f2fs: avoid mark_inode_dirty
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/fscrypto.h>
26 #include <crypto/hash.h>
27
28 #ifdef CONFIG_F2FS_CHECK_FS
29 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
30 #else
31 #define f2fs_bug_on(sbi, condition) \
32 do { \
33 if (unlikely(condition)) { \
34 WARN_ON(1); \
35 set_sbi_flag(sbi, SBI_NEED_FSCK); \
36 } \
37 } while (0)
38 #endif
39
40 #ifdef CONFIG_F2FS_FAULT_INJECTION
41 enum {
42 FAULT_KMALLOC,
43 FAULT_PAGE_ALLOC,
44 FAULT_ALLOC_NID,
45 FAULT_ORPHAN,
46 FAULT_BLOCK,
47 FAULT_DIR_DEPTH,
48 FAULT_EVICT_INODE,
49 FAULT_MAX,
50 };
51
52 struct f2fs_fault_info {
53 atomic_t inject_ops;
54 unsigned int inject_rate;
55 unsigned int inject_type;
56 };
57
58 extern struct f2fs_fault_info f2fs_fault;
59 extern char *fault_name[FAULT_MAX];
60 #define IS_FAULT_SET(type) (f2fs_fault.inject_type & (1 << (type)))
61
62 static inline bool time_to_inject(int type)
63 {
64 if (!f2fs_fault.inject_rate)
65 return false;
66 if (type == FAULT_KMALLOC && !IS_FAULT_SET(type))
67 return false;
68 else if (type == FAULT_PAGE_ALLOC && !IS_FAULT_SET(type))
69 return false;
70 else if (type == FAULT_ALLOC_NID && !IS_FAULT_SET(type))
71 return false;
72 else if (type == FAULT_ORPHAN && !IS_FAULT_SET(type))
73 return false;
74 else if (type == FAULT_BLOCK && !IS_FAULT_SET(type))
75 return false;
76 else if (type == FAULT_DIR_DEPTH && !IS_FAULT_SET(type))
77 return false;
78 else if (type == FAULT_EVICT_INODE && !IS_FAULT_SET(type))
79 return false;
80
81 atomic_inc(&f2fs_fault.inject_ops);
82 if (atomic_read(&f2fs_fault.inject_ops) >= f2fs_fault.inject_rate) {
83 atomic_set(&f2fs_fault.inject_ops, 0);
84 printk("%sF2FS-fs : inject %s in %pF\n",
85 KERN_INFO,
86 fault_name[type],
87 __builtin_return_address(0));
88 return true;
89 }
90 return false;
91 }
92 #endif
93
94 /*
95 * For mount options
96 */
97 #define F2FS_MOUNT_BG_GC 0x00000001
98 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
99 #define F2FS_MOUNT_DISCARD 0x00000004
100 #define F2FS_MOUNT_NOHEAP 0x00000008
101 #define F2FS_MOUNT_XATTR_USER 0x00000010
102 #define F2FS_MOUNT_POSIX_ACL 0x00000020
103 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
104 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
105 #define F2FS_MOUNT_INLINE_DATA 0x00000100
106 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
107 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
108 #define F2FS_MOUNT_NOBARRIER 0x00000800
109 #define F2FS_MOUNT_FASTBOOT 0x00001000
110 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
111 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
112 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
113 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
114 #define F2FS_MOUNT_ADAPTIVE 0x00020000
115 #define F2FS_MOUNT_LFS 0x00040000
116
117 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
118 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
119 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
120
121 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
122 typecheck(unsigned long long, b) && \
123 ((long long)((a) - (b)) > 0))
124
125 typedef u32 block_t; /*
126 * should not change u32, since it is the on-disk block
127 * address format, __le32.
128 */
129 typedef u32 nid_t;
130
131 struct f2fs_mount_info {
132 unsigned int opt;
133 };
134
135 #define F2FS_FEATURE_ENCRYPT 0x0001
136 #define F2FS_FEATURE_HMSMR 0x0002
137
138 #define F2FS_HAS_FEATURE(sb, mask) \
139 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
140 #define F2FS_SET_FEATURE(sb, mask) \
141 F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask)
142 #define F2FS_CLEAR_FEATURE(sb, mask) \
143 F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask)
144
145 /*
146 * For checkpoint manager
147 */
148 enum {
149 NAT_BITMAP,
150 SIT_BITMAP
151 };
152
153 enum {
154 CP_UMOUNT,
155 CP_FASTBOOT,
156 CP_SYNC,
157 CP_RECOVERY,
158 CP_DISCARD,
159 };
160
161 #define DEF_BATCHED_TRIM_SECTIONS 32
162 #define BATCHED_TRIM_SEGMENTS(sbi) \
163 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
164 #define BATCHED_TRIM_BLOCKS(sbi) \
165 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
166 #define DEF_CP_INTERVAL 60 /* 60 secs */
167 #define DEF_IDLE_INTERVAL 120 /* 2 mins */
168
169 struct cp_control {
170 int reason;
171 __u64 trim_start;
172 __u64 trim_end;
173 __u64 trim_minlen;
174 __u64 trimmed;
175 };
176
177 /*
178 * For CP/NAT/SIT/SSA readahead
179 */
180 enum {
181 META_CP,
182 META_NAT,
183 META_SIT,
184 META_SSA,
185 META_POR,
186 };
187
188 /* for the list of ino */
189 enum {
190 ORPHAN_INO, /* for orphan ino list */
191 APPEND_INO, /* for append ino list */
192 UPDATE_INO, /* for update ino list */
193 MAX_INO_ENTRY, /* max. list */
194 };
195
196 struct ino_entry {
197 struct list_head list; /* list head */
198 nid_t ino; /* inode number */
199 };
200
201 /* for the list of inodes to be GCed */
202 struct inode_entry {
203 struct list_head list; /* list head */
204 struct inode *inode; /* vfs inode pointer */
205 };
206
207 /* for the list of blockaddresses to be discarded */
208 struct discard_entry {
209 struct list_head list; /* list head */
210 block_t blkaddr; /* block address to be discarded */
211 int len; /* # of consecutive blocks of the discard */
212 };
213
214 /* for the list of fsync inodes, used only during recovery */
215 struct fsync_inode_entry {
216 struct list_head list; /* list head */
217 struct inode *inode; /* vfs inode pointer */
218 block_t blkaddr; /* block address locating the last fsync */
219 block_t last_dentry; /* block address locating the last dentry */
220 };
221
222 #define nats_in_cursum(jnl) (le16_to_cpu(jnl->n_nats))
223 #define sits_in_cursum(jnl) (le16_to_cpu(jnl->n_sits))
224
225 #define nat_in_journal(jnl, i) (jnl->nat_j.entries[i].ne)
226 #define nid_in_journal(jnl, i) (jnl->nat_j.entries[i].nid)
227 #define sit_in_journal(jnl, i) (jnl->sit_j.entries[i].se)
228 #define segno_in_journal(jnl, i) (jnl->sit_j.entries[i].segno)
229
230 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
231 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
232
233 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
234 {
235 int before = nats_in_cursum(journal);
236 journal->n_nats = cpu_to_le16(before + i);
237 return before;
238 }
239
240 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
241 {
242 int before = sits_in_cursum(journal);
243 journal->n_sits = cpu_to_le16(before + i);
244 return before;
245 }
246
247 static inline bool __has_cursum_space(struct f2fs_journal *journal,
248 int size, int type)
249 {
250 if (type == NAT_JOURNAL)
251 return size <= MAX_NAT_JENTRIES(journal);
252 return size <= MAX_SIT_JENTRIES(journal);
253 }
254
255 /*
256 * ioctl commands
257 */
258 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
259 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
260 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
261
262 #define F2FS_IOCTL_MAGIC 0xf5
263 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
264 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
265 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
266 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
267 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
268 #define F2FS_IOC_GARBAGE_COLLECT _IO(F2FS_IOCTL_MAGIC, 6)
269 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
270 #define F2FS_IOC_DEFRAGMENT _IO(F2FS_IOCTL_MAGIC, 8)
271
272 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
273 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
274 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
275
276 /*
277 * should be same as XFS_IOC_GOINGDOWN.
278 * Flags for going down operation used by FS_IOC_GOINGDOWN
279 */
280 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
281 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
282 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
283 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
284 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
285
286 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
287 /*
288 * ioctl commands in 32 bit emulation
289 */
290 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
291 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
292 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
293 #endif
294
295 struct f2fs_defragment {
296 u64 start;
297 u64 len;
298 };
299
300 /*
301 * For INODE and NODE manager
302 */
303 /* for directory operations */
304 struct f2fs_dentry_ptr {
305 struct inode *inode;
306 const void *bitmap;
307 struct f2fs_dir_entry *dentry;
308 __u8 (*filename)[F2FS_SLOT_LEN];
309 int max;
310 };
311
312 static inline void make_dentry_ptr(struct inode *inode,
313 struct f2fs_dentry_ptr *d, void *src, int type)
314 {
315 d->inode = inode;
316
317 if (type == 1) {
318 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
319 d->max = NR_DENTRY_IN_BLOCK;
320 d->bitmap = &t->dentry_bitmap;
321 d->dentry = t->dentry;
322 d->filename = t->filename;
323 } else {
324 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
325 d->max = NR_INLINE_DENTRY;
326 d->bitmap = &t->dentry_bitmap;
327 d->dentry = t->dentry;
328 d->filename = t->filename;
329 }
330 }
331
332 /*
333 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
334 * as its node offset to distinguish from index node blocks.
335 * But some bits are used to mark the node block.
336 */
337 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
338 >> OFFSET_BIT_SHIFT)
339 enum {
340 ALLOC_NODE, /* allocate a new node page if needed */
341 LOOKUP_NODE, /* look up a node without readahead */
342 LOOKUP_NODE_RA, /*
343 * look up a node with readahead called
344 * by get_data_block.
345 */
346 };
347
348 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
349
350 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
351
352 /* vector size for gang look-up from extent cache that consists of radix tree */
353 #define EXT_TREE_VEC_SIZE 64
354
355 /* for in-memory extent cache entry */
356 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
357
358 /* number of extent info in extent cache we try to shrink */
359 #define EXTENT_CACHE_SHRINK_NUMBER 128
360
361 struct extent_info {
362 unsigned int fofs; /* start offset in a file */
363 u32 blk; /* start block address of the extent */
364 unsigned int len; /* length of the extent */
365 };
366
367 struct extent_node {
368 struct rb_node rb_node; /* rb node located in rb-tree */
369 struct list_head list; /* node in global extent list of sbi */
370 struct extent_info ei; /* extent info */
371 struct extent_tree *et; /* extent tree pointer */
372 };
373
374 struct extent_tree {
375 nid_t ino; /* inode number */
376 struct rb_root root; /* root of extent info rb-tree */
377 struct extent_node *cached_en; /* recently accessed extent node */
378 struct extent_info largest; /* largested extent info */
379 struct list_head list; /* to be used by sbi->zombie_list */
380 rwlock_t lock; /* protect extent info rb-tree */
381 atomic_t node_cnt; /* # of extent node in rb-tree*/
382 };
383
384 /*
385 * This structure is taken from ext4_map_blocks.
386 *
387 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
388 */
389 #define F2FS_MAP_NEW (1 << BH_New)
390 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
391 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
392 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
393 F2FS_MAP_UNWRITTEN)
394
395 struct f2fs_map_blocks {
396 block_t m_pblk;
397 block_t m_lblk;
398 unsigned int m_len;
399 unsigned int m_flags;
400 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
401 };
402
403 /* for flag in get_data_block */
404 #define F2FS_GET_BLOCK_READ 0
405 #define F2FS_GET_BLOCK_DIO 1
406 #define F2FS_GET_BLOCK_FIEMAP 2
407 #define F2FS_GET_BLOCK_BMAP 3
408 #define F2FS_GET_BLOCK_PRE_DIO 4
409 #define F2FS_GET_BLOCK_PRE_AIO 5
410
411 /*
412 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
413 */
414 #define FADVISE_COLD_BIT 0x01
415 #define FADVISE_LOST_PINO_BIT 0x02
416 #define FADVISE_ENCRYPT_BIT 0x04
417 #define FADVISE_ENC_NAME_BIT 0x08
418
419 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
420 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
421 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
422 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
423 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
424 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
425 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
426 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
427 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
428 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
429 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
430
431 #define DEF_DIR_LEVEL 0
432
433 struct f2fs_inode_info {
434 struct inode vfs_inode; /* serve a vfs inode */
435 unsigned long i_flags; /* keep an inode flags for ioctl */
436 unsigned char i_advise; /* use to give file attribute hints */
437 unsigned char i_dir_level; /* use for dentry level for large dir */
438 unsigned int i_current_depth; /* use only in directory structure */
439 unsigned int i_pino; /* parent inode number */
440 umode_t i_acl_mode; /* keep file acl mode temporarily */
441
442 /* Use below internally in f2fs*/
443 unsigned long flags; /* use to pass per-file flags */
444 struct rw_semaphore i_sem; /* protect fi info */
445 struct percpu_counter dirty_pages; /* # of dirty pages */
446 f2fs_hash_t chash; /* hash value of given file name */
447 unsigned int clevel; /* maximum level of given file name */
448 nid_t i_xattr_nid; /* node id that contains xattrs */
449 unsigned long long xattr_ver; /* cp version of xattr modification */
450 loff_t last_disk_size; /* lastly written file size */
451
452 struct list_head dirty_list; /* dirty list for dirs and files */
453 struct list_head gdirty_list; /* linked in global dirty list */
454 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
455 struct mutex inmem_lock; /* lock for inmemory pages */
456 struct extent_tree *extent_tree; /* cached extent_tree entry */
457 };
458
459 static inline void get_extent_info(struct extent_info *ext,
460 struct f2fs_extent *i_ext)
461 {
462 ext->fofs = le32_to_cpu(i_ext->fofs);
463 ext->blk = le32_to_cpu(i_ext->blk);
464 ext->len = le32_to_cpu(i_ext->len);
465 }
466
467 static inline void set_raw_extent(struct extent_info *ext,
468 struct f2fs_extent *i_ext)
469 {
470 i_ext->fofs = cpu_to_le32(ext->fofs);
471 i_ext->blk = cpu_to_le32(ext->blk);
472 i_ext->len = cpu_to_le32(ext->len);
473 }
474
475 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
476 u32 blk, unsigned int len)
477 {
478 ei->fofs = fofs;
479 ei->blk = blk;
480 ei->len = len;
481 }
482
483 static inline bool __is_extent_same(struct extent_info *ei1,
484 struct extent_info *ei2)
485 {
486 return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
487 ei1->len == ei2->len);
488 }
489
490 static inline bool __is_extent_mergeable(struct extent_info *back,
491 struct extent_info *front)
492 {
493 return (back->fofs + back->len == front->fofs &&
494 back->blk + back->len == front->blk);
495 }
496
497 static inline bool __is_back_mergeable(struct extent_info *cur,
498 struct extent_info *back)
499 {
500 return __is_extent_mergeable(back, cur);
501 }
502
503 static inline bool __is_front_mergeable(struct extent_info *cur,
504 struct extent_info *front)
505 {
506 return __is_extent_mergeable(cur, front);
507 }
508
509 extern void f2fs_mark_inode_dirty_sync(struct inode *);
510 static inline void __try_update_largest_extent(struct inode *inode,
511 struct extent_tree *et, struct extent_node *en)
512 {
513 if (en->ei.len > et->largest.len) {
514 et->largest = en->ei;
515 f2fs_mark_inode_dirty_sync(inode);
516 }
517 }
518
519 struct f2fs_nm_info {
520 block_t nat_blkaddr; /* base disk address of NAT */
521 nid_t max_nid; /* maximum possible node ids */
522 nid_t available_nids; /* maximum available node ids */
523 nid_t next_scan_nid; /* the next nid to be scanned */
524 unsigned int ram_thresh; /* control the memory footprint */
525 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
526 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
527
528 /* NAT cache management */
529 struct radix_tree_root nat_root;/* root of the nat entry cache */
530 struct radix_tree_root nat_set_root;/* root of the nat set cache */
531 struct percpu_rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
532 struct list_head nat_entries; /* cached nat entry list (clean) */
533 unsigned int nat_cnt; /* the # of cached nat entries */
534 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
535
536 /* free node ids management */
537 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
538 struct list_head free_nid_list; /* a list for free nids */
539 spinlock_t free_nid_list_lock; /* protect free nid list */
540 unsigned int fcnt; /* the number of free node id */
541 struct mutex build_lock; /* lock for build free nids */
542
543 /* for checkpoint */
544 char *nat_bitmap; /* NAT bitmap pointer */
545 int bitmap_size; /* bitmap size */
546 };
547
548 /*
549 * this structure is used as one of function parameters.
550 * all the information are dedicated to a given direct node block determined
551 * by the data offset in a file.
552 */
553 struct dnode_of_data {
554 struct inode *inode; /* vfs inode pointer */
555 struct page *inode_page; /* its inode page, NULL is possible */
556 struct page *node_page; /* cached direct node page */
557 nid_t nid; /* node id of the direct node block */
558 unsigned int ofs_in_node; /* data offset in the node page */
559 bool inode_page_locked; /* inode page is locked or not */
560 bool node_changed; /* is node block changed */
561 char cur_level; /* level of hole node page */
562 char max_level; /* level of current page located */
563 block_t data_blkaddr; /* block address of the node block */
564 };
565
566 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
567 struct page *ipage, struct page *npage, nid_t nid)
568 {
569 memset(dn, 0, sizeof(*dn));
570 dn->inode = inode;
571 dn->inode_page = ipage;
572 dn->node_page = npage;
573 dn->nid = nid;
574 }
575
576 /*
577 * For SIT manager
578 *
579 * By default, there are 6 active log areas across the whole main area.
580 * When considering hot and cold data separation to reduce cleaning overhead,
581 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
582 * respectively.
583 * In the current design, you should not change the numbers intentionally.
584 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
585 * logs individually according to the underlying devices. (default: 6)
586 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
587 * data and 8 for node logs.
588 */
589 #define NR_CURSEG_DATA_TYPE (3)
590 #define NR_CURSEG_NODE_TYPE (3)
591 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
592
593 enum {
594 CURSEG_HOT_DATA = 0, /* directory entry blocks */
595 CURSEG_WARM_DATA, /* data blocks */
596 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
597 CURSEG_HOT_NODE, /* direct node blocks of directory files */
598 CURSEG_WARM_NODE, /* direct node blocks of normal files */
599 CURSEG_COLD_NODE, /* indirect node blocks */
600 NO_CHECK_TYPE,
601 CURSEG_DIRECT_IO, /* to use for the direct IO path */
602 };
603
604 struct flush_cmd {
605 struct completion wait;
606 struct llist_node llnode;
607 int ret;
608 };
609
610 struct flush_cmd_control {
611 struct task_struct *f2fs_issue_flush; /* flush thread */
612 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
613 atomic_t submit_flush; /* # of issued flushes */
614 struct llist_head issue_list; /* list for command issue */
615 struct llist_node *dispatch_list; /* list for command dispatch */
616 };
617
618 struct f2fs_sm_info {
619 struct sit_info *sit_info; /* whole segment information */
620 struct free_segmap_info *free_info; /* free segment information */
621 struct dirty_seglist_info *dirty_info; /* dirty segment information */
622 struct curseg_info *curseg_array; /* active segment information */
623
624 block_t seg0_blkaddr; /* block address of 0'th segment */
625 block_t main_blkaddr; /* start block address of main area */
626 block_t ssa_blkaddr; /* start block address of SSA area */
627
628 unsigned int segment_count; /* total # of segments */
629 unsigned int main_segments; /* # of segments in main area */
630 unsigned int reserved_segments; /* # of reserved segments */
631 unsigned int ovp_segments; /* # of overprovision segments */
632
633 /* a threshold to reclaim prefree segments */
634 unsigned int rec_prefree_segments;
635
636 /* for small discard management */
637 struct list_head discard_list; /* 4KB discard list */
638 int nr_discards; /* # of discards in the list */
639 int max_discards; /* max. discards to be issued */
640
641 /* for batched trimming */
642 unsigned int trim_sections; /* # of sections to trim */
643
644 struct list_head sit_entry_set; /* sit entry set list */
645
646 unsigned int ipu_policy; /* in-place-update policy */
647 unsigned int min_ipu_util; /* in-place-update threshold */
648 unsigned int min_fsync_blocks; /* threshold for fsync */
649
650 /* for flush command control */
651 struct flush_cmd_control *cmd_control_info;
652
653 };
654
655 /*
656 * For superblock
657 */
658 /*
659 * COUNT_TYPE for monitoring
660 *
661 * f2fs monitors the number of several block types such as on-writeback,
662 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
663 */
664 enum count_type {
665 F2FS_DIRTY_DENTS,
666 F2FS_DIRTY_DATA,
667 F2FS_DIRTY_NODES,
668 F2FS_DIRTY_META,
669 F2FS_INMEM_PAGES,
670 F2FS_DIRTY_IMETA,
671 NR_COUNT_TYPE,
672 };
673
674 /*
675 * The below are the page types of bios used in submit_bio().
676 * The available types are:
677 * DATA User data pages. It operates as async mode.
678 * NODE Node pages. It operates as async mode.
679 * META FS metadata pages such as SIT, NAT, CP.
680 * NR_PAGE_TYPE The number of page types.
681 * META_FLUSH Make sure the previous pages are written
682 * with waiting the bio's completion
683 * ... Only can be used with META.
684 */
685 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
686 enum page_type {
687 DATA,
688 NODE,
689 META,
690 NR_PAGE_TYPE,
691 META_FLUSH,
692 INMEM, /* the below types are used by tracepoints only. */
693 INMEM_DROP,
694 INMEM_REVOKE,
695 IPU,
696 OPU,
697 };
698
699 struct f2fs_io_info {
700 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
701 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
702 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
703 block_t new_blkaddr; /* new block address to be written */
704 block_t old_blkaddr; /* old block address before Cow */
705 struct page *page; /* page to be written */
706 struct page *encrypted_page; /* encrypted page */
707 };
708
709 #define is_read_io(rw) (((rw) & 1) == READ)
710 struct f2fs_bio_info {
711 struct f2fs_sb_info *sbi; /* f2fs superblock */
712 struct bio *bio; /* bios to merge */
713 sector_t last_block_in_bio; /* last block number */
714 struct f2fs_io_info fio; /* store buffered io info. */
715 struct rw_semaphore io_rwsem; /* blocking op for bio */
716 };
717
718 enum inode_type {
719 DIR_INODE, /* for dirty dir inode */
720 FILE_INODE, /* for dirty regular/symlink inode */
721 DIRTY_META, /* for all dirtied inode metadata */
722 NR_INODE_TYPE,
723 };
724
725 /* for inner inode cache management */
726 struct inode_management {
727 struct radix_tree_root ino_root; /* ino entry array */
728 spinlock_t ino_lock; /* for ino entry lock */
729 struct list_head ino_list; /* inode list head */
730 unsigned long ino_num; /* number of entries */
731 };
732
733 /* For s_flag in struct f2fs_sb_info */
734 enum {
735 SBI_IS_DIRTY, /* dirty flag for checkpoint */
736 SBI_IS_CLOSE, /* specify unmounting */
737 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
738 SBI_POR_DOING, /* recovery is doing or not */
739 SBI_NEED_SB_WRITE, /* need to recover superblock */
740 };
741
742 enum {
743 CP_TIME,
744 REQ_TIME,
745 MAX_TIME,
746 };
747
748 #ifdef CONFIG_F2FS_FS_ENCRYPTION
749 #define F2FS_KEY_DESC_PREFIX "f2fs:"
750 #define F2FS_KEY_DESC_PREFIX_SIZE 5
751 #endif
752 struct f2fs_sb_info {
753 struct super_block *sb; /* pointer to VFS super block */
754 struct proc_dir_entry *s_proc; /* proc entry */
755 struct f2fs_super_block *raw_super; /* raw super block pointer */
756 int valid_super_block; /* valid super block no */
757 int s_flag; /* flags for sbi */
758
759 #ifdef CONFIG_F2FS_FS_ENCRYPTION
760 u8 key_prefix[F2FS_KEY_DESC_PREFIX_SIZE];
761 u8 key_prefix_size;
762 #endif
763 /* for node-related operations */
764 struct f2fs_nm_info *nm_info; /* node manager */
765 struct inode *node_inode; /* cache node blocks */
766
767 /* for segment-related operations */
768 struct f2fs_sm_info *sm_info; /* segment manager */
769
770 /* for bio operations */
771 struct f2fs_bio_info read_io; /* for read bios */
772 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
773 struct mutex wio_mutex[NODE + 1]; /* bio ordering for NODE/DATA */
774
775 /* for checkpoint */
776 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
777 struct inode *meta_inode; /* cache meta blocks */
778 struct mutex cp_mutex; /* checkpoint procedure lock */
779 struct percpu_rw_semaphore cp_rwsem; /* blocking FS operations */
780 struct rw_semaphore node_write; /* locking node writes */
781 wait_queue_head_t cp_wait;
782 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
783 long interval_time[MAX_TIME]; /* to store thresholds */
784
785 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
786
787 /* for orphan inode, use 0'th array */
788 unsigned int max_orphans; /* max orphan inodes */
789
790 /* for inode management */
791 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
792 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
793
794 /* for extent tree cache */
795 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
796 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
797 struct list_head extent_list; /* lru list for shrinker */
798 spinlock_t extent_lock; /* locking extent lru list */
799 atomic_t total_ext_tree; /* extent tree count */
800 struct list_head zombie_list; /* extent zombie tree list */
801 atomic_t total_zombie_tree; /* extent zombie tree count */
802 atomic_t total_ext_node; /* extent info count */
803
804 /* basic filesystem units */
805 unsigned int log_sectors_per_block; /* log2 sectors per block */
806 unsigned int log_blocksize; /* log2 block size */
807 unsigned int blocksize; /* block size */
808 unsigned int root_ino_num; /* root inode number*/
809 unsigned int node_ino_num; /* node inode number*/
810 unsigned int meta_ino_num; /* meta inode number*/
811 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
812 unsigned int blocks_per_seg; /* blocks per segment */
813 unsigned int segs_per_sec; /* segments per section */
814 unsigned int secs_per_zone; /* sections per zone */
815 unsigned int total_sections; /* total section count */
816 unsigned int total_node_count; /* total node block count */
817 unsigned int total_valid_node_count; /* valid node block count */
818 loff_t max_file_blocks; /* max block index of file */
819 int active_logs; /* # of active logs */
820 int dir_level; /* directory level */
821
822 block_t user_block_count; /* # of user blocks */
823 block_t total_valid_block_count; /* # of valid blocks */
824 block_t discard_blks; /* discard command candidats */
825 block_t last_valid_block_count; /* for recovery */
826 u32 s_next_generation; /* for NFS support */
827 atomic_t nr_wb_bios; /* # of writeback bios */
828
829 /* # of pages, see count_type */
830 struct percpu_counter nr_pages[NR_COUNT_TYPE];
831 /* # of allocated blocks */
832 struct percpu_counter alloc_valid_block_count;
833
834 /* valid inode count */
835 struct percpu_counter total_valid_inode_count;
836
837 struct f2fs_mount_info mount_opt; /* mount options */
838
839 /* for cleaning operations */
840 struct mutex gc_mutex; /* mutex for GC */
841 struct f2fs_gc_kthread *gc_thread; /* GC thread */
842 unsigned int cur_victim_sec; /* current victim section num */
843
844 /* maximum # of trials to find a victim segment for SSR and GC */
845 unsigned int max_victim_search;
846
847 /*
848 * for stat information.
849 * one is for the LFS mode, and the other is for the SSR mode.
850 */
851 #ifdef CONFIG_F2FS_STAT_FS
852 struct f2fs_stat_info *stat_info; /* FS status information */
853 unsigned int segment_count[2]; /* # of allocated segments */
854 unsigned int block_count[2]; /* # of allocated blocks */
855 atomic_t inplace_count; /* # of inplace update */
856 atomic64_t total_hit_ext; /* # of lookup extent cache */
857 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
858 atomic64_t read_hit_largest; /* # of hit largest extent node */
859 atomic64_t read_hit_cached; /* # of hit cached extent node */
860 atomic_t inline_xattr; /* # of inline_xattr inodes */
861 atomic_t inline_inode; /* # of inline_data inodes */
862 atomic_t inline_dir; /* # of inline_dentry inodes */
863 int bg_gc; /* background gc calls */
864 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
865 #endif
866 unsigned int last_victim[2]; /* last victim segment # */
867 spinlock_t stat_lock; /* lock for stat operations */
868
869 /* For sysfs suppport */
870 struct kobject s_kobj;
871 struct completion s_kobj_unregister;
872
873 /* For shrinker support */
874 struct list_head s_list;
875 struct mutex umount_mutex;
876 unsigned int shrinker_run_no;
877
878 /* For write statistics */
879 u64 sectors_written_start;
880 u64 kbytes_written;
881
882 /* Reference to checksum algorithm driver via cryptoapi */
883 struct crypto_shash *s_chksum_driver;
884 };
885
886 /* For write statistics. Suppose sector size is 512 bytes,
887 * and the return value is in kbytes. s is of struct f2fs_sb_info.
888 */
889 #define BD_PART_WRITTEN(s) \
890 (((u64)part_stat_read(s->sb->s_bdev->bd_part, sectors[1]) - \
891 s->sectors_written_start) >> 1)
892
893 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
894 {
895 sbi->last_time[type] = jiffies;
896 }
897
898 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
899 {
900 struct timespec ts = {sbi->interval_time[type], 0};
901 unsigned long interval = timespec_to_jiffies(&ts);
902
903 return time_after(jiffies, sbi->last_time[type] + interval);
904 }
905
906 static inline bool is_idle(struct f2fs_sb_info *sbi)
907 {
908 struct block_device *bdev = sbi->sb->s_bdev;
909 struct request_queue *q = bdev_get_queue(bdev);
910 struct request_list *rl = &q->root_rl;
911
912 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
913 return 0;
914
915 return f2fs_time_over(sbi, REQ_TIME);
916 }
917
918 /*
919 * Inline functions
920 */
921 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
922 unsigned int length)
923 {
924 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
925 u32 *ctx = (u32 *)shash_desc_ctx(shash);
926 int err;
927
928 shash->tfm = sbi->s_chksum_driver;
929 shash->flags = 0;
930 *ctx = F2FS_SUPER_MAGIC;
931
932 err = crypto_shash_update(shash, address, length);
933 BUG_ON(err);
934
935 return *ctx;
936 }
937
938 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
939 void *buf, size_t buf_size)
940 {
941 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
942 }
943
944 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
945 {
946 return container_of(inode, struct f2fs_inode_info, vfs_inode);
947 }
948
949 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
950 {
951 return sb->s_fs_info;
952 }
953
954 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
955 {
956 return F2FS_SB(inode->i_sb);
957 }
958
959 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
960 {
961 return F2FS_I_SB(mapping->host);
962 }
963
964 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
965 {
966 return F2FS_M_SB(page->mapping);
967 }
968
969 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
970 {
971 return (struct f2fs_super_block *)(sbi->raw_super);
972 }
973
974 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
975 {
976 return (struct f2fs_checkpoint *)(sbi->ckpt);
977 }
978
979 static inline struct f2fs_node *F2FS_NODE(struct page *page)
980 {
981 return (struct f2fs_node *)page_address(page);
982 }
983
984 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
985 {
986 return &((struct f2fs_node *)page_address(page))->i;
987 }
988
989 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
990 {
991 return (struct f2fs_nm_info *)(sbi->nm_info);
992 }
993
994 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
995 {
996 return (struct f2fs_sm_info *)(sbi->sm_info);
997 }
998
999 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1000 {
1001 return (struct sit_info *)(SM_I(sbi)->sit_info);
1002 }
1003
1004 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1005 {
1006 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1007 }
1008
1009 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1010 {
1011 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1012 }
1013
1014 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1015 {
1016 return sbi->meta_inode->i_mapping;
1017 }
1018
1019 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1020 {
1021 return sbi->node_inode->i_mapping;
1022 }
1023
1024 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1025 {
1026 return sbi->s_flag & (0x01 << type);
1027 }
1028
1029 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1030 {
1031 sbi->s_flag |= (0x01 << type);
1032 }
1033
1034 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1035 {
1036 sbi->s_flag &= ~(0x01 << type);
1037 }
1038
1039 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1040 {
1041 return le64_to_cpu(cp->checkpoint_ver);
1042 }
1043
1044 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1045 {
1046 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1047 return ckpt_flags & f;
1048 }
1049
1050 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1051 {
1052 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1053 ckpt_flags |= f;
1054 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1055 }
1056
1057 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1058 {
1059 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1060 ckpt_flags &= (~f);
1061 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1062 }
1063
1064 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1065 {
1066 percpu_down_read(&sbi->cp_rwsem);
1067 }
1068
1069 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1070 {
1071 percpu_up_read(&sbi->cp_rwsem);
1072 }
1073
1074 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1075 {
1076 percpu_down_write(&sbi->cp_rwsem);
1077 }
1078
1079 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1080 {
1081 percpu_up_write(&sbi->cp_rwsem);
1082 }
1083
1084 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1085 {
1086 int reason = CP_SYNC;
1087
1088 if (test_opt(sbi, FASTBOOT))
1089 reason = CP_FASTBOOT;
1090 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1091 reason = CP_UMOUNT;
1092 return reason;
1093 }
1094
1095 static inline bool __remain_node_summaries(int reason)
1096 {
1097 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
1098 }
1099
1100 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1101 {
1102 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
1103 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
1104 }
1105
1106 /*
1107 * Check whether the given nid is within node id range.
1108 */
1109 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1110 {
1111 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1112 return -EINVAL;
1113 if (unlikely(nid >= NM_I(sbi)->max_nid))
1114 return -EINVAL;
1115 return 0;
1116 }
1117
1118 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
1119
1120 /*
1121 * Check whether the inode has blocks or not
1122 */
1123 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1124 {
1125 if (F2FS_I(inode)->i_xattr_nid)
1126 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
1127 else
1128 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
1129 }
1130
1131 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1132 {
1133 return ofs == XATTR_NODE_OFFSET;
1134 }
1135
1136 static inline void f2fs_i_blocks_write(struct inode *, blkcnt_t, bool);
1137 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
1138 struct inode *inode, blkcnt_t *count)
1139 {
1140 #ifdef CONFIG_F2FS_FAULT_INJECTION
1141 if (time_to_inject(FAULT_BLOCK))
1142 return false;
1143 #endif
1144 spin_lock(&sbi->stat_lock);
1145 sbi->total_valid_block_count += (block_t)(*count);
1146 if (unlikely(sbi->total_valid_block_count > sbi->user_block_count)) {
1147 *count -= sbi->total_valid_block_count - sbi->user_block_count;
1148 sbi->total_valid_block_count = sbi->user_block_count;
1149 if (!*count) {
1150 spin_unlock(&sbi->stat_lock);
1151 return false;
1152 }
1153 }
1154 spin_unlock(&sbi->stat_lock);
1155
1156 f2fs_i_blocks_write(inode, *count, true);
1157 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1158 return true;
1159 }
1160
1161 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1162 struct inode *inode,
1163 blkcnt_t count)
1164 {
1165 spin_lock(&sbi->stat_lock);
1166 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1167 f2fs_bug_on(sbi, inode->i_blocks < count);
1168 sbi->total_valid_block_count -= (block_t)count;
1169 spin_unlock(&sbi->stat_lock);
1170 f2fs_i_blocks_write(inode, count, false);
1171 }
1172
1173 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1174 {
1175 percpu_counter_inc(&sbi->nr_pages[count_type]);
1176 set_sbi_flag(sbi, SBI_IS_DIRTY);
1177 }
1178
1179 static inline void inode_inc_dirty_pages(struct inode *inode)
1180 {
1181 percpu_counter_inc(&F2FS_I(inode)->dirty_pages);
1182 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1183 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1184 }
1185
1186 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1187 {
1188 percpu_counter_dec(&sbi->nr_pages[count_type]);
1189 }
1190
1191 static inline void inode_dec_dirty_pages(struct inode *inode)
1192 {
1193 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1194 !S_ISLNK(inode->i_mode))
1195 return;
1196
1197 percpu_counter_dec(&F2FS_I(inode)->dirty_pages);
1198 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1199 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1200 }
1201
1202 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1203 {
1204 return percpu_counter_sum_positive(&sbi->nr_pages[count_type]);
1205 }
1206
1207 static inline s64 get_dirty_pages(struct inode *inode)
1208 {
1209 return percpu_counter_sum_positive(&F2FS_I(inode)->dirty_pages);
1210 }
1211
1212 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1213 {
1214 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1215 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1216 sbi->log_blocks_per_seg;
1217
1218 return segs / sbi->segs_per_sec;
1219 }
1220
1221 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1222 {
1223 return sbi->total_valid_block_count;
1224 }
1225
1226 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1227 {
1228 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1229
1230 /* return NAT or SIT bitmap */
1231 if (flag == NAT_BITMAP)
1232 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1233 else if (flag == SIT_BITMAP)
1234 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1235
1236 return 0;
1237 }
1238
1239 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1240 {
1241 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1242 }
1243
1244 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1245 {
1246 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1247 int offset;
1248
1249 if (__cp_payload(sbi) > 0) {
1250 if (flag == NAT_BITMAP)
1251 return &ckpt->sit_nat_version_bitmap;
1252 else
1253 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1254 } else {
1255 offset = (flag == NAT_BITMAP) ?
1256 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1257 return &ckpt->sit_nat_version_bitmap + offset;
1258 }
1259 }
1260
1261 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1262 {
1263 block_t start_addr;
1264 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1265 unsigned long long ckpt_version = cur_cp_version(ckpt);
1266
1267 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1268
1269 /*
1270 * odd numbered checkpoint should at cp segment 0
1271 * and even segment must be at cp segment 1
1272 */
1273 if (!(ckpt_version & 1))
1274 start_addr += sbi->blocks_per_seg;
1275
1276 return start_addr;
1277 }
1278
1279 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1280 {
1281 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1282 }
1283
1284 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1285 struct inode *inode)
1286 {
1287 block_t valid_block_count;
1288 unsigned int valid_node_count;
1289
1290 spin_lock(&sbi->stat_lock);
1291
1292 valid_block_count = sbi->total_valid_block_count + 1;
1293 if (unlikely(valid_block_count > sbi->user_block_count)) {
1294 spin_unlock(&sbi->stat_lock);
1295 return false;
1296 }
1297
1298 valid_node_count = sbi->total_valid_node_count + 1;
1299 if (unlikely(valid_node_count > sbi->total_node_count)) {
1300 spin_unlock(&sbi->stat_lock);
1301 return false;
1302 }
1303
1304 if (inode)
1305 f2fs_i_blocks_write(inode, 1, true);
1306
1307 sbi->total_valid_node_count++;
1308 sbi->total_valid_block_count++;
1309 spin_unlock(&sbi->stat_lock);
1310
1311 percpu_counter_inc(&sbi->alloc_valid_block_count);
1312 return true;
1313 }
1314
1315 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1316 struct inode *inode)
1317 {
1318 spin_lock(&sbi->stat_lock);
1319
1320 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1321 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1322 f2fs_bug_on(sbi, !inode->i_blocks);
1323
1324 f2fs_i_blocks_write(inode, 1, false);
1325 sbi->total_valid_node_count--;
1326 sbi->total_valid_block_count--;
1327
1328 spin_unlock(&sbi->stat_lock);
1329 }
1330
1331 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1332 {
1333 return sbi->total_valid_node_count;
1334 }
1335
1336 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1337 {
1338 percpu_counter_inc(&sbi->total_valid_inode_count);
1339 }
1340
1341 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1342 {
1343 percpu_counter_dec(&sbi->total_valid_inode_count);
1344 }
1345
1346 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1347 {
1348 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1349 }
1350
1351 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1352 pgoff_t index, bool for_write)
1353 {
1354 #ifdef CONFIG_F2FS_FAULT_INJECTION
1355 struct page *page = find_lock_page(mapping, index);
1356 if (page)
1357 return page;
1358
1359 if (time_to_inject(FAULT_PAGE_ALLOC))
1360 return NULL;
1361 #endif
1362 if (!for_write)
1363 return grab_cache_page(mapping, index);
1364 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1365 }
1366
1367 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1368 {
1369 char *src_kaddr = kmap(src);
1370 char *dst_kaddr = kmap(dst);
1371
1372 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1373 kunmap(dst);
1374 kunmap(src);
1375 }
1376
1377 static inline void f2fs_put_page(struct page *page, int unlock)
1378 {
1379 if (!page)
1380 return;
1381
1382 if (unlock) {
1383 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1384 unlock_page(page);
1385 }
1386 put_page(page);
1387 }
1388
1389 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1390 {
1391 if (dn->node_page)
1392 f2fs_put_page(dn->node_page, 1);
1393 if (dn->inode_page && dn->node_page != dn->inode_page)
1394 f2fs_put_page(dn->inode_page, 0);
1395 dn->node_page = NULL;
1396 dn->inode_page = NULL;
1397 }
1398
1399 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1400 size_t size)
1401 {
1402 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1403 }
1404
1405 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1406 gfp_t flags)
1407 {
1408 void *entry;
1409
1410 entry = kmem_cache_alloc(cachep, flags);
1411 if (!entry)
1412 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1413 return entry;
1414 }
1415
1416 static inline struct bio *f2fs_bio_alloc(int npages)
1417 {
1418 struct bio *bio;
1419
1420 /* No failure on bio allocation */
1421 bio = bio_alloc(GFP_NOIO, npages);
1422 if (!bio)
1423 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1424 return bio;
1425 }
1426
1427 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1428 unsigned long index, void *item)
1429 {
1430 while (radix_tree_insert(root, index, item))
1431 cond_resched();
1432 }
1433
1434 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1435
1436 static inline bool IS_INODE(struct page *page)
1437 {
1438 struct f2fs_node *p = F2FS_NODE(page);
1439 return RAW_IS_INODE(p);
1440 }
1441
1442 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1443 {
1444 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1445 }
1446
1447 static inline block_t datablock_addr(struct page *node_page,
1448 unsigned int offset)
1449 {
1450 struct f2fs_node *raw_node;
1451 __le32 *addr_array;
1452 raw_node = F2FS_NODE(node_page);
1453 addr_array = blkaddr_in_node(raw_node);
1454 return le32_to_cpu(addr_array[offset]);
1455 }
1456
1457 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1458 {
1459 int mask;
1460
1461 addr += (nr >> 3);
1462 mask = 1 << (7 - (nr & 0x07));
1463 return mask & *addr;
1464 }
1465
1466 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1467 {
1468 int mask;
1469
1470 addr += (nr >> 3);
1471 mask = 1 << (7 - (nr & 0x07));
1472 *addr |= mask;
1473 }
1474
1475 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1476 {
1477 int mask;
1478
1479 addr += (nr >> 3);
1480 mask = 1 << (7 - (nr & 0x07));
1481 *addr &= ~mask;
1482 }
1483
1484 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1485 {
1486 int mask;
1487 int ret;
1488
1489 addr += (nr >> 3);
1490 mask = 1 << (7 - (nr & 0x07));
1491 ret = mask & *addr;
1492 *addr |= mask;
1493 return ret;
1494 }
1495
1496 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1497 {
1498 int mask;
1499 int ret;
1500
1501 addr += (nr >> 3);
1502 mask = 1 << (7 - (nr & 0x07));
1503 ret = mask & *addr;
1504 *addr &= ~mask;
1505 return ret;
1506 }
1507
1508 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1509 {
1510 int mask;
1511
1512 addr += (nr >> 3);
1513 mask = 1 << (7 - (nr & 0x07));
1514 *addr ^= mask;
1515 }
1516
1517 /* used for f2fs_inode_info->flags */
1518 enum {
1519 FI_NEW_INODE, /* indicate newly allocated inode */
1520 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1521 FI_AUTO_RECOVER, /* indicate inode is recoverable */
1522 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1523 FI_INC_LINK, /* need to increment i_nlink */
1524 FI_ACL_MODE, /* indicate acl mode */
1525 FI_NO_ALLOC, /* should not allocate any blocks */
1526 FI_FREE_NID, /* free allocated nide */
1527 FI_NO_EXTENT, /* not to use the extent cache */
1528 FI_INLINE_XATTR, /* used for inline xattr */
1529 FI_INLINE_DATA, /* used for inline data*/
1530 FI_INLINE_DENTRY, /* used for inline dentry */
1531 FI_APPEND_WRITE, /* inode has appended data */
1532 FI_UPDATE_WRITE, /* inode has in-place-update data */
1533 FI_NEED_IPU, /* used for ipu per file */
1534 FI_ATOMIC_FILE, /* indicate atomic file */
1535 FI_VOLATILE_FILE, /* indicate volatile file */
1536 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
1537 FI_DROP_CACHE, /* drop dirty page cache */
1538 FI_DATA_EXIST, /* indicate data exists */
1539 FI_INLINE_DOTS, /* indicate inline dot dentries */
1540 FI_DO_DEFRAG, /* indicate defragment is running */
1541 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
1542 };
1543
1544 static inline void __mark_inode_dirty_flag(struct inode *inode,
1545 int flag, bool set)
1546 {
1547 switch (flag) {
1548 case FI_INLINE_XATTR:
1549 case FI_INLINE_DATA:
1550 case FI_INLINE_DENTRY:
1551 if (set)
1552 return;
1553 case FI_DATA_EXIST:
1554 case FI_INLINE_DOTS:
1555 f2fs_mark_inode_dirty_sync(inode);
1556 }
1557 }
1558
1559 static inline void set_inode_flag(struct inode *inode, int flag)
1560 {
1561 if (!test_bit(flag, &F2FS_I(inode)->flags))
1562 set_bit(flag, &F2FS_I(inode)->flags);
1563 __mark_inode_dirty_flag(inode, flag, true);
1564 }
1565
1566 static inline int is_inode_flag_set(struct inode *inode, int flag)
1567 {
1568 return test_bit(flag, &F2FS_I(inode)->flags);
1569 }
1570
1571 static inline void clear_inode_flag(struct inode *inode, int flag)
1572 {
1573 if (test_bit(flag, &F2FS_I(inode)->flags))
1574 clear_bit(flag, &F2FS_I(inode)->flags);
1575 __mark_inode_dirty_flag(inode, flag, false);
1576 }
1577
1578 static inline void set_acl_inode(struct inode *inode, umode_t mode)
1579 {
1580 F2FS_I(inode)->i_acl_mode = mode;
1581 set_inode_flag(inode, FI_ACL_MODE);
1582 f2fs_mark_inode_dirty_sync(inode);
1583 }
1584
1585 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
1586 {
1587 if (inc)
1588 inc_nlink(inode);
1589 else
1590 drop_nlink(inode);
1591 f2fs_mark_inode_dirty_sync(inode);
1592 }
1593
1594 static inline void f2fs_i_blocks_write(struct inode *inode,
1595 blkcnt_t diff, bool add)
1596 {
1597 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1598 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1599
1600 inode->i_blocks = add ? inode->i_blocks + diff :
1601 inode->i_blocks - diff;
1602 f2fs_mark_inode_dirty_sync(inode);
1603 if (clean || recover)
1604 set_inode_flag(inode, FI_AUTO_RECOVER);
1605 }
1606
1607 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
1608 {
1609 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
1610 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
1611
1612 if (i_size_read(inode) == i_size)
1613 return;
1614
1615 i_size_write(inode, i_size);
1616 f2fs_mark_inode_dirty_sync(inode);
1617 if (clean || recover)
1618 set_inode_flag(inode, FI_AUTO_RECOVER);
1619 }
1620
1621 static inline bool f2fs_skip_inode_update(struct inode *inode)
1622 {
1623 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER))
1624 return false;
1625 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
1626 }
1627
1628 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
1629 {
1630 F2FS_I(inode)->i_current_depth = depth;
1631 f2fs_mark_inode_dirty_sync(inode);
1632 }
1633
1634 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
1635 {
1636 F2FS_I(inode)->i_xattr_nid = xnid;
1637 f2fs_mark_inode_dirty_sync(inode);
1638 }
1639
1640 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
1641 {
1642 F2FS_I(inode)->i_pino = pino;
1643 f2fs_mark_inode_dirty_sync(inode);
1644 }
1645
1646 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
1647 {
1648 struct f2fs_inode_info *fi = F2FS_I(inode);
1649
1650 if (ri->i_inline & F2FS_INLINE_XATTR)
1651 set_bit(FI_INLINE_XATTR, &fi->flags);
1652 if (ri->i_inline & F2FS_INLINE_DATA)
1653 set_bit(FI_INLINE_DATA, &fi->flags);
1654 if (ri->i_inline & F2FS_INLINE_DENTRY)
1655 set_bit(FI_INLINE_DENTRY, &fi->flags);
1656 if (ri->i_inline & F2FS_DATA_EXIST)
1657 set_bit(FI_DATA_EXIST, &fi->flags);
1658 if (ri->i_inline & F2FS_INLINE_DOTS)
1659 set_bit(FI_INLINE_DOTS, &fi->flags);
1660 }
1661
1662 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
1663 {
1664 ri->i_inline = 0;
1665
1666 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
1667 ri->i_inline |= F2FS_INLINE_XATTR;
1668 if (is_inode_flag_set(inode, FI_INLINE_DATA))
1669 ri->i_inline |= F2FS_INLINE_DATA;
1670 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
1671 ri->i_inline |= F2FS_INLINE_DENTRY;
1672 if (is_inode_flag_set(inode, FI_DATA_EXIST))
1673 ri->i_inline |= F2FS_DATA_EXIST;
1674 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
1675 ri->i_inline |= F2FS_INLINE_DOTS;
1676 }
1677
1678 static inline int f2fs_has_inline_xattr(struct inode *inode)
1679 {
1680 return is_inode_flag_set(inode, FI_INLINE_XATTR);
1681 }
1682
1683 static inline unsigned int addrs_per_inode(struct inode *inode)
1684 {
1685 if (f2fs_has_inline_xattr(inode))
1686 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1687 return DEF_ADDRS_PER_INODE;
1688 }
1689
1690 static inline void *inline_xattr_addr(struct page *page)
1691 {
1692 struct f2fs_inode *ri = F2FS_INODE(page);
1693 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1694 F2FS_INLINE_XATTR_ADDRS]);
1695 }
1696
1697 static inline int inline_xattr_size(struct inode *inode)
1698 {
1699 if (f2fs_has_inline_xattr(inode))
1700 return F2FS_INLINE_XATTR_ADDRS << 2;
1701 else
1702 return 0;
1703 }
1704
1705 static inline int f2fs_has_inline_data(struct inode *inode)
1706 {
1707 return is_inode_flag_set(inode, FI_INLINE_DATA);
1708 }
1709
1710 static inline void f2fs_clear_inline_inode(struct inode *inode)
1711 {
1712 clear_inode_flag(inode, FI_INLINE_DATA);
1713 clear_inode_flag(inode, FI_DATA_EXIST);
1714 }
1715
1716 static inline int f2fs_exist_data(struct inode *inode)
1717 {
1718 return is_inode_flag_set(inode, FI_DATA_EXIST);
1719 }
1720
1721 static inline int f2fs_has_inline_dots(struct inode *inode)
1722 {
1723 return is_inode_flag_set(inode, FI_INLINE_DOTS);
1724 }
1725
1726 static inline bool f2fs_is_atomic_file(struct inode *inode)
1727 {
1728 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
1729 }
1730
1731 static inline bool f2fs_is_volatile_file(struct inode *inode)
1732 {
1733 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
1734 }
1735
1736 static inline bool f2fs_is_first_block_written(struct inode *inode)
1737 {
1738 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
1739 }
1740
1741 static inline bool f2fs_is_drop_cache(struct inode *inode)
1742 {
1743 return is_inode_flag_set(inode, FI_DROP_CACHE);
1744 }
1745
1746 static inline void *inline_data_addr(struct page *page)
1747 {
1748 struct f2fs_inode *ri = F2FS_INODE(page);
1749 return (void *)&(ri->i_addr[1]);
1750 }
1751
1752 static inline int f2fs_has_inline_dentry(struct inode *inode)
1753 {
1754 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
1755 }
1756
1757 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1758 {
1759 if (!f2fs_has_inline_dentry(dir))
1760 kunmap(page);
1761 }
1762
1763 static inline int is_file(struct inode *inode, int type)
1764 {
1765 return F2FS_I(inode)->i_advise & type;
1766 }
1767
1768 static inline void set_file(struct inode *inode, int type)
1769 {
1770 F2FS_I(inode)->i_advise |= type;
1771 f2fs_mark_inode_dirty_sync(inode);
1772 }
1773
1774 static inline void clear_file(struct inode *inode, int type)
1775 {
1776 F2FS_I(inode)->i_advise &= ~type;
1777 f2fs_mark_inode_dirty_sync(inode);
1778 }
1779
1780 static inline int f2fs_readonly(struct super_block *sb)
1781 {
1782 return sb->s_flags & MS_RDONLY;
1783 }
1784
1785 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1786 {
1787 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1788 }
1789
1790 static inline bool is_dot_dotdot(const struct qstr *str)
1791 {
1792 if (str->len == 1 && str->name[0] == '.')
1793 return true;
1794
1795 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
1796 return true;
1797
1798 return false;
1799 }
1800
1801 static inline bool f2fs_may_extent_tree(struct inode *inode)
1802 {
1803 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
1804 is_inode_flag_set(inode, FI_NO_EXTENT))
1805 return false;
1806
1807 return S_ISREG(inode->i_mode);
1808 }
1809
1810 static inline void *f2fs_kmalloc(size_t size, gfp_t flags)
1811 {
1812 #ifdef CONFIG_F2FS_FAULT_INJECTION
1813 if (time_to_inject(FAULT_KMALLOC))
1814 return NULL;
1815 #endif
1816 return kmalloc(size, flags);
1817 }
1818
1819 static inline void *f2fs_kvmalloc(size_t size, gfp_t flags)
1820 {
1821 void *ret;
1822
1823 ret = kmalloc(size, flags | __GFP_NOWARN);
1824 if (!ret)
1825 ret = __vmalloc(size, flags, PAGE_KERNEL);
1826 return ret;
1827 }
1828
1829 static inline void *f2fs_kvzalloc(size_t size, gfp_t flags)
1830 {
1831 void *ret;
1832
1833 ret = kzalloc(size, flags | __GFP_NOWARN);
1834 if (!ret)
1835 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
1836 return ret;
1837 }
1838
1839 #define get_inode_mode(i) \
1840 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
1841 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1842
1843 /* get offset of first page in next direct node */
1844 #define PGOFS_OF_NEXT_DNODE(pgofs, inode) \
1845 ((pgofs < ADDRS_PER_INODE(inode)) ? ADDRS_PER_INODE(inode) : \
1846 (pgofs - ADDRS_PER_INODE(inode) + ADDRS_PER_BLOCK) / \
1847 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode))
1848
1849 /*
1850 * file.c
1851 */
1852 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1853 void truncate_data_blocks(struct dnode_of_data *);
1854 int truncate_blocks(struct inode *, u64, bool);
1855 int f2fs_truncate(struct inode *);
1856 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1857 int f2fs_setattr(struct dentry *, struct iattr *);
1858 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1859 int truncate_data_blocks_range(struct dnode_of_data *, int);
1860 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1861 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1862
1863 /*
1864 * inode.c
1865 */
1866 void f2fs_set_inode_flags(struct inode *);
1867 struct inode *f2fs_iget(struct super_block *, unsigned long);
1868 int try_to_free_nats(struct f2fs_sb_info *, int);
1869 int update_inode(struct inode *, struct page *);
1870 int update_inode_page(struct inode *);
1871 int f2fs_write_inode(struct inode *, struct writeback_control *);
1872 void f2fs_evict_inode(struct inode *);
1873 void handle_failed_inode(struct inode *);
1874
1875 /*
1876 * namei.c
1877 */
1878 struct dentry *f2fs_get_parent(struct dentry *child);
1879
1880 /*
1881 * dir.c
1882 */
1883 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1884 void set_de_type(struct f2fs_dir_entry *, umode_t);
1885 unsigned char get_de_type(struct f2fs_dir_entry *);
1886 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *,
1887 f2fs_hash_t, int *, struct f2fs_dentry_ptr *);
1888 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1889 unsigned int, struct fscrypt_str *);
1890 void do_make_empty_dir(struct inode *, struct inode *,
1891 struct f2fs_dentry_ptr *);
1892 struct page *init_inode_metadata(struct inode *, struct inode *,
1893 const struct qstr *, struct page *);
1894 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1895 int room_for_filename(const void *, int, int);
1896 void f2fs_drop_nlink(struct inode *, struct inode *);
1897 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1898 struct page **);
1899 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1900 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1901 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1902 struct page *, struct inode *);
1903 int update_dent_inode(struct inode *, struct inode *, const struct qstr *);
1904 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1905 const struct qstr *, f2fs_hash_t , unsigned int);
1906 int f2fs_add_regular_entry(struct inode *, const struct qstr *,
1907 struct inode *, nid_t, umode_t);
1908 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1909 umode_t);
1910 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1911 struct inode *);
1912 int f2fs_do_tmpfile(struct inode *, struct inode *);
1913 bool f2fs_empty_dir(struct inode *);
1914
1915 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1916 {
1917 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1918 inode, inode->i_ino, inode->i_mode);
1919 }
1920
1921 /*
1922 * super.c
1923 */
1924 int f2fs_inode_dirtied(struct inode *);
1925 void f2fs_inode_synced(struct inode *);
1926 int f2fs_commit_super(struct f2fs_sb_info *, bool);
1927 int f2fs_sync_fs(struct super_block *, int);
1928 extern __printf(3, 4)
1929 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1930 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
1931
1932 /*
1933 * hash.c
1934 */
1935 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1936
1937 /*
1938 * node.c
1939 */
1940 struct dnode_of_data;
1941 struct node_info;
1942
1943 bool available_free_memory(struct f2fs_sb_info *, int);
1944 int need_dentry_mark(struct f2fs_sb_info *, nid_t);
1945 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1946 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1947 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1948 pgoff_t get_next_page_offset(struct dnode_of_data *, pgoff_t);
1949 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1950 int truncate_inode_blocks(struct inode *, pgoff_t);
1951 int truncate_xattr_node(struct inode *, struct page *);
1952 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1953 int remove_inode_page(struct inode *);
1954 struct page *new_inode_page(struct inode *);
1955 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1956 void ra_node_page(struct f2fs_sb_info *, nid_t);
1957 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1958 struct page *get_node_page_ra(struct page *, int);
1959 void move_node_page(struct page *, int);
1960 int fsync_node_pages(struct f2fs_sb_info *, struct inode *,
1961 struct writeback_control *, bool);
1962 int sync_node_pages(struct f2fs_sb_info *, struct writeback_control *);
1963 void build_free_nids(struct f2fs_sb_info *);
1964 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1965 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1966 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1967 int try_to_free_nids(struct f2fs_sb_info *, int);
1968 void recover_inline_xattr(struct inode *, struct page *);
1969 void recover_xattr_data(struct inode *, struct page *, block_t);
1970 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1971 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1972 struct f2fs_summary_block *);
1973 void flush_nat_entries(struct f2fs_sb_info *);
1974 int build_node_manager(struct f2fs_sb_info *);
1975 void destroy_node_manager(struct f2fs_sb_info *);
1976 int __init create_node_manager_caches(void);
1977 void destroy_node_manager_caches(void);
1978
1979 /*
1980 * segment.c
1981 */
1982 void register_inmem_page(struct inode *, struct page *);
1983 void drop_inmem_pages(struct inode *);
1984 int commit_inmem_pages(struct inode *);
1985 void f2fs_balance_fs(struct f2fs_sb_info *, bool);
1986 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1987 int f2fs_issue_flush(struct f2fs_sb_info *);
1988 int create_flush_cmd_control(struct f2fs_sb_info *);
1989 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1990 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1991 bool is_checkpointed_data(struct f2fs_sb_info *, block_t);
1992 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1993 void clear_prefree_segments(struct f2fs_sb_info *, struct cp_control *);
1994 void release_discard_addrs(struct f2fs_sb_info *);
1995 bool discard_next_dnode(struct f2fs_sb_info *, block_t);
1996 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1997 void allocate_new_segments(struct f2fs_sb_info *);
1998 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1999 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
2000 void update_meta_page(struct f2fs_sb_info *, void *, block_t);
2001 void write_meta_page(struct f2fs_sb_info *, struct page *);
2002 void write_node_page(unsigned int, struct f2fs_io_info *);
2003 void write_data_page(struct dnode_of_data *, struct f2fs_io_info *);
2004 void rewrite_data_page(struct f2fs_io_info *);
2005 void __f2fs_replace_block(struct f2fs_sb_info *, struct f2fs_summary *,
2006 block_t, block_t, bool, bool);
2007 void f2fs_replace_block(struct f2fs_sb_info *, struct dnode_of_data *,
2008 block_t, block_t, unsigned char, bool, bool);
2009 void allocate_data_block(struct f2fs_sb_info *, struct page *,
2010 block_t, block_t *, struct f2fs_summary *, int);
2011 void f2fs_wait_on_page_writeback(struct page *, enum page_type, bool);
2012 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *, block_t);
2013 void write_data_summaries(struct f2fs_sb_info *, block_t);
2014 void write_node_summaries(struct f2fs_sb_info *, block_t);
2015 int lookup_journal_in_cursum(struct f2fs_journal *, int, unsigned int, int);
2016 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
2017 int build_segment_manager(struct f2fs_sb_info *);
2018 void destroy_segment_manager(struct f2fs_sb_info *);
2019 int __init create_segment_manager_caches(void);
2020 void destroy_segment_manager_caches(void);
2021
2022 /*
2023 * checkpoint.c
2024 */
2025 void f2fs_stop_checkpoint(struct f2fs_sb_info *, bool);
2026 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
2027 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
2028 struct page *get_tmp_page(struct f2fs_sb_info *, pgoff_t);
2029 bool is_valid_blkaddr(struct f2fs_sb_info *, block_t, int);
2030 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int, bool);
2031 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
2032 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
2033 void add_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2034 void remove_ino_entry(struct f2fs_sb_info *, nid_t, int type);
2035 void release_ino_entry(struct f2fs_sb_info *, bool);
2036 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
2037 int f2fs_sync_inode_meta(struct f2fs_sb_info *);
2038 int acquire_orphan_inode(struct f2fs_sb_info *);
2039 void release_orphan_inode(struct f2fs_sb_info *);
2040 void add_orphan_inode(struct inode *);
2041 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
2042 int recover_orphan_inodes(struct f2fs_sb_info *);
2043 int get_valid_checkpoint(struct f2fs_sb_info *);
2044 void update_dirty_page(struct inode *, struct page *);
2045 void remove_dirty_inode(struct inode *);
2046 int sync_dirty_inodes(struct f2fs_sb_info *, enum inode_type);
2047 int write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
2048 void init_ino_entry_info(struct f2fs_sb_info *);
2049 int __init create_checkpoint_caches(void);
2050 void destroy_checkpoint_caches(void);
2051
2052 /*
2053 * data.c
2054 */
2055 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
2056 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *, struct inode *,
2057 struct page *, nid_t, enum page_type, int);
2058 void f2fs_flush_merged_bios(struct f2fs_sb_info *);
2059 int f2fs_submit_page_bio(struct f2fs_io_info *);
2060 void f2fs_submit_page_mbio(struct f2fs_io_info *);
2061 void set_data_blkaddr(struct dnode_of_data *);
2062 void f2fs_update_data_blkaddr(struct dnode_of_data *, block_t);
2063 int reserve_new_blocks(struct dnode_of_data *, blkcnt_t);
2064 int reserve_new_block(struct dnode_of_data *);
2065 int f2fs_get_block(struct dnode_of_data *, pgoff_t);
2066 ssize_t f2fs_preallocate_blocks(struct kiocb *, struct iov_iter *);
2067 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
2068 struct page *get_read_data_page(struct inode *, pgoff_t, int, bool);
2069 struct page *find_data_page(struct inode *, pgoff_t);
2070 struct page *get_lock_data_page(struct inode *, pgoff_t, bool);
2071 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
2072 int do_write_data_page(struct f2fs_io_info *);
2073 int f2fs_map_blocks(struct inode *, struct f2fs_map_blocks *, int, int);
2074 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
2075 void f2fs_set_page_dirty_nobuffers(struct page *);
2076 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
2077 int f2fs_release_page(struct page *, gfp_t);
2078
2079 /*
2080 * gc.c
2081 */
2082 int start_gc_thread(struct f2fs_sb_info *);
2083 void stop_gc_thread(struct f2fs_sb_info *);
2084 block_t start_bidx_of_node(unsigned int, struct inode *);
2085 int f2fs_gc(struct f2fs_sb_info *, bool);
2086 void build_gc_manager(struct f2fs_sb_info *);
2087
2088 /*
2089 * recovery.c
2090 */
2091 int recover_fsync_data(struct f2fs_sb_info *, bool);
2092 bool space_for_roll_forward(struct f2fs_sb_info *);
2093
2094 /*
2095 * debug.c
2096 */
2097 #ifdef CONFIG_F2FS_STAT_FS
2098 struct f2fs_stat_info {
2099 struct list_head stat_list;
2100 struct f2fs_sb_info *sbi;
2101 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2102 int main_area_segs, main_area_sections, main_area_zones;
2103 unsigned long long hit_largest, hit_cached, hit_rbtree;
2104 unsigned long long hit_total, total_ext;
2105 int ext_tree, zombie_tree, ext_node;
2106 s64 ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, inmem_pages;
2107 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2108 int nats, dirty_nats, sits, dirty_sits, fnids;
2109 int total_count, utilization;
2110 int bg_gc, wb_bios;
2111 int inline_xattr, inline_inode, inline_dir, orphans;
2112 unsigned int valid_count, valid_node_count, valid_inode_count;
2113 unsigned int bimodal, avg_vblocks;
2114 int util_free, util_valid, util_invalid;
2115 int rsvd_segs, overp_segs;
2116 int dirty_count, node_pages, meta_pages;
2117 int prefree_count, call_count, cp_count, bg_cp_count;
2118 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2119 int bg_node_segs, bg_data_segs;
2120 int tot_blks, data_blks, node_blks;
2121 int bg_data_blks, bg_node_blks;
2122 int curseg[NR_CURSEG_TYPE];
2123 int cursec[NR_CURSEG_TYPE];
2124 int curzone[NR_CURSEG_TYPE];
2125
2126 unsigned int segment_count[2];
2127 unsigned int block_count[2];
2128 unsigned int inplace_count;
2129 unsigned long long base_mem, cache_mem, page_mem;
2130 };
2131
2132 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2133 {
2134 return (struct f2fs_stat_info *)sbi->stat_info;
2135 }
2136
2137 #define stat_inc_cp_count(si) ((si)->cp_count++)
2138 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2139 #define stat_inc_call_count(si) ((si)->call_count++)
2140 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2141 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2142 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2143 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2144 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2145 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2146 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2147 #define stat_inc_inline_xattr(inode) \
2148 do { \
2149 if (f2fs_has_inline_xattr(inode)) \
2150 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2151 } while (0)
2152 #define stat_dec_inline_xattr(inode) \
2153 do { \
2154 if (f2fs_has_inline_xattr(inode)) \
2155 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2156 } while (0)
2157 #define stat_inc_inline_inode(inode) \
2158 do { \
2159 if (f2fs_has_inline_data(inode)) \
2160 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2161 } while (0)
2162 #define stat_dec_inline_inode(inode) \
2163 do { \
2164 if (f2fs_has_inline_data(inode)) \
2165 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2166 } while (0)
2167 #define stat_inc_inline_dir(inode) \
2168 do { \
2169 if (f2fs_has_inline_dentry(inode)) \
2170 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2171 } while (0)
2172 #define stat_dec_inline_dir(inode) \
2173 do { \
2174 if (f2fs_has_inline_dentry(inode)) \
2175 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2176 } while (0)
2177 #define stat_inc_seg_type(sbi, curseg) \
2178 ((sbi)->segment_count[(curseg)->alloc_type]++)
2179 #define stat_inc_block_count(sbi, curseg) \
2180 ((sbi)->block_count[(curseg)->alloc_type]++)
2181 #define stat_inc_inplace_blocks(sbi) \
2182 (atomic_inc(&(sbi)->inplace_count))
2183 #define stat_inc_seg_count(sbi, type, gc_type) \
2184 do { \
2185 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2186 (si)->tot_segs++; \
2187 if (type == SUM_TYPE_DATA) { \
2188 si->data_segs++; \
2189 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2190 } else { \
2191 si->node_segs++; \
2192 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2193 } \
2194 } while (0)
2195
2196 #define stat_inc_tot_blk_count(si, blks) \
2197 (si->tot_blks += (blks))
2198
2199 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2200 do { \
2201 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2202 stat_inc_tot_blk_count(si, blks); \
2203 si->data_blks += (blks); \
2204 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
2205 } while (0)
2206
2207 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2208 do { \
2209 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2210 stat_inc_tot_blk_count(si, blks); \
2211 si->node_blks += (blks); \
2212 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
2213 } while (0)
2214
2215 int f2fs_build_stats(struct f2fs_sb_info *);
2216 void f2fs_destroy_stats(struct f2fs_sb_info *);
2217 int __init f2fs_create_root_stats(void);
2218 void f2fs_destroy_root_stats(void);
2219 #else
2220 #define stat_inc_cp_count(si)
2221 #define stat_inc_bg_cp_count(si)
2222 #define stat_inc_call_count(si)
2223 #define stat_inc_bggc_count(si)
2224 #define stat_inc_dirty_inode(sbi, type)
2225 #define stat_dec_dirty_inode(sbi, type)
2226 #define stat_inc_total_hit(sb)
2227 #define stat_inc_rbtree_node_hit(sb)
2228 #define stat_inc_largest_node_hit(sbi)
2229 #define stat_inc_cached_node_hit(sbi)
2230 #define stat_inc_inline_xattr(inode)
2231 #define stat_dec_inline_xattr(inode)
2232 #define stat_inc_inline_inode(inode)
2233 #define stat_dec_inline_inode(inode)
2234 #define stat_inc_inline_dir(inode)
2235 #define stat_dec_inline_dir(inode)
2236 #define stat_inc_seg_type(sbi, curseg)
2237 #define stat_inc_block_count(sbi, curseg)
2238 #define stat_inc_inplace_blocks(sbi)
2239 #define stat_inc_seg_count(sbi, type, gc_type)
2240 #define stat_inc_tot_blk_count(si, blks)
2241 #define stat_inc_data_blk_count(sbi, blks, gc_type)
2242 #define stat_inc_node_blk_count(sbi, blks, gc_type)
2243
2244 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2245 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2246 static inline int __init f2fs_create_root_stats(void) { return 0; }
2247 static inline void f2fs_destroy_root_stats(void) { }
2248 #endif
2249
2250 extern const struct file_operations f2fs_dir_operations;
2251 extern const struct file_operations f2fs_file_operations;
2252 extern const struct inode_operations f2fs_file_inode_operations;
2253 extern const struct address_space_operations f2fs_dblock_aops;
2254 extern const struct address_space_operations f2fs_node_aops;
2255 extern const struct address_space_operations f2fs_meta_aops;
2256 extern const struct inode_operations f2fs_dir_inode_operations;
2257 extern const struct inode_operations f2fs_symlink_inode_operations;
2258 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2259 extern const struct inode_operations f2fs_special_inode_operations;
2260 extern struct kmem_cache *inode_entry_slab;
2261
2262 /*
2263 * inline.c
2264 */
2265 bool f2fs_may_inline_data(struct inode *);
2266 bool f2fs_may_inline_dentry(struct inode *);
2267 void read_inline_data(struct page *, struct page *);
2268 bool truncate_inline_inode(struct page *, u64);
2269 int f2fs_read_inline_data(struct inode *, struct page *);
2270 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
2271 int f2fs_convert_inline_inode(struct inode *);
2272 int f2fs_write_inline_data(struct inode *, struct page *);
2273 bool recover_inline_data(struct inode *, struct page *);
2274 struct f2fs_dir_entry *find_in_inline_dir(struct inode *,
2275 struct fscrypt_name *, struct page **);
2276 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
2277 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
2278 nid_t, umode_t);
2279 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
2280 struct inode *, struct inode *);
2281 bool f2fs_empty_inline_dir(struct inode *);
2282 int f2fs_read_inline_dir(struct file *, struct dir_context *,
2283 struct fscrypt_str *);
2284 int f2fs_inline_data_fiemap(struct inode *,
2285 struct fiemap_extent_info *, __u64, __u64);
2286
2287 /*
2288 * shrinker.c
2289 */
2290 unsigned long f2fs_shrink_count(struct shrinker *, struct shrink_control *);
2291 unsigned long f2fs_shrink_scan(struct shrinker *, struct shrink_control *);
2292 void f2fs_join_shrinker(struct f2fs_sb_info *);
2293 void f2fs_leave_shrinker(struct f2fs_sb_info *);
2294
2295 /*
2296 * extent_cache.c
2297 */
2298 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
2299 bool f2fs_init_extent_tree(struct inode *, struct f2fs_extent *);
2300 unsigned int f2fs_destroy_extent_node(struct inode *);
2301 void f2fs_destroy_extent_tree(struct inode *);
2302 bool f2fs_lookup_extent_cache(struct inode *, pgoff_t, struct extent_info *);
2303 void f2fs_update_extent_cache(struct dnode_of_data *);
2304 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
2305 pgoff_t, block_t, unsigned int);
2306 void init_extent_cache_info(struct f2fs_sb_info *);
2307 int __init create_extent_cache(void);
2308 void destroy_extent_cache(void);
2309
2310 /*
2311 * crypto support
2312 */
2313 static inline bool f2fs_encrypted_inode(struct inode *inode)
2314 {
2315 return file_is_encrypt(inode);
2316 }
2317
2318 static inline void f2fs_set_encrypted_inode(struct inode *inode)
2319 {
2320 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2321 file_set_encrypt(inode);
2322 #endif
2323 }
2324
2325 static inline bool f2fs_bio_encrypted(struct bio *bio)
2326 {
2327 return bio->bi_private != NULL;
2328 }
2329
2330 static inline int f2fs_sb_has_crypto(struct super_block *sb)
2331 {
2332 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
2333 }
2334
2335 static inline int f2fs_sb_mounted_hmsmr(struct super_block *sb)
2336 {
2337 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_HMSMR);
2338 }
2339
2340 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
2341 {
2342 clear_opt(sbi, ADAPTIVE);
2343 clear_opt(sbi, LFS);
2344
2345 switch (mt) {
2346 case F2FS_MOUNT_ADAPTIVE:
2347 set_opt(sbi, ADAPTIVE);
2348 break;
2349 case F2FS_MOUNT_LFS:
2350 set_opt(sbi, LFS);
2351 break;
2352 }
2353 }
2354
2355 static inline bool f2fs_may_encrypt(struct inode *inode)
2356 {
2357 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2358 umode_t mode = inode->i_mode;
2359
2360 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
2361 #else
2362 return 0;
2363 #endif
2364 }
2365
2366 #ifndef CONFIG_F2FS_FS_ENCRYPTION
2367 #define fscrypt_set_d_op(i)
2368 #define fscrypt_get_ctx fscrypt_notsupp_get_ctx
2369 #define fscrypt_release_ctx fscrypt_notsupp_release_ctx
2370 #define fscrypt_encrypt_page fscrypt_notsupp_encrypt_page
2371 #define fscrypt_decrypt_page fscrypt_notsupp_decrypt_page
2372 #define fscrypt_decrypt_bio_pages fscrypt_notsupp_decrypt_bio_pages
2373 #define fscrypt_pullback_bio_page fscrypt_notsupp_pullback_bio_page
2374 #define fscrypt_restore_control_page fscrypt_notsupp_restore_control_page
2375 #define fscrypt_zeroout_range fscrypt_notsupp_zeroout_range
2376 #define fscrypt_process_policy fscrypt_notsupp_process_policy
2377 #define fscrypt_get_policy fscrypt_notsupp_get_policy
2378 #define fscrypt_has_permitted_context fscrypt_notsupp_has_permitted_context
2379 #define fscrypt_inherit_context fscrypt_notsupp_inherit_context
2380 #define fscrypt_get_encryption_info fscrypt_notsupp_get_encryption_info
2381 #define fscrypt_put_encryption_info fscrypt_notsupp_put_encryption_info
2382 #define fscrypt_setup_filename fscrypt_notsupp_setup_filename
2383 #define fscrypt_free_filename fscrypt_notsupp_free_filename
2384 #define fscrypt_fname_encrypted_size fscrypt_notsupp_fname_encrypted_size
2385 #define fscrypt_fname_alloc_buffer fscrypt_notsupp_fname_alloc_buffer
2386 #define fscrypt_fname_free_buffer fscrypt_notsupp_fname_free_buffer
2387 #define fscrypt_fname_disk_to_usr fscrypt_notsupp_fname_disk_to_usr
2388 #define fscrypt_fname_usr_to_disk fscrypt_notsupp_fname_usr_to_disk
2389 #endif
2390 #endif
This page took 0.174436 seconds and 6 git commands to generate.