f2fs: move dio preallocation into f2fs_file_write_iter
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25
26 #ifdef CONFIG_F2FS_CHECK_FS
27 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
28 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
29 #else
30 #define f2fs_bug_on(sbi, condition) \
31 do { \
32 if (unlikely(condition)) { \
33 WARN_ON(1); \
34 set_sbi_flag(sbi, SBI_NEED_FSCK); \
35 } \
36 } while (0)
37 #define f2fs_down_write(x, y) down_write(x)
38 #endif
39
40 /*
41 * For mount options
42 */
43 #define F2FS_MOUNT_BG_GC 0x00000001
44 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
45 #define F2FS_MOUNT_DISCARD 0x00000004
46 #define F2FS_MOUNT_NOHEAP 0x00000008
47 #define F2FS_MOUNT_XATTR_USER 0x00000010
48 #define F2FS_MOUNT_POSIX_ACL 0x00000020
49 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
50 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
51 #define F2FS_MOUNT_INLINE_DATA 0x00000100
52 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
53 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
54 #define F2FS_MOUNT_NOBARRIER 0x00000800
55 #define F2FS_MOUNT_FASTBOOT 0x00001000
56 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
57 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
58 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
59
60 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
61 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
62 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
63
64 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
65 typecheck(unsigned long long, b) && \
66 ((long long)((a) - (b)) > 0))
67
68 typedef u32 block_t; /*
69 * should not change u32, since it is the on-disk block
70 * address format, __le32.
71 */
72 typedef u32 nid_t;
73
74 struct f2fs_mount_info {
75 unsigned int opt;
76 };
77
78 #define F2FS_FEATURE_ENCRYPT 0x0001
79
80 #define F2FS_HAS_FEATURE(sb, mask) \
81 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
82 #define F2FS_SET_FEATURE(sb, mask) \
83 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
84 #define F2FS_CLEAR_FEATURE(sb, mask) \
85 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
86
87 #define CRCPOLY_LE 0xedb88320
88
89 static inline __u32 f2fs_crc32(void *buf, size_t len)
90 {
91 unsigned char *p = (unsigned char *)buf;
92 __u32 crc = F2FS_SUPER_MAGIC;
93 int i;
94
95 while (len--) {
96 crc ^= *p++;
97 for (i = 0; i < 8; i++)
98 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
99 }
100 return crc;
101 }
102
103 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
104 {
105 return f2fs_crc32(buf, buf_size) == blk_crc;
106 }
107
108 /*
109 * For checkpoint manager
110 */
111 enum {
112 NAT_BITMAP,
113 SIT_BITMAP
114 };
115
116 enum {
117 CP_UMOUNT,
118 CP_FASTBOOT,
119 CP_SYNC,
120 CP_RECOVERY,
121 CP_DISCARD,
122 };
123
124 #define DEF_BATCHED_TRIM_SECTIONS 32
125 #define BATCHED_TRIM_SEGMENTS(sbi) \
126 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
127 #define BATCHED_TRIM_BLOCKS(sbi) \
128 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
129 #define DEF_CP_INTERVAL 60 /* 60 secs */
130 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
131
132 struct cp_control {
133 int reason;
134 __u64 trim_start;
135 __u64 trim_end;
136 __u64 trim_minlen;
137 __u64 trimmed;
138 };
139
140 /*
141 * For CP/NAT/SIT/SSA readahead
142 */
143 enum {
144 META_CP,
145 META_NAT,
146 META_SIT,
147 META_SSA,
148 META_POR,
149 };
150
151 /* for the list of ino */
152 enum {
153 ORPHAN_INO, /* for orphan ino list */
154 APPEND_INO, /* for append ino list */
155 UPDATE_INO, /* for update ino list */
156 MAX_INO_ENTRY, /* max. list */
157 };
158
159 struct ino_entry {
160 struct list_head list; /* list head */
161 nid_t ino; /* inode number */
162 };
163
164 /* for the list of inodes to be GCed */
165 struct inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 };
169
170 /* for the list of blockaddresses to be discarded */
171 struct discard_entry {
172 struct list_head list; /* list head */
173 block_t blkaddr; /* block address to be discarded */
174 int len; /* # of consecutive blocks of the discard */
175 };
176
177 /* for the list of fsync inodes, used only during recovery */
178 struct fsync_inode_entry {
179 struct list_head list; /* list head */
180 struct inode *inode; /* vfs inode pointer */
181 block_t blkaddr; /* block address locating the last fsync */
182 block_t last_dentry; /* block address locating the last dentry */
183 block_t last_inode; /* block address locating the last inode */
184 };
185
186 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
187 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
188
189 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
190 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
191 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
192 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
193
194 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
195 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
196
197 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
198 {
199 int before = nats_in_cursum(rs);
200 rs->n_nats = cpu_to_le16(before + i);
201 return before;
202 }
203
204 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
205 {
206 int before = sits_in_cursum(rs);
207 rs->n_sits = cpu_to_le16(before + i);
208 return before;
209 }
210
211 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
212 int type)
213 {
214 if (type == NAT_JOURNAL)
215 return size <= MAX_NAT_JENTRIES(sum);
216 return size <= MAX_SIT_JENTRIES(sum);
217 }
218
219 /*
220 * ioctl commands
221 */
222 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
223 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
224 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
225
226 #define F2FS_IOCTL_MAGIC 0xf5
227 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
228 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
229 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
230 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
231 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
232 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
233 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
234 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
235
236 #define F2FS_IOC_SET_ENCRYPTION_POLICY \
237 _IOR('f', 19, struct f2fs_encryption_policy)
238 #define F2FS_IOC_GET_ENCRYPTION_PWSALT \
239 _IOW('f', 20, __u8[16])
240 #define F2FS_IOC_GET_ENCRYPTION_POLICY \
241 _IOW('f', 21, struct f2fs_encryption_policy)
242
243 /*
244 * should be same as XFS_IOC_GOINGDOWN.
245 * Flags for going down operation used by FS_IOC_GOINGDOWN
246 */
247 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
248 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
249 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
250 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
251 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
252
253 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
254 /*
255 * ioctl commands in 32 bit emulation
256 */
257 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
258 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
259 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
260 #endif
261
262 struct f2fs_defragment {
263 u64 start;
264 u64 len;
265 };
266
267 /*
268 * For INODE and NODE manager
269 */
270 /* for directory operations */
271 struct f2fs_str {
272 unsigned char *name;
273 u32 len;
274 };
275
276 struct f2fs_filename {
277 const struct qstr *usr_fname;
278 struct f2fs_str disk_name;
279 f2fs_hash_t hash;
280 #ifdef CONFIG_F2FS_FS_ENCRYPTION
281 struct f2fs_str crypto_buf;
282 #endif
283 };
284
285 #define FSTR_INIT(n, l) { .name = n, .len = l }
286 #define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
287 #define fname_name(p) ((p)->disk_name.name)
288 #define fname_len(p) ((p)->disk_name.len)
289
290 struct f2fs_dentry_ptr {
291 struct inode *inode;
292 const void *bitmap;
293 struct f2fs_dir_entry *dentry;
294 __u8 (*filename)[F2FS_SLOT_LEN];
295 int max;
296 };
297
298 static inline void make_dentry_ptr(struct inode *inode,
299 struct f2fs_dentry_ptr *d, void *src, int type)
300 {
301 d->inode = inode;
302
303 if (type == 1) {
304 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
305 d->max = NR_DENTRY_IN_BLOCK;
306 d->bitmap = &t->dentry_bitmap;
307 d->dentry = t->dentry;
308 d->filename = t->filename;
309 } else {
310 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
311 d->max = NR_INLINE_DENTRY;
312 d->bitmap = &t->dentry_bitmap;
313 d->dentry = t->dentry;
314 d->filename = t->filename;
315 }
316 }
317
318 /*
319 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
320 * as its node offset to distinguish from index node blocks.
321 * But some bits are used to mark the node block.
322 */
323 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
324 >> OFFSET_BIT_SHIFT)
325 enum {
326 ALLOC_NODE, /* allocate a new node page if needed */
327 LOOKUP_NODE, /* look up a node without readahead */
328 LOOKUP_NODE_RA, /*
329 * look up a node with readahead called
330 * by get_data_block.
331 */
332 };
333
334 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
335
336 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
337
338 /* vector size for gang look-up from extent cache that consists of radix tree */
339 #define EXT_TREE_VEC_SIZE 64
340
341 /* for in-memory extent cache entry */
342 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
343
344 /* number of extent info in extent cache we try to shrink */
345 #define EXTENT_CACHE_SHRINK_NUMBER 128
346
347 struct extent_info {
348 unsigned int fofs; /* start offset in a file */
349 u32 blk; /* start block address of the extent */
350 unsigned int len; /* length of the extent */
351 };
352
353 struct extent_node {
354 struct rb_node rb_node; /* rb node located in rb-tree */
355 struct list_head list; /* node in global extent list of sbi */
356 struct extent_info ei; /* extent info */
357 struct extent_tree *et; /* extent tree pointer */
358 };
359
360 struct extent_tree {
361 nid_t ino; /* inode number */
362 struct rb_root root; /* root of extent info rb-tree */
363 struct extent_node *cached_en; /* recently accessed extent node */
364 struct extent_info largest; /* largested extent info */
365 struct list_head list; /* to be used by sbi->zombie_list */
366 rwlock_t lock; /* protect extent info rb-tree */
367 atomic_t node_cnt; /* # of extent node in rb-tree*/
368 };
369
370 /*
371 * This structure is taken from ext4_map_blocks.
372 *
373 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
374 */
375 #define F2FS_MAP_NEW (1 << BH_New)
376 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
377 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
378 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
379 F2FS_MAP_UNWRITTEN)
380
381 struct f2fs_map_blocks {
382 block_t m_pblk;
383 block_t m_lblk;
384 unsigned int m_len;
385 unsigned int m_flags;
386 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
387 };
388
389 /* for flag in get_data_block */
390 #define F2FS_GET_BLOCK_READ 0
391 #define F2FS_GET_BLOCK_DIO 1
392 #define F2FS_GET_BLOCK_FIEMAP 2
393 #define F2FS_GET_BLOCK_BMAP 3
394 #define F2FS_GET_BLOCK_PRE_DIO 4
395
396 /*
397 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
398 */
399 #define FADVISE_COLD_BIT 0x01
400 #define FADVISE_LOST_PINO_BIT 0x02
401 #define FADVISE_ENCRYPT_BIT 0x04
402 #define FADVISE_ENC_NAME_BIT 0x08
403
404 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
405 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
406 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
407 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
408 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
409 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
410 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
411 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
412 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
413 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
414 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
415
416 /* Encryption algorithms */
417 #define F2FS_ENCRYPTION_MODE_INVALID 0
418 #define F2FS_ENCRYPTION_MODE_AES_256_XTS 1
419 #define F2FS_ENCRYPTION_MODE_AES_256_GCM 2
420 #define F2FS_ENCRYPTION_MODE_AES_256_CBC 3
421 #define F2FS_ENCRYPTION_MODE_AES_256_CTS 4
422
423 #include "f2fs_crypto.h"
424
425 #define DEF_DIR_LEVEL 0
426
427 struct f2fs_inode_info {
428 struct inode vfs_inode; /* serve a vfs inode */
429 unsigned long i_flags; /* keep an inode flags for ioctl */
430 unsigned char i_advise; /* use to give file attribute hints */
431 unsigned char i_dir_level; /* use for dentry level for large dir */
432 unsigned int i_current_depth; /* use only in directory structure */
433 unsigned int i_pino; /* parent inode number */
434 umode_t i_acl_mode; /* keep file acl mode temporarily */
435
436 /* Use below internally in f2fs*/
437 unsigned long flags; /* use to pass per-file flags */
438 struct rw_semaphore i_sem; /* protect fi info */
439 atomic_t dirty_pages; /* # of dirty pages */
440 f2fs_hash_t chash; /* hash value of given file name */
441 unsigned int clevel; /* maximum level of given file name */
442 nid_t i_xattr_nid; /* node id that contains xattrs */
443 unsigned long long xattr_ver; /* cp version of xattr modification */
444
445 struct list_head dirty_list; /* linked in global dirty list */
446 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
447 struct mutex inmem_lock; /* lock for inmemory pages */
448
449 struct extent_tree *extent_tree; /* cached extent_tree entry */
450
451 #ifdef CONFIG_F2FS_FS_ENCRYPTION
452 /* Encryption params */
453 struct f2fs_crypt_info *i_crypt_info;
454 #endif
455 };
456
457 static inline void get_extent_info(struct extent_info *ext,
458 struct f2fs_extent i_ext)
459 {
460 ext->fofs = le32_to_cpu(i_ext.fofs);
461 ext->blk = le32_to_cpu(i_ext.blk);
462 ext->len = le32_to_cpu(i_ext.len);
463 }
464
465 static inline void set_raw_extent(struct extent_info *ext,
466 struct f2fs_extent *i_ext)
467 {
468 i_ext->fofs = cpu_to_le32(ext->fofs);
469 i_ext->blk = cpu_to_le32(ext->blk);
470 i_ext->len = cpu_to_le32(ext->len);
471 }
472
473 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
474 u32 blk, unsigned int len)
475 {
476 ei->fofs = fofs;
477 ei->blk = blk;
478 ei->len = len;
479 }
480
481 static inline bool __is_extent_same(struct extent_info *ei1,
482 struct extent_info *ei2)
483 {
484 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
485 ei1->len == ei2->len);
486 }
487
488 static inline bool __is_extent_mergeable(struct extent_info *back,
489 struct extent_info *front)
490 {
491 return (back->fofs + back->len == front->fofs &&
492 back->blk + back->len == front->blk);
493 }
494
495 static inline bool __is_back_mergeable(struct extent_info *cur,
496 struct extent_info *back)
497 {
498 return __is_extent_mergeable(back, cur);
499 }
500
501 static inline bool __is_front_mergeable(struct extent_info *cur,
502 struct extent_info *front)
503 {
504 return __is_extent_mergeable(cur, front);
505 }
506
507 static inline void __try_update_largest_extent(struct extent_tree *et,
508 struct extent_node *en)
509 {
510 if (en->ei.len > et->largest.len)
511 et->largest = en->ei;
512 }
513
514 struct f2fs_nm_info {
515 block_t nat_blkaddr; /* base disk address of NAT */
516 nid_t max_nid; /* maximum possible node ids */
517 nid_t available_nids; /* maximum available node ids */
518 nid_t next_scan_nid; /* the next nid to be scanned */
519 unsigned int ram_thresh; /* control the memory footprint */
520 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
521 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
522
523 /* NAT cache management */
524 struct radix_tree_root nat_root;/* root of the nat entry cache */
525 struct radix_tree_root nat_set_root;/* root of the nat set cache */
526 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
527 struct list_head nat_entries; /* cached nat entry list (clean) */
528 unsigned int nat_cnt; /* the # of cached nat entries */
529 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
530
531 /* free node ids management */
532 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
533 struct list_head free_nid_list; /* a list for free nids */
534 spinlock_t free_nid_list_lock; /* protect free nid list */
535 unsigned int fcnt; /* the number of free node id */
536 struct mutex build_lock; /* lock for build free nids */
537
538 /* for checkpoint */
539 char *nat_bitmap; /* NAT bitmap pointer */
540 int bitmap_size; /* bitmap size */
541 };
542
543 /*
544 * this structure is used as one of function parameters.
545 * all the information are dedicated to a given direct node block determined
546 * by the data offset in a file.
547 */
548 struct dnode_of_data {
549 struct inode *inode; /* vfs inode pointer */
550 struct page *inode_page; /* its inode page, NULL is possible */
551 struct page *node_page; /* cached direct node page */
552 nid_t nid; /* node id of the direct node block */
553 unsigned int ofs_in_node; /* data offset in the node page */
554 bool inode_page_locked; /* inode page is locked or not */
555 bool node_changed; /* is node block changed */
556 char cur_level; /* level of hole node page */
557 char max_level; /* level of current page located */
558 block_t data_blkaddr; /* block address of the node block */
559 };
560
561 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
562 struct page *ipage, struct page *npage, nid_t nid)
563 {
564 memset(dn, 0, sizeof(*dn));
565 dn->inode = inode;
566 dn->inode_page = ipage;
567 dn->node_page = npage;
568 dn->nid = nid;
569 }
570
571 /*
572 * For SIT manager
573 *
574 * By default, there are 6 active log areas across the whole main area.
575 * When considering hot and cold data separation to reduce cleaning overhead,
576 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
577 * respectively.
578 * In the current design, you should not change the numbers intentionally.
579 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
580 * logs individually according to the underlying devices. (default: 6)
581 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
582 * data and 8 for node logs.
583 */
584 #define NR_CURSEG_DATA_TYPE (3)
585 #define NR_CURSEG_NODE_TYPE (3)
586 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
587
588 enum {
589 CURSEG_HOT_DATA = 0, /* directory entry blocks */
590 CURSEG_WARM_DATA, /* data blocks */
591 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
592 CURSEG_HOT_NODE, /* direct node blocks of directory files */
593 CURSEG_WARM_NODE, /* direct node blocks of normal files */
594 CURSEG_COLD_NODE, /* indirect node blocks */
595 NO_CHECK_TYPE,
596 CURSEG_DIRECT_IO, /* to use for the direct IO path */
597 };
598
599 struct flush_cmd {
600 struct completion wait;
601 struct llist_node llnode;
602 int ret;
603 };
604
605 struct flush_cmd_control {
606 struct task_struct *f2fs_issue_flush; /* flush thread */
607 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
608 struct llist_head issue_list; /* list for command issue */
609 struct llist_node *dispatch_list; /* list for command dispatch */
610 };
611
612 struct f2fs_sm_info {
613 struct sit_info *sit_info; /* whole segment information */
614 struct free_segmap_info *free_info; /* free segment information */
615 struct dirty_seglist_info *dirty_info; /* dirty segment information */
616 struct curseg_info *curseg_array; /* active segment information */
617
618 block_t seg0_blkaddr; /* block address of 0'th segment */
619 block_t main_blkaddr; /* start block address of main area */
620 block_t ssa_blkaddr; /* start block address of SSA area */
621
622 unsigned int segment_count; /* total # of segments */
623 unsigned int main_segments; /* # of segments in main area */
624 unsigned int reserved_segments; /* # of reserved segments */
625 unsigned int ovp_segments; /* # of overprovision segments */
626
627 /* a threshold to reclaim prefree segments */
628 unsigned int rec_prefree_segments;
629
630 /* for small discard management */
631 struct list_head discard_list; /* 4KB discard list */
632 int nr_discards; /* # of discards in the list */
633 int max_discards; /* max. discards to be issued */
634
635 /* for batched trimming */
636 unsigned int trim_sections; /* # of sections to trim */
637
638 struct list_head sit_entry_set; /* sit entry set list */
639
640 unsigned int ipu_policy; /* in-place-update policy */
641 unsigned int min_ipu_util; /* in-place-update threshold */
642 unsigned int min_fsync_blocks; /* threshold for fsync */
643
644 /* for flush command control */
645 struct flush_cmd_control *cmd_control_info;
646
647 };
648
649 /*
650 * For superblock
651 */
652 /*
653 * COUNT_TYPE for monitoring
654 *
655 * f2fs monitors the number of several block types such as on-writeback,
656 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
657 */
658 enum count_type {
659 F2FS_WRITEBACK,
660 F2FS_DIRTY_DENTS,
661 F2FS_DIRTY_DATA,
662 F2FS_DIRTY_NODES,
663 F2FS_DIRTY_META,
664 F2FS_INMEM_PAGES,
665 NR_COUNT_TYPE,
666 };
667
668 /*
669 * The below are the page types of bios used in submit_bio().
670 * The available types are:
671 * DATA User data pages. It operates as async mode.
672 * NODE Node pages. It operates as async mode.
673 * META FS metadata pages such as SIT, NAT, CP.
674 * NR_PAGE_TYPE The number of page types.
675 * META_FLUSH Make sure the previous pages are written
676 * with waiting the bio's completion
677 * ... Only can be used with META.
678 */
679 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
680 enum page_type {
681 DATA,
682 NODE,
683 META,
684 NR_PAGE_TYPE,
685 META_FLUSH,
686 INMEM, /* the below types are used by tracepoints only. */
687 INMEM_DROP,
688 IPU,
689 OPU,
690 };
691
692 struct f2fs_io_info {
693 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
694 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
695 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
696 block_t blk_addr; /* block address to be written */
697 struct page *page; /* page to be written */
698 struct page *encrypted_page; /* encrypted page */
699 };
700
701 #define is_read_io(rw) (((rw) & 1) == READ)
702 struct f2fs_bio_info {
703 struct f2fs_sb_info *sbi; /* f2fs superblock */
704 struct bio *bio; /* bios to merge */
705 sector_t last_block_in_bio; /* last block number */
706 struct f2fs_io_info fio; /* store buffered io info. */
707 struct rw_semaphore io_rwsem; /* blocking op for bio */
708 };
709
710 enum inode_type {
711 DIR_INODE, /* for dirty dir inode */
712 FILE_INODE, /* for dirty regular/symlink inode */
713 NR_INODE_TYPE,
714 };
715
716 /* for inner inode cache management */
717 struct inode_management {
718 struct radix_tree_root ino_root; /* ino entry array */
719 spinlock_t ino_lock; /* for ino entry lock */
720 struct list_head ino_list; /* inode list head */
721 unsigned long ino_num; /* number of entries */
722 };
723
724 /* For s_flag in struct f2fs_sb_info */
725 enum {
726 SBI_IS_DIRTY, /* dirty flag for checkpoint */
727 SBI_IS_CLOSE, /* specify unmounting */
728 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
729 SBI_POR_DOING, /* recovery is doing or not */
730 };
731
732 enum {
733 CP_TIME,
734 REQ_TIME,
735 MAX_TIME,
736 };
737
738 struct f2fs_sb_info {
739 struct super_block *sb; /* pointer to VFS super block */
740 struct proc_dir_entry *s_proc; /* proc entry */
741 struct f2fs_super_block *raw_super; /* raw super block pointer */
742 int valid_super_block; /* valid super block no */
743 int s_flag; /* flags for sbi */
744
745 /* for node-related operations */
746 struct f2fs_nm_info *nm_info; /* node manager */
747 struct inode *node_inode; /* cache node blocks */
748
749 /* for segment-related operations */
750 struct f2fs_sm_info *sm_info; /* segment manager */
751
752 /* for bio operations */
753 struct f2fs_bio_info read_io; /* for read bios */
754 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
755
756 /* for checkpoint */
757 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
758 struct inode *meta_inode; /* cache meta blocks */
759 struct mutex cp_mutex; /* checkpoint procedure lock */
760 struct rw_semaphore cp_rwsem; /* blocking FS operations */
761 struct rw_semaphore node_write; /* locking node writes */
762 struct mutex writepages; /* mutex for writepages() */
763 wait_queue_head_t cp_wait;
764 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
765 long interval_time[MAX_TIME]; /* to store thresholds */
766
767 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
768
769 /* for orphan inode, use 0'th array */
770 unsigned int max_orphans; /* max orphan inodes */
771
772 /* for inode management */
773 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
774 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
775
776 /* for extent tree cache */
777 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
778 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
779 struct list_head extent_list; /* lru list for shrinker */
780 spinlock_t extent_lock; /* locking extent lru list */
781 atomic_t total_ext_tree; /* extent tree count */
782 struct list_head zombie_list; /* extent zombie tree list */
783 atomic_t total_zombie_tree; /* extent zombie tree count */
784 atomic_t total_ext_node; /* extent info count */
785
786 /* basic filesystem units */
787 unsigned int log_sectors_per_block; /* log2 sectors per block */
788 unsigned int log_blocksize; /* log2 block size */
789 unsigned int blocksize; /* block size */
790 unsigned int root_ino_num; /* root inode number*/
791 unsigned int node_ino_num; /* node inode number*/
792 unsigned int meta_ino_num; /* meta inode number*/
793 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
794 unsigned int blocks_per_seg; /* blocks per segment */
795 unsigned int segs_per_sec; /* segments per section */
796 unsigned int secs_per_zone; /* sections per zone */
797 unsigned int total_sections; /* total section count */
798 unsigned int total_node_count; /* total node block count */
799 unsigned int total_valid_node_count; /* valid node block count */
800 unsigned int total_valid_inode_count; /* valid inode count */
801 loff_t max_file_blocks; /* max block index of file */
802 int active_logs; /* # of active logs */
803 int dir_level; /* directory level */
804
805 block_t user_block_count; /* # of user blocks */
806 block_t total_valid_block_count; /* # of valid blocks */
807 block_t alloc_valid_block_count; /* # of allocated blocks */
808 block_t discard_blks; /* discard command candidats */
809 block_t last_valid_block_count; /* for recovery */
810 u32 s_next_generation; /* for NFS support */
811 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
812
813 struct f2fs_mount_info mount_opt; /* mount options */
814
815 /* for cleaning operations */
816 struct mutex gc_mutex; /* mutex for GC */
817 struct f2fs_gc_kthread *gc_thread; /* GC thread */
818 unsigned int cur_victim_sec; /* current victim section num */
819
820 /* maximum # of trials to find a victim segment for SSR and GC */
821 unsigned int max_victim_search;
822
823 /*
824 * for stat information.
825 * one is for the LFS mode, and the other is for the SSR mode.
826 */
827 #ifdef CONFIG_F2FS_STAT_FS
828 struct f2fs_stat_info *stat_info; /* FS status information */
829 unsigned int segment_count[2]; /* # of allocated segments */
830 unsigned int block_count[2]; /* # of allocated blocks */
831 atomic_t inplace_count; /* # of inplace update */
832 atomic64_t total_hit_ext; /* # of lookup extent cache */
833 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
834 atomic64_t read_hit_largest; /* # of hit largest extent node */
835 atomic64_t read_hit_cached; /* # of hit cached extent node */
836 atomic_t inline_xattr; /* # of inline_xattr inodes */
837 atomic_t inline_inode; /* # of inline_data inodes */
838 atomic_t inline_dir; /* # of inline_dentry inodes */
839 int bg_gc; /* background gc calls */
840 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
841 #endif
842 unsigned int last_victim[2]; /* last victim segment # */
843 spinlock_t stat_lock; /* lock for stat operations */
844
845 /* For sysfs suppport */
846 struct kobject s_kobj;
847 struct completion s_kobj_unregister;
848
849 /* For shrinker support */
850 struct list_head s_list;
851 struct mutex umount_mutex;
852 unsigned int shrinker_run_no;
853
854 /* For write statistics */
855 u64 sectors_written_start;
856 u64 kbytes_written;
857 };
858
859 /* For write statistics. Suppose sector size is 512 bytes,
860 * and the return value is in kbytes. s is of struct f2fs_sb_info.
861 */
862 #define BD_PART_WRITTEN(s) \
863 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
864 s->sectors_written_start) >> 1)
865
866 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
867 {
868 sbi->last_time[type] = jiffies;
869 }
870
871 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
872 {
873 struct timespec ts = {sbi->interval_time[type], 0};
874 unsigned long interval = timespec_to_jiffies(&ts);
875
876 return time_after(jiffies, sbi->last_time[type] + interval);
877 }
878
879 static inline bool is_idle(struct f2fs_sb_info *sbi)
880 {
881 struct block_device *bdev = sbi->sb->s_bdev;
882 struct request_queue *q = bdev_get_queue(bdev);
883 struct request_list *rl = &q->root_rl;
884
885 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
886 return 0;
887
888 return f2fs_time_over(sbi, REQ_TIME);
889 }
890
891 /*
892 * Inline functions
893 */
894 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
895 {
896 return container_of(inode, struct f2fs_inode_info, vfs_inode);
897 }
898
899 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
900 {
901 return sb->s_fs_info;
902 }
903
904 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
905 {
906 return F2FS_SB(inode->i_sb);
907 }
908
909 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
910 {
911 return F2FS_I_SB(mapping->host);
912 }
913
914 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
915 {
916 return F2FS_M_SB(page->mapping);
917 }
918
919 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
920 {
921 return (struct f2fs_super_block *)(sbi->raw_super);
922 }
923
924 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
925 {
926 return (struct f2fs_checkpoint *)(sbi->ckpt);
927 }
928
929 static inline struct f2fs_node *F2FS_NODE(struct page *page)
930 {
931 return (struct f2fs_node *)page_address(page);
932 }
933
934 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
935 {
936 return &((struct f2fs_node *)page_address(page))->i;
937 }
938
939 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
940 {
941 return (struct f2fs_nm_info *)(sbi->nm_info);
942 }
943
944 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
945 {
946 return (struct f2fs_sm_info *)(sbi->sm_info);
947 }
948
949 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
950 {
951 return (struct sit_info *)(SM_I(sbi)->sit_info);
952 }
953
954 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
955 {
956 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
957 }
958
959 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
960 {
961 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
962 }
963
964 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
965 {
966 return sbi->meta_inode->i_mapping;
967 }
968
969 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
970 {
971 return sbi->node_inode->i_mapping;
972 }
973
974 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
975 {
976 return sbi->s_flag & (0x01 << type);
977 }
978
979 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
980 {
981 sbi->s_flag |= (0x01 << type);
982 }
983
984 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
985 {
986 sbi->s_flag &= ~(0x01 << type);
987 }
988
989 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
990 {
991 return le64_to_cpu(cp->checkpoint_ver);
992 }
993
994 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
995 {
996 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
997 return ckpt_flags & f;
998 }
999
1000 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1001 {
1002 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1003 ckpt_flags |= f;
1004 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1005 }
1006
1007 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1008 {
1009 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1010 ckpt_flags &= (~f);
1011 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1012 }
1013
1014 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1015 {
1016 down_read(&sbi->cp_rwsem);
1017 }
1018
1019 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1020 {
1021 up_read(&sbi->cp_rwsem);
1022 }
1023
1024 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1025 {
1026 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
1027 }
1028
1029 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1030 {
1031 up_write(&sbi->cp_rwsem);
1032 }
1033
1034 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1035 {
1036 int reason = CP_SYNC;
1037
1038 if (test_opt(sbi, FASTBOOT))
1039 reason = CP_FASTBOOT;
1040 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1041 reason = CP_UMOUNT;
1042 return reason;
1043 }
1044
1045 static inline bool __remain_node_summaries(int reason)
1046 {
1047 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1048 }
1049
1050 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1051 {
1052 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1053 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1054 }
1055
1056 /*
1057 * Check whether the given nid is within node id range.
1058 */
1059 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1060 {
1061 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1062 return -EINVAL;
1063 if (unlikely(nid >= NM_I(sbi)->max_nid))
1064 return -EINVAL;
1065 return 0;
1066 }
1067
1068 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1069
1070 /*
1071 * Check whether the inode has blocks or not
1072 */
1073 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1074 {
1075 if (F2FS_I(inode)->i_xattr_nid)
1076 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1077 else
1078 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1079 }
1080
1081 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1082 {
1083 return ofs == XATTR_NODE_OFFSET;
1084 }
1085
1086 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1087 struct inode *inode, blkcnt_t count)
1088 {
1089 block_t valid_block_count;
1090
1091 spin_lock(&sbi->stat_lock);
1092 valid_block_count =
1093 sbi->total_valid_block_count + (block_t)count;
1094 if (unlikely(valid_block_count > sbi->user_block_count)) {
1095 spin_unlock(&sbi->stat_lock);
1096 return false;
1097 }
1098 inode->i_blocks += count;
1099 sbi->total_valid_block_count = valid_block_count;
1100 sbi->alloc_valid_block_count += (block_t)count;
1101 spin_unlock(&sbi->stat_lock);
1102 return true;
1103 }
1104
1105 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1106 struct inode *inode,
1107 blkcnt_t count)
1108 {
1109 spin_lock(&sbi->stat_lock);
1110 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1111 f2fs_bug_on(sbi, inode->i_blocks < count);
1112 inode->i_blocks -= count;
1113 sbi->total_valid_block_count -= (block_t)count;
1114 spin_unlock(&sbi->stat_lock);
1115 }
1116
1117 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1118 {
1119 atomic_inc(&sbi->nr_pages[count_type]);
1120 set_sbi_flag(sbi, SBI_IS_DIRTY);
1121 }
1122
1123 static inline void inode_inc_dirty_pages(struct inode *inode)
1124 {
1125 atomic_inc(&F2FS_I(inode)->dirty_pages);
1126 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1127 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1128 }
1129
1130 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1131 {
1132 atomic_dec(&sbi->nr_pages[count_type]);
1133 }
1134
1135 static inline void inode_dec_dirty_pages(struct inode *inode)
1136 {
1137 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1138 !S_ISLNK(inode->i_mode))
1139 return;
1140
1141 atomic_dec(&F2FS_I(inode)->dirty_pages);
1142 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1143 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1144 }
1145
1146 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
1147 {
1148 return atomic_read(&sbi->nr_pages[count_type]);
1149 }
1150
1151 static inline int get_dirty_pages(struct inode *inode)
1152 {
1153 return atomic_read(&F2FS_I(inode)->dirty_pages);
1154 }
1155
1156 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1157 {
1158 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1159 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
1160 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
1161 }
1162
1163 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1164 {
1165 return sbi->total_valid_block_count;
1166 }
1167
1168 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1169 {
1170 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1171
1172 /* return NAT or SIT bitmap */
1173 if (flag == NAT_BITMAP)
1174 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1175 else if (flag == SIT_BITMAP)
1176 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1177
1178 return 0;
1179 }
1180
1181 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1182 {
1183 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1184 }
1185
1186 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1187 {
1188 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1189 int offset;
1190
1191 if (__cp_payload(sbi) > 0) {
1192 if (flag == NAT_BITMAP)
1193 return &ckpt->sit_nat_version_bitmap;
1194 else
1195 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1196 } else {
1197 offset = (flag == NAT_BITMAP) ?
1198 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1199 return &ckpt->sit_nat_version_bitmap + offset;
1200 }
1201 }
1202
1203 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1204 {
1205 block_t start_addr;
1206 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1207 unsigned long long ckpt_version = cur_cp_version(ckpt);
1208
1209 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1210
1211 /*
1212 * odd numbered checkpoint should at cp segment 0
1213 * and even segment must be at cp segment 1
1214 */
1215 if (!(ckpt_version & 1))
1216 start_addr += sbi->blocks_per_seg;
1217
1218 return start_addr;
1219 }
1220
1221 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1222 {
1223 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1224 }
1225
1226 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1227 struct inode *inode)
1228 {
1229 block_t valid_block_count;
1230 unsigned int valid_node_count;
1231
1232 spin_lock(&sbi->stat_lock);
1233
1234 valid_block_count = sbi->total_valid_block_count + 1;
1235 if (unlikely(valid_block_count > sbi->user_block_count)) {
1236 spin_unlock(&sbi->stat_lock);
1237 return false;
1238 }
1239
1240 valid_node_count = sbi->total_valid_node_count + 1;
1241 if (unlikely(valid_node_count > sbi->total_node_count)) {
1242 spin_unlock(&sbi->stat_lock);
1243 return false;
1244 }
1245
1246 if (inode)
1247 inode->i_blocks++;
1248
1249 sbi->alloc_valid_block_count++;
1250 sbi->total_valid_node_count++;
1251 sbi->total_valid_block_count++;
1252 spin_unlock(&sbi->stat_lock);
1253
1254 return true;
1255 }
1256
1257 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1258 struct inode *inode)
1259 {
1260 spin_lock(&sbi->stat_lock);
1261
1262 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1263 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1264 f2fs_bug_on(sbi, !inode->i_blocks);
1265
1266 inode->i_blocks--;
1267 sbi->total_valid_node_count--;
1268 sbi->total_valid_block_count--;
1269
1270 spin_unlock(&sbi->stat_lock);
1271 }
1272
1273 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1274 {
1275 return sbi->total_valid_node_count;
1276 }
1277
1278 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1279 {
1280 spin_lock(&sbi->stat_lock);
1281 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1282 sbi->total_valid_inode_count++;
1283 spin_unlock(&sbi->stat_lock);
1284 }
1285
1286 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1287 {
1288 spin_lock(&sbi->stat_lock);
1289 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1290 sbi->total_valid_inode_count--;
1291 spin_unlock(&sbi->stat_lock);
1292 }
1293
1294 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1295 {
1296 return sbi->total_valid_inode_count;
1297 }
1298
1299 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1300 pgoff_t index, bool for_write)
1301 {
1302 if (!for_write)
1303 return grab_cache_page(mapping, index);
1304 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1305 }
1306
1307 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1308 {
1309 char *src_kaddr = kmap(src);
1310 char *dst_kaddr = kmap(dst);
1311
1312 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1313 kunmap(dst);
1314 kunmap(src);
1315 }
1316
1317 static inline void f2fs_put_page(struct page *page, int unlock)
1318 {
1319 if (!page)
1320 return;
1321
1322 if (unlock) {
1323 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1324 unlock_page(page);
1325 }
1326 page_cache_release(page);
1327 }
1328
1329 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1330 {
1331 if (dn->node_page)
1332 f2fs_put_page(dn->node_page, 1);
1333 if (dn->inode_page && dn->node_page != dn->inode_page)
1334 f2fs_put_page(dn->inode_page, 0);
1335 dn->node_page = NULL;
1336 dn->inode_page = NULL;
1337 }
1338
1339 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1340 size_t size)
1341 {
1342 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1343 }
1344
1345 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1346 gfp_t flags)
1347 {
1348 void *entry;
1349
1350 entry = kmem_cache_alloc(cachep, flags);
1351 if (!entry)
1352 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1353 return entry;
1354 }
1355
1356 static inline struct bio *f2fs_bio_alloc(int npages)
1357 {
1358 struct bio *bio;
1359
1360 /* No failure on bio allocation */
1361 bio = bio_alloc(GFP_NOIO, npages);
1362 if (!bio)
1363 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1364 return bio;
1365 }
1366
1367 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1368 unsigned long index, void *item)
1369 {
1370 while (radix_tree_insert(root, index, item))
1371 cond_resched();
1372 }
1373
1374 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1375
1376 static inline bool IS_INODE(struct page *page)
1377 {
1378 struct f2fs_node *p = F2FS_NODE(page);
1379 return RAW_IS_INODE(p);
1380 }
1381
1382 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1383 {
1384 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1385 }
1386
1387 static inline block_t datablock_addr(struct page *node_page,
1388 unsigned int offset)
1389 {
1390 struct f2fs_node *raw_node;
1391 __le32 *addr_array;
1392 raw_node = F2FS_NODE(node_page);
1393 addr_array = blkaddr_in_node(raw_node);
1394 return le32_to_cpu(addr_array[offset]);
1395 }
1396
1397 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1398 {
1399 int mask;
1400
1401 addr += (nr >> 3);
1402 mask = 1 << (7 - (nr & 0x07));
1403 return mask & *addr;
1404 }
1405
1406 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1407 {
1408 int mask;
1409
1410 addr += (nr >> 3);
1411 mask = 1 << (7 - (nr & 0x07));
1412 *addr |= mask;
1413 }
1414
1415 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1416 {
1417 int mask;
1418
1419 addr += (nr >> 3);
1420 mask = 1 << (7 - (nr & 0x07));
1421 *addr &= ~mask;
1422 }
1423
1424 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1425 {
1426 int mask;
1427 int ret;
1428
1429 addr += (nr >> 3);
1430 mask = 1 << (7 - (nr & 0x07));
1431 ret = mask & *addr;
1432 *addr |= mask;
1433 return ret;
1434 }
1435
1436 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1437 {
1438 int mask;
1439 int ret;
1440
1441 addr += (nr >> 3);
1442 mask = 1 << (7 - (nr & 0x07));
1443 ret = mask & *addr;
1444 *addr &= ~mask;
1445 return ret;
1446 }
1447
1448 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1449 {
1450 int mask;
1451
1452 addr += (nr >> 3);
1453 mask = 1 << (7 - (nr & 0x07));
1454 *addr ^= mask;
1455 }
1456
1457 /* used for f2fs_inode_info->flags */
1458 enum {
1459 FI_NEW_INODE, /* indicate newly allocated inode */
1460 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1461 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1462 FI_INC_LINK, /* need to increment i_nlink */
1463 FI_ACL_MODE, /* indicate acl mode */
1464 FI_NO_ALLOC, /* should not allocate any blocks */
1465 FI_FREE_NID, /* free allocated nide */
1466 FI_UPDATE_DIR, /* should update inode block for consistency */
1467 FI_DELAY_IPUT, /* used for the recovery */
1468 FI_NO_EXTENT, /* not to use the extent cache */
1469 FI_INLINE_XATTR, /* used for inline xattr */
1470 FI_INLINE_DATA, /* used for inline data*/
1471 FI_INLINE_DENTRY, /* used for inline dentry */
1472 FI_APPEND_WRITE, /* inode has appended data */
1473 FI_UPDATE_WRITE, /* inode has in-place-update data */
1474 FI_NEED_IPU, /* used for ipu per file */
1475 FI_ATOMIC_FILE, /* indicate atomic file */
1476 FI_VOLATILE_FILE, /* indicate volatile file */
1477 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1478 FI_DROP_CACHE, /* drop dirty page cache */
1479 FI_DATA_EXIST, /* indicate data exists */
1480 FI_INLINE_DOTS, /* indicate inline dot dentries */
1481 FI_DO_DEFRAG, /* indicate defragment is running */
1482 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1483 };
1484
1485 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1486 {
1487 if (!test_bit(flag, &fi->flags))
1488 set_bit(flag, &fi->flags);
1489 }
1490
1491 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1492 {
1493 return test_bit(flag, &fi->flags);
1494 }
1495
1496 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1497 {
1498 if (test_bit(flag, &fi->flags))
1499 clear_bit(flag, &fi->flags);
1500 }
1501
1502 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1503 {
1504 fi->i_acl_mode = mode;
1505 set_inode_flag(fi, FI_ACL_MODE);
1506 }
1507
1508 static inline void get_inline_info(struct f2fs_inode_info *fi,
1509 struct f2fs_inode *ri)
1510 {
1511 if (ri->i_inline & F2FS_INLINE_XATTR)
1512 set_inode_flag(fi, FI_INLINE_XATTR);
1513 if (ri->i_inline & F2FS_INLINE_DATA)
1514 set_inode_flag(fi, FI_INLINE_DATA);
1515 if (ri->i_inline & F2FS_INLINE_DENTRY)
1516 set_inode_flag(fi, FI_INLINE_DENTRY);
1517 if (ri->i_inline & F2FS_DATA_EXIST)
1518 set_inode_flag(fi, FI_DATA_EXIST);
1519 if (ri->i_inline & F2FS_INLINE_DOTS)
1520 set_inode_flag(fi, FI_INLINE_DOTS);
1521 }
1522
1523 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1524 struct f2fs_inode *ri)
1525 {
1526 ri->i_inline = 0;
1527
1528 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1529 ri->i_inline |= F2FS_INLINE_XATTR;
1530 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1531 ri->i_inline |= F2FS_INLINE_DATA;
1532 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1533 ri->i_inline |= F2FS_INLINE_DENTRY;
1534 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1535 ri->i_inline |= F2FS_DATA_EXIST;
1536 if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1537 ri->i_inline |= F2FS_INLINE_DOTS;
1538 }
1539
1540 static inline int f2fs_has_inline_xattr(struct inode *inode)
1541 {
1542 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1543 }
1544
1545 static inline unsigned int addrs_per_inode(struct inode *inode)
1546 {
1547 if (f2fs_has_inline_xattr(inode))
1548 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1549 return DEF_ADDRS_PER_INODE;
1550 }
1551
1552 static inline void *inline_xattr_addr(struct page *page)
1553 {
1554 struct f2fs_inode *ri = F2FS_INODE(page);
1555 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1556 F2FS_INLINE_XATTR_ADDRS]);
1557 }
1558
1559 static inline int inline_xattr_size(struct inode *inode)
1560 {
1561 if (f2fs_has_inline_xattr(inode))
1562 return F2FS_INLINE_XATTR_ADDRS << 2;
1563 else
1564 return 0;
1565 }
1566
1567 static inline int f2fs_has_inline_data(struct inode *inode)
1568 {
1569 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1570 }
1571
1572 static inline void f2fs_clear_inline_inode(struct inode *inode)
1573 {
1574 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1575 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1576 }
1577
1578 static inline int f2fs_exist_data(struct inode *inode)
1579 {
1580 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1581 }
1582
1583 static inline int f2fs_has_inline_dots(struct inode *inode)
1584 {
1585 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1586 }
1587
1588 static inline bool f2fs_is_atomic_file(struct inode *inode)
1589 {
1590 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1591 }
1592
1593 static inline bool f2fs_is_volatile_file(struct inode *inode)
1594 {
1595 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1596 }
1597
1598 static inline bool f2fs_is_first_block_written(struct inode *inode)
1599 {
1600 return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1601 }
1602
1603 static inline bool f2fs_is_drop_cache(struct inode *inode)
1604 {
1605 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1606 }
1607
1608 static inline void *inline_data_addr(struct page *page)
1609 {
1610 struct f2fs_inode *ri = F2FS_INODE(page);
1611 return (void *)&(ri->i_addr[1]);
1612 }
1613
1614 static inline int f2fs_has_inline_dentry(struct inode *inode)
1615 {
1616 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1617 }
1618
1619 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1620 {
1621 if (!f2fs_has_inline_dentry(dir))
1622 kunmap(page);
1623 }
1624
1625 static inline int is_file(struct inode *inode, int type)
1626 {
1627 return F2FS_I(inode)->i_advise & type;
1628 }
1629
1630 static inline void set_file(struct inode *inode, int type)
1631 {
1632 F2FS_I(inode)->i_advise |= type;
1633 }
1634
1635 static inline void clear_file(struct inode *inode, int type)
1636 {
1637 F2FS_I(inode)->i_advise &= ~type;
1638 }
1639
1640 static inline int f2fs_readonly(struct super_block *sb)
1641 {
1642 return sb->s_flags & MS_RDONLY;
1643 }
1644
1645 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1646 {
1647 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1648 }
1649
1650 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1651 {
1652 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1653 sbi->sb->s_flags |= MS_RDONLY;
1654 }
1655
1656 static inline bool is_dot_dotdot(const struct qstr *str)
1657 {
1658 if (str->len == 1 && str->name[0] == '.')
1659 return true;
1660
1661 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1662 return true;
1663
1664 return false;
1665 }
1666
1667 static inline bool f2fs_may_extent_tree(struct inode *inode)
1668 {
1669 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1670 is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
1671 return false;
1672
1673 return S_ISREG(inode->i_mode);
1674 }
1675
1676 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1677 {
1678 void *ret;
1679
1680 ret = kmalloc(size, flags | __GFP_NOWARN);
1681 if (!ret)
1682 ret = __vmalloc(size, flags, PAGE_KERNEL);
1683 return ret;
1684 }
1685
1686 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1687 {
1688 void *ret;
1689
1690 ret = kzalloc(size, flags | __GFP_NOWARN);
1691 if (!ret)
1692 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1693 return ret;
1694 }
1695
1696 #define get_inode_mode(i) \
1697 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1698 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1699
1700 /* get offset of first page in next direct node */
1701 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1702 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1703 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1704 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1705
1706 /*
1707 * file.c
1708 */
1709 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1710 void truncate_data_blocks(struct dnode_of_data *);
1711 int truncate_blocks(struct inode *, u64, bool);
1712 int f2fs_truncate(struct inode *, bool);
1713 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1714 int f2fs_setattr(struct dentry *, struct iattr *);
1715 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1716 int truncate_data_blocks_range(struct dnode_of_data *, int);
1717 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1718 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1719
1720 /*
1721 * inode.c
1722 */
1723 void f2fs_set_inode_flags(struct inode *);
1724 struct inode *f2fs_iget(struct super_block *, unsigned long);
1725 int try_to_free_nats(struct f2fs_sb_info *, int);
1726 int update_inode(struct inode *, struct page *);
1727 int update_inode_page(struct inode *);
1728 int f2fs_write_inode(struct inode *, struct writeback_control *);
1729 void f2fs_evict_inode(struct inode *);
1730 void handle_failed_inode(struct inode *);
1731
1732 /*
1733 * namei.c
1734 */
1735 struct dentry *f2fs_get_parent(struct dentry *child);
1736
1737 /*
1738 * dir.c
1739 */
1740 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1741 void set_de_type(struct f2fs_dir_entry *, umode_t);
1742
1743 struct f2fs_dir_entry *find_target_dentry(struct f2fs_filename *,
1744 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1745 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1746 unsigned int, struct f2fs_str *);
1747 void do_make_empty_dir(struct inode *, struct inode *,
1748 struct f2fs_dentry_ptr *);
1749 struct page *init_inode_metadata(struct inode *, struct inode *,
1750 const struct qstr *, struct page *);
1751 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1752 int room_for_filename(const void *, int, int);
1753 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1754 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1755 struct page **);
1756 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1757 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1758 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1759 struct page *, struct inode *);
1760 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1761 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1762 const struct qstr *, f2fs_hash_t , unsigned int);
1763 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1764 umode_t);
1765 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1766 struct inode *);
1767 int f2fs_do_tmpfile(struct inode *, struct inode *);
1768 bool f2fs_empty_dir(struct inode *);
1769
1770 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1771 {
1772 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1773 inode, inode->i_ino, inode->i_mode);
1774 }
1775
1776 /*
1777 * super.c
1778 */
1779 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1780 int f2fs_sync_fs(struct super_block *, int);
1781 extern __printf(3, 4)
1782 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1783
1784 /*
1785 * hash.c
1786 */
1787 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1788
1789 /*
1790 * node.c
1791 */
1792 struct dnode_of_data;
1793 struct node_info;
1794
1795 bool available_free_memory(struct f2fs_sb_info *, int);
1796 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1797 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1798 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1799 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1800 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1801 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1802 int truncate_inode_blocks(struct inode *, pgoff_t);
1803 int truncate_xattr_node(struct inode *, struct page *);
1804 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1805 int remove_inode_page(struct inode *);
1806 struct page *new_inode_page(struct inode *);
1807 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1808 void ra_node_page(struct f2fs_sb_info *, nid_t);
1809 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1810 struct page *get_node_page_ra(struct page *, int);
1811 void sync_inode_page(struct dnode_of_data *);
1812 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1813 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1814 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1815 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1816 int try_to_free_nids(struct f2fs_sb_info *, int);
1817 void recover_inline_xattr(struct inode *, struct page *);
1818 void recover_xattr_data(struct inode *, struct page *, block_t);
1819 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1820 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1821 struct f2fs_summary_block *);
1822 void flush_nat_entries(struct f2fs_sb_info *);
1823 int build_node_manager(struct f2fs_sb_info *);
1824 void destroy_node_manager(struct f2fs_sb_info *);
1825 int __init create_node_manager_caches(void);
1826 void destroy_node_manager_caches(void);
1827
1828 /*
1829 * segment.c
1830 */
1831 void register_inmem_page(struct inode *, struct page *);
1832 int commit_inmem_pages(struct inode *, bool);
1833 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1834 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1835 int f2fs_issue_flush(struct f2fs_sb_info *);
1836 int create_flush_cmd_control(struct f2fs_sb_info *);
1837 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1838 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1839 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1840 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1841 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1842 void release_discard_addrs(struct f2fs_sb_info *);
1843 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1844 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1845 void allocate_new_segments(struct f2fs_sb_info *);
1846 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1847 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1848 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
1849 void write_meta_page(struct f2fs_sb_info *, struct page *);
1850 void write_node_page(unsigned int, struct f2fs_io_info *);
1851 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
1852 void rewrite_data_page(struct f2fs_io_info *);
1853 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
1854 block_t, block_t, unsigned char, bool);
1855 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1856 block_t, block_t *, struct f2fs_summary *, int);
1857 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
1858 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
1859 void write_data_summaries(struct f2fs_sb_info *, block_t);
1860 void write_node_summaries(struct f2fs_sb_info *, block_t);
1861 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1862 int, unsigned int, int);
1863 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1864 int build_segment_manager(struct f2fs_sb_info *);
1865 void destroy_segment_manager(struct f2fs_sb_info *);
1866 int __init create_segment_manager_caches(void);
1867 void destroy_segment_manager_caches(void);
1868
1869 /*
1870 * checkpoint.c
1871 */
1872 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1873 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1874 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
1875 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
1876 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
1877 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1878 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1879 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1880 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
1881 void release_ino_entry(struct f2fs_sb_info *);
1882 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1883 int acquire_orphan_inode(struct f2fs_sb_info *);
1884 void release_orphan_inode(struct f2fs_sb_info *);
1885 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1886 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1887 int recover_orphan_inodes(struct f2fs_sb_info *);
1888 int get_valid_checkpoint(struct f2fs_sb_info *);
1889 void update_dirty_page(struct inode *, struct page *);
1890 void add_dirty_dir_inode(struct inode *);
1891 void remove_dirty_inode(struct inode *);
1892 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
1893 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1894 void init_ino_entry_info(struct f2fs_sb_info *);
1895 int __init create_checkpoint_caches(void);
1896 void destroy_checkpoint_caches(void);
1897
1898 /*
1899 * data.c
1900 */
1901 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1902 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
1903 struct page *, nid_t, enum page_type, int);
1904 int f2fs_submit_page_bio(struct f2fs_io_info *);
1905 void f2fs_submit_page_mbio(struct f2fs_io_info *);
1906 void set_data_blkaddr(struct dnode_of_data *);
1907 int reserve_new_block(struct dnode_of_data *);
1908 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
1909 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
1910 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1911 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
1912 struct page *find_data_page(struct inode *, pgoff_t);
1913 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
1914 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1915 int do_write_data_page(struct f2fs_io_info *);
1916 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
1917 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1918 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1919 int f2fs_release_page(struct page *, gfp_t);
1920
1921 /*
1922 * gc.c
1923 */
1924 int start_gc_thread(struct f2fs_sb_info *);
1925 void stop_gc_thread(struct f2fs_sb_info *);
1926 block_t start_bidx_of_node(unsigned int, struct inode *);
1927 int f2fs_gc(struct f2fs_sb_info *, bool);
1928 void build_gc_manager(struct f2fs_sb_info *);
1929
1930 /*
1931 * recovery.c
1932 */
1933 int recover_fsync_data(struct f2fs_sb_info *);
1934 bool space_for_roll_forward(struct f2fs_sb_info *);
1935
1936 /*
1937 * debug.c
1938 */
1939 #ifdef CONFIG_F2FS_STAT_FS
1940 struct f2fs_stat_info {
1941 struct list_head stat_list;
1942 struct f2fs_sb_info *sbi;
1943 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1944 int main_area_segs, main_area_sections, main_area_zones;
1945 unsigned long long hit_largest, hit_cached, hit_rbtree;
1946 unsigned long long hit_total, total_ext;
1947 int ext_tree, zombie_tree, ext_node;
1948 int ndirty_node, ndirty_meta;
1949 int ndirty_dent, ndirty_dirs, ndirty_data, ndirty_files;
1950 int nats, dirty_nats, sits, dirty_sits, fnids;
1951 int total_count, utilization;
1952 int bg_gc, inmem_pages, wb_pages;
1953 int inline_xattr, inline_inode, inline_dir;
1954 unsigned int valid_count, valid_node_count, valid_inode_count;
1955 unsigned int bimodal, avg_vblocks;
1956 int util_free, util_valid, util_invalid;
1957 int rsvd_segs, overp_segs;
1958 int dirty_count, node_pages, meta_pages;
1959 int prefree_count, call_count, cp_count, bg_cp_count;
1960 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1961 int bg_node_segs, bg_data_segs;
1962 int tot_blks, data_blks, node_blks;
1963 int bg_data_blks, bg_node_blks;
1964 int curseg[NR_CURSEG_TYPE];
1965 int cursec[NR_CURSEG_TYPE];
1966 int curzone[NR_CURSEG_TYPE];
1967
1968 unsigned int segment_count[2];
1969 unsigned int block_count[2];
1970 unsigned int inplace_count;
1971 unsigned long long base_mem, cache_mem, page_mem;
1972 };
1973
1974 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1975 {
1976 return (struct f2fs_stat_info *)sbi->stat_info;
1977 }
1978
1979 #define stat_inc_cp_count(si) ((si)->cp_count++)
1980 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
1981 #define stat_inc_call_count(si) ((si)->call_count++)
1982 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1983 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
1984 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
1985 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
1986 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
1987 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
1988 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
1989 #define stat_inc_inline_xattr(inode) \
1990 do { \
1991 if (f2fs_has_inline_xattr(inode)) \
1992 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
1993 } while (0)
1994 #define stat_dec_inline_xattr(inode) \
1995 do { \
1996 if (f2fs_has_inline_xattr(inode)) \
1997 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
1998 } while (0)
1999 #define stat_inc_inline_inode(inode) \
2000 do { \
2001 if (f2fs_has_inline_data(inode)) \
2002 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2003 } while (0)
2004 #define stat_dec_inline_inode(inode) \
2005 do { \
2006 if (f2fs_has_inline_data(inode)) \
2007 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2008 } while (0)
2009 #define stat_inc_inline_dir(inode) \
2010 do { \
2011 if (f2fs_has_inline_dentry(inode)) \
2012 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2013 } while (0)
2014 #define stat_dec_inline_dir(inode) \
2015 do { \
2016 if (f2fs_has_inline_dentry(inode)) \
2017 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2018 } while (0)
2019 #define stat_inc_seg_type(sbi, curseg) \
2020 ((sbi)->segment_count[(curseg)->alloc_type]++)
2021 #define stat_inc_block_count(sbi, curseg) \
2022 ((sbi)->block_count[(curseg)->alloc_type]++)
2023 #define stat_inc_inplace_blocks(sbi) \
2024 (atomic_inc(&(sbi)->inplace_count))
2025 #define stat_inc_seg_count(sbi, type, gc_type) \
2026 do { \
2027 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2028 (si)->tot_segs++; \
2029 if (type == SUM_TYPE_DATA) { \
2030 si->data_segs++; \
2031 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2032 } else { \
2033 si->node_segs++; \
2034 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2035 } \
2036 } while (0)
2037
2038 #define stat_inc_tot_blk_count(si, blks) \
2039 (si->tot_blks += (blks))
2040
2041 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2042 do { \
2043 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2044 stat_inc_tot_blk_count(si, blks); \
2045 si->data_blks += (blks); \
2046 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2047 } while (0)
2048
2049 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2050 do { \
2051 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2052 stat_inc_tot_blk_count(si, blks); \
2053 si->node_blks += (blks); \
2054 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2055 } while (0)
2056
2057 int f2fs_build_stats(struct f2fs_sb_info *);
2058 void f2fs_destroy_stats(struct f2fs_sb_info *);
2059 int __init f2fs_create_root_stats(void);
2060 void f2fs_destroy_root_stats(void);
2061 #else
2062 #define stat_inc_cp_count(si)
2063 #define stat_inc_bg_cp_count(si)
2064 #define stat_inc_call_count(si)
2065 #define stat_inc_bggc_count(si)
2066 #define stat_inc_dirty_inode(sbi, type)
2067 #define stat_dec_dirty_inode(sbi, type)
2068 #define stat_inc_total_hit(sb)
2069 #define stat_inc_rbtree_node_hit(sb)
2070 #define stat_inc_largest_node_hit(sbi)
2071 #define stat_inc_cached_node_hit(sbi)
2072 #define stat_inc_inline_xattr(inode)
2073 #define stat_dec_inline_xattr(inode)
2074 #define stat_inc_inline_inode(inode)
2075 #define stat_dec_inline_inode(inode)
2076 #define stat_inc_inline_dir(inode)
2077 #define stat_dec_inline_dir(inode)
2078 #define stat_inc_seg_type(sbi, curseg)
2079 #define stat_inc_block_count(sbi, curseg)
2080 #define stat_inc_inplace_blocks(sbi)
2081 #define stat_inc_seg_count(sbi, type, gc_type)
2082 #define stat_inc_tot_blk_count(si, blks)
2083 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2084 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2085
2086 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2087 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2088 static inline int __init f2fs_create_root_stats(void) { return 0; }
2089 static inline void f2fs_destroy_root_stats(void) { }
2090 #endif
2091
2092 extern const struct file_operations f2fs_dir_operations;
2093 extern const struct file_operations f2fs_file_operations;
2094 extern const struct inode_operations f2fs_file_inode_operations;
2095 extern const struct address_space_operations f2fs_dblock_aops;
2096 extern const struct address_space_operations f2fs_node_aops;
2097 extern const struct address_space_operations f2fs_meta_aops;
2098 extern const struct inode_operations f2fs_dir_inode_operations;
2099 extern const struct inode_operations f2fs_symlink_inode_operations;
2100 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2101 extern const struct inode_operations f2fs_special_inode_operations;
2102 extern struct kmem_cache *inode_entry_slab;
2103
2104 /*
2105 * inline.c
2106 */
2107 bool f2fs_may_inline_data(struct inode *);
2108 bool f2fs_may_inline_dentry(struct inode *);
2109 void read_inline_data(struct page *, struct page *);
2110 bool truncate_inline_inode(struct page *, u64);
2111 int f2fs_read_inline_data(struct inode *, struct page *);
2112 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2113 int f2fs_convert_inline_inode(struct inode *);
2114 int f2fs_write_inline_data(struct inode *, struct page *);
2115 bool recover_inline_data(struct inode *, struct page *);
2116 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2117 struct f2fs_filename *, struct page **);
2118 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
2119 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2120 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2121 nid_t, umode_t);
2122 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2123 struct inode *, struct inode *);
2124 bool f2fs_empty_inline_dir(struct inode *);
2125 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2126 struct f2fs_str *);
2127 int f2fs_inline_data_fiemap(struct inode *,
2128 struct fiemap_extent_info *, __u64, __u64);
2129
2130 /*
2131 * shrinker.c
2132 */
2133 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2134 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2135 void f2fs_join_shrinker(struct f2fs_sb_info *);
2136 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2137
2138 /*
2139 * extent_cache.c
2140 */
2141 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2142 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2143 unsigned int f2fs_destroy_extent_node(struct inode *);
2144 void f2fs_destroy_extent_tree(struct inode *);
2145 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2146 void f2fs_update_extent_cache(struct dnode_of_data *);
2147 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2148 pgoff_t, block_t, unsigned int);
2149 void init_extent_cache_info(struct f2fs_sb_info *);
2150 int __init create_extent_cache(void);
2151 void destroy_extent_cache(void);
2152
2153 /*
2154 * crypto support
2155 */
2156 static inline int f2fs_encrypted_inode(struct inode *inode)
2157 {
2158 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2159 return file_is_encrypt(inode);
2160 #else
2161 return 0;
2162 #endif
2163 }
2164
2165 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2166 {
2167 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2168 file_set_encrypt(inode);
2169 #endif
2170 }
2171
2172 static inline bool f2fs_bio_encrypted(struct bio *bio)
2173 {
2174 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2175 return unlikely(bio->bi_private != NULL);
2176 #else
2177 return false;
2178 #endif
2179 }
2180
2181 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2182 {
2183 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2184 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2185 #else
2186 return 0;
2187 #endif
2188 }
2189
2190 static inline bool f2fs_may_encrypt(struct inode *inode)
2191 {
2192 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2193 umode_t mode = inode->i_mode;
2194
2195 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2196 #else
2197 return 0;
2198 #endif
2199 }
2200
2201 /* crypto_policy.c */
2202 int f2fs_is_child_context_consistent_with_parent(struct inode *,
2203 struct inode *);
2204 int f2fs_inherit_context(struct inode *, struct inode *, struct page *);
2205 int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
2206 int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
2207
2208 /* crypt.c */
2209 extern struct kmem_cache *f2fs_crypt_info_cachep;
2210 bool f2fs_valid_contents_enc_mode(uint32_t);
2211 uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
2212 struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *);
2213 void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *);
2214 struct page *f2fs_encrypt(struct inode *, struct page *);
2215 int f2fs_decrypt(struct f2fs_crypto_ctx *, struct page *);
2216 int f2fs_decrypt_one(struct inode *, struct page *);
2217 void f2fs_end_io_crypto_work(struct f2fs_crypto_ctx *, struct bio *);
2218
2219 /* crypto_key.c */
2220 void f2fs_free_encryption_info(struct inode *, struct f2fs_crypt_info *);
2221 int _f2fs_get_encryption_info(struct inode *inode);
2222
2223 /* crypto_fname.c */
2224 bool f2fs_valid_filenames_enc_mode(uint32_t);
2225 u32 f2fs_fname_crypto_round_up(u32, u32);
2226 int f2fs_fname_crypto_alloc_buffer(struct inode *, u32, struct f2fs_str *);
2227 int f2fs_fname_disk_to_usr(struct inode *, f2fs_hash_t *,
2228 const struct f2fs_str *, struct f2fs_str *);
2229 int f2fs_fname_usr_to_disk(struct inode *, const struct qstr *,
2230 struct f2fs_str *);
2231
2232 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2233 void f2fs_restore_and_release_control_page(struct page **);
2234 void f2fs_restore_control_page(struct page *);
2235
2236 int __init f2fs_init_crypto(void);
2237 int f2fs_crypto_initialize(void);
2238 void f2fs_exit_crypto(void);
2239
2240 int f2fs_has_encryption_key(struct inode *);
2241
2242 static inline int f2fs_get_encryption_info(struct inode *inode)
2243 {
2244 struct f2fs_crypt_info *ci = F2FS_I(inode)->i_crypt_info;
2245
2246 if (!ci ||
2247 (ci->ci_keyring_key &&
2248 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
2249 (1 << KEY_FLAG_REVOKED) |
2250 (1 << KEY_FLAG_DEAD)))))
2251 return _f2fs_get_encryption_info(inode);
2252 return 0;
2253 }
2254
2255 void f2fs_fname_crypto_free_buffer(struct f2fs_str *);
2256 int f2fs_fname_setup_filename(struct inode *, const struct qstr *,
2257 int lookup, struct f2fs_filename *);
2258 void f2fs_fname_free_filename(struct f2fs_filename *);
2259 #else
2260 static inline void f2fs_restore_and_release_control_page(struct page **p) { }
2261 static inline void f2fs_restore_control_page(struct page *p) { }
2262
2263 static inline int __init f2fs_init_crypto(void) { return 0; }
2264 static inline void f2fs_exit_crypto(void) { }
2265
2266 static inline int f2fs_has_encryption_key(struct inode *i) { return 0; }
2267 static inline int f2fs_get_encryption_info(struct inode *i) { return 0; }
2268 static inline void f2fs_fname_crypto_free_buffer(struct f2fs_str *p) { }
2269
2270 static inline int f2fs_fname_setup_filename(struct inode *dir,
2271 const struct qstr *iname,
2272 int lookup, struct f2fs_filename *fname)
2273 {
2274 memset(fname, 0, sizeof(struct f2fs_filename));
2275 fname->usr_fname = iname;
2276 fname->disk_name.name = (unsigned char *)iname->name;
2277 fname->disk_name.len = iname->len;
2278 return 0;
2279 }
2280
2281 static inline void f2fs_fname_free_filename(struct f2fs_filename *fname) { }
2282 #endif
2283 #endif
This page took 0.074086 seconds and 6 git commands to generate.