f2fs: introduce lifetime write IO statistics
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition) \
31 do { \
32 if (unlikely(condition)) { \
33 WARN_ON(1); \
34 set_sbi_flag(sbi, SBI_NEED_FSCK); \
35 } \
36 } while (0)
37 #define f2fs_down_write(x, y) down_write(x)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 #define CRCPOLY_LE 0xedb88320
88
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 unsigned char *p = (unsigned char *)buf;
92 __u32 crc = F2FS_SUPER_MAGIC;
93 int i;
94
95 while (len--) {
96 crc ^= *p++;
97 for (i = 0; i < 8; i++)
98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 }
100 return crc;
101 }
102
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107
108 /*
109 * For checkpoint manager
110 */
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 enum {
117 CP_UMOUNT,
118 CP_FASTBOOT,
119 CP_SYNC,
120 CP_RECOVERY,
121 CP_DISCARD,
122 };
123
124 #define DEF_BATCHED_TRIM_SECTIONS 32
125 #define BATCHED_TRIM_SEGMENTS(sbi) \
126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi) \
128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL 60 /* 60 secs */
130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
131
132 struct cp_control {
133 int reason;
134 __u64 trim_start;
135 __u64 trim_end;
136 __u64 trim_minlen;
137 __u64 trimmed;
138 };
139
140 /*
141 * For CP/NAT/SIT/SSA readahead
142 */
143 enum {
144 META_CP,
145 META_NAT,
146 META_SIT,
147 META_SSA,
148 META_POR,
149 };
150
151 /* for the list of ino */
152 enum {
153 ORPHAN_INO, /* for orphan ino list */
154 APPEND_INO, /* for append ino list */
155 UPDATE_INO, /* for update ino list */
156 MAX_INO_ENTRY, /* max. list */
157 };
158
159 struct ino_entry {
160 struct list_head list; /* list head */
161 nid_t ino; /* inode number */
162 };
163
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
188
189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 int before = nats_in_cursum(rs);
200 rs->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 int before = sits_in_cursum(rs);
207 rs->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(sum);
216 return size <= MAX_SIT_JENTRIES(sum);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
235
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
237 _IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
239 _IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
241 _IOW('f', 21, struct f2fs_encryption_policy)
242
243 /*
244 * should be same as XFS_IOC_GOINGDOWN.
245 * Flags for going down operation used by FS_IOC_GOINGDOWN
246 */
247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
252
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255 * ioctl commands in 32 bit emulation
256 */
257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
260 #endif
261
262 struct f2fs_defragment {
263 u64 start;
264 u64 len;
265 };
266
267 /*
268 * For INODE and NODE manager
269 */
270 /* for directory operations */
271 struct f2fs_str {
272 unsigned char *name;
273 u32 len;
274 };
275
276 struct f2fs_filename {
277 const struct qstr *usr_fname;
278 struct f2fs_str disk_name;
279 f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 struct f2fs_str crypto_buf;
282 #endif
283 };
284
285 #define FSTR_INIT(n, l) { .name = n, .len = l }
286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p) ((p)->disk_name.name)
288 #define fname_len(p) ((p)->disk_name.len)
289
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 };
387
388 /* for flag in get_data_block */
389 #define F2FS_GET_BLOCK_READ 0
390 #define F2FS_GET_BLOCK_DIO 1
391 #define F2FS_GET_BLOCK_FIEMAP 2
392 #define F2FS_GET_BLOCK_BMAP 3
393
394 /*
395 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
396 */
397 #define FADVISE_COLD_BIT 0x01
398 #define FADVISE_LOST_PINO_BIT 0x02
399 #define FADVISE_ENCRYPT_BIT 0x04
400 #define FADVISE_ENC_NAME_BIT 0x08
401
402 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
403 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
404 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
405 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
406 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
407 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
409 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
410 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
411 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
412 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
413
414 /* Encryption algorithms */
415 #define F2FS_ENCRYPTION_MODE_INVALID 0
416 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
417 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
418 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
419 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
420
421 #include "f2fs_crypto.h"
422
423 #define DEF_DIR_LEVEL 0
424
425 struct f2fs_inode_info {
426 struct inode vfs_inode; /* serve a vfs inode */
427 unsigned long i_flags; /* keep an inode flags for ioctl */
428 unsigned char i_advise; /* use to give file attribute hints */
429 unsigned char i_dir_level; /* use for dentry level for large dir */
430 unsigned int i_current_depth; /* use only in directory structure */
431 unsigned int i_pino; /* parent inode number */
432 umode_t i_acl_mode; /* keep file acl mode temporarily */
433
434 /* Use below internally in f2fs*/
435 unsigned long flags; /* use to pass per-file flags */
436 struct rw_semaphore i_sem; /* protect fi info */
437 atomic_t dirty_pages; /* # of dirty pages */
438 f2fs_hash_t chash; /* hash value of given file name */
439 unsigned int clevel; /* maximum level of given file name */
440 nid_t i_xattr_nid; /* node id that contains xattrs */
441 unsigned long long xattr_ver; /* cp version of xattr modification */
442
443 struct list_head dirty_list; /* linked in global dirty list */
444 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
445 struct mutex inmem_lock; /* lock for inmemory pages */
446
447 struct extent_tree *extent_tree; /* cached extent_tree entry */
448
449 #ifdef CONFIG_F2FS_FS_ENCRYPTION
450 /* Encryption params */
451 struct f2fs_crypt_info *i_crypt_info;
452 #endif
453 };
454
455 static inline void get_extent_info(struct extent_info *ext,
456 struct f2fs_extent i_ext)
457 {
458 ext->fofs = le32_to_cpu(i_ext.fofs);
459 ext->blk = le32_to_cpu(i_ext.blk);
460 ext->len = le32_to_cpu(i_ext.len);
461 }
462
463 static inline void set_raw_extent(struct extent_info *ext,
464 struct f2fs_extent *i_ext)
465 {
466 i_ext->fofs = cpu_to_le32(ext->fofs);
467 i_ext->blk = cpu_to_le32(ext->blk);
468 i_ext->len = cpu_to_le32(ext->len);
469 }
470
471 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
472 u32 blk, unsigned int len)
473 {
474 ei->fofs = fofs;
475 ei->blk = blk;
476 ei->len = len;
477 }
478
479 static inline bool __is_extent_same(struct extent_info *ei1,
480 struct extent_info *ei2)
481 {
482 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
483 ei1->len == ei2->len);
484 }
485
486 static inline bool __is_extent_mergeable(struct extent_info *back,
487 struct extent_info *front)
488 {
489 return (back->fofs + back->len == front->fofs &&
490 back->blk + back->len == front->blk);
491 }
492
493 static inline bool __is_back_mergeable(struct extent_info *cur,
494 struct extent_info *back)
495 {
496 return __is_extent_mergeable(back, cur);
497 }
498
499 static inline bool __is_front_mergeable(struct extent_info *cur,
500 struct extent_info *front)
501 {
502 return __is_extent_mergeable(cur, front);
503 }
504
505 static inline void __try_update_largest_extent(struct extent_tree *et,
506 struct extent_node *en)
507 {
508 if (en->ei.len > et->largest.len)
509 et->largest = en->ei;
510 }
511
512 struct f2fs_nm_info {
513 block_t nat_blkaddr; /* base disk address of NAT */
514 nid_t max_nid; /* maximum possible node ids */
515 nid_t available_nids; /* maximum available node ids */
516 nid_t next_scan_nid; /* the next nid to be scanned */
517 unsigned int ram_thresh; /* control the memory footprint */
518 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
519 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
520
521 /* NAT cache management */
522 struct radix_tree_root nat_root;/* root of the nat entry cache */
523 struct radix_tree_root nat_set_root;/* root of the nat set cache */
524 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
525 struct list_head nat_entries; /* cached nat entry list (clean) */
526 unsigned int nat_cnt; /* the # of cached nat entries */
527 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
528
529 /* free node ids management */
530 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
531 struct list_head free_nid_list; /* a list for free nids */
532 spinlock_t free_nid_list_lock; /* protect free nid list */
533 unsigned int fcnt; /* the number of free node id */
534 struct mutex build_lock; /* lock for build free nids */
535
536 /* for checkpoint */
537 char *nat_bitmap; /* NAT bitmap pointer */
538 int bitmap_size; /* bitmap size */
539 };
540
541 /*
542 * this structure is used as one of function parameters.
543 * all the information are dedicated to a given direct node block determined
544 * by the data offset in a file.
545 */
546 struct dnode_of_data {
547 struct inode *inode; /* vfs inode pointer */
548 struct page *inode_page; /* its inode page, NULL is possible */
549 struct page *node_page; /* cached direct node page */
550 nid_t nid; /* node id of the direct node block */
551 unsigned int ofs_in_node; /* data offset in the node page */
552 bool inode_page_locked; /* inode page is locked or not */
553 bool node_changed; /* is node block changed */
554 block_t data_blkaddr; /* block address of the node block */
555 };
556
557 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
558 struct page *ipage, struct page *npage, nid_t nid)
559 {
560 memset(dn, 0, sizeof(*dn));
561 dn->inode = inode;
562 dn->inode_page = ipage;
563 dn->node_page = npage;
564 dn->nid = nid;
565 }
566
567 /*
568 * For SIT manager
569 *
570 * By default, there are 6 active log areas across the whole main area.
571 * When considering hot and cold data separation to reduce cleaning overhead,
572 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
573 * respectively.
574 * In the current design, you should not change the numbers intentionally.
575 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
576 * logs individually according to the underlying devices. (default: 6)
577 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
578 * data and 8 for node logs.
579 */
580 #define NR_CURSEG_DATA_TYPE (3)
581 #define NR_CURSEG_NODE_TYPE (3)
582 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
583
584 enum {
585 CURSEG_HOT_DATA = 0, /* directory entry blocks */
586 CURSEG_WARM_DATA, /* data blocks */
587 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
588 CURSEG_HOT_NODE, /* direct node blocks of directory files */
589 CURSEG_WARM_NODE, /* direct node blocks of normal files */
590 CURSEG_COLD_NODE, /* indirect node blocks */
591 NO_CHECK_TYPE,
592 CURSEG_DIRECT_IO, /* to use for the direct IO path */
593 };
594
595 struct flush_cmd {
596 struct completion wait;
597 struct llist_node llnode;
598 int ret;
599 };
600
601 struct flush_cmd_control {
602 struct task_struct *f2fs_issue_flush; /* flush thread */
603 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
604 struct llist_head issue_list; /* list for command issue */
605 struct llist_node *dispatch_list; /* list for command dispatch */
606 };
607
608 struct f2fs_sm_info {
609 struct sit_info *sit_info; /* whole segment information */
610 struct free_segmap_info *free_info; /* free segment information */
611 struct dirty_seglist_info *dirty_info; /* dirty segment information */
612 struct curseg_info *curseg_array; /* active segment information */
613
614 block_t seg0_blkaddr; /* block address of 0'th segment */
615 block_t main_blkaddr; /* start block address of main area */
616 block_t ssa_blkaddr; /* start block address of SSA area */
617
618 unsigned int segment_count; /* total # of segments */
619 unsigned int main_segments; /* # of segments in main area */
620 unsigned int reserved_segments; /* # of reserved segments */
621 unsigned int ovp_segments; /* # of overprovision segments */
622
623 /* a threshold to reclaim prefree segments */
624 unsigned int rec_prefree_segments;
625
626 /* for small discard management */
627 struct list_head discard_list; /* 4KB discard list */
628 int nr_discards; /* # of discards in the list */
629 int max_discards; /* max. discards to be issued */
630
631 /* for batched trimming */
632 unsigned int trim_sections; /* # of sections to trim */
633
634 struct list_head sit_entry_set; /* sit entry set list */
635
636 unsigned int ipu_policy; /* in-place-update policy */
637 unsigned int min_ipu_util; /* in-place-update threshold */
638 unsigned int min_fsync_blocks; /* threshold for fsync */
639
640 /* for flush command control */
641 struct flush_cmd_control *cmd_control_info;
642
643 };
644
645 /*
646 * For superblock
647 */
648 /*
649 * COUNT_TYPE for monitoring
650 *
651 * f2fs monitors the number of several block types such as on-writeback,
652 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
653 */
654 enum count_type {
655 F2FS_WRITEBACK,
656 F2FS_DIRTY_DENTS,
657 F2FS_DIRTY_DATA,
658 F2FS_DIRTY_NODES,
659 F2FS_DIRTY_META,
660 F2FS_INMEM_PAGES,
661 NR_COUNT_TYPE,
662 };
663
664 /*
665 * The below are the page types of bios used in submit_bio().
666 * The available types are:
667 * DATA User data pages. It operates as async mode.
668 * NODE Node pages. It operates as async mode.
669 * META FS metadata pages such as SIT, NAT, CP.
670 * NR_PAGE_TYPE The number of page types.
671 * META_FLUSH Make sure the previous pages are written
672 * with waiting the bio's completion
673 * ... Only can be used with META.
674 */
675 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
676 enum page_type {
677 DATA,
678 NODE,
679 META,
680 NR_PAGE_TYPE,
681 META_FLUSH,
682 INMEM, /* the below types are used by tracepoints only. */
683 INMEM_DROP,
684 IPU,
685 OPU,
686 };
687
688 struct f2fs_io_info {
689 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
690 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
691 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
692 block_t blk_addr; /* block address to be written */
693 struct page *page; /* page to be written */
694 struct page *encrypted_page; /* encrypted page */
695 };
696
697 #define is_read_io(rw) (((rw) & 1) == READ)
698 struct f2fs_bio_info {
699 struct f2fs_sb_info *sbi; /* f2fs superblock */
700 struct bio *bio; /* bios to merge */
701 sector_t last_block_in_bio; /* last block number */
702 struct f2fs_io_info fio; /* store buffered io info. */
703 struct rw_semaphore io_rwsem; /* blocking op for bio */
704 };
705
706 enum inode_type {
707 DIR_INODE, /* for dirty dir inode */
708 FILE_INODE, /* for dirty regular/symlink inode */
709 NR_INODE_TYPE,
710 };
711
712 /* for inner inode cache management */
713 struct inode_management {
714 struct radix_tree_root ino_root; /* ino entry array */
715 spinlock_t ino_lock; /* for ino entry lock */
716 struct list_head ino_list; /* inode list head */
717 unsigned long ino_num; /* number of entries */
718 };
719
720 /* For s_flag in struct f2fs_sb_info */
721 enum {
722 SBI_IS_DIRTY, /* dirty flag for checkpoint */
723 SBI_IS_CLOSE, /* specify unmounting */
724 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
725 SBI_POR_DOING, /* recovery is doing or not */
726 };
727
728 enum {
729 CP_TIME,
730 REQ_TIME,
731 MAX_TIME,
732 };
733
734 struct f2fs_sb_info {
735 struct super_block *sb; /* pointer to VFS super block */
736 struct proc_dir_entry *s_proc; /* proc entry */
737 struct f2fs_super_block *raw_super; /* raw super block pointer */
738 int valid_super_block; /* valid super block no */
739 int s_flag; /* flags for sbi */
740
741 /* for node-related operations */
742 struct f2fs_nm_info *nm_info; /* node manager */
743 struct inode *node_inode; /* cache node blocks */
744
745 /* for segment-related operations */
746 struct f2fs_sm_info *sm_info; /* segment manager */
747
748 /* for bio operations */
749 struct f2fs_bio_info read_io; /* for read bios */
750 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
751
752 /* for checkpoint */
753 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
754 struct inode *meta_inode; /* cache meta blocks */
755 struct mutex cp_mutex; /* checkpoint procedure lock */
756 struct rw_semaphore cp_rwsem; /* blocking FS operations */
757 struct rw_semaphore node_write; /* locking node writes */
758 struct mutex writepages; /* mutex for writepages() */
759 wait_queue_head_t cp_wait;
760 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
761 long interval_time[MAX_TIME]; /* to store thresholds */
762
763 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
764
765 /* for orphan inode, use 0'th array */
766 unsigned int max_orphans; /* max orphan inodes */
767
768 /* for inode management */
769 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
770 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
771
772 /* for extent tree cache */
773 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
774 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
775 struct list_head extent_list; /* lru list for shrinker */
776 spinlock_t extent_lock; /* locking extent lru list */
777 atomic_t total_ext_tree; /* extent tree count */
778 struct list_head zombie_list; /* extent zombie tree list */
779 atomic_t total_zombie_tree; /* extent zombie tree count */
780 atomic_t total_ext_node; /* extent info count */
781
782 /* basic filesystem units */
783 unsigned int log_sectors_per_block; /* log2 sectors per block */
784 unsigned int log_blocksize; /* log2 block size */
785 unsigned int blocksize; /* block size */
786 unsigned int root_ino_num; /* root inode number*/
787 unsigned int node_ino_num; /* node inode number*/
788 unsigned int meta_ino_num; /* meta inode number*/
789 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
790 unsigned int blocks_per_seg; /* blocks per segment */
791 unsigned int segs_per_sec; /* segments per section */
792 unsigned int secs_per_zone; /* sections per zone */
793 unsigned int total_sections; /* total section count */
794 unsigned int total_node_count; /* total node block count */
795 unsigned int total_valid_node_count; /* valid node block count */
796 unsigned int total_valid_inode_count; /* valid inode count */
797 loff_t max_file_blocks; /* max block index of file */
798 int active_logs; /* # of active logs */
799 int dir_level; /* directory level */
800
801 block_t user_block_count; /* # of user blocks */
802 block_t total_valid_block_count; /* # of valid blocks */
803 block_t alloc_valid_block_count; /* # of allocated blocks */
804 block_t discard_blks; /* discard command candidats */
805 block_t last_valid_block_count; /* for recovery */
806 u32 s_next_generation; /* for NFS support */
807 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
808
809 struct f2fs_mount_info mount_opt; /* mount options */
810
811 /* for cleaning operations */
812 struct mutex gc_mutex; /* mutex for GC */
813 struct f2fs_gc_kthread *gc_thread; /* GC thread */
814 unsigned int cur_victim_sec; /* current victim section num */
815
816 /* maximum # of trials to find a victim segment for SSR and GC */
817 unsigned int max_victim_search;
818
819 /*
820 * for stat information.
821 * one is for the LFS mode, and the other is for the SSR mode.
822 */
823 #ifdef CONFIG_F2FS_STAT_FS
824 struct f2fs_stat_info *stat_info; /* FS status information */
825 unsigned int segment_count[2]; /* # of allocated segments */
826 unsigned int block_count[2]; /* # of allocated blocks */
827 atomic_t inplace_count; /* # of inplace update */
828 atomic64_t total_hit_ext; /* # of lookup extent cache */
829 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
830 atomic64_t read_hit_largest; /* # of hit largest extent node */
831 atomic64_t read_hit_cached; /* # of hit cached extent node */
832 atomic_t inline_xattr; /* # of inline_xattr inodes */
833 atomic_t inline_inode; /* # of inline_data inodes */
834 atomic_t inline_dir; /* # of inline_dentry inodes */
835 int bg_gc; /* background gc calls */
836 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
837 #endif
838 unsigned int last_victim[2]; /* last victim segment # */
839 spinlock_t stat_lock; /* lock for stat operations */
840
841 /* For sysfs suppport */
842 struct kobject s_kobj;
843 struct completion s_kobj_unregister;
844
845 /* For shrinker support */
846 struct list_head s_list;
847 struct mutex umount_mutex;
848 unsigned int shrinker_run_no;
849
850 /* For write statistics */
851 u64 sectors_written_start;
852 u64 kbytes_written;
853 };
854
855 /* For write statistics. Suppose sector size is 512 bytes,
856 * and the return value is in kbytes. s is of struct f2fs_sb_info.
857 */
858 #define BD_PART_WRITTEN(s) \
859 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
860 s->sectors_written_start) >> 1)
861
862 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
863 {
864 sbi->last_time[type] = jiffies;
865 }
866
867 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
868 {
869 struct timespec ts = {sbi->interval_time[type], 0};
870 unsigned long interval = timespec_to_jiffies(&ts);
871
872 return time_after(jiffies, sbi->last_time[type] + interval);
873 }
874
875 static inline bool is_idle(struct f2fs_sb_info *sbi)
876 {
877 struct block_device *bdev = sbi->sb->s_bdev;
878 struct request_queue *q = bdev_get_queue(bdev);
879 struct request_list *rl = &q->root_rl;
880
881 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
882 return 0;
883
884 return f2fs_time_over(sbi, REQ_TIME);
885 }
886
887 /*
888 * Inline functions
889 */
890 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
891 {
892 return container_of(inode, struct f2fs_inode_info, vfs_inode);
893 }
894
895 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
896 {
897 return sb->s_fs_info;
898 }
899
900 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
901 {
902 return F2FS_SB(inode->i_sb);
903 }
904
905 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
906 {
907 return F2FS_I_SB(mapping->host);
908 }
909
910 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
911 {
912 return F2FS_M_SB(page->mapping);
913 }
914
915 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
916 {
917 return (struct f2fs_super_block *)(sbi->raw_super);
918 }
919
920 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
921 {
922 return (struct f2fs_checkpoint *)(sbi->ckpt);
923 }
924
925 static inline struct f2fs_node *F2FS_NODE(struct page *page)
926 {
927 return (struct f2fs_node *)page_address(page);
928 }
929
930 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
931 {
932 return &((struct f2fs_node *)page_address(page))->i;
933 }
934
935 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
936 {
937 return (struct f2fs_nm_info *)(sbi->nm_info);
938 }
939
940 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
941 {
942 return (struct f2fs_sm_info *)(sbi->sm_info);
943 }
944
945 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
946 {
947 return (struct sit_info *)(SM_I(sbi)->sit_info);
948 }
949
950 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
951 {
952 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
953 }
954
955 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
956 {
957 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
958 }
959
960 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
961 {
962 return sbi->meta_inode->i_mapping;
963 }
964
965 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
966 {
967 return sbi->node_inode->i_mapping;
968 }
969
970 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
971 {
972 return sbi->s_flag & (0x01 << type);
973 }
974
975 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
976 {
977 sbi->s_flag |= (0x01 << type);
978 }
979
980 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
981 {
982 sbi->s_flag &= ~(0x01 << type);
983 }
984
985 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
986 {
987 return le64_to_cpu(cp->checkpoint_ver);
988 }
989
990 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
991 {
992 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
993 return ckpt_flags & f;
994 }
995
996 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
997 {
998 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
999 ckpt_flags |= f;
1000 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1001 }
1002
1003 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1004 {
1005 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1006 ckpt_flags &= (~f);
1007 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1008 }
1009
1010 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1011 {
1012 down_read(&sbi->cp_rwsem);
1013 }
1014
1015 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1016 {
1017 up_read(&sbi->cp_rwsem);
1018 }
1019
1020 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1021 {
1022 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1023 }
1024
1025 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1026 {
1027 up_write(&sbi->cp_rwsem);
1028 }
1029
1030 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1031 {
1032 int reason = CP_SYNC;
1033
1034 if (test_opt(sbi, FASTBOOT))
1035 reason = CP_FASTBOOT;
1036 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1037 reason = CP_UMOUNT;
1038 return reason;
1039 }
1040
1041 static inline bool __remain_node_summaries(int reason)
1042 {
1043 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1044 }
1045
1046 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1047 {
1048 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1049 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1050 }
1051
1052 /*
1053 * Check whether the given nid is within node id range.
1054 */
1055 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1056 {
1057 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1058 return -EINVAL;
1059 if (unlikely(nid >= NM_I(sbi)->max_nid))
1060 return -EINVAL;
1061 return 0;
1062 }
1063
1064 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1065
1066 /*
1067 * Check whether the inode has blocks or not
1068 */
1069 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1070 {
1071 if (F2FS_I(inode)->i_xattr_nid)
1072 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1073 else
1074 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1075 }
1076
1077 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1078 {
1079 return ofs == XATTR_NODE_OFFSET;
1080 }
1081
1082 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1083 struct inode *inode, blkcnt_t count)
1084 {
1085 block_t valid_block_count;
1086
1087 spin_lock(&sbi->stat_lock);
1088 valid_block_count =
1089 sbi->total_valid_block_count + (block_t)count;
1090 if (unlikely(valid_block_count > sbi->user_block_count)) {
1091 spin_unlock(&sbi->stat_lock);
1092 return false;
1093 }
1094 inode->i_blocks += count;
1095 sbi->total_valid_block_count = valid_block_count;
1096 sbi->alloc_valid_block_count += (block_t)count;
1097 spin_unlock(&sbi->stat_lock);
1098 return true;
1099 }
1100
1101 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1102 struct inode *inode,
1103 blkcnt_t count)
1104 {
1105 spin_lock(&sbi->stat_lock);
1106 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1107 f2fs_bug_on(sbi, inode->i_blocks < count);
1108 inode->i_blocks -= count;
1109 sbi->total_valid_block_count -= (block_t)count;
1110 spin_unlock(&sbi->stat_lock);
1111 }
1112
1113 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1114 {
1115 atomic_inc(&sbi->nr_pages[count_type]);
1116 set_sbi_flag(sbi, SBI_IS_DIRTY);
1117 }
1118
1119 static inline void inode_inc_dirty_pages(struct inode *inode)
1120 {
1121 atomic_inc(&F2FS_I(inode)->dirty_pages);
1122 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1123 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1124 }
1125
1126 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1127 {
1128 atomic_dec(&sbi->nr_pages[count_type]);
1129 }
1130
1131 static inline void inode_dec_dirty_pages(struct inode *inode)
1132 {
1133 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1134 !S_ISLNK(inode->i_mode))
1135 return;
1136
1137 atomic_dec(&F2FS_I(inode)->dirty_pages);
1138 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1139 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1140 }
1141
1142 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1143 {
1144 return atomic_read(&sbi->nr_pages[count_type]);
1145 }
1146
1147 static inline int get_dirty_pages(struct inode *inode)
1148 {
1149 return atomic_read(&F2FS_I(inode)->dirty_pages);
1150 }
1151
1152 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1153 {
1154 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1155 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1156 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1157 }
1158
1159 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1160 {
1161 return sbi->total_valid_block_count;
1162 }
1163
1164 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1165 {
1166 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1167
1168 /* return NAT or SIT bitmap */
1169 if (flag == NAT_BITMAP)
1170 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1171 else if (flag == SIT_BITMAP)
1172 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1173
1174 return 0;
1175 }
1176
1177 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1178 {
1179 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1180 }
1181
1182 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1183 {
1184 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1185 int offset;
1186
1187 if (__cp_payload(sbi) > 0) {
1188 if (flag == NAT_BITMAP)
1189 return &ckpt->sit_nat_version_bitmap;
1190 else
1191 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1192 } else {
1193 offset = (flag == NAT_BITMAP) ?
1194 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1195 return &ckpt->sit_nat_version_bitmap + offset;
1196 }
1197 }
1198
1199 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1200 {
1201 block_t start_addr;
1202 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1203 unsigned long long ckpt_version = cur_cp_version(ckpt);
1204
1205 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1206
1207 /*
1208 * odd numbered checkpoint should at cp segment 0
1209 * and even segment must be at cp segment 1
1210 */
1211 if (!(ckpt_version & 1))
1212 start_addr += sbi->blocks_per_seg;
1213
1214 return start_addr;
1215 }
1216
1217 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1218 {
1219 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1220 }
1221
1222 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1223 struct inode *inode)
1224 {
1225 block_t valid_block_count;
1226 unsigned int valid_node_count;
1227
1228 spin_lock(&sbi->stat_lock);
1229
1230 valid_block_count = sbi->total_valid_block_count + 1;
1231 if (unlikely(valid_block_count > sbi->user_block_count)) {
1232 spin_unlock(&sbi->stat_lock);
1233 return false;
1234 }
1235
1236 valid_node_count = sbi->total_valid_node_count + 1;
1237 if (unlikely(valid_node_count > sbi->total_node_count)) {
1238 spin_unlock(&sbi->stat_lock);
1239 return false;
1240 }
1241
1242 if (inode)
1243 inode->i_blocks++;
1244
1245 sbi->alloc_valid_block_count++;
1246 sbi->total_valid_node_count++;
1247 sbi->total_valid_block_count++;
1248 spin_unlock(&sbi->stat_lock);
1249
1250 return true;
1251 }
1252
1253 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1254 struct inode *inode)
1255 {
1256 spin_lock(&sbi->stat_lock);
1257
1258 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1259 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1260 f2fs_bug_on(sbi, !inode->i_blocks);
1261
1262 inode->i_blocks--;
1263 sbi->total_valid_node_count--;
1264 sbi->total_valid_block_count--;
1265
1266 spin_unlock(&sbi->stat_lock);
1267 }
1268
1269 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1270 {
1271 return sbi->total_valid_node_count;
1272 }
1273
1274 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1275 {
1276 spin_lock(&sbi->stat_lock);
1277 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1278 sbi->total_valid_inode_count++;
1279 spin_unlock(&sbi->stat_lock);
1280 }
1281
1282 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1283 {
1284 spin_lock(&sbi->stat_lock);
1285 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1286 sbi->total_valid_inode_count--;
1287 spin_unlock(&sbi->stat_lock);
1288 }
1289
1290 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1291 {
1292 return sbi->total_valid_inode_count;
1293 }
1294
1295 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1296 pgoff_t index, bool for_write)
1297 {
1298 if (!for_write)
1299 return grab_cache_page(mapping, index);
1300 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1301 }
1302
1303 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1304 {
1305 char *src_kaddr = kmap(src);
1306 char *dst_kaddr = kmap(dst);
1307
1308 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1309 kunmap(dst);
1310 kunmap(src);
1311 }
1312
1313 static inline void f2fs_put_page(struct page *page, int unlock)
1314 {
1315 if (!page)
1316 return;
1317
1318 if (unlock) {
1319 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1320 unlock_page(page);
1321 }
1322 page_cache_release(page);
1323 }
1324
1325 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1326 {
1327 if (dn->node_page)
1328 f2fs_put_page(dn->node_page, 1);
1329 if (dn->inode_page && dn->node_page != dn->inode_page)
1330 f2fs_put_page(dn->inode_page, 0);
1331 dn->node_page = NULL;
1332 dn->inode_page = NULL;
1333 }
1334
1335 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1336 size_t size)
1337 {
1338 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1339 }
1340
1341 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1342 gfp_t flags)
1343 {
1344 void *entry;
1345
1346 entry = kmem_cache_alloc(cachep, flags);
1347 if (!entry)
1348 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1349 return entry;
1350 }
1351
1352 static inline struct bio *f2fs_bio_alloc(int npages)
1353 {
1354 struct bio *bio;
1355
1356 /* No failure on bio allocation */
1357 bio = bio_alloc(GFP_NOIO, npages);
1358 if (!bio)
1359 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1360 return bio;
1361 }
1362
1363 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1364 unsigned long index, void *item)
1365 {
1366 while (radix_tree_insert(root, index, item))
1367 cond_resched();
1368 }
1369
1370 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1371
1372 static inline bool IS_INODE(struct page *page)
1373 {
1374 struct f2fs_node *p = F2FS_NODE(page);
1375 return RAW_IS_INODE(p);
1376 }
1377
1378 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1379 {
1380 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1381 }
1382
1383 static inline block_t datablock_addr(struct page *node_page,
1384 unsigned int offset)
1385 {
1386 struct f2fs_node *raw_node;
1387 __le32 *addr_array;
1388 raw_node = F2FS_NODE(node_page);
1389 addr_array = blkaddr_in_node(raw_node);
1390 return le32_to_cpu(addr_array[offset]);
1391 }
1392
1393 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1394 {
1395 int mask;
1396
1397 addr += (nr >> 3);
1398 mask = 1 << (7 - (nr & 0x07));
1399 return mask & *addr;
1400 }
1401
1402 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1403 {
1404 int mask;
1405
1406 addr += (nr >> 3);
1407 mask = 1 << (7 - (nr & 0x07));
1408 *addr |= mask;
1409 }
1410
1411 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1412 {
1413 int mask;
1414
1415 addr += (nr >> 3);
1416 mask = 1 << (7 - (nr & 0x07));
1417 *addr &= ~mask;
1418 }
1419
1420 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1421 {
1422 int mask;
1423 int ret;
1424
1425 addr += (nr >> 3);
1426 mask = 1 << (7 - (nr & 0x07));
1427 ret = mask & *addr;
1428 *addr |= mask;
1429 return ret;
1430 }
1431
1432 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1433 {
1434 int mask;
1435 int ret;
1436
1437 addr += (nr >> 3);
1438 mask = 1 << (7 - (nr & 0x07));
1439 ret = mask & *addr;
1440 *addr &= ~mask;
1441 return ret;
1442 }
1443
1444 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1445 {
1446 int mask;
1447
1448 addr += (nr >> 3);
1449 mask = 1 << (7 - (nr & 0x07));
1450 *addr ^= mask;
1451 }
1452
1453 /* used for f2fs_inode_info->flags */
1454 enum {
1455 FI_NEW_INODE, /* indicate newly allocated inode */
1456 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1457 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1458 FI_INC_LINK, /* need to increment i_nlink */
1459 FI_ACL_MODE, /* indicate acl mode */
1460 FI_NO_ALLOC, /* should not allocate any blocks */
1461 FI_FREE_NID, /* free allocated nide */
1462 FI_UPDATE_DIR, /* should update inode block for consistency */
1463 FI_DELAY_IPUT, /* used for the recovery */
1464 FI_NO_EXTENT, /* not to use the extent cache */
1465 FI_INLINE_XATTR, /* used for inline xattr */
1466 FI_INLINE_DATA, /* used for inline data*/
1467 FI_INLINE_DENTRY, /* used for inline dentry */
1468 FI_APPEND_WRITE, /* inode has appended data */
1469 FI_UPDATE_WRITE, /* inode has in-place-update data */
1470 FI_NEED_IPU, /* used for ipu per file */
1471 FI_ATOMIC_FILE, /* indicate atomic file */
1472 FI_VOLATILE_FILE, /* indicate volatile file */
1473 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1474 FI_DROP_CACHE, /* drop dirty page cache */
1475 FI_DATA_EXIST, /* indicate data exists */
1476 FI_INLINE_DOTS, /* indicate inline dot dentries */
1477 FI_DO_DEFRAG, /* indicate defragment is running */
1478 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1479 };
1480
1481 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1482 {
1483 if (!test_bit(flag, &fi->flags))
1484 set_bit(flag, &fi->flags);
1485 }
1486
1487 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1488 {
1489 return test_bit(flag, &fi->flags);
1490 }
1491
1492 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1493 {
1494 if (test_bit(flag, &fi->flags))
1495 clear_bit(flag, &fi->flags);
1496 }
1497
1498 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1499 {
1500 fi->i_acl_mode = mode;
1501 set_inode_flag(fi, FI_ACL_MODE);
1502 }
1503
1504 static inline void get_inline_info(struct f2fs_inode_info *fi,
1505 struct f2fs_inode *ri)
1506 {
1507 if (ri->i_inline & F2FS_INLINE_XATTR)
1508 set_inode_flag(fi, FI_INLINE_XATTR);
1509 if (ri->i_inline & F2FS_INLINE_DATA)
1510 set_inode_flag(fi, FI_INLINE_DATA);
1511 if (ri->i_inline & F2FS_INLINE_DENTRY)
1512 set_inode_flag(fi, FI_INLINE_DENTRY);
1513 if (ri->i_inline & F2FS_DATA_EXIST)
1514 set_inode_flag(fi, FI_DATA_EXIST);
1515 if (ri->i_inline & F2FS_INLINE_DOTS)
1516 set_inode_flag(fi, FI_INLINE_DOTS);
1517 }
1518
1519 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1520 struct f2fs_inode *ri)
1521 {
1522 ri->i_inline = 0;
1523
1524 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1525 ri->i_inline |= F2FS_INLINE_XATTR;
1526 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1527 ri->i_inline |= F2FS_INLINE_DATA;
1528 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1529 ri->i_inline |= F2FS_INLINE_DENTRY;
1530 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1531 ri->i_inline |= F2FS_DATA_EXIST;
1532 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1533 ri->i_inline |= F2FS_INLINE_DOTS;
1534 }
1535
1536 static inline int f2fs_has_inline_xattr(struct inode *inode)
1537 {
1538 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1539 }
1540
1541 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1542 {
1543 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1544 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1545 return DEF_ADDRS_PER_INODE;
1546 }
1547
1548 static inline void *inline_xattr_addr(struct page *page)
1549 {
1550 struct f2fs_inode *ri = F2FS_INODE(page);
1551 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1552 F2FS_INLINE_XATTR_ADDRS]);
1553 }
1554
1555 static inline int inline_xattr_size(struct inode *inode)
1556 {
1557 if (f2fs_has_inline_xattr(inode))
1558 return F2FS_INLINE_XATTR_ADDRS << 2;
1559 else
1560 return 0;
1561 }
1562
1563 static inline int f2fs_has_inline_data(struct inode *inode)
1564 {
1565 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1566 }
1567
1568 static inline void f2fs_clear_inline_inode(struct inode *inode)
1569 {
1570 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1571 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1572 }
1573
1574 static inline int f2fs_exist_data(struct inode *inode)
1575 {
1576 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1577 }
1578
1579 static inline int f2fs_has_inline_dots(struct inode *inode)
1580 {
1581 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1582 }
1583
1584 static inline bool f2fs_is_atomic_file(struct inode *inode)
1585 {
1586 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1587 }
1588
1589 static inline bool f2fs_is_volatile_file(struct inode *inode)
1590 {
1591 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1592 }
1593
1594 static inline bool f2fs_is_first_block_written(struct inode *inode)
1595 {
1596 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1597 }
1598
1599 static inline bool f2fs_is_drop_cache(struct inode *inode)
1600 {
1601 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1602 }
1603
1604 static inline void *inline_data_addr(struct page *page)
1605 {
1606 struct f2fs_inode *ri = F2FS_INODE(page);
1607 return (void *)&(ri->i_addr[1]);
1608 }
1609
1610 static inline int f2fs_has_inline_dentry(struct inode *inode)
1611 {
1612 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1613 }
1614
1615 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1616 {
1617 if (!f2fs_has_inline_dentry(dir))
1618 kunmap(page);
1619 }
1620
1621 static inline int is_file(struct inode *inode, int type)
1622 {
1623 return F2FS_I(inode)->i_advise & type;
1624 }
1625
1626 static inline void set_file(struct inode *inode, int type)
1627 {
1628 F2FS_I(inode)->i_advise |= type;
1629 }
1630
1631 static inline void clear_file(struct inode *inode, int type)
1632 {
1633 F2FS_I(inode)->i_advise &= ~type;
1634 }
1635
1636 static inline int f2fs_readonly(struct super_block *sb)
1637 {
1638 return sb->s_flags & MS_RDONLY;
1639 }
1640
1641 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1642 {
1643 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1644 }
1645
1646 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1647 {
1648 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1649 sbi->sb->s_flags |= MS_RDONLY;
1650 }
1651
1652 static inline bool is_dot_dotdot(const struct qstr *str)
1653 {
1654 if (str->len == 1 && str->name[0] == '.')
1655 return true;
1656
1657 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1658 return true;
1659
1660 return false;
1661 }
1662
1663 static inline bool f2fs_may_extent_tree(struct inode *inode)
1664 {
1665 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1666 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1667 return false;
1668
1669 return S_ISREG(inode->i_mode);
1670 }
1671
1672 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1673 {
1674 void *ret;
1675
1676 ret = kmalloc(size, flags | __GFP_NOWARN);
1677 if (!ret)
1678 ret = __vmalloc(size, flags, PAGE_KERNEL);
1679 return ret;
1680 }
1681
1682 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1683 {
1684 void *ret;
1685
1686 ret = kzalloc(size, flags | __GFP_NOWARN);
1687 if (!ret)
1688 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1689 return ret;
1690 }
1691
1692 #define get_inode_mode(i) \
1693 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1694 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1695
1696 /* get offset of first page in next direct node */
1697 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1698 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1699 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1700 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1701
1702 /*
1703 * file.c
1704 */
1705 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1706 void truncate_data_blocks(struct dnode_of_data *);
1707 int truncate_blocks(struct inode *, u64, bool);
1708 int f2fs_truncate(struct inode *, bool);
1709 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1710 int f2fs_setattr(struct dentry *, struct iattr *);
1711 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1712 int truncate_data_blocks_range(struct dnode_of_data *, int);
1713 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1714 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1715
1716 /*
1717 * inode.c
1718 */
1719 void f2fs_set_inode_flags(struct inode *);
1720 struct inode *f2fs_iget(struct super_block *, unsigned long);
1721 int try_to_free_nats(struct f2fs_sb_info *, int);
1722 int update_inode(struct inode *, struct page *);
1723 int update_inode_page(struct inode *);
1724 int f2fs_write_inode(struct inode *, struct writeback_control *);
1725 void f2fs_evict_inode(struct inode *);
1726 void handle_failed_inode(struct inode *);
1727
1728 /*
1729 * namei.c
1730 */
1731 struct dentry *f2fs_get_parent(struct dentry *child);
1732
1733 /*
1734 * dir.c
1735 */
1736 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1737 void set_de_type(struct f2fs_dir_entry *, umode_t);
1738
1739 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1740 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1741 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1742 unsigned int, struct f2fs_str *);
1743 void do_make_empty_dir(struct inode *, struct inode *,
1744 struct f2fs_dentry_ptr *);
1745 struct page *init_inode_metadata(struct inode *, struct inode *,
1746 const struct qstr *, struct page *);
1747 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1748 int room_for_filename(const void *, int, int);
1749 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1750 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1751 struct page **);
1752 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1753 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1754 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1755 struct page *, struct inode *);
1756 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1757 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1758 const struct qstr *, f2fs_hash_t , unsigned int);
1759 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1760 umode_t);
1761 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1762 struct inode *);
1763 int f2fs_do_tmpfile(struct inode *, struct inode *);
1764 bool f2fs_empty_dir(struct inode *);
1765
1766 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1767 {
1768 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1769 inode, inode->i_ino, inode->i_mode);
1770 }
1771
1772 /*
1773 * super.c
1774 */
1775 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1776 int f2fs_sync_fs(struct super_block *, int);
1777 extern __printf(3, 4)
1778 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1779
1780 /*
1781 * hash.c
1782 */
1783 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1784
1785 /*
1786 * node.c
1787 */
1788 struct dnode_of_data;
1789 struct node_info;
1790
1791 bool available_free_memory(struct f2fs_sb_info *, int);
1792 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1793 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1794 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1795 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1796 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1797 int truncate_inode_blocks(struct inode *, pgoff_t);
1798 int truncate_xattr_node(struct inode *, struct page *);
1799 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1800 int remove_inode_page(struct inode *);
1801 struct page *new_inode_page(struct inode *);
1802 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1803 void ra_node_page(struct f2fs_sb_info *, nid_t);
1804 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1805 struct page *get_node_page_ra(struct page *, int);
1806 void sync_inode_page(struct dnode_of_data *);
1807 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1808 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1809 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1810 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1811 int try_to_free_nids(struct f2fs_sb_info *, int);
1812 void recover_inline_xattr(struct inode *, struct page *);
1813 void recover_xattr_data(struct inode *, struct page *, block_t);
1814 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1815 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1816 struct f2fs_summary_block *);
1817 void flush_nat_entries(struct f2fs_sb_info *);
1818 int build_node_manager(struct f2fs_sb_info *);
1819 void destroy_node_manager(struct f2fs_sb_info *);
1820 int __init create_node_manager_caches(void);
1821 void destroy_node_manager_caches(void);
1822
1823 /*
1824 * segment.c
1825 */
1826 void register_inmem_page(struct inode *, struct page *);
1827 int commit_inmem_pages(struct inode *, bool);
1828 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1829 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1830 int f2fs_issue_flush(struct f2fs_sb_info *);
1831 int create_flush_cmd_control(struct f2fs_sb_info *);
1832 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1833 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1834 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1835 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1836 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1837 void release_discard_addrs(struct f2fs_sb_info *);
1838 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1839 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1840 void allocate_new_segments(struct f2fs_sb_info *);
1841 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1842 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1843 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1844 void write_meta_page(struct f2fs_sb_info *, struct page *);
1845 void write_node_page(unsigned int, struct f2fs_io_info *);
1846 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1847 void rewrite_data_page(struct f2fs_io_info *);
1848 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1849 block_t, block_t, unsigned char, bool);
1850 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1851 block_t, block_t *, struct f2fs_summary *, int);
1852 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1853 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1854 void write_data_summaries(struct f2fs_sb_info *, block_t);
1855 void write_node_summaries(struct f2fs_sb_info *, block_t);
1856 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1857 int, unsigned int, int);
1858 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1859 int build_segment_manager(struct f2fs_sb_info *);
1860 void destroy_segment_manager(struct f2fs_sb_info *);
1861 int __init create_segment_manager_caches(void);
1862 void destroy_segment_manager_caches(void);
1863
1864 /*
1865 * checkpoint.c
1866 */
1867 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1868 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1869 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1870 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1871 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1872 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1873 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1874 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1875 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1876 void release_ino_entry(struct f2fs_sb_info *);
1877 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1878 int acquire_orphan_inode(struct f2fs_sb_info *);
1879 void release_orphan_inode(struct f2fs_sb_info *);
1880 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1881 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1882 int recover_orphan_inodes(struct f2fs_sb_info *);
1883 int get_valid_checkpoint(struct f2fs_sb_info *);
1884 void update_dirty_page(struct inode *, struct page *);
1885 void add_dirty_dir_inode(struct inode *);
1886 void remove_dirty_inode(struct inode *);
1887 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1888 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1889 void init_ino_entry_info(struct f2fs_sb_info *);
1890 int __init create_checkpoint_caches(void);
1891 void destroy_checkpoint_caches(void);
1892
1893 /*
1894 * data.c
1895 */
1896 bool is_merged_page(struct f2fs_sb_info *, struct page *, enum page_type);
1897 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1898 int f2fs_submit_page_bio(struct f2fs_io_info *);
1899 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1900 void set_data_blkaddr(struct dnode_of_data *);
1901 int reserve_new_block(struct dnode_of_data *);
1902 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1903 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1904 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1905 struct page *find_data_page(struct inode *, pgoff_t);
1906 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1907 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1908 int do_write_data_page(struct f2fs_io_info *);
1909 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1910 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1911 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1912 int f2fs_release_page(struct page *, gfp_t);
1913
1914 /*
1915 * gc.c
1916 */
1917 int start_gc_thread(struct f2fs_sb_info *);
1918 void stop_gc_thread(struct f2fs_sb_info *);
1919 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1920 int f2fs_gc(struct f2fs_sb_info *, bool);
1921 void build_gc_manager(struct f2fs_sb_info *);
1922
1923 /*
1924 * recovery.c
1925 */
1926 int recover_fsync_data(struct f2fs_sb_info *);
1927 bool space_for_roll_forward(struct f2fs_sb_info *);
1928
1929 /*
1930 * debug.c
1931 */
1932 #ifdef CONFIG_F2FS_STAT_FS
1933 struct f2fs_stat_info {
1934 struct list_head stat_list;
1935 struct f2fs_sb_info *sbi;
1936 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1937 int main_area_segs, main_area_sections, main_area_zones;
1938 unsigned long long hit_largest, hit_cached, hit_rbtree;
1939 unsigned long long hit_total, total_ext;
1940 int ext_tree, zombie_tree, ext_node;
1941 int ndirty_node, ndirty_meta;
1942 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1943 int nats, dirty_nats, sits, dirty_sits, fnids;
1944 int total_count, utilization;
1945 int bg_gc, inmem_pages, wb_pages;
1946 int inline_xattr, inline_inode, inline_dir;
1947 unsigned int valid_count, valid_node_count, valid_inode_count;
1948 unsigned int bimodal, avg_vblocks;
1949 int util_free, util_valid, util_invalid;
1950 int rsvd_segs, overp_segs;
1951 int dirty_count, node_pages, meta_pages;
1952 int prefree_count, call_count, cp_count, bg_cp_count;
1953 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1954 int bg_node_segs, bg_data_segs;
1955 int tot_blks, data_blks, node_blks;
1956 int bg_data_blks, bg_node_blks;
1957 int curseg[NR_CURSEG_TYPE];
1958 int cursec[NR_CURSEG_TYPE];
1959 int curzone[NR_CURSEG_TYPE];
1960
1961 unsigned int segment_count[2];
1962 unsigned int block_count[2];
1963 unsigned int inplace_count;
1964 unsigned long long base_mem, cache_mem, page_mem;
1965 };
1966
1967 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1968 {
1969 return (struct f2fs_stat_info *)sbi->stat_info;
1970 }
1971
1972 #define stat_inc_cp_count(si) ((si)->cp_count++)
1973 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1974 #define stat_inc_call_count(si) ((si)->call_count++)
1975 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1976 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1977 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1978 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1979 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1980 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1981 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1982 #define stat_inc_inline_xattr(inode) \
1983 do { \
1984 if (f2fs_has_inline_xattr(inode)) \
1985 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1986 } while (0)
1987 #define stat_dec_inline_xattr(inode) \
1988 do { \
1989 if (f2fs_has_inline_xattr(inode)) \
1990 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1991 } while (0)
1992 #define stat_inc_inline_inode(inode) \
1993 do { \
1994 if (f2fs_has_inline_data(inode)) \
1995 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1996 } while (0)
1997 #define stat_dec_inline_inode(inode) \
1998 do { \
1999 if (f2fs_has_inline_data(inode)) \
2000 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2001 } while (0)
2002 #define stat_inc_inline_dir(inode) \
2003 do { \
2004 if (f2fs_has_inline_dentry(inode)) \
2005 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2006 } while (0)
2007 #define stat_dec_inline_dir(inode) \
2008 do { \
2009 if (f2fs_has_inline_dentry(inode)) \
2010 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2011 } while (0)
2012 #define stat_inc_seg_type(sbi, curseg) \
2013 ((sbi)->segment_count[(curseg)->alloc_type]++)
2014 #define stat_inc_block_count(sbi, curseg) \
2015 ((sbi)->block_count[(curseg)->alloc_type]++)
2016 #define stat_inc_inplace_blocks(sbi) \
2017 (atomic_inc(&(sbi)->inplace_count))
2018 #define stat_inc_seg_count(sbi, type, gc_type) \
2019 do { \
2020 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2021 (si)->tot_segs++; \
2022 if (type == SUM_TYPE_DATA) { \
2023 si->data_segs++; \
2024 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2025 } else { \
2026 si->node_segs++; \
2027 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2028 } \
2029 } while (0)
2030
2031 #define stat_inc_tot_blk_count(si, blks) \
2032 (si->tot_blks += (blks))
2033
2034 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2035 do { \
2036 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2037 stat_inc_tot_blk_count(si, blks); \
2038 si->data_blks += (blks); \
2039 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2040 } while (0)
2041
2042 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2043 do { \
2044 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2045 stat_inc_tot_blk_count(si, blks); \
2046 si->node_blks += (blks); \
2047 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2048 } while (0)
2049
2050 int f2fs_build_stats(struct f2fs_sb_info *);
2051 void f2fs_destroy_stats(struct f2fs_sb_info *);
2052 int __init f2fs_create_root_stats(void);
2053 void f2fs_destroy_root_stats(void);
2054 #else
2055 #define stat_inc_cp_count(si)
2056 #define stat_inc_bg_cp_count(si)
2057 #define stat_inc_call_count(si)
2058 #define stat_inc_bggc_count(si)
2059 #define stat_inc_dirty_inode(sbi, type)
2060 #define stat_dec_dirty_inode(sbi, type)
2061 #define stat_inc_total_hit(sb)
2062 #define stat_inc_rbtree_node_hit(sb)
2063 #define stat_inc_largest_node_hit(sbi)
2064 #define stat_inc_cached_node_hit(sbi)
2065 #define stat_inc_inline_xattr(inode)
2066 #define stat_dec_inline_xattr(inode)
2067 #define stat_inc_inline_inode(inode)
2068 #define stat_dec_inline_inode(inode)
2069 #define stat_inc_inline_dir(inode)
2070 #define stat_dec_inline_dir(inode)
2071 #define stat_inc_seg_type(sbi, curseg)
2072 #define stat_inc_block_count(sbi, curseg)
2073 #define stat_inc_inplace_blocks(sbi)
2074 #define stat_inc_seg_count(sbi, type, gc_type)
2075 #define stat_inc_tot_blk_count(si, blks)
2076 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2077 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2078
2079 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2080 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2081 static inline int __init f2fs_create_root_stats(void) { return 0; }
2082 static inline void f2fs_destroy_root_stats(void) { }
2083 #endif
2084
2085 extern const struct file_operations f2fs_dir_operations;
2086 extern const struct file_operations f2fs_file_operations;
2087 extern const struct inode_operations f2fs_file_inode_operations;
2088 extern const struct address_space_operations f2fs_dblock_aops;
2089 extern const struct address_space_operations f2fs_node_aops;
2090 extern const struct address_space_operations f2fs_meta_aops;
2091 extern const struct inode_operations f2fs_dir_inode_operations;
2092 extern const struct inode_operations f2fs_symlink_inode_operations;
2093 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2094 extern const struct inode_operations f2fs_special_inode_operations;
2095 extern struct kmem_cache *inode_entry_slab;
2096
2097 /*
2098 * inline.c
2099 */
2100 bool f2fs_may_inline_data(struct inode *);
2101 bool f2fs_may_inline_dentry(struct inode *);
2102 void read_inline_data(struct page *, struct page *);
2103 bool truncate_inline_inode(struct page *, u64);
2104 int f2fs_read_inline_data(struct inode *, struct page *);
2105 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2106 int f2fs_convert_inline_inode(struct inode *);
2107 int f2fs_write_inline_data(struct inode *, struct page *);
2108 bool recover_inline_data(struct inode *, struct page *);
2109 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2110 struct f2fs_filename *, struct page **);
2111 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2112 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2113 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2114 nid_t, umode_t);
2115 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2116 struct inode *, struct inode *);
2117 bool f2fs_empty_inline_dir(struct inode *);
2118 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2119 struct f2fs_str *);
2120 int f2fs_inline_data_fiemap(struct inode *,
2121 struct fiemap_extent_info *, __u64, __u64);
2122
2123 /*
2124 * shrinker.c
2125 */
2126 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2127 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2128 void f2fs_join_shrinker(struct f2fs_sb_info *);
2129 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2130
2131 /*
2132 * extent_cache.c
2133 */
2134 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2135 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2136 unsigned int f2fs_destroy_extent_node(struct inode *);
2137 void f2fs_destroy_extent_tree(struct inode *);
2138 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2139 void f2fs_update_extent_cache(struct dnode_of_data *);
2140 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2141 pgoff_t, block_t, unsigned int);
2142 void init_extent_cache_info(struct f2fs_sb_info *);
2143 int __init create_extent_cache(void);
2144 void destroy_extent_cache(void);
2145
2146 /*
2147 * crypto support
2148 */
2149 static inline int f2fs_encrypted_inode(struct inode *inode)
2150 {
2151 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2152 return file_is_encrypt(inode);
2153 #else
2154 return 0;
2155 #endif
2156 }
2157
2158 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2159 {
2160 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2161 file_set_encrypt(inode);
2162 #endif
2163 }
2164
2165 static inline bool f2fs_bio_encrypted(struct bio *bio)
2166 {
2167 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2168 return unlikely(bio->bi_private != NULL);
2169 #else
2170 return false;
2171 #endif
2172 }
2173
2174 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2175 {
2176 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2177 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2178 #else
2179 return 0;
2180 #endif
2181 }
2182
2183 static inline bool f2fs_may_encrypt(struct inode *inode)
2184 {
2185 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2186 umode_t mode = inode->i_mode;
2187
2188 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2189 #else
2190 return 0;
2191 #endif
2192 }
2193
2194 /* crypto_policy.c */
2195 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2196 struct inode *);
2197 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2198 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2199 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2200
2201 /* crypt.c */
2202 extern struct kmem_cache *f2fs_crypt_info_cachep;
2203 bool f2fs_valid_contents_enc_mode(uint32_t);
2204 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2205 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2206 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2207 struct page *f2fs_encrypt(struct inode *, struct page *);
2208 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2209 int f2fs_decrypt_one(struct inode *, struct page *);
2210 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2211
2212 /* crypto_key.c */
2213 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2214 int _f2fs_get_encryption_info(struct inode *inode);
2215
2216 /* crypto_fname.c */
2217 bool f2fs_valid_filenames_enc_mode(uint32_t);
2218 u32 f2fs_fname_crypto_round_up(u32, u32);
2219 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2220 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2221 const struct f2fs_str *, struct f2fs_str *);
2222 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2223 struct f2fs_str *);
2224
2225 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2226 void f2fs_restore_and_release_control_page(struct page **);
2227 void f2fs_restore_control_page(struct page *);
2228
2229 int __init f2fs_init_crypto(void);
2230 int f2fs_crypto_initialize(void);
2231 void f2fs_exit_crypto(void);
2232
2233 int f2fs_has_encryption_key(struct inode *);
2234
2235 static inline int f2fs_get_encryption_info(struct inode *inode)
2236 {
2237 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2238
2239 if (!ci ||
2240 (ci->ci_keyring_key &&
2241 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2242 (1 << KEY_FLAG_REVOKED) |
2243 (1 << KEY_FLAG_DEAD)))))
2244 return _f2fs_get_encryption_info(inode);
2245 return 0;
2246 }
2247
2248 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2249 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2250 int lookup, struct f2fs_filename *);
2251 void f2fs_fname_free_filename(struct f2fs_filename *);
2252 #else
2253 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2254 static inline void f2fs_restore_control_page(struct page *p) { }
2255
2256 static inline int __init f2fs_init_crypto(void) { return 0; }
2257 static inline void f2fs_exit_crypto(void) { }
2258
2259 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2260 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2261 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2262
2263 static inline int f2fs_fname_setup_filename(struct inode *dir,
2264 const struct qstr *iname,
2265 int lookup, struct f2fs_filename *fname)
2266 {
2267 memset(fname, 0, sizeof(struct f2fs_filename));
2268 fname->usr_fname = iname;
2269 fname->disk_name.name = (unsigned char *)iname->name;
2270 fname->disk_name.len = iname->len;
2271 return 0;
2272 }
2273
2274 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2275 #endif
2276 #endif
This page took 0.086692 seconds and 6 git commands to generate.