f2fs: fix handling orphan inodes
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20
21 /*
22 * For mount options
23 */
24 #define F2FS_MOUNT_BG_GC 0x00000001
25 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
26 #define F2FS_MOUNT_DISCARD 0x00000004
27 #define F2FS_MOUNT_NOHEAP 0x00000008
28 #define F2FS_MOUNT_XATTR_USER 0x00000010
29 #define F2FS_MOUNT_POSIX_ACL 0x00000020
30 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
31
32 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
33 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
34 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
35
36 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
37 typecheck(unsigned long long, b) && \
38 ((long long)((a) - (b)) > 0))
39
40 typedef u32 block_t; /*
41 * should not change u32, since it is the on-disk block
42 * address format, __le32.
43 */
44 typedef u32 nid_t;
45
46 struct f2fs_mount_info {
47 unsigned int opt;
48 };
49
50 #define CRCPOLY_LE 0xedb88320
51
52 static inline __u32 f2fs_crc32(void *buf, size_t len)
53 {
54 unsigned char *p = (unsigned char *)buf;
55 __u32 crc = F2FS_SUPER_MAGIC;
56 int i;
57
58 while (len--) {
59 crc ^= *p++;
60 for (i = 0; i < 8; i++)
61 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
62 }
63 return crc;
64 }
65
66 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
67 {
68 return f2fs_crc32(buf, buf_size) == blk_crc;
69 }
70
71 /*
72 * For checkpoint manager
73 */
74 enum {
75 NAT_BITMAP,
76 SIT_BITMAP
77 };
78
79 /* for the list of orphan inodes */
80 struct orphan_inode_entry {
81 struct list_head list; /* list head */
82 nid_t ino; /* inode number */
83 };
84
85 /* for the list of directory inodes */
86 struct dir_inode_entry {
87 struct list_head list; /* list head */
88 struct inode *inode; /* vfs inode pointer */
89 };
90
91 /* for the list of fsync inodes, used only during recovery */
92 struct fsync_inode_entry {
93 struct list_head list; /* list head */
94 struct inode *inode; /* vfs inode pointer */
95 block_t blkaddr; /* block address locating the last inode */
96 };
97
98 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
99 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
100
101 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
102 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
103 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
104 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
105
106 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
107 {
108 int before = nats_in_cursum(rs);
109 rs->n_nats = cpu_to_le16(before + i);
110 return before;
111 }
112
113 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
114 {
115 int before = sits_in_cursum(rs);
116 rs->n_sits = cpu_to_le16(before + i);
117 return before;
118 }
119
120 /*
121 * ioctl commands
122 */
123 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
124 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
125
126 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
127 /*
128 * ioctl commands in 32 bit emulation
129 */
130 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
131 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
132 #endif
133
134 /*
135 * For INODE and NODE manager
136 */
137 #define XATTR_NODE_OFFSET (-1) /*
138 * store xattrs to one node block per
139 * file keeping -1 as its node offset to
140 * distinguish from index node blocks.
141 */
142 enum {
143 ALLOC_NODE, /* allocate a new node page if needed */
144 LOOKUP_NODE, /* look up a node without readahead */
145 LOOKUP_NODE_RA, /*
146 * look up a node with readahead called
147 * by get_datablock_ro.
148 */
149 };
150
151 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
152
153 /* for in-memory extent cache entry */
154 struct extent_info {
155 rwlock_t ext_lock; /* rwlock for consistency */
156 unsigned int fofs; /* start offset in a file */
157 u32 blk_addr; /* start block address of the extent */
158 unsigned int len; /* length of the extent */
159 };
160
161 /*
162 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
163 */
164 #define FADVISE_COLD_BIT 0x01
165 #define FADVISE_LOST_PINO_BIT 0x02
166
167 struct f2fs_inode_info {
168 struct inode vfs_inode; /* serve a vfs inode */
169 unsigned long i_flags; /* keep an inode flags for ioctl */
170 unsigned char i_advise; /* use to give file attribute hints */
171 unsigned int i_current_depth; /* use only in directory structure */
172 unsigned int i_pino; /* parent inode number */
173 umode_t i_acl_mode; /* keep file acl mode temporarily */
174
175 /* Use below internally in f2fs*/
176 unsigned long flags; /* use to pass per-file flags */
177 atomic_t dirty_dents; /* # of dirty dentry pages */
178 f2fs_hash_t chash; /* hash value of given file name */
179 unsigned int clevel; /* maximum level of given file name */
180 nid_t i_xattr_nid; /* node id that contains xattrs */
181 struct extent_info ext; /* in-memory extent cache entry */
182 };
183
184 static inline void get_extent_info(struct extent_info *ext,
185 struct f2fs_extent i_ext)
186 {
187 write_lock(&ext->ext_lock);
188 ext->fofs = le32_to_cpu(i_ext.fofs);
189 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
190 ext->len = le32_to_cpu(i_ext.len);
191 write_unlock(&ext->ext_lock);
192 }
193
194 static inline void set_raw_extent(struct extent_info *ext,
195 struct f2fs_extent *i_ext)
196 {
197 read_lock(&ext->ext_lock);
198 i_ext->fofs = cpu_to_le32(ext->fofs);
199 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
200 i_ext->len = cpu_to_le32(ext->len);
201 read_unlock(&ext->ext_lock);
202 }
203
204 struct f2fs_nm_info {
205 block_t nat_blkaddr; /* base disk address of NAT */
206 nid_t max_nid; /* maximum possible node ids */
207 nid_t next_scan_nid; /* the next nid to be scanned */
208
209 /* NAT cache management */
210 struct radix_tree_root nat_root;/* root of the nat entry cache */
211 rwlock_t nat_tree_lock; /* protect nat_tree_lock */
212 unsigned int nat_cnt; /* the # of cached nat entries */
213 struct list_head nat_entries; /* cached nat entry list (clean) */
214 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
215
216 /* free node ids management */
217 struct list_head free_nid_list; /* a list for free nids */
218 spinlock_t free_nid_list_lock; /* protect free nid list */
219 unsigned int fcnt; /* the number of free node id */
220 struct mutex build_lock; /* lock for build free nids */
221
222 /* for checkpoint */
223 char *nat_bitmap; /* NAT bitmap pointer */
224 int bitmap_size; /* bitmap size */
225 };
226
227 /*
228 * this structure is used as one of function parameters.
229 * all the information are dedicated to a given direct node block determined
230 * by the data offset in a file.
231 */
232 struct dnode_of_data {
233 struct inode *inode; /* vfs inode pointer */
234 struct page *inode_page; /* its inode page, NULL is possible */
235 struct page *node_page; /* cached direct node page */
236 nid_t nid; /* node id of the direct node block */
237 unsigned int ofs_in_node; /* data offset in the node page */
238 bool inode_page_locked; /* inode page is locked or not */
239 block_t data_blkaddr; /* block address of the node block */
240 };
241
242 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
243 struct page *ipage, struct page *npage, nid_t nid)
244 {
245 memset(dn, 0, sizeof(*dn));
246 dn->inode = inode;
247 dn->inode_page = ipage;
248 dn->node_page = npage;
249 dn->nid = nid;
250 }
251
252 /*
253 * For SIT manager
254 *
255 * By default, there are 6 active log areas across the whole main area.
256 * When considering hot and cold data separation to reduce cleaning overhead,
257 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
258 * respectively.
259 * In the current design, you should not change the numbers intentionally.
260 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
261 * logs individually according to the underlying devices. (default: 6)
262 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
263 * data and 8 for node logs.
264 */
265 #define NR_CURSEG_DATA_TYPE (3)
266 #define NR_CURSEG_NODE_TYPE (3)
267 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
268
269 enum {
270 CURSEG_HOT_DATA = 0, /* directory entry blocks */
271 CURSEG_WARM_DATA, /* data blocks */
272 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
273 CURSEG_HOT_NODE, /* direct node blocks of directory files */
274 CURSEG_WARM_NODE, /* direct node blocks of normal files */
275 CURSEG_COLD_NODE, /* indirect node blocks */
276 NO_CHECK_TYPE
277 };
278
279 struct f2fs_sm_info {
280 struct sit_info *sit_info; /* whole segment information */
281 struct free_segmap_info *free_info; /* free segment information */
282 struct dirty_seglist_info *dirty_info; /* dirty segment information */
283 struct curseg_info *curseg_array; /* active segment information */
284
285 struct list_head wblist_head; /* list of under-writeback pages */
286 spinlock_t wblist_lock; /* lock for checkpoint */
287
288 block_t seg0_blkaddr; /* block address of 0'th segment */
289 block_t main_blkaddr; /* start block address of main area */
290 block_t ssa_blkaddr; /* start block address of SSA area */
291
292 unsigned int segment_count; /* total # of segments */
293 unsigned int main_segments; /* # of segments in main area */
294 unsigned int reserved_segments; /* # of reserved segments */
295 unsigned int ovp_segments; /* # of overprovision segments */
296 };
297
298 /*
299 * For directory operation
300 */
301 #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1)
302 #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2)
303 #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3)
304 #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4)
305 #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5)
306
307 /*
308 * For superblock
309 */
310 /*
311 * COUNT_TYPE for monitoring
312 *
313 * f2fs monitors the number of several block types such as on-writeback,
314 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
315 */
316 enum count_type {
317 F2FS_WRITEBACK,
318 F2FS_DIRTY_DENTS,
319 F2FS_DIRTY_NODES,
320 F2FS_DIRTY_META,
321 NR_COUNT_TYPE,
322 };
323
324 /*
325 * Uses as sbi->fs_lock[NR_GLOBAL_LOCKS].
326 * The checkpoint procedure blocks all the locks in this fs_lock array.
327 * Some FS operations grab free locks, and if there is no free lock,
328 * then wait to grab a lock in a round-robin manner.
329 */
330 #define NR_GLOBAL_LOCKS 8
331
332 /*
333 * The below are the page types of bios used in submti_bio().
334 * The available types are:
335 * DATA User data pages. It operates as async mode.
336 * NODE Node pages. It operates as async mode.
337 * META FS metadata pages such as SIT, NAT, CP.
338 * NR_PAGE_TYPE The number of page types.
339 * META_FLUSH Make sure the previous pages are written
340 * with waiting the bio's completion
341 * ... Only can be used with META.
342 */
343 enum page_type {
344 DATA,
345 NODE,
346 META,
347 NR_PAGE_TYPE,
348 META_FLUSH,
349 };
350
351 struct f2fs_sb_info {
352 struct super_block *sb; /* pointer to VFS super block */
353 struct proc_dir_entry *s_proc; /* proc entry */
354 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
355 struct f2fs_super_block *raw_super; /* raw super block pointer */
356 int s_dirty; /* dirty flag for checkpoint */
357
358 /* for node-related operations */
359 struct f2fs_nm_info *nm_info; /* node manager */
360 struct inode *node_inode; /* cache node blocks */
361
362 /* for segment-related operations */
363 struct f2fs_sm_info *sm_info; /* segment manager */
364 struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */
365 sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */
366 struct rw_semaphore bio_sem; /* IO semaphore */
367
368 /* for checkpoint */
369 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
370 struct inode *meta_inode; /* cache meta blocks */
371 struct mutex cp_mutex; /* checkpoint procedure lock */
372 struct mutex fs_lock[NR_GLOBAL_LOCKS]; /* blocking FS operations */
373 struct mutex node_write; /* locking node writes */
374 struct mutex writepages; /* mutex for writepages() */
375 unsigned char next_lock_num; /* round-robin global locks */
376 int por_doing; /* recovery is doing or not */
377 int on_build_free_nids; /* build_free_nids is doing */
378
379 /* for orphan inode management */
380 struct list_head orphan_inode_list; /* orphan inode list */
381 struct mutex orphan_inode_mutex; /* for orphan inode list */
382 unsigned int n_orphans; /* # of orphan inodes */
383
384 /* for directory inode management */
385 struct list_head dir_inode_list; /* dir inode list */
386 spinlock_t dir_inode_lock; /* for dir inode list lock */
387
388 /* basic file system units */
389 unsigned int log_sectors_per_block; /* log2 sectors per block */
390 unsigned int log_blocksize; /* log2 block size */
391 unsigned int blocksize; /* block size */
392 unsigned int root_ino_num; /* root inode number*/
393 unsigned int node_ino_num; /* node inode number*/
394 unsigned int meta_ino_num; /* meta inode number*/
395 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
396 unsigned int blocks_per_seg; /* blocks per segment */
397 unsigned int segs_per_sec; /* segments per section */
398 unsigned int secs_per_zone; /* sections per zone */
399 unsigned int total_sections; /* total section count */
400 unsigned int total_node_count; /* total node block count */
401 unsigned int total_valid_node_count; /* valid node block count */
402 unsigned int total_valid_inode_count; /* valid inode count */
403 int active_logs; /* # of active logs */
404
405 block_t user_block_count; /* # of user blocks */
406 block_t total_valid_block_count; /* # of valid blocks */
407 block_t alloc_valid_block_count; /* # of allocated blocks */
408 block_t last_valid_block_count; /* for recovery */
409 u32 s_next_generation; /* for NFS support */
410 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
411
412 struct f2fs_mount_info mount_opt; /* mount options */
413
414 /* for cleaning operations */
415 struct mutex gc_mutex; /* mutex for GC */
416 struct f2fs_gc_kthread *gc_thread; /* GC thread */
417 unsigned int cur_victim_sec; /* current victim section num */
418
419 /*
420 * for stat information.
421 * one is for the LFS mode, and the other is for the SSR mode.
422 */
423 #ifdef CONFIG_F2FS_STAT_FS
424 struct f2fs_stat_info *stat_info; /* FS status information */
425 unsigned int segment_count[2]; /* # of allocated segments */
426 unsigned int block_count[2]; /* # of allocated blocks */
427 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
428 int bg_gc; /* background gc calls */
429 unsigned int n_dirty_dirs; /* # of dir inodes */
430 #endif
431 unsigned int last_victim[2]; /* last victim segment # */
432 spinlock_t stat_lock; /* lock for stat operations */
433 };
434
435 /*
436 * Inline functions
437 */
438 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
439 {
440 return container_of(inode, struct f2fs_inode_info, vfs_inode);
441 }
442
443 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
444 {
445 return sb->s_fs_info;
446 }
447
448 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
449 {
450 return (struct f2fs_super_block *)(sbi->raw_super);
451 }
452
453 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
454 {
455 return (struct f2fs_checkpoint *)(sbi->ckpt);
456 }
457
458 static inline struct f2fs_node *F2FS_NODE(struct page *page)
459 {
460 return (struct f2fs_node *)page_address(page);
461 }
462
463 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
464 {
465 return (struct f2fs_nm_info *)(sbi->nm_info);
466 }
467
468 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
469 {
470 return (struct f2fs_sm_info *)(sbi->sm_info);
471 }
472
473 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
474 {
475 return (struct sit_info *)(SM_I(sbi)->sit_info);
476 }
477
478 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
479 {
480 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
481 }
482
483 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
484 {
485 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
486 }
487
488 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
489 {
490 sbi->s_dirty = 1;
491 }
492
493 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
494 {
495 sbi->s_dirty = 0;
496 }
497
498 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
499 {
500 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
501 return ckpt_flags & f;
502 }
503
504 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
505 {
506 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
507 ckpt_flags |= f;
508 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
509 }
510
511 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
512 {
513 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
514 ckpt_flags &= (~f);
515 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
516 }
517
518 static inline void mutex_lock_all(struct f2fs_sb_info *sbi)
519 {
520 int i;
521
522 for (i = 0; i < NR_GLOBAL_LOCKS; i++) {
523 /*
524 * This is the only time we take multiple fs_lock[]
525 * instances; the order is immaterial since we
526 * always hold cp_mutex, which serializes multiple
527 * such operations.
528 */
529 mutex_lock_nest_lock(&sbi->fs_lock[i], &sbi->cp_mutex);
530 }
531 }
532
533 static inline void mutex_unlock_all(struct f2fs_sb_info *sbi)
534 {
535 int i = 0;
536 for (; i < NR_GLOBAL_LOCKS; i++)
537 mutex_unlock(&sbi->fs_lock[i]);
538 }
539
540 static inline int mutex_lock_op(struct f2fs_sb_info *sbi)
541 {
542 unsigned char next_lock = sbi->next_lock_num % NR_GLOBAL_LOCKS;
543 int i = 0;
544
545 for (; i < NR_GLOBAL_LOCKS; i++)
546 if (mutex_trylock(&sbi->fs_lock[i]))
547 return i;
548
549 mutex_lock(&sbi->fs_lock[next_lock]);
550 sbi->next_lock_num++;
551 return next_lock;
552 }
553
554 static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, int ilock)
555 {
556 if (ilock < 0)
557 return;
558 BUG_ON(ilock >= NR_GLOBAL_LOCKS);
559 mutex_unlock(&sbi->fs_lock[ilock]);
560 }
561
562 /*
563 * Check whether the given nid is within node id range.
564 */
565 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
566 {
567 WARN_ON((nid >= NM_I(sbi)->max_nid));
568 if (nid >= NM_I(sbi)->max_nid)
569 return -EINVAL;
570 return 0;
571 }
572
573 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
574
575 /*
576 * Check whether the inode has blocks or not
577 */
578 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
579 {
580 if (F2FS_I(inode)->i_xattr_nid)
581 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1);
582 else
583 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS);
584 }
585
586 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
587 struct inode *inode, blkcnt_t count)
588 {
589 block_t valid_block_count;
590
591 spin_lock(&sbi->stat_lock);
592 valid_block_count =
593 sbi->total_valid_block_count + (block_t)count;
594 if (valid_block_count > sbi->user_block_count) {
595 spin_unlock(&sbi->stat_lock);
596 return false;
597 }
598 inode->i_blocks += count;
599 sbi->total_valid_block_count = valid_block_count;
600 sbi->alloc_valid_block_count += (block_t)count;
601 spin_unlock(&sbi->stat_lock);
602 return true;
603 }
604
605 static inline int dec_valid_block_count(struct f2fs_sb_info *sbi,
606 struct inode *inode,
607 blkcnt_t count)
608 {
609 spin_lock(&sbi->stat_lock);
610 BUG_ON(sbi->total_valid_block_count < (block_t) count);
611 BUG_ON(inode->i_blocks < count);
612 inode->i_blocks -= count;
613 sbi->total_valid_block_count -= (block_t)count;
614 spin_unlock(&sbi->stat_lock);
615 return 0;
616 }
617
618 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
619 {
620 atomic_inc(&sbi->nr_pages[count_type]);
621 F2FS_SET_SB_DIRT(sbi);
622 }
623
624 static inline void inode_inc_dirty_dents(struct inode *inode)
625 {
626 atomic_inc(&F2FS_I(inode)->dirty_dents);
627 }
628
629 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
630 {
631 atomic_dec(&sbi->nr_pages[count_type]);
632 }
633
634 static inline void inode_dec_dirty_dents(struct inode *inode)
635 {
636 atomic_dec(&F2FS_I(inode)->dirty_dents);
637 }
638
639 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
640 {
641 return atomic_read(&sbi->nr_pages[count_type]);
642 }
643
644 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
645 {
646 unsigned int pages_per_sec = sbi->segs_per_sec *
647 (1 << sbi->log_blocks_per_seg);
648 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
649 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
650 }
651
652 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
653 {
654 block_t ret;
655 spin_lock(&sbi->stat_lock);
656 ret = sbi->total_valid_block_count;
657 spin_unlock(&sbi->stat_lock);
658 return ret;
659 }
660
661 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
662 {
663 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
664
665 /* return NAT or SIT bitmap */
666 if (flag == NAT_BITMAP)
667 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
668 else if (flag == SIT_BITMAP)
669 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
670
671 return 0;
672 }
673
674 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
675 {
676 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
677 int offset = (flag == NAT_BITMAP) ?
678 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
679 return &ckpt->sit_nat_version_bitmap + offset;
680 }
681
682 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
683 {
684 block_t start_addr;
685 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
686 unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);
687
688 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
689
690 /*
691 * odd numbered checkpoint should at cp segment 0
692 * and even segent must be at cp segment 1
693 */
694 if (!(ckpt_version & 1))
695 start_addr += sbi->blocks_per_seg;
696
697 return start_addr;
698 }
699
700 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
701 {
702 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
703 }
704
705 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
706 struct inode *inode,
707 unsigned int count)
708 {
709 block_t valid_block_count;
710 unsigned int valid_node_count;
711
712 spin_lock(&sbi->stat_lock);
713
714 valid_block_count = sbi->total_valid_block_count + (block_t)count;
715 sbi->alloc_valid_block_count += (block_t)count;
716 valid_node_count = sbi->total_valid_node_count + count;
717
718 if (valid_block_count > sbi->user_block_count) {
719 spin_unlock(&sbi->stat_lock);
720 return false;
721 }
722
723 if (valid_node_count > sbi->total_node_count) {
724 spin_unlock(&sbi->stat_lock);
725 return false;
726 }
727
728 if (inode)
729 inode->i_blocks += count;
730 sbi->total_valid_node_count = valid_node_count;
731 sbi->total_valid_block_count = valid_block_count;
732 spin_unlock(&sbi->stat_lock);
733
734 return true;
735 }
736
737 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
738 struct inode *inode,
739 unsigned int count)
740 {
741 spin_lock(&sbi->stat_lock);
742
743 BUG_ON(sbi->total_valid_block_count < count);
744 BUG_ON(sbi->total_valid_node_count < count);
745 BUG_ON(inode->i_blocks < count);
746
747 inode->i_blocks -= count;
748 sbi->total_valid_node_count -= count;
749 sbi->total_valid_block_count -= (block_t)count;
750
751 spin_unlock(&sbi->stat_lock);
752 }
753
754 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
755 {
756 unsigned int ret;
757 spin_lock(&sbi->stat_lock);
758 ret = sbi->total_valid_node_count;
759 spin_unlock(&sbi->stat_lock);
760 return ret;
761 }
762
763 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
764 {
765 spin_lock(&sbi->stat_lock);
766 BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count);
767 sbi->total_valid_inode_count++;
768 spin_unlock(&sbi->stat_lock);
769 }
770
771 static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi)
772 {
773 spin_lock(&sbi->stat_lock);
774 BUG_ON(!sbi->total_valid_inode_count);
775 sbi->total_valid_inode_count--;
776 spin_unlock(&sbi->stat_lock);
777 return 0;
778 }
779
780 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
781 {
782 unsigned int ret;
783 spin_lock(&sbi->stat_lock);
784 ret = sbi->total_valid_inode_count;
785 spin_unlock(&sbi->stat_lock);
786 return ret;
787 }
788
789 static inline void f2fs_put_page(struct page *page, int unlock)
790 {
791 if (!page || IS_ERR(page))
792 return;
793
794 if (unlock) {
795 BUG_ON(!PageLocked(page));
796 unlock_page(page);
797 }
798 page_cache_release(page);
799 }
800
801 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
802 {
803 if (dn->node_page)
804 f2fs_put_page(dn->node_page, 1);
805 if (dn->inode_page && dn->node_page != dn->inode_page)
806 f2fs_put_page(dn->inode_page, 0);
807 dn->node_page = NULL;
808 dn->inode_page = NULL;
809 }
810
811 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
812 size_t size, void (*ctor)(void *))
813 {
814 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor);
815 }
816
817 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
818
819 static inline bool IS_INODE(struct page *page)
820 {
821 struct f2fs_node *p = F2FS_NODE(page);
822 return RAW_IS_INODE(p);
823 }
824
825 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
826 {
827 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
828 }
829
830 static inline block_t datablock_addr(struct page *node_page,
831 unsigned int offset)
832 {
833 struct f2fs_node *raw_node;
834 __le32 *addr_array;
835 raw_node = F2FS_NODE(node_page);
836 addr_array = blkaddr_in_node(raw_node);
837 return le32_to_cpu(addr_array[offset]);
838 }
839
840 static inline int f2fs_test_bit(unsigned int nr, char *addr)
841 {
842 int mask;
843
844 addr += (nr >> 3);
845 mask = 1 << (7 - (nr & 0x07));
846 return mask & *addr;
847 }
848
849 static inline int f2fs_set_bit(unsigned int nr, char *addr)
850 {
851 int mask;
852 int ret;
853
854 addr += (nr >> 3);
855 mask = 1 << (7 - (nr & 0x07));
856 ret = mask & *addr;
857 *addr |= mask;
858 return ret;
859 }
860
861 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
862 {
863 int mask;
864 int ret;
865
866 addr += (nr >> 3);
867 mask = 1 << (7 - (nr & 0x07));
868 ret = mask & *addr;
869 *addr &= ~mask;
870 return ret;
871 }
872
873 /* used for f2fs_inode_info->flags */
874 enum {
875 FI_NEW_INODE, /* indicate newly allocated inode */
876 FI_DIRTY_INODE, /* indicate inode is dirty or not */
877 FI_INC_LINK, /* need to increment i_nlink */
878 FI_ACL_MODE, /* indicate acl mode */
879 FI_NO_ALLOC, /* should not allocate any blocks */
880 FI_UPDATE_DIR, /* should update inode block for consistency */
881 FI_DELAY_IPUT, /* used for the recovery */
882 };
883
884 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
885 {
886 set_bit(flag, &fi->flags);
887 }
888
889 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
890 {
891 return test_bit(flag, &fi->flags);
892 }
893
894 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
895 {
896 clear_bit(flag, &fi->flags);
897 }
898
899 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
900 {
901 fi->i_acl_mode = mode;
902 set_inode_flag(fi, FI_ACL_MODE);
903 }
904
905 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
906 {
907 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
908 clear_inode_flag(fi, FI_ACL_MODE);
909 return 1;
910 }
911 return 0;
912 }
913
914 static inline int f2fs_readonly(struct super_block *sb)
915 {
916 return sb->s_flags & MS_RDONLY;
917 }
918
919 /*
920 * file.c
921 */
922 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
923 void truncate_data_blocks(struct dnode_of_data *);
924 void f2fs_truncate(struct inode *);
925 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
926 int f2fs_setattr(struct dentry *, struct iattr *);
927 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
928 int truncate_data_blocks_range(struct dnode_of_data *, int);
929 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
930 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
931
932 /*
933 * inode.c
934 */
935 void f2fs_set_inode_flags(struct inode *);
936 struct inode *f2fs_iget(struct super_block *, unsigned long);
937 void update_inode(struct inode *, struct page *);
938 int update_inode_page(struct inode *);
939 int f2fs_write_inode(struct inode *, struct writeback_control *);
940 void f2fs_evict_inode(struct inode *);
941
942 /*
943 * namei.c
944 */
945 struct dentry *f2fs_get_parent(struct dentry *child);
946
947 /*
948 * dir.c
949 */
950 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
951 struct page **);
952 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
953 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
954 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
955 struct page *, struct inode *);
956 int update_dent_inode(struct inode *, const struct qstr *);
957 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
958 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
959 int f2fs_make_empty(struct inode *, struct inode *);
960 bool f2fs_empty_dir(struct inode *);
961
962 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
963 {
964 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
965 inode);
966 }
967
968 /*
969 * super.c
970 */
971 int f2fs_sync_fs(struct super_block *, int);
972 extern __printf(3, 4)
973 void f2fs_msg(struct super_block *, const char *, const char *, ...);
974
975 /*
976 * hash.c
977 */
978 f2fs_hash_t f2fs_dentry_hash(const char *, size_t);
979
980 /*
981 * node.c
982 */
983 struct dnode_of_data;
984 struct node_info;
985
986 int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
987 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
988 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
989 int truncate_inode_blocks(struct inode *, pgoff_t);
990 int remove_inode_page(struct inode *);
991 struct page *new_inode_page(struct inode *, const struct qstr *);
992 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
993 void ra_node_page(struct f2fs_sb_info *, nid_t);
994 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
995 struct page *get_node_page_ra(struct page *, int);
996 void sync_inode_page(struct dnode_of_data *);
997 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
998 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
999 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1000 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1001 void recover_node_page(struct f2fs_sb_info *, struct page *,
1002 struct f2fs_summary *, struct node_info *, block_t);
1003 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1004 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1005 struct f2fs_summary_block *);
1006 void flush_nat_entries(struct f2fs_sb_info *);
1007 int build_node_manager(struct f2fs_sb_info *);
1008 void destroy_node_manager(struct f2fs_sb_info *);
1009 int __init create_node_manager_caches(void);
1010 void destroy_node_manager_caches(void);
1011
1012 /*
1013 * segment.c
1014 */
1015 void f2fs_balance_fs(struct f2fs_sb_info *);
1016 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1017 void clear_prefree_segments(struct f2fs_sb_info *);
1018 int npages_for_summary_flush(struct f2fs_sb_info *);
1019 void allocate_new_segments(struct f2fs_sb_info *);
1020 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1021 struct bio *f2fs_bio_alloc(struct block_device *, int);
1022 void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync);
1023 void write_meta_page(struct f2fs_sb_info *, struct page *);
1024 void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int,
1025 block_t, block_t *);
1026 void write_data_page(struct inode *, struct page *, struct dnode_of_data*,
1027 block_t, block_t *);
1028 void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t);
1029 void recover_data_page(struct f2fs_sb_info *, struct page *,
1030 struct f2fs_summary *, block_t, block_t);
1031 void rewrite_node_page(struct f2fs_sb_info *, struct page *,
1032 struct f2fs_summary *, block_t, block_t);
1033 void write_data_summaries(struct f2fs_sb_info *, block_t);
1034 void write_node_summaries(struct f2fs_sb_info *, block_t);
1035 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1036 int, unsigned int, int);
1037 void flush_sit_entries(struct f2fs_sb_info *);
1038 int build_segment_manager(struct f2fs_sb_info *);
1039 void destroy_segment_manager(struct f2fs_sb_info *);
1040
1041 /*
1042 * checkpoint.c
1043 */
1044 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1045 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1046 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1047 int acquire_orphan_inode(struct f2fs_sb_info *);
1048 void release_orphan_inode(struct f2fs_sb_info *);
1049 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1050 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1051 int recover_orphan_inodes(struct f2fs_sb_info *);
1052 int get_valid_checkpoint(struct f2fs_sb_info *);
1053 void set_dirty_dir_page(struct inode *, struct page *);
1054 void add_dirty_dir_inode(struct inode *);
1055 void remove_dirty_dir_inode(struct inode *);
1056 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t);
1057 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1058 void write_checkpoint(struct f2fs_sb_info *, bool);
1059 void init_orphan_info(struct f2fs_sb_info *);
1060 int __init create_checkpoint_caches(void);
1061 void destroy_checkpoint_caches(void);
1062
1063 /*
1064 * data.c
1065 */
1066 int reserve_new_block(struct dnode_of_data *);
1067 void update_extent_cache(block_t, struct dnode_of_data *);
1068 struct page *find_data_page(struct inode *, pgoff_t, bool);
1069 struct page *get_lock_data_page(struct inode *, pgoff_t);
1070 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1071 int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int);
1072 int do_write_data_page(struct page *);
1073
1074 /*
1075 * gc.c
1076 */
1077 int start_gc_thread(struct f2fs_sb_info *);
1078 void stop_gc_thread(struct f2fs_sb_info *);
1079 block_t start_bidx_of_node(unsigned int);
1080 int f2fs_gc(struct f2fs_sb_info *);
1081 void build_gc_manager(struct f2fs_sb_info *);
1082 int __init create_gc_caches(void);
1083 void destroy_gc_caches(void);
1084
1085 /*
1086 * recovery.c
1087 */
1088 int recover_fsync_data(struct f2fs_sb_info *);
1089 bool space_for_roll_forward(struct f2fs_sb_info *);
1090
1091 /*
1092 * debug.c
1093 */
1094 #ifdef CONFIG_F2FS_STAT_FS
1095 struct f2fs_stat_info {
1096 struct list_head stat_list;
1097 struct f2fs_sb_info *sbi;
1098 struct mutex stat_lock;
1099 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1100 int main_area_segs, main_area_sections, main_area_zones;
1101 int hit_ext, total_ext;
1102 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1103 int nats, sits, fnids;
1104 int total_count, utilization;
1105 int bg_gc;
1106 unsigned int valid_count, valid_node_count, valid_inode_count;
1107 unsigned int bimodal, avg_vblocks;
1108 int util_free, util_valid, util_invalid;
1109 int rsvd_segs, overp_segs;
1110 int dirty_count, node_pages, meta_pages;
1111 int prefree_count, call_count;
1112 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1113 int tot_blks, data_blks, node_blks;
1114 int curseg[NR_CURSEG_TYPE];
1115 int cursec[NR_CURSEG_TYPE];
1116 int curzone[NR_CURSEG_TYPE];
1117
1118 unsigned int segment_count[2];
1119 unsigned int block_count[2];
1120 unsigned base_mem, cache_mem;
1121 };
1122
1123 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1124 {
1125 return (struct f2fs_stat_info*)sbi->stat_info;
1126 }
1127
1128 #define stat_inc_call_count(si) ((si)->call_count++)
1129
1130 #define stat_inc_seg_count(sbi, type) \
1131 do { \
1132 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1133 (si)->tot_segs++; \
1134 if (type == SUM_TYPE_DATA) \
1135 si->data_segs++; \
1136 else \
1137 si->node_segs++; \
1138 } while (0)
1139
1140 #define stat_inc_tot_blk_count(si, blks) \
1141 (si->tot_blks += (blks))
1142
1143 #define stat_inc_data_blk_count(sbi, blks) \
1144 do { \
1145 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1146 stat_inc_tot_blk_count(si, blks); \
1147 si->data_blks += (blks); \
1148 } while (0)
1149
1150 #define stat_inc_node_blk_count(sbi, blks) \
1151 do { \
1152 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1153 stat_inc_tot_blk_count(si, blks); \
1154 si->node_blks += (blks); \
1155 } while (0)
1156
1157 int f2fs_build_stats(struct f2fs_sb_info *);
1158 void f2fs_destroy_stats(struct f2fs_sb_info *);
1159 void __init f2fs_create_root_stats(void);
1160 void f2fs_destroy_root_stats(void);
1161 #else
1162 #define stat_inc_call_count(si)
1163 #define stat_inc_seg_count(si, type)
1164 #define stat_inc_tot_blk_count(si, blks)
1165 #define stat_inc_data_blk_count(si, blks)
1166 #define stat_inc_node_blk_count(sbi, blks)
1167
1168 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1169 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1170 static inline void __init f2fs_create_root_stats(void) { }
1171 static inline void f2fs_destroy_root_stats(void) { }
1172 #endif
1173
1174 extern const struct file_operations f2fs_dir_operations;
1175 extern const struct file_operations f2fs_file_operations;
1176 extern const struct inode_operations f2fs_file_inode_operations;
1177 extern const struct address_space_operations f2fs_dblock_aops;
1178 extern const struct address_space_operations f2fs_node_aops;
1179 extern const struct address_space_operations f2fs_meta_aops;
1180 extern const struct inode_operations f2fs_dir_inode_operations;
1181 extern const struct inode_operations f2fs_symlink_inode_operations;
1182 extern const struct inode_operations f2fs_special_inode_operations;
1183 #endif
This page took 0.055206 seconds and 6 git commands to generate.