f2fs: merge flags in struct f2fs_sb_info
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_SYNC,
104 CP_DISCARD,
105 };
106
107 struct cp_control {
108 int reason;
109 __u64 trim_start;
110 __u64 trim_end;
111 __u64 trim_minlen;
112 __u64 trimmed;
113 };
114
115 /*
116 * For CP/NAT/SIT/SSA readahead
117 */
118 enum {
119 META_CP,
120 META_NAT,
121 META_SIT,
122 META_SSA,
123 META_POR,
124 };
125
126 /* for the list of ino */
127 enum {
128 ORPHAN_INO, /* for orphan ino list */
129 APPEND_INO, /* for append ino list */
130 UPDATE_INO, /* for update ino list */
131 MAX_INO_ENTRY, /* max. list */
132 };
133
134 struct ino_entry {
135 struct list_head list; /* list head */
136 nid_t ino; /* inode number */
137 };
138
139 /*
140 * for the list of directory inodes or gc inodes.
141 * NOTE: there are two slab users for this structure, if we add/modify/delete
142 * fields in structure for one of slab users, it may affect fields or size of
143 * other one, in this condition, it's better to split both of slab and related
144 * data structure.
145 */
146 struct inode_entry {
147 struct list_head list; /* list head */
148 struct inode *inode; /* vfs inode pointer */
149 };
150
151 /* for the list of blockaddresses to be discarded */
152 struct discard_entry {
153 struct list_head list; /* list head */
154 block_t blkaddr; /* block address to be discarded */
155 int len; /* # of consecutive blocks of the discard */
156 };
157
158 /* for the list of fsync inodes, used only during recovery */
159 struct fsync_inode_entry {
160 struct list_head list; /* list head */
161 struct inode *inode; /* vfs inode pointer */
162 block_t blkaddr; /* block address locating the last fsync */
163 block_t last_dentry; /* block address locating the last dentry */
164 block_t last_inode; /* block address locating the last inode */
165 };
166
167 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
168 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
169
170 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
171 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
172 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
173 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
174
175 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
176 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
177
178 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 int before = nats_in_cursum(rs);
181 rs->n_nats = cpu_to_le16(before + i);
182 return before;
183 }
184
185 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 int before = sits_in_cursum(rs);
188 rs->n_sits = cpu_to_le16(before + i);
189 return before;
190 }
191
192 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
193 int type)
194 {
195 if (type == NAT_JOURNAL)
196 return size <= MAX_NAT_JENTRIES(sum);
197 return size <= MAX_SIT_JENTRIES(sum);
198 }
199
200 /*
201 * ioctl commands
202 */
203 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
204 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
205 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
206
207 #define F2FS_IOCTL_MAGIC 0xf5
208 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
209 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
210 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
211 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
212 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
213
214 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
215 /*
216 * ioctl commands in 32 bit emulation
217 */
218 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
219 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
220 #endif
221
222 /*
223 * For INODE and NODE manager
224 */
225 /* for directory operations */
226 struct f2fs_dentry_ptr {
227 const void *bitmap;
228 struct f2fs_dir_entry *dentry;
229 __u8 (*filename)[F2FS_SLOT_LEN];
230 int max;
231 };
232
233 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
234 void *src, int type)
235 {
236 if (type == 1) {
237 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
238 d->max = NR_DENTRY_IN_BLOCK;
239 d->bitmap = &t->dentry_bitmap;
240 d->dentry = t->dentry;
241 d->filename = t->filename;
242 } else {
243 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
244 d->max = NR_INLINE_DENTRY;
245 d->bitmap = &t->dentry_bitmap;
246 d->dentry = t->dentry;
247 d->filename = t->filename;
248 }
249 }
250
251 /*
252 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
253 * as its node offset to distinguish from index node blocks.
254 * But some bits are used to mark the node block.
255 */
256 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
257 >> OFFSET_BIT_SHIFT)
258 enum {
259 ALLOC_NODE, /* allocate a new node page if needed */
260 LOOKUP_NODE, /* look up a node without readahead */
261 LOOKUP_NODE_RA, /*
262 * look up a node with readahead called
263 * by get_data_block.
264 */
265 };
266
267 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
268
269 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
270
271 /* for in-memory extent cache entry */
272 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
273
274 struct extent_info {
275 rwlock_t ext_lock; /* rwlock for consistency */
276 unsigned int fofs; /* start offset in a file */
277 u32 blk_addr; /* start block address of the extent */
278 unsigned int len; /* length of the extent */
279 };
280
281 /*
282 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
283 */
284 #define FADVISE_COLD_BIT 0x01
285 #define FADVISE_LOST_PINO_BIT 0x02
286
287 #define DEF_DIR_LEVEL 0
288
289 struct f2fs_inode_info {
290 struct inode vfs_inode; /* serve a vfs inode */
291 unsigned long i_flags; /* keep an inode flags for ioctl */
292 unsigned char i_advise; /* use to give file attribute hints */
293 unsigned char i_dir_level; /* use for dentry level for large dir */
294 unsigned int i_current_depth; /* use only in directory structure */
295 unsigned int i_pino; /* parent inode number */
296 umode_t i_acl_mode; /* keep file acl mode temporarily */
297
298 /* Use below internally in f2fs*/
299 unsigned long flags; /* use to pass per-file flags */
300 struct rw_semaphore i_sem; /* protect fi info */
301 atomic_t dirty_pages; /* # of dirty pages */
302 f2fs_hash_t chash; /* hash value of given file name */
303 unsigned int clevel; /* maximum level of given file name */
304 nid_t i_xattr_nid; /* node id that contains xattrs */
305 unsigned long long xattr_ver; /* cp version of xattr modification */
306 struct extent_info ext; /* in-memory extent cache entry */
307 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
308
309 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
310 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
311 struct mutex inmem_lock; /* lock for inmemory pages */
312 };
313
314 static inline void get_extent_info(struct extent_info *ext,
315 struct f2fs_extent i_ext)
316 {
317 write_lock(&ext->ext_lock);
318 ext->fofs = le32_to_cpu(i_ext.fofs);
319 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
320 ext->len = le32_to_cpu(i_ext.len);
321 write_unlock(&ext->ext_lock);
322 }
323
324 static inline void set_raw_extent(struct extent_info *ext,
325 struct f2fs_extent *i_ext)
326 {
327 read_lock(&ext->ext_lock);
328 i_ext->fofs = cpu_to_le32(ext->fofs);
329 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
330 i_ext->len = cpu_to_le32(ext->len);
331 read_unlock(&ext->ext_lock);
332 }
333
334 struct f2fs_nm_info {
335 block_t nat_blkaddr; /* base disk address of NAT */
336 nid_t max_nid; /* maximum possible node ids */
337 nid_t available_nids; /* maximum available node ids */
338 nid_t next_scan_nid; /* the next nid to be scanned */
339 unsigned int ram_thresh; /* control the memory footprint */
340
341 /* NAT cache management */
342 struct radix_tree_root nat_root;/* root of the nat entry cache */
343 struct radix_tree_root nat_set_root;/* root of the nat set cache */
344 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
345 struct list_head nat_entries; /* cached nat entry list (clean) */
346 unsigned int nat_cnt; /* the # of cached nat entries */
347 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
348
349 /* free node ids management */
350 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
351 struct list_head free_nid_list; /* a list for free nids */
352 spinlock_t free_nid_list_lock; /* protect free nid list */
353 unsigned int fcnt; /* the number of free node id */
354 struct mutex build_lock; /* lock for build free nids */
355
356 /* for checkpoint */
357 char *nat_bitmap; /* NAT bitmap pointer */
358 int bitmap_size; /* bitmap size */
359 };
360
361 /*
362 * this structure is used as one of function parameters.
363 * all the information are dedicated to a given direct node block determined
364 * by the data offset in a file.
365 */
366 struct dnode_of_data {
367 struct inode *inode; /* vfs inode pointer */
368 struct page *inode_page; /* its inode page, NULL is possible */
369 struct page *node_page; /* cached direct node page */
370 nid_t nid; /* node id of the direct node block */
371 unsigned int ofs_in_node; /* data offset in the node page */
372 bool inode_page_locked; /* inode page is locked or not */
373 block_t data_blkaddr; /* block address of the node block */
374 };
375
376 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
377 struct page *ipage, struct page *npage, nid_t nid)
378 {
379 memset(dn, 0, sizeof(*dn));
380 dn->inode = inode;
381 dn->inode_page = ipage;
382 dn->node_page = npage;
383 dn->nid = nid;
384 }
385
386 /*
387 * For SIT manager
388 *
389 * By default, there are 6 active log areas across the whole main area.
390 * When considering hot and cold data separation to reduce cleaning overhead,
391 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
392 * respectively.
393 * In the current design, you should not change the numbers intentionally.
394 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
395 * logs individually according to the underlying devices. (default: 6)
396 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
397 * data and 8 for node logs.
398 */
399 #define NR_CURSEG_DATA_TYPE (3)
400 #define NR_CURSEG_NODE_TYPE (3)
401 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
402
403 enum {
404 CURSEG_HOT_DATA = 0, /* directory entry blocks */
405 CURSEG_WARM_DATA, /* data blocks */
406 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
407 CURSEG_HOT_NODE, /* direct node blocks of directory files */
408 CURSEG_WARM_NODE, /* direct node blocks of normal files */
409 CURSEG_COLD_NODE, /* indirect node blocks */
410 NO_CHECK_TYPE,
411 CURSEG_DIRECT_IO, /* to use for the direct IO path */
412 };
413
414 struct flush_cmd {
415 struct completion wait;
416 struct llist_node llnode;
417 int ret;
418 };
419
420 struct flush_cmd_control {
421 struct task_struct *f2fs_issue_flush; /* flush thread */
422 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
423 struct llist_head issue_list; /* list for command issue */
424 struct llist_node *dispatch_list; /* list for command dispatch */
425 };
426
427 struct f2fs_sm_info {
428 struct sit_info *sit_info; /* whole segment information */
429 struct free_segmap_info *free_info; /* free segment information */
430 struct dirty_seglist_info *dirty_info; /* dirty segment information */
431 struct curseg_info *curseg_array; /* active segment information */
432
433 block_t seg0_blkaddr; /* block address of 0'th segment */
434 block_t main_blkaddr; /* start block address of main area */
435 block_t ssa_blkaddr; /* start block address of SSA area */
436
437 unsigned int segment_count; /* total # of segments */
438 unsigned int main_segments; /* # of segments in main area */
439 unsigned int reserved_segments; /* # of reserved segments */
440 unsigned int ovp_segments; /* # of overprovision segments */
441
442 /* a threshold to reclaim prefree segments */
443 unsigned int rec_prefree_segments;
444
445 /* for small discard management */
446 struct list_head discard_list; /* 4KB discard list */
447 int nr_discards; /* # of discards in the list */
448 int max_discards; /* max. discards to be issued */
449
450 struct list_head sit_entry_set; /* sit entry set list */
451
452 unsigned int ipu_policy; /* in-place-update policy */
453 unsigned int min_ipu_util; /* in-place-update threshold */
454 unsigned int min_fsync_blocks; /* threshold for fsync */
455
456 /* for flush command control */
457 struct flush_cmd_control *cmd_control_info;
458
459 };
460
461 /*
462 * For superblock
463 */
464 /*
465 * COUNT_TYPE for monitoring
466 *
467 * f2fs monitors the number of several block types such as on-writeback,
468 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
469 */
470 enum count_type {
471 F2FS_WRITEBACK,
472 F2FS_DIRTY_DENTS,
473 F2FS_DIRTY_NODES,
474 F2FS_DIRTY_META,
475 F2FS_INMEM_PAGES,
476 NR_COUNT_TYPE,
477 };
478
479 /*
480 * The below are the page types of bios used in submit_bio().
481 * The available types are:
482 * DATA User data pages. It operates as async mode.
483 * NODE Node pages. It operates as async mode.
484 * META FS metadata pages such as SIT, NAT, CP.
485 * NR_PAGE_TYPE The number of page types.
486 * META_FLUSH Make sure the previous pages are written
487 * with waiting the bio's completion
488 * ... Only can be used with META.
489 */
490 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
491 enum page_type {
492 DATA,
493 NODE,
494 META,
495 NR_PAGE_TYPE,
496 META_FLUSH,
497 };
498
499 struct f2fs_io_info {
500 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
501 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
502 block_t blk_addr; /* block address to be written */
503 };
504
505 #define is_read_io(rw) (((rw) & 1) == READ)
506 struct f2fs_bio_info {
507 struct f2fs_sb_info *sbi; /* f2fs superblock */
508 struct bio *bio; /* bios to merge */
509 sector_t last_block_in_bio; /* last block number */
510 struct f2fs_io_info fio; /* store buffered io info. */
511 struct rw_semaphore io_rwsem; /* blocking op for bio */
512 };
513
514 /* for inner inode cache management */
515 struct inode_management {
516 struct radix_tree_root ino_root; /* ino entry array */
517 spinlock_t ino_lock; /* for ino entry lock */
518 struct list_head ino_list; /* inode list head */
519 unsigned long ino_num; /* number of entries */
520 };
521
522 /* For s_flag in struct f2fs_sb_info */
523 enum {
524 SBI_IS_DIRTY, /* dirty flag for checkpoint */
525 SBI_IS_CLOSE, /* specify unmounting */
526 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
527 SBI_POR_DOING, /* recovery is doing or not */
528 };
529
530 struct f2fs_sb_info {
531 struct super_block *sb; /* pointer to VFS super block */
532 struct proc_dir_entry *s_proc; /* proc entry */
533 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
534 struct f2fs_super_block *raw_super; /* raw super block pointer */
535 int s_flag; /* flags for sbi */
536
537 /* for node-related operations */
538 struct f2fs_nm_info *nm_info; /* node manager */
539 struct inode *node_inode; /* cache node blocks */
540
541 /* for segment-related operations */
542 struct f2fs_sm_info *sm_info; /* segment manager */
543
544 /* for bio operations */
545 struct f2fs_bio_info read_io; /* for read bios */
546 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
547
548 /* for checkpoint */
549 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
550 struct inode *meta_inode; /* cache meta blocks */
551 struct mutex cp_mutex; /* checkpoint procedure lock */
552 struct rw_semaphore cp_rwsem; /* blocking FS operations */
553 struct rw_semaphore node_write; /* locking node writes */
554 struct mutex writepages; /* mutex for writepages() */
555 wait_queue_head_t cp_wait;
556
557 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
558
559 /* for orphan inode, use 0'th array */
560 unsigned int max_orphans; /* max orphan inodes */
561
562 /* for directory inode management */
563 struct list_head dir_inode_list; /* dir inode list */
564 spinlock_t dir_inode_lock; /* for dir inode list lock */
565
566 /* basic filesystem units */
567 unsigned int log_sectors_per_block; /* log2 sectors per block */
568 unsigned int log_blocksize; /* log2 block size */
569 unsigned int blocksize; /* block size */
570 unsigned int root_ino_num; /* root inode number*/
571 unsigned int node_ino_num; /* node inode number*/
572 unsigned int meta_ino_num; /* meta inode number*/
573 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
574 unsigned int blocks_per_seg; /* blocks per segment */
575 unsigned int segs_per_sec; /* segments per section */
576 unsigned int secs_per_zone; /* sections per zone */
577 unsigned int total_sections; /* total section count */
578 unsigned int total_node_count; /* total node block count */
579 unsigned int total_valid_node_count; /* valid node block count */
580 unsigned int total_valid_inode_count; /* valid inode count */
581 int active_logs; /* # of active logs */
582 int dir_level; /* directory level */
583
584 block_t user_block_count; /* # of user blocks */
585 block_t total_valid_block_count; /* # of valid blocks */
586 block_t alloc_valid_block_count; /* # of allocated blocks */
587 block_t last_valid_block_count; /* for recovery */
588 u32 s_next_generation; /* for NFS support */
589 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
590
591 struct f2fs_mount_info mount_opt; /* mount options */
592
593 /* for cleaning operations */
594 struct mutex gc_mutex; /* mutex for GC */
595 struct f2fs_gc_kthread *gc_thread; /* GC thread */
596 unsigned int cur_victim_sec; /* current victim section num */
597
598 /* maximum # of trials to find a victim segment for SSR and GC */
599 unsigned int max_victim_search;
600
601 /*
602 * for stat information.
603 * one is for the LFS mode, and the other is for the SSR mode.
604 */
605 #ifdef CONFIG_F2FS_STAT_FS
606 struct f2fs_stat_info *stat_info; /* FS status information */
607 unsigned int segment_count[2]; /* # of allocated segments */
608 unsigned int block_count[2]; /* # of allocated blocks */
609 atomic_t inplace_count; /* # of inplace update */
610 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
611 atomic_t inline_inode; /* # of inline_data inodes */
612 atomic_t inline_dir; /* # of inline_dentry inodes */
613 int bg_gc; /* background gc calls */
614 unsigned int n_dirty_dirs; /* # of dir inodes */
615 #endif
616 unsigned int last_victim[2]; /* last victim segment # */
617 spinlock_t stat_lock; /* lock for stat operations */
618
619 /* For sysfs suppport */
620 struct kobject s_kobj;
621 struct completion s_kobj_unregister;
622 };
623
624 /*
625 * Inline functions
626 */
627 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
628 {
629 return container_of(inode, struct f2fs_inode_info, vfs_inode);
630 }
631
632 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
633 {
634 return sb->s_fs_info;
635 }
636
637 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
638 {
639 return F2FS_SB(inode->i_sb);
640 }
641
642 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
643 {
644 return F2FS_I_SB(mapping->host);
645 }
646
647 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
648 {
649 return F2FS_M_SB(page->mapping);
650 }
651
652 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
653 {
654 return (struct f2fs_super_block *)(sbi->raw_super);
655 }
656
657 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
658 {
659 return (struct f2fs_checkpoint *)(sbi->ckpt);
660 }
661
662 static inline struct f2fs_node *F2FS_NODE(struct page *page)
663 {
664 return (struct f2fs_node *)page_address(page);
665 }
666
667 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
668 {
669 return &((struct f2fs_node *)page_address(page))->i;
670 }
671
672 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
673 {
674 return (struct f2fs_nm_info *)(sbi->nm_info);
675 }
676
677 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
678 {
679 return (struct f2fs_sm_info *)(sbi->sm_info);
680 }
681
682 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
683 {
684 return (struct sit_info *)(SM_I(sbi)->sit_info);
685 }
686
687 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
688 {
689 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
690 }
691
692 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
693 {
694 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
695 }
696
697 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
698 {
699 return sbi->meta_inode->i_mapping;
700 }
701
702 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
703 {
704 return sbi->node_inode->i_mapping;
705 }
706
707 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
708 {
709 return sbi->s_flag & (0x01 << type);
710 }
711
712 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
713 {
714 sbi->s_flag |= (0x01 << type);
715 }
716
717 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
718 {
719 sbi->s_flag &= ~(0x01 << type);
720 }
721
722 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
723 {
724 return le64_to_cpu(cp->checkpoint_ver);
725 }
726
727 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
728 {
729 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
730 return ckpt_flags & f;
731 }
732
733 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
734 {
735 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
736 ckpt_flags |= f;
737 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
738 }
739
740 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
741 {
742 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
743 ckpt_flags &= (~f);
744 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
745 }
746
747 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
748 {
749 down_read(&sbi->cp_rwsem);
750 }
751
752 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
753 {
754 up_read(&sbi->cp_rwsem);
755 }
756
757 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
758 {
759 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
760 }
761
762 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
763 {
764 up_write(&sbi->cp_rwsem);
765 }
766
767 /*
768 * Check whether the given nid is within node id range.
769 */
770 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
771 {
772 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
773 return -EINVAL;
774 if (unlikely(nid >= NM_I(sbi)->max_nid))
775 return -EINVAL;
776 return 0;
777 }
778
779 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
780
781 /*
782 * Check whether the inode has blocks or not
783 */
784 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
785 {
786 if (F2FS_I(inode)->i_xattr_nid)
787 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
788 else
789 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
790 }
791
792 static inline bool f2fs_has_xattr_block(unsigned int ofs)
793 {
794 return ofs == XATTR_NODE_OFFSET;
795 }
796
797 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
798 struct inode *inode, blkcnt_t count)
799 {
800 block_t valid_block_count;
801
802 spin_lock(&sbi->stat_lock);
803 valid_block_count =
804 sbi->total_valid_block_count + (block_t)count;
805 if (unlikely(valid_block_count > sbi->user_block_count)) {
806 spin_unlock(&sbi->stat_lock);
807 return false;
808 }
809 inode->i_blocks += count;
810 sbi->total_valid_block_count = valid_block_count;
811 sbi->alloc_valid_block_count += (block_t)count;
812 spin_unlock(&sbi->stat_lock);
813 return true;
814 }
815
816 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
817 struct inode *inode,
818 blkcnt_t count)
819 {
820 spin_lock(&sbi->stat_lock);
821 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
822 f2fs_bug_on(sbi, inode->i_blocks < count);
823 inode->i_blocks -= count;
824 sbi->total_valid_block_count -= (block_t)count;
825 spin_unlock(&sbi->stat_lock);
826 }
827
828 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
829 {
830 atomic_inc(&sbi->nr_pages[count_type]);
831 set_sbi_flag(sbi, SBI_IS_DIRTY);
832 }
833
834 static inline void inode_inc_dirty_pages(struct inode *inode)
835 {
836 atomic_inc(&F2FS_I(inode)->dirty_pages);
837 if (S_ISDIR(inode->i_mode))
838 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
839 }
840
841 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
842 {
843 atomic_dec(&sbi->nr_pages[count_type]);
844 }
845
846 static inline void inode_dec_dirty_pages(struct inode *inode)
847 {
848 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
849 return;
850
851 atomic_dec(&F2FS_I(inode)->dirty_pages);
852
853 if (S_ISDIR(inode->i_mode))
854 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
855 }
856
857 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
858 {
859 return atomic_read(&sbi->nr_pages[count_type]);
860 }
861
862 static inline int get_dirty_pages(struct inode *inode)
863 {
864 return atomic_read(&F2FS_I(inode)->dirty_pages);
865 }
866
867 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
868 {
869 unsigned int pages_per_sec = sbi->segs_per_sec *
870 (1 << sbi->log_blocks_per_seg);
871 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
872 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
873 }
874
875 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
876 {
877 return sbi->total_valid_block_count;
878 }
879
880 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
881 {
882 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
883
884 /* return NAT or SIT bitmap */
885 if (flag == NAT_BITMAP)
886 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
887 else if (flag == SIT_BITMAP)
888 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
889
890 return 0;
891 }
892
893 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
894 {
895 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
896 int offset;
897
898 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
899 if (flag == NAT_BITMAP)
900 return &ckpt->sit_nat_version_bitmap;
901 else
902 return (unsigned char *)ckpt + F2FS_BLKSIZE;
903 } else {
904 offset = (flag == NAT_BITMAP) ?
905 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
906 return &ckpt->sit_nat_version_bitmap + offset;
907 }
908 }
909
910 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
911 {
912 block_t start_addr;
913 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
914 unsigned long long ckpt_version = cur_cp_version(ckpt);
915
916 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
917
918 /*
919 * odd numbered checkpoint should at cp segment 0
920 * and even segment must be at cp segment 1
921 */
922 if (!(ckpt_version & 1))
923 start_addr += sbi->blocks_per_seg;
924
925 return start_addr;
926 }
927
928 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
929 {
930 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
931 }
932
933 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
934 struct inode *inode)
935 {
936 block_t valid_block_count;
937 unsigned int valid_node_count;
938
939 spin_lock(&sbi->stat_lock);
940
941 valid_block_count = sbi->total_valid_block_count + 1;
942 if (unlikely(valid_block_count > sbi->user_block_count)) {
943 spin_unlock(&sbi->stat_lock);
944 return false;
945 }
946
947 valid_node_count = sbi->total_valid_node_count + 1;
948 if (unlikely(valid_node_count > sbi->total_node_count)) {
949 spin_unlock(&sbi->stat_lock);
950 return false;
951 }
952
953 if (inode)
954 inode->i_blocks++;
955
956 sbi->alloc_valid_block_count++;
957 sbi->total_valid_node_count++;
958 sbi->total_valid_block_count++;
959 spin_unlock(&sbi->stat_lock);
960
961 return true;
962 }
963
964 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
965 struct inode *inode)
966 {
967 spin_lock(&sbi->stat_lock);
968
969 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
970 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
971 f2fs_bug_on(sbi, !inode->i_blocks);
972
973 inode->i_blocks--;
974 sbi->total_valid_node_count--;
975 sbi->total_valid_block_count--;
976
977 spin_unlock(&sbi->stat_lock);
978 }
979
980 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
981 {
982 return sbi->total_valid_node_count;
983 }
984
985 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
986 {
987 spin_lock(&sbi->stat_lock);
988 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
989 sbi->total_valid_inode_count++;
990 spin_unlock(&sbi->stat_lock);
991 }
992
993 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
994 {
995 spin_lock(&sbi->stat_lock);
996 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
997 sbi->total_valid_inode_count--;
998 spin_unlock(&sbi->stat_lock);
999 }
1000
1001 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1002 {
1003 return sbi->total_valid_inode_count;
1004 }
1005
1006 static inline void f2fs_put_page(struct page *page, int unlock)
1007 {
1008 if (!page)
1009 return;
1010
1011 if (unlock) {
1012 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1013 unlock_page(page);
1014 }
1015 page_cache_release(page);
1016 }
1017
1018 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1019 {
1020 if (dn->node_page)
1021 f2fs_put_page(dn->node_page, 1);
1022 if (dn->inode_page && dn->node_page != dn->inode_page)
1023 f2fs_put_page(dn->inode_page, 0);
1024 dn->node_page = NULL;
1025 dn->inode_page = NULL;
1026 }
1027
1028 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1029 size_t size)
1030 {
1031 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1032 }
1033
1034 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1035 gfp_t flags)
1036 {
1037 void *entry;
1038 retry:
1039 entry = kmem_cache_alloc(cachep, flags);
1040 if (!entry) {
1041 cond_resched();
1042 goto retry;
1043 }
1044
1045 return entry;
1046 }
1047
1048 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1049 unsigned long index, void *item)
1050 {
1051 while (radix_tree_insert(root, index, item))
1052 cond_resched();
1053 }
1054
1055 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1056
1057 static inline bool IS_INODE(struct page *page)
1058 {
1059 struct f2fs_node *p = F2FS_NODE(page);
1060 return RAW_IS_INODE(p);
1061 }
1062
1063 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1064 {
1065 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1066 }
1067
1068 static inline block_t datablock_addr(struct page *node_page,
1069 unsigned int offset)
1070 {
1071 struct f2fs_node *raw_node;
1072 __le32 *addr_array;
1073 raw_node = F2FS_NODE(node_page);
1074 addr_array = blkaddr_in_node(raw_node);
1075 return le32_to_cpu(addr_array[offset]);
1076 }
1077
1078 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1079 {
1080 int mask;
1081
1082 addr += (nr >> 3);
1083 mask = 1 << (7 - (nr & 0x07));
1084 return mask & *addr;
1085 }
1086
1087 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1088 {
1089 int mask;
1090 int ret;
1091
1092 addr += (nr >> 3);
1093 mask = 1 << (7 - (nr & 0x07));
1094 ret = mask & *addr;
1095 *addr |= mask;
1096 return ret;
1097 }
1098
1099 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1100 {
1101 int mask;
1102 int ret;
1103
1104 addr += (nr >> 3);
1105 mask = 1 << (7 - (nr & 0x07));
1106 ret = mask & *addr;
1107 *addr &= ~mask;
1108 return ret;
1109 }
1110
1111 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1112 {
1113 int mask;
1114
1115 addr += (nr >> 3);
1116 mask = 1 << (7 - (nr & 0x07));
1117 *addr ^= mask;
1118 }
1119
1120 /* used for f2fs_inode_info->flags */
1121 enum {
1122 FI_NEW_INODE, /* indicate newly allocated inode */
1123 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1124 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1125 FI_INC_LINK, /* need to increment i_nlink */
1126 FI_ACL_MODE, /* indicate acl mode */
1127 FI_NO_ALLOC, /* should not allocate any blocks */
1128 FI_UPDATE_DIR, /* should update inode block for consistency */
1129 FI_DELAY_IPUT, /* used for the recovery */
1130 FI_NO_EXTENT, /* not to use the extent cache */
1131 FI_INLINE_XATTR, /* used for inline xattr */
1132 FI_INLINE_DATA, /* used for inline data*/
1133 FI_INLINE_DENTRY, /* used for inline dentry */
1134 FI_APPEND_WRITE, /* inode has appended data */
1135 FI_UPDATE_WRITE, /* inode has in-place-update data */
1136 FI_NEED_IPU, /* used for ipu per file */
1137 FI_ATOMIC_FILE, /* indicate atomic file */
1138 FI_VOLATILE_FILE, /* indicate volatile file */
1139 FI_DROP_CACHE, /* drop dirty page cache */
1140 FI_DATA_EXIST, /* indicate data exists */
1141 };
1142
1143 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1144 {
1145 if (!test_bit(flag, &fi->flags))
1146 set_bit(flag, &fi->flags);
1147 }
1148
1149 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1150 {
1151 return test_bit(flag, &fi->flags);
1152 }
1153
1154 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1155 {
1156 if (test_bit(flag, &fi->flags))
1157 clear_bit(flag, &fi->flags);
1158 }
1159
1160 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1161 {
1162 fi->i_acl_mode = mode;
1163 set_inode_flag(fi, FI_ACL_MODE);
1164 }
1165
1166 static inline void get_inline_info(struct f2fs_inode_info *fi,
1167 struct f2fs_inode *ri)
1168 {
1169 if (ri->i_inline & F2FS_INLINE_XATTR)
1170 set_inode_flag(fi, FI_INLINE_XATTR);
1171 if (ri->i_inline & F2FS_INLINE_DATA)
1172 set_inode_flag(fi, FI_INLINE_DATA);
1173 if (ri->i_inline & F2FS_INLINE_DENTRY)
1174 set_inode_flag(fi, FI_INLINE_DENTRY);
1175 if (ri->i_inline & F2FS_DATA_EXIST)
1176 set_inode_flag(fi, FI_DATA_EXIST);
1177 }
1178
1179 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1180 struct f2fs_inode *ri)
1181 {
1182 ri->i_inline = 0;
1183
1184 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1185 ri->i_inline |= F2FS_INLINE_XATTR;
1186 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1187 ri->i_inline |= F2FS_INLINE_DATA;
1188 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1189 ri->i_inline |= F2FS_INLINE_DENTRY;
1190 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1191 ri->i_inline |= F2FS_DATA_EXIST;
1192 }
1193
1194 static inline int f2fs_has_inline_xattr(struct inode *inode)
1195 {
1196 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1197 }
1198
1199 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1200 {
1201 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1202 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1203 return DEF_ADDRS_PER_INODE;
1204 }
1205
1206 static inline void *inline_xattr_addr(struct page *page)
1207 {
1208 struct f2fs_inode *ri = F2FS_INODE(page);
1209 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1210 F2FS_INLINE_XATTR_ADDRS]);
1211 }
1212
1213 static inline int inline_xattr_size(struct inode *inode)
1214 {
1215 if (f2fs_has_inline_xattr(inode))
1216 return F2FS_INLINE_XATTR_ADDRS << 2;
1217 else
1218 return 0;
1219 }
1220
1221 static inline int f2fs_has_inline_data(struct inode *inode)
1222 {
1223 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1224 }
1225
1226 static inline void f2fs_clear_inline_inode(struct inode *inode)
1227 {
1228 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1229 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1230 }
1231
1232 static inline int f2fs_exist_data(struct inode *inode)
1233 {
1234 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1235 }
1236
1237 static inline bool f2fs_is_atomic_file(struct inode *inode)
1238 {
1239 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1240 }
1241
1242 static inline bool f2fs_is_volatile_file(struct inode *inode)
1243 {
1244 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1245 }
1246
1247 static inline bool f2fs_is_drop_cache(struct inode *inode)
1248 {
1249 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1250 }
1251
1252 static inline void *inline_data_addr(struct page *page)
1253 {
1254 struct f2fs_inode *ri = F2FS_INODE(page);
1255 return (void *)&(ri->i_addr[1]);
1256 }
1257
1258 static inline int f2fs_has_inline_dentry(struct inode *inode)
1259 {
1260 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1261 }
1262
1263 static inline void *inline_dentry_addr(struct page *page)
1264 {
1265 struct f2fs_inode *ri = F2FS_INODE(page);
1266 return (void *)&(ri->i_addr[1]);
1267 }
1268
1269 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1270 {
1271 if (!f2fs_has_inline_dentry(dir))
1272 kunmap(page);
1273 }
1274
1275 static inline int f2fs_readonly(struct super_block *sb)
1276 {
1277 return sb->s_flags & MS_RDONLY;
1278 }
1279
1280 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1281 {
1282 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1283 }
1284
1285 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1286 {
1287 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1288 sbi->sb->s_flags |= MS_RDONLY;
1289 }
1290
1291 #define get_inode_mode(i) \
1292 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1293 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1294
1295 /* get offset of first page in next direct node */
1296 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1297 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1298 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1299 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1300
1301 /*
1302 * file.c
1303 */
1304 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1305 void truncate_data_blocks(struct dnode_of_data *);
1306 int truncate_blocks(struct inode *, u64, bool);
1307 void f2fs_truncate(struct inode *);
1308 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1309 int f2fs_setattr(struct dentry *, struct iattr *);
1310 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1311 int truncate_data_blocks_range(struct dnode_of_data *, int);
1312 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1313 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1314
1315 /*
1316 * inode.c
1317 */
1318 void f2fs_set_inode_flags(struct inode *);
1319 struct inode *f2fs_iget(struct super_block *, unsigned long);
1320 int try_to_free_nats(struct f2fs_sb_info *, int);
1321 void update_inode(struct inode *, struct page *);
1322 void update_inode_page(struct inode *);
1323 int f2fs_write_inode(struct inode *, struct writeback_control *);
1324 void f2fs_evict_inode(struct inode *);
1325 void handle_failed_inode(struct inode *);
1326
1327 /*
1328 * namei.c
1329 */
1330 struct dentry *f2fs_get_parent(struct dentry *child);
1331
1332 /*
1333 * dir.c
1334 */
1335 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1336 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1337 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1338 struct f2fs_dentry_ptr *);
1339 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1340 unsigned int);
1341 void do_make_empty_dir(struct inode *, struct inode *,
1342 struct f2fs_dentry_ptr *);
1343 struct page *init_inode_metadata(struct inode *, struct inode *,
1344 const struct qstr *, struct page *);
1345 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1346 int room_for_filename(const void *, int, int);
1347 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1348 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1349 struct page **);
1350 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1351 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1352 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1353 struct page *, struct inode *);
1354 int update_dent_inode(struct inode *, const struct qstr *);
1355 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1356 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1357 struct inode *);
1358 int f2fs_do_tmpfile(struct inode *, struct inode *);
1359 int f2fs_make_empty(struct inode *, struct inode *);
1360 bool f2fs_empty_dir(struct inode *);
1361
1362 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1363 {
1364 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1365 inode);
1366 }
1367
1368 /*
1369 * super.c
1370 */
1371 int f2fs_sync_fs(struct super_block *, int);
1372 extern __printf(3, 4)
1373 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1374
1375 /*
1376 * hash.c
1377 */
1378 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1379
1380 /*
1381 * node.c
1382 */
1383 struct dnode_of_data;
1384 struct node_info;
1385
1386 bool available_free_memory(struct f2fs_sb_info *, int);
1387 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1388 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1389 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1390 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1391 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1392 int truncate_inode_blocks(struct inode *, pgoff_t);
1393 int truncate_xattr_node(struct inode *, struct page *);
1394 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1395 void remove_inode_page(struct inode *);
1396 struct page *new_inode_page(struct inode *);
1397 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1398 void ra_node_page(struct f2fs_sb_info *, nid_t);
1399 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1400 struct page *get_node_page_ra(struct page *, int);
1401 void sync_inode_page(struct dnode_of_data *);
1402 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1403 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1404 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1405 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1406 void recover_inline_xattr(struct inode *, struct page *);
1407 void recover_xattr_data(struct inode *, struct page *, block_t);
1408 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1409 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1410 struct f2fs_summary_block *);
1411 void flush_nat_entries(struct f2fs_sb_info *);
1412 int build_node_manager(struct f2fs_sb_info *);
1413 void destroy_node_manager(struct f2fs_sb_info *);
1414 int __init create_node_manager_caches(void);
1415 void destroy_node_manager_caches(void);
1416
1417 /*
1418 * segment.c
1419 */
1420 void register_inmem_page(struct inode *, struct page *);
1421 void commit_inmem_pages(struct inode *, bool);
1422 void f2fs_balance_fs(struct f2fs_sb_info *);
1423 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1424 int f2fs_issue_flush(struct f2fs_sb_info *);
1425 int create_flush_cmd_control(struct f2fs_sb_info *);
1426 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1427 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1428 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1429 void clear_prefree_segments(struct f2fs_sb_info *);
1430 void release_discard_addrs(struct f2fs_sb_info *);
1431 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1432 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1433 void allocate_new_segments(struct f2fs_sb_info *);
1434 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1435 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1436 void write_meta_page(struct f2fs_sb_info *, struct page *);
1437 void write_node_page(struct f2fs_sb_info *, struct page *,
1438 unsigned int, struct f2fs_io_info *);
1439 void write_data_page(struct page *, struct dnode_of_data *,
1440 struct f2fs_io_info *);
1441 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1442 void recover_data_page(struct f2fs_sb_info *, struct page *,
1443 struct f2fs_summary *, block_t, block_t);
1444 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1445 block_t, block_t *, struct f2fs_summary *, int);
1446 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1447 void write_data_summaries(struct f2fs_sb_info *, block_t);
1448 void write_node_summaries(struct f2fs_sb_info *, block_t);
1449 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1450 int, unsigned int, int);
1451 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1452 int build_segment_manager(struct f2fs_sb_info *);
1453 void destroy_segment_manager(struct f2fs_sb_info *);
1454 int __init create_segment_manager_caches(void);
1455 void destroy_segment_manager_caches(void);
1456
1457 /*
1458 * checkpoint.c
1459 */
1460 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1461 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1462 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1463 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1464 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1465 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1466 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1467 void release_dirty_inode(struct f2fs_sb_info *);
1468 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1469 int acquire_orphan_inode(struct f2fs_sb_info *);
1470 void release_orphan_inode(struct f2fs_sb_info *);
1471 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1472 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1473 void recover_orphan_inodes(struct f2fs_sb_info *);
1474 int get_valid_checkpoint(struct f2fs_sb_info *);
1475 void update_dirty_page(struct inode *, struct page *);
1476 void add_dirty_dir_inode(struct inode *);
1477 void remove_dirty_dir_inode(struct inode *);
1478 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1479 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1480 void init_ino_entry_info(struct f2fs_sb_info *);
1481 int __init create_checkpoint_caches(void);
1482 void destroy_checkpoint_caches(void);
1483
1484 /*
1485 * data.c
1486 */
1487 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1488 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1489 struct f2fs_io_info *);
1490 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1491 struct f2fs_io_info *);
1492 int reserve_new_block(struct dnode_of_data *);
1493 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1494 void update_extent_cache(struct dnode_of_data *);
1495 struct page *find_data_page(struct inode *, pgoff_t, bool);
1496 struct page *get_lock_data_page(struct inode *, pgoff_t);
1497 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1498 int do_write_data_page(struct page *, struct f2fs_io_info *);
1499 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1500
1501 /*
1502 * gc.c
1503 */
1504 int start_gc_thread(struct f2fs_sb_info *);
1505 void stop_gc_thread(struct f2fs_sb_info *);
1506 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1507 int f2fs_gc(struct f2fs_sb_info *);
1508 void build_gc_manager(struct f2fs_sb_info *);
1509
1510 /*
1511 * recovery.c
1512 */
1513 int recover_fsync_data(struct f2fs_sb_info *);
1514 bool space_for_roll_forward(struct f2fs_sb_info *);
1515
1516 /*
1517 * debug.c
1518 */
1519 #ifdef CONFIG_F2FS_STAT_FS
1520 struct f2fs_stat_info {
1521 struct list_head stat_list;
1522 struct f2fs_sb_info *sbi;
1523 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1524 int main_area_segs, main_area_sections, main_area_zones;
1525 int hit_ext, total_ext;
1526 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1527 int nats, dirty_nats, sits, dirty_sits, fnids;
1528 int total_count, utilization;
1529 int bg_gc, inline_inode, inline_dir, inmem_pages;
1530 unsigned int valid_count, valid_node_count, valid_inode_count;
1531 unsigned int bimodal, avg_vblocks;
1532 int util_free, util_valid, util_invalid;
1533 int rsvd_segs, overp_segs;
1534 int dirty_count, node_pages, meta_pages;
1535 int prefree_count, call_count, cp_count;
1536 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1537 int tot_blks, data_blks, node_blks;
1538 int curseg[NR_CURSEG_TYPE];
1539 int cursec[NR_CURSEG_TYPE];
1540 int curzone[NR_CURSEG_TYPE];
1541
1542 unsigned int segment_count[2];
1543 unsigned int block_count[2];
1544 unsigned int inplace_count;
1545 unsigned base_mem, cache_mem, page_mem;
1546 };
1547
1548 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1549 {
1550 return (struct f2fs_stat_info *)sbi->stat_info;
1551 }
1552
1553 #define stat_inc_cp_count(si) ((si)->cp_count++)
1554 #define stat_inc_call_count(si) ((si)->call_count++)
1555 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1556 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1557 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1558 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1559 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1560 #define stat_inc_inline_inode(inode) \
1561 do { \
1562 if (f2fs_has_inline_data(inode)) \
1563 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1564 } while (0)
1565 #define stat_dec_inline_inode(inode) \
1566 do { \
1567 if (f2fs_has_inline_data(inode)) \
1568 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1569 } while (0)
1570 #define stat_inc_inline_dir(inode) \
1571 do { \
1572 if (f2fs_has_inline_dentry(inode)) \
1573 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1574 } while (0)
1575 #define stat_dec_inline_dir(inode) \
1576 do { \
1577 if (f2fs_has_inline_dentry(inode)) \
1578 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1579 } while (0)
1580 #define stat_inc_seg_type(sbi, curseg) \
1581 ((sbi)->segment_count[(curseg)->alloc_type]++)
1582 #define stat_inc_block_count(sbi, curseg) \
1583 ((sbi)->block_count[(curseg)->alloc_type]++)
1584 #define stat_inc_inplace_blocks(sbi) \
1585 (atomic_inc(&(sbi)->inplace_count))
1586 #define stat_inc_seg_count(sbi, type) \
1587 do { \
1588 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1589 (si)->tot_segs++; \
1590 if (type == SUM_TYPE_DATA) \
1591 si->data_segs++; \
1592 else \
1593 si->node_segs++; \
1594 } while (0)
1595
1596 #define stat_inc_tot_blk_count(si, blks) \
1597 (si->tot_blks += (blks))
1598
1599 #define stat_inc_data_blk_count(sbi, blks) \
1600 do { \
1601 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1602 stat_inc_tot_blk_count(si, blks); \
1603 si->data_blks += (blks); \
1604 } while (0)
1605
1606 #define stat_inc_node_blk_count(sbi, blks) \
1607 do { \
1608 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1609 stat_inc_tot_blk_count(si, blks); \
1610 si->node_blks += (blks); \
1611 } while (0)
1612
1613 int f2fs_build_stats(struct f2fs_sb_info *);
1614 void f2fs_destroy_stats(struct f2fs_sb_info *);
1615 void __init f2fs_create_root_stats(void);
1616 void f2fs_destroy_root_stats(void);
1617 #else
1618 #define stat_inc_cp_count(si)
1619 #define stat_inc_call_count(si)
1620 #define stat_inc_bggc_count(si)
1621 #define stat_inc_dirty_dir(sbi)
1622 #define stat_dec_dirty_dir(sbi)
1623 #define stat_inc_total_hit(sb)
1624 #define stat_inc_read_hit(sb)
1625 #define stat_inc_inline_inode(inode)
1626 #define stat_dec_inline_inode(inode)
1627 #define stat_inc_inline_dir(inode)
1628 #define stat_dec_inline_dir(inode)
1629 #define stat_inc_seg_type(sbi, curseg)
1630 #define stat_inc_block_count(sbi, curseg)
1631 #define stat_inc_inplace_blocks(sbi)
1632 #define stat_inc_seg_count(si, type)
1633 #define stat_inc_tot_blk_count(si, blks)
1634 #define stat_inc_data_blk_count(si, blks)
1635 #define stat_inc_node_blk_count(sbi, blks)
1636
1637 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1638 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1639 static inline void __init f2fs_create_root_stats(void) { }
1640 static inline void f2fs_destroy_root_stats(void) { }
1641 #endif
1642
1643 extern const struct file_operations f2fs_dir_operations;
1644 extern const struct file_operations f2fs_file_operations;
1645 extern const struct inode_operations f2fs_file_inode_operations;
1646 extern const struct address_space_operations f2fs_dblock_aops;
1647 extern const struct address_space_operations f2fs_node_aops;
1648 extern const struct address_space_operations f2fs_meta_aops;
1649 extern const struct inode_operations f2fs_dir_inode_operations;
1650 extern const struct inode_operations f2fs_symlink_inode_operations;
1651 extern const struct inode_operations f2fs_special_inode_operations;
1652
1653 /*
1654 * inline.c
1655 */
1656 bool f2fs_may_inline(struct inode *);
1657 void read_inline_data(struct page *, struct page *);
1658 int f2fs_read_inline_data(struct inode *, struct page *);
1659 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1660 int f2fs_convert_inline_inode(struct inode *);
1661 int f2fs_write_inline_data(struct inode *, struct page *);
1662 bool recover_inline_data(struct inode *, struct page *);
1663 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1664 struct page **);
1665 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1666 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1667 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1668 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1669 struct inode *, struct inode *);
1670 bool f2fs_empty_inline_dir(struct inode *);
1671 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1672 #endif
This page took 0.088155 seconds and 6 git commands to generate.