */
1442 void register_inmem_page(struct inode *, struct page *);
1443 void commit_inmem_pages(struct inode *, bool);
1444 void f2fs_balance_fs(struct f2fs_sb_info *);
1445 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1446 int f2fs_issue_flush(struct f2fs_sb_info *);
1447 int create_flush_cmd_control(struct f2fs_sb_info *);
1448 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1449 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1450 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1451 void clear_prefree_segments(struct f2fs_sb_info *);
1452 void release_discard_addrs(struct f2fs_sb_info *);
1453 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1454 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1455 void allocate_new_segments(struct f2fs_sb_info *);
1456 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1457 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1458 void write_meta_page(struct f2fs_sb_info *, struct page *);
1459 void write_node_page(struct f2fs_sb_info *, struct page *,
1460 unsigned int, struct f2fs_io_info *);
1461 void write_data_page(struct page *, struct dnode_of_data *,
1462 struct f2fs_io_info *);
1463 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1464 void recover_data_page(struct f2fs_sb_info *, struct page *,
1465 struct f2fs_summary *, block_t, block_t);
1466 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1467 block_t, block_t *, struct f2fs_summary *, int);
1468 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1469 void write_data_summaries(struct f2fs_sb_info *, block_t);
1470 void write_node_summaries(struct f2fs_sb_info *, block_t);
1471 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1472 int, unsigned int, int);
1473 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1474 int build_segment_manager(struct f2fs_sb_info *);
1475 void destroy_segment_manager(struct f2fs_sb_info *);
1476 int __init create_segment_manager_caches(void);
1477 void destroy_segment_manager_caches(void);
1478
1479 /*
1480 * checkpoint.c
1481 */
1482 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1483 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1484 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1485 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1486 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1487 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1488 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1489 void release_dirty_inode(struct f2fs_sb_info *);
1490 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1491 int acquire_orphan_inode(struct f2fs_sb_info *);
1492 void release_orphan_inode(struct f2fs_sb_info *);
1493 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1494 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1495 void recover_orphan_inodes(struct f2fs_sb_info *);
1496 int get_valid_checkpoint(struct f2fs_sb_info *);
1497 void update_dirty_page(struct inode *, struct page *);
1498 void add_dirty_dir_inode(struct inode *);
1499 void remove_dirty_dir_inode(struct inode *);
1500 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1501 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1502 void init_ino_entry_info(struct f2fs_sb_info *);
1503 int __init create_checkpoint_caches(void);
1504 void destroy_checkpoint_caches(void);
1505
1506 /*
1507 * data.c
1508 */
1509 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1510 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1511 struct f2fs_io_info *);
1512 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1513 struct f2fs_io_info *);
1514 int reserve_new_block(struct dnode_of_data *);
1515 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1516 void f2fs_update_extent_cache(struct dnode_of_data *);
1517 struct page *find_data_page(struct inode *, pgoff_t, bool);
1518 struct page *get_lock_data_page(struct inode *, pgoff_t);
1519 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1520 int do_write_data_page(struct page *, struct f2fs_io_info *);
1521 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1522 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1523 int f2fs_release_page(struct page *, gfp_t);
1524
1525 /*
1526 * gc.c
1527 */
1528 int start_gc_thread(struct f2fs_sb_info *);
1529 void stop_gc_thread(struct f2fs_sb_info *);
1530 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1531 int f2fs_gc(struct f2fs_sb_info *);
1532 void build_gc_manager(struct f2fs_sb_info *);
1533
1534 /*
1535 * recovery.c
1536 */
1537 int recover_fsync_data(struct f2fs_sb_info *);
1538 bool space_for_roll_forward(struct f2fs_sb_info *);
1539
1540 /*
1541 * debug.c
1542 */
1543 #ifdef CONFIG_F2FS_STAT_FS
1544 struct f2fs_stat_info {
1545 struct list_head stat_list;
1546 struct f2fs_sb_info *sbi;
1547 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1548 int main_area_segs, main_area_sections, main_area_zones;
1549 int hit_ext, total_ext;
1550 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1551 int nats, dirty_nats, sits, dirty_sits, fnids;
1552 int total_count, utilization;
1553 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1554 unsigned int valid_count, valid_node_count, valid_inode_count;
1555 unsigned int bimodal, avg_vblocks;
1556 int util_free, util_valid, util_invalid;
1557 int rsvd_segs, overp_segs;
1558 int dirty_count, node_pages, meta_pages;
1559 int prefree_count, call_count, cp_count;
1560 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1561 int tot_blks, data_blks, node_blks;
1562 int curseg[NR_CURSEG_TYPE];
1563 int cursec[NR_CURSEG_TYPE];
1564 int curzone[NR_CURSEG_TYPE];
1565
1566 unsigned int segment_count[2];
1567 unsigned int block_count[2];
1568 unsigned int inplace_count;
1569 unsigned base_mem, cache_mem, page_mem;
1570 };
1571
1572 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1573 {
1574 return (struct f2fs_stat_info *)sbi->stat_info;
1575 }
1576
1577 #define stat_inc_cp_count(si) ((si)->cp_count++)
1578 #define stat_inc_call_count(si) ((si)->call_count++)
1579 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1580 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1581 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1582 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1583 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1584 #define stat_inc_inline_inode(inode) \
1585 do { \
1586 if (f2fs_has_inline_data(inode)) \
1587 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1588 } while (0)
1589 #define stat_dec_inline_inode(inode) \
1590 do { \
1591 if (f2fs_has_inline_data(inode)) \
1592 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1593 } while (0)
1594 #define stat_inc_inline_dir(inode) \
1595 do { \
1596 if (f2fs_has_inline_dentry(inode)) \
1597 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1598 } while (0)
1599 #define stat_dec_inline_dir(inode) \
1600 do { \
1601 if (f2fs_has_inline_dentry(inode)) \
1602 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1603 } while (0)
1604 #define stat_inc_seg_type(sbi, curseg) \
1605 ((sbi)->segment_count[(curseg)->alloc_type]++)
1606 #define stat_inc_block_count(sbi, curseg) \
1607 ((sbi)->block_count[(curseg)->alloc_type]++)
1608 #define stat_inc_inplace_blocks(sbi) \
1609 (atomic_inc(&(sbi)->inplace_count))
1610 #define stat_inc_seg_count(sbi, type) \
1611 do { \
1612 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1613 (si)->tot_segs++; \
1614 if (type == SUM_TYPE_DATA) \
1615 si->data_segs++; \
1616 else \
1617 si->node_segs++; \
1618 } while (0)
1619
1620 #define stat_inc_tot_blk_count(si, blks) \
1621 (si->tot_blks += (blks))
1622
1623 #define stat_inc_data_blk_count(sbi, blks) \
1624 do { \
1625 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1626 stat_inc_tot_blk_count(si, blks); \
1627 si->data_blks += (blks); \
1628 } while (0)
1629
1630 #define stat_inc_node_blk_count(sbi, blks) \
1631 do { \
1632 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1633 stat_inc_tot_blk_count(si, blks); \
1634 si->node_blks += (blks); \
1635 } while (0)
1636
1637 int f2fs_build_stats(struct f2fs_sb_info *);
1638 void f2fs_destroy_stats(struct f2fs_sb_info *);
1639 void __init f2fs_create_root_stats(void);
1640 void f2fs_destroy_root_stats(void);
1641 #else
1642 #define stat_inc_cp_count(si)
1643 #define stat_inc_call_count(si)
1644 #define stat_inc_bggc_count(si)
1645 #define stat_inc_dirty_dir(sbi)
1646 #define stat_dec_dirty_dir(sbi)
1647 #define stat_inc_total_hit(sb)
1648 #define stat_inc_read_hit(sb)
1649 #define stat_inc_inline_inode(inode)
1650 #define stat_dec_inline_inode(inode)
1651 #define stat_inc_inline_dir(inode)
1652 #define stat_dec_inline_dir(inode)
1653 #define stat_inc_seg_type(sbi, curseg)
1654 #define stat_inc_block_count(sbi, curseg)
1655 #define stat_inc_inplace_blocks(sbi)
1656 #define stat_inc_seg_count(si, type)
1657 #define stat_inc_tot_blk_count(si, blks)
1658 #define stat_inc_data_blk_count(si, blks)
1659 #define stat_inc_node_blk_count(sbi, blks)
1660
1661 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1662 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1663 static inline void __init f2fs_create_root_stats(void) { }
1664 static inline void f2fs_destroy_root_stats(void) { }
1665 #endif
1666
1667 extern const struct file_operations f2fs_dir_operations;
1668 extern const struct file_operations f2fs_file_operations;
1669 extern const struct inode_operations f2fs_file_inode_operations;
1670 extern const struct address_space_operations f2fs_dblock_aops;
1671 extern const struct address_space_operations f2fs_node_aops;
1672 extern const struct address_space_operations f2fs_meta_aops;
1673 extern const struct inode_operations f2fs_dir_inode_operations;
1674 extern const struct inode_operations f2fs_symlink_inode_operations;
1675 extern const struct inode_operations f2fs_special_inode_operations;
1676 extern struct kmem_cache *inode_entry_slab;
1677
1678 /*
1679 * inline.c
1680 */
1681 bool f2fs_may_inline(struct inode *);
1682 void read_inline_data(struct page *, struct page *);
1683 int f2fs_read_inline_data(struct inode *, struct page *);
1684 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1685 int f2fs_convert_inline_inode(struct inode *);
1686 int f2fs_write_inline_data(struct inode *, struct page *);
1687 bool recover_inline_data(struct inode *, struct page *);
1688 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1689 struct page **);
1690 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1691 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1692 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1693 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1694 struct inode *, struct inode *);
1695 bool f2fs_empty_inline_dir(struct inode *);
1696 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1697 #endif
This page took 0.127133 seconds and 6 git commands to generate.