f2fs: make truncate_inline_date static
[deliverable/linux.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53
54 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
55 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
56 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
57
58 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
59 typecheck(unsigned long long, b) && \
60 ((long long)((a) - (b)) > 0))
61
62 typedef u32 block_t; /*
63 * should not change u32, since it is the on-disk block
64 * address format, __le32.
65 */
66 typedef u32 nid_t;
67
68 struct f2fs_mount_info {
69 unsigned int opt;
70 };
71
72 #define CRCPOLY_LE 0xedb88320
73
74 static inline __u32 f2fs_crc32(void *buf, size_t len)
75 {
76 unsigned char *p = (unsigned char *)buf;
77 __u32 crc = F2FS_SUPER_MAGIC;
78 int i;
79
80 while (len--) {
81 crc ^= *p++;
82 for (i = 0; i < 8; i++)
83 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
84 }
85 return crc;
86 }
87
88 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
89 {
90 return f2fs_crc32(buf, buf_size) == blk_crc;
91 }
92
93 /*
94 * For checkpoint manager
95 */
96 enum {
97 NAT_BITMAP,
98 SIT_BITMAP
99 };
100
101 enum {
102 CP_UMOUNT,
103 CP_SYNC,
104 CP_DISCARD,
105 };
106
107 struct cp_control {
108 int reason;
109 __u64 trim_start;
110 __u64 trim_end;
111 __u64 trim_minlen;
112 __u64 trimmed;
113 };
114
115 /*
116 * For CP/NAT/SIT/SSA readahead
117 */
118 enum {
119 META_CP,
120 META_NAT,
121 META_SIT,
122 META_SSA,
123 META_POR,
124 };
125
126 /* for the list of ino */
127 enum {
128 ORPHAN_INO, /* for orphan ino list */
129 APPEND_INO, /* for append ino list */
130 UPDATE_INO, /* for update ino list */
131 MAX_INO_ENTRY, /* max. list */
132 };
133
134 struct ino_entry {
135 struct list_head list; /* list head */
136 nid_t ino; /* inode number */
137 };
138
139 /*
140 * for the list of directory inodes or gc inodes.
141 * NOTE: there are two slab users for this structure, if we add/modify/delete
142 * fields in structure for one of slab users, it may affect fields or size of
143 * other one, in this condition, it's better to split both of slab and related
144 * data structure.
145 */
146 struct inode_entry {
147 struct list_head list; /* list head */
148 struct inode *inode; /* vfs inode pointer */
149 };
150
151 /* for the list of blockaddresses to be discarded */
152 struct discard_entry {
153 struct list_head list; /* list head */
154 block_t blkaddr; /* block address to be discarded */
155 int len; /* # of consecutive blocks of the discard */
156 };
157
158 /* for the list of fsync inodes, used only during recovery */
159 struct fsync_inode_entry {
160 struct list_head list; /* list head */
161 struct inode *inode; /* vfs inode pointer */
162 block_t blkaddr; /* block address locating the last fsync */
163 block_t last_dentry; /* block address locating the last dentry */
164 block_t last_inode; /* block address locating the last inode */
165 };
166
167 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
168 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
169
170 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
171 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
172 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
173 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
174
175 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
176 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
177
178 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 int before = nats_in_cursum(rs);
181 rs->n_nats = cpu_to_le16(before + i);
182 return before;
183 }
184
185 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
186 {
187 int before = sits_in_cursum(rs);
188 rs->n_sits = cpu_to_le16(before + i);
189 return before;
190 }
191
192 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
193 int type)
194 {
195 if (type == NAT_JOURNAL)
196 return size <= MAX_NAT_JENTRIES(sum);
197 return size <= MAX_SIT_JENTRIES(sum);
198 }
199
200 /*
201 * ioctl commands
202 */
203 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
204 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
205 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
206
207 #define F2FS_IOCTL_MAGIC 0xf5
208 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
209 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
210 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
211 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
212 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
213
214 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
215 /*
216 * ioctl commands in 32 bit emulation
217 */
218 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
219 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
220 #endif
221
222 /*
223 * For INODE and NODE manager
224 */
225 /* for directory operations */
226 struct f2fs_dentry_ptr {
227 const void *bitmap;
228 struct f2fs_dir_entry *dentry;
229 __u8 (*filename)[F2FS_SLOT_LEN];
230 int max;
231 };
232
233 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
234 void *src, int type)
235 {
236 if (type == 1) {
237 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
238 d->max = NR_DENTRY_IN_BLOCK;
239 d->bitmap = &t->dentry_bitmap;
240 d->dentry = t->dentry;
241 d->filename = t->filename;
242 } else {
243 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
244 d->max = NR_INLINE_DENTRY;
245 d->bitmap = &t->dentry_bitmap;
246 d->dentry = t->dentry;
247 d->filename = t->filename;
248 }
249 }
250
251 /*
252 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
253 * as its node offset to distinguish from index node blocks.
254 * But some bits are used to mark the node block.
255 */
256 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
257 >> OFFSET_BIT_SHIFT)
258 enum {
259 ALLOC_NODE, /* allocate a new node page if needed */
260 LOOKUP_NODE, /* look up a node without readahead */
261 LOOKUP_NODE_RA, /*
262 * look up a node with readahead called
263 * by get_data_block.
264 */
265 };
266
267 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
268
269 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
270
271 /* for in-memory extent cache entry */
272 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
273
274 struct extent_info {
275 rwlock_t ext_lock; /* rwlock for consistency */
276 unsigned int fofs; /* start offset in a file */
277 u32 blk_addr; /* start block address of the extent */
278 unsigned int len; /* length of the extent */
279 };
280
281 /*
282 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
283 */
284 #define FADVISE_COLD_BIT 0x01
285 #define FADVISE_LOST_PINO_BIT 0x02
286
287 #define DEF_DIR_LEVEL 0
288
289 struct f2fs_inode_info {
290 struct inode vfs_inode; /* serve a vfs inode */
291 unsigned long i_flags; /* keep an inode flags for ioctl */
292 unsigned char i_advise; /* use to give file attribute hints */
293 unsigned char i_dir_level; /* use for dentry level for large dir */
294 unsigned int i_current_depth; /* use only in directory structure */
295 unsigned int i_pino; /* parent inode number */
296 umode_t i_acl_mode; /* keep file acl mode temporarily */
297
298 /* Use below internally in f2fs*/
299 unsigned long flags; /* use to pass per-file flags */
300 struct rw_semaphore i_sem; /* protect fi info */
301 atomic_t dirty_pages; /* # of dirty pages */
302 f2fs_hash_t chash; /* hash value of given file name */
303 unsigned int clevel; /* maximum level of given file name */
304 nid_t i_xattr_nid; /* node id that contains xattrs */
305 unsigned long long xattr_ver; /* cp version of xattr modification */
306 struct extent_info ext; /* in-memory extent cache entry */
307 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
308
309 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
310 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
311 struct mutex inmem_lock; /* lock for inmemory pages */
312 };
313
314 static inline void get_extent_info(struct extent_info *ext,
315 struct f2fs_extent i_ext)
316 {
317 write_lock(&ext->ext_lock);
318 ext->fofs = le32_to_cpu(i_ext.fofs);
319 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
320 ext->len = le32_to_cpu(i_ext.len);
321 write_unlock(&ext->ext_lock);
322 }
323
324 static inline void set_raw_extent(struct extent_info *ext,
325 struct f2fs_extent *i_ext)
326 {
327 read_lock(&ext->ext_lock);
328 i_ext->fofs = cpu_to_le32(ext->fofs);
329 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
330 i_ext->len = cpu_to_le32(ext->len);
331 read_unlock(&ext->ext_lock);
332 }
333
334 struct f2fs_nm_info {
335 block_t nat_blkaddr; /* base disk address of NAT */
336 nid_t max_nid; /* maximum possible node ids */
337 nid_t available_nids; /* maximum available node ids */
338 nid_t next_scan_nid; /* the next nid to be scanned */
339 unsigned int ram_thresh; /* control the memory footprint */
340
341 /* NAT cache management */
342 struct radix_tree_root nat_root;/* root of the nat entry cache */
343 struct radix_tree_root nat_set_root;/* root of the nat set cache */
344 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
345 struct list_head nat_entries; /* cached nat entry list (clean) */
346 unsigned int nat_cnt; /* the # of cached nat entries */
347 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
348
349 /* free node ids management */
350 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
351 struct list_head free_nid_list; /* a list for free nids */
352 spinlock_t free_nid_list_lock; /* protect free nid list */
353 unsigned int fcnt; /* the number of free node id */
354 struct mutex build_lock; /* lock for build free nids */
355
356 /* for checkpoint */
357 char *nat_bitmap; /* NAT bitmap pointer */
358 int bitmap_size; /* bitmap size */
359 };
360
361 /*
362 * this structure is used as one of function parameters.
363 * all the information are dedicated to a given direct node block determined
364 * by the data offset in a file.
365 */
366 struct dnode_of_data {
367 struct inode *inode; /* vfs inode pointer */
368 struct page *inode_page; /* its inode page, NULL is possible */
369 struct page *node_page; /* cached direct node page */
370 nid_t nid; /* node id of the direct node block */
371 unsigned int ofs_in_node; /* data offset in the node page */
372 bool inode_page_locked; /* inode page is locked or not */
373 block_t data_blkaddr; /* block address of the node block */
374 };
375
376 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
377 struct page *ipage, struct page *npage, nid_t nid)
378 {
379 memset(dn, 0, sizeof(*dn));
380 dn->inode = inode;
381 dn->inode_page = ipage;
382 dn->node_page = npage;
383 dn->nid = nid;
384 }
385
386 /*
387 * For SIT manager
388 *
389 * By default, there are 6 active log areas across the whole main area.
390 * When considering hot and cold data separation to reduce cleaning overhead,
391 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
392 * respectively.
393 * In the current design, you should not change the numbers intentionally.
394 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
395 * logs individually according to the underlying devices. (default: 6)
396 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
397 * data and 8 for node logs.
398 */
399 #define NR_CURSEG_DATA_TYPE (3)
400 #define NR_CURSEG_NODE_TYPE (3)
401 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
402
403 enum {
404 CURSEG_HOT_DATA = 0, /* directory entry blocks */
405 CURSEG_WARM_DATA, /* data blocks */
406 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
407 CURSEG_HOT_NODE, /* direct node blocks of directory files */
408 CURSEG_WARM_NODE, /* direct node blocks of normal files */
409 CURSEG_COLD_NODE, /* indirect node blocks */
410 NO_CHECK_TYPE,
411 CURSEG_DIRECT_IO, /* to use for the direct IO path */
412 };
413
414 struct flush_cmd {
415 struct completion wait;
416 struct llist_node llnode;
417 int ret;
418 };
419
420 struct flush_cmd_control {
421 struct task_struct *f2fs_issue_flush; /* flush thread */
422 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
423 struct llist_head issue_list; /* list for command issue */
424 struct llist_node *dispatch_list; /* list for command dispatch */
425 };
426
427 struct f2fs_sm_info {
428 struct sit_info *sit_info; /* whole segment information */
429 struct free_segmap_info *free_info; /* free segment information */
430 struct dirty_seglist_info *dirty_info; /* dirty segment information */
431 struct curseg_info *curseg_array; /* active segment information */
432
433 block_t seg0_blkaddr; /* block address of 0'th segment */
434 block_t main_blkaddr; /* start block address of main area */
435 block_t ssa_blkaddr; /* start block address of SSA area */
436
437 unsigned int segment_count; /* total # of segments */
438 unsigned int main_segments; /* # of segments in main area */
439 unsigned int reserved_segments; /* # of reserved segments */
440 unsigned int ovp_segments; /* # of overprovision segments */
441
442 /* a threshold to reclaim prefree segments */
443 unsigned int rec_prefree_segments;
444
445 /* for small discard management */
446 struct list_head discard_list; /* 4KB discard list */
447 int nr_discards; /* # of discards in the list */
448 int max_discards; /* max. discards to be issued */
449
450 struct list_head sit_entry_set; /* sit entry set list */
451
452 unsigned int ipu_policy; /* in-place-update policy */
453 unsigned int min_ipu_util; /* in-place-update threshold */
454 unsigned int min_fsync_blocks; /* threshold for fsync */
455
456 /* for flush command control */
457 struct flush_cmd_control *cmd_control_info;
458
459 };
460
461 /*
462 * For superblock
463 */
464 /*
465 * COUNT_TYPE for monitoring
466 *
467 * f2fs monitors the number of several block types such as on-writeback,
468 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
469 */
470 enum count_type {
471 F2FS_WRITEBACK,
472 F2FS_DIRTY_DENTS,
473 F2FS_DIRTY_NODES,
474 F2FS_DIRTY_META,
475 F2FS_INMEM_PAGES,
476 NR_COUNT_TYPE,
477 };
478
479 /*
480 * The below are the page types of bios used in submit_bio().
481 * The available types are:
482 * DATA User data pages. It operates as async mode.
483 * NODE Node pages. It operates as async mode.
484 * META FS metadata pages such as SIT, NAT, CP.
485 * NR_PAGE_TYPE The number of page types.
486 * META_FLUSH Make sure the previous pages are written
487 * with waiting the bio's completion
488 * ... Only can be used with META.
489 */
490 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
491 enum page_type {
492 DATA,
493 NODE,
494 META,
495 NR_PAGE_TYPE,
496 META_FLUSH,
497 };
498
499 struct f2fs_io_info {
500 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
501 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
502 block_t blk_addr; /* block address to be written */
503 };
504
505 #define is_read_io(rw) (((rw) & 1) == READ)
506 struct f2fs_bio_info {
507 struct f2fs_sb_info *sbi; /* f2fs superblock */
508 struct bio *bio; /* bios to merge */
509 sector_t last_block_in_bio; /* last block number */
510 struct f2fs_io_info fio; /* store buffered io info. */
511 struct rw_semaphore io_rwsem; /* blocking op for bio */
512 };
513
514 /* for inner inode cache management */
515 struct inode_management {
516 struct radix_tree_root ino_root; /* ino entry array */
517 spinlock_t ino_lock; /* for ino entry lock */
518 struct list_head ino_list; /* inode list head */
519 unsigned long ino_num; /* number of entries */
520 };
521
522 struct f2fs_sb_info {
523 struct super_block *sb; /* pointer to VFS super block */
524 struct proc_dir_entry *s_proc; /* proc entry */
525 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
526 struct f2fs_super_block *raw_super; /* raw super block pointer */
527 int s_dirty; /* dirty flag for checkpoint */
528 bool need_fsck; /* need fsck.f2fs to fix */
529 bool s_closing; /* specify unmounting */
530
531 /* for node-related operations */
532 struct f2fs_nm_info *nm_info; /* node manager */
533 struct inode *node_inode; /* cache node blocks */
534
535 /* for segment-related operations */
536 struct f2fs_sm_info *sm_info; /* segment manager */
537
538 /* for bio operations */
539 struct f2fs_bio_info read_io; /* for read bios */
540 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
541
542 /* for checkpoint */
543 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
544 struct inode *meta_inode; /* cache meta blocks */
545 struct mutex cp_mutex; /* checkpoint procedure lock */
546 struct rw_semaphore cp_rwsem; /* blocking FS operations */
547 struct rw_semaphore node_write; /* locking node writes */
548 struct mutex writepages; /* mutex for writepages() */
549 bool por_doing; /* recovery is doing or not */
550 wait_queue_head_t cp_wait;
551
552 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
553
554 /* for orphan inode, use 0'th array */
555 unsigned int max_orphans; /* max orphan inodes */
556
557 /* for directory inode management */
558 struct list_head dir_inode_list; /* dir inode list */
559 spinlock_t dir_inode_lock; /* for dir inode list lock */
560
561 /* basic filesystem units */
562 unsigned int log_sectors_per_block; /* log2 sectors per block */
563 unsigned int log_blocksize; /* log2 block size */
564 unsigned int blocksize; /* block size */
565 unsigned int root_ino_num; /* root inode number*/
566 unsigned int node_ino_num; /* node inode number*/
567 unsigned int meta_ino_num; /* meta inode number*/
568 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
569 unsigned int blocks_per_seg; /* blocks per segment */
570 unsigned int segs_per_sec; /* segments per section */
571 unsigned int secs_per_zone; /* sections per zone */
572 unsigned int total_sections; /* total section count */
573 unsigned int total_node_count; /* total node block count */
574 unsigned int total_valid_node_count; /* valid node block count */
575 unsigned int total_valid_inode_count; /* valid inode count */
576 int active_logs; /* # of active logs */
577 int dir_level; /* directory level */
578
579 block_t user_block_count; /* # of user blocks */
580 block_t total_valid_block_count; /* # of valid blocks */
581 block_t alloc_valid_block_count; /* # of allocated blocks */
582 block_t last_valid_block_count; /* for recovery */
583 u32 s_next_generation; /* for NFS support */
584 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
585
586 struct f2fs_mount_info mount_opt; /* mount options */
587
588 /* for cleaning operations */
589 struct mutex gc_mutex; /* mutex for GC */
590 struct f2fs_gc_kthread *gc_thread; /* GC thread */
591 unsigned int cur_victim_sec; /* current victim section num */
592
593 /* maximum # of trials to find a victim segment for SSR and GC */
594 unsigned int max_victim_search;
595
596 /*
597 * for stat information.
598 * one is for the LFS mode, and the other is for the SSR mode.
599 */
600 #ifdef CONFIG_F2FS_STAT_FS
601 struct f2fs_stat_info *stat_info; /* FS status information */
602 unsigned int segment_count[2]; /* # of allocated segments */
603 unsigned int block_count[2]; /* # of allocated blocks */
604 atomic_t inplace_count; /* # of inplace update */
605 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
606 atomic_t inline_inode; /* # of inline_data inodes */
607 atomic_t inline_dir; /* # of inline_dentry inodes */
608 int bg_gc; /* background gc calls */
609 unsigned int n_dirty_dirs; /* # of dir inodes */
610 #endif
611 unsigned int last_victim[2]; /* last victim segment # */
612 spinlock_t stat_lock; /* lock for stat operations */
613
614 /* For sysfs suppport */
615 struct kobject s_kobj;
616 struct completion s_kobj_unregister;
617 };
618
619 /*
620 * Inline functions
621 */
622 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
623 {
624 return container_of(inode, struct f2fs_inode_info, vfs_inode);
625 }
626
627 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
628 {
629 return sb->s_fs_info;
630 }
631
632 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
633 {
634 return F2FS_SB(inode->i_sb);
635 }
636
637 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
638 {
639 return F2FS_I_SB(mapping->host);
640 }
641
642 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
643 {
644 return F2FS_M_SB(page->mapping);
645 }
646
647 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
648 {
649 return (struct f2fs_super_block *)(sbi->raw_super);
650 }
651
652 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
653 {
654 return (struct f2fs_checkpoint *)(sbi->ckpt);
655 }
656
657 static inline struct f2fs_node *F2FS_NODE(struct page *page)
658 {
659 return (struct f2fs_node *)page_address(page);
660 }
661
662 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
663 {
664 return &((struct f2fs_node *)page_address(page))->i;
665 }
666
667 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
668 {
669 return (struct f2fs_nm_info *)(sbi->nm_info);
670 }
671
672 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
673 {
674 return (struct f2fs_sm_info *)(sbi->sm_info);
675 }
676
677 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
678 {
679 return (struct sit_info *)(SM_I(sbi)->sit_info);
680 }
681
682 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
683 {
684 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
685 }
686
687 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
688 {
689 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
690 }
691
692 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
693 {
694 return sbi->meta_inode->i_mapping;
695 }
696
697 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
698 {
699 return sbi->node_inode->i_mapping;
700 }
701
702 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
703 {
704 sbi->s_dirty = 1;
705 }
706
707 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
708 {
709 sbi->s_dirty = 0;
710 }
711
712 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
713 {
714 return le64_to_cpu(cp->checkpoint_ver);
715 }
716
717 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
718 {
719 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
720 return ckpt_flags & f;
721 }
722
723 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
724 {
725 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
726 ckpt_flags |= f;
727 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
728 }
729
730 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
731 {
732 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
733 ckpt_flags &= (~f);
734 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
735 }
736
737 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
738 {
739 down_read(&sbi->cp_rwsem);
740 }
741
742 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
743 {
744 up_read(&sbi->cp_rwsem);
745 }
746
747 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
748 {
749 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
750 }
751
752 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
753 {
754 up_write(&sbi->cp_rwsem);
755 }
756
757 /*
758 * Check whether the given nid is within node id range.
759 */
760 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
761 {
762 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
763 return -EINVAL;
764 if (unlikely(nid >= NM_I(sbi)->max_nid))
765 return -EINVAL;
766 return 0;
767 }
768
769 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
770
771 /*
772 * Check whether the inode has blocks or not
773 */
774 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
775 {
776 if (F2FS_I(inode)->i_xattr_nid)
777 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
778 else
779 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
780 }
781
782 static inline bool f2fs_has_xattr_block(unsigned int ofs)
783 {
784 return ofs == XATTR_NODE_OFFSET;
785 }
786
787 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
788 struct inode *inode, blkcnt_t count)
789 {
790 block_t valid_block_count;
791
792 spin_lock(&sbi->stat_lock);
793 valid_block_count =
794 sbi->total_valid_block_count + (block_t)count;
795 if (unlikely(valid_block_count > sbi->user_block_count)) {
796 spin_unlock(&sbi->stat_lock);
797 return false;
798 }
799 inode->i_blocks += count;
800 sbi->total_valid_block_count = valid_block_count;
801 sbi->alloc_valid_block_count += (block_t)count;
802 spin_unlock(&sbi->stat_lock);
803 return true;
804 }
805
806 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
807 struct inode *inode,
808 blkcnt_t count)
809 {
810 spin_lock(&sbi->stat_lock);
811 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
812 f2fs_bug_on(sbi, inode->i_blocks < count);
813 inode->i_blocks -= count;
814 sbi->total_valid_block_count -= (block_t)count;
815 spin_unlock(&sbi->stat_lock);
816 }
817
818 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
819 {
820 atomic_inc(&sbi->nr_pages[count_type]);
821 F2FS_SET_SB_DIRT(sbi);
822 }
823
824 static inline void inode_inc_dirty_pages(struct inode *inode)
825 {
826 atomic_inc(&F2FS_I(inode)->dirty_pages);
827 if (S_ISDIR(inode->i_mode))
828 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
829 }
830
831 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
832 {
833 atomic_dec(&sbi->nr_pages[count_type]);
834 }
835
836 static inline void inode_dec_dirty_pages(struct inode *inode)
837 {
838 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
839 return;
840
841 atomic_dec(&F2FS_I(inode)->dirty_pages);
842
843 if (S_ISDIR(inode->i_mode))
844 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
845 }
846
847 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
848 {
849 return atomic_read(&sbi->nr_pages[count_type]);
850 }
851
852 static inline int get_dirty_pages(struct inode *inode)
853 {
854 return atomic_read(&F2FS_I(inode)->dirty_pages);
855 }
856
857 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
858 {
859 unsigned int pages_per_sec = sbi->segs_per_sec *
860 (1 << sbi->log_blocks_per_seg);
861 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
862 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
863 }
864
865 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
866 {
867 return sbi->total_valid_block_count;
868 }
869
870 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
871 {
872 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
873
874 /* return NAT or SIT bitmap */
875 if (flag == NAT_BITMAP)
876 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
877 else if (flag == SIT_BITMAP)
878 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
879
880 return 0;
881 }
882
883 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
884 {
885 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
886 int offset;
887
888 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
889 if (flag == NAT_BITMAP)
890 return &ckpt->sit_nat_version_bitmap;
891 else
892 return (unsigned char *)ckpt + F2FS_BLKSIZE;
893 } else {
894 offset = (flag == NAT_BITMAP) ?
895 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
896 return &ckpt->sit_nat_version_bitmap + offset;
897 }
898 }
899
900 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
901 {
902 block_t start_addr;
903 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
904 unsigned long long ckpt_version = cur_cp_version(ckpt);
905
906 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
907
908 /*
909 * odd numbered checkpoint should at cp segment 0
910 * and even segment must be at cp segment 1
911 */
912 if (!(ckpt_version & 1))
913 start_addr += sbi->blocks_per_seg;
914
915 return start_addr;
916 }
917
918 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
919 {
920 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
921 }
922
923 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
924 struct inode *inode)
925 {
926 block_t valid_block_count;
927 unsigned int valid_node_count;
928
929 spin_lock(&sbi->stat_lock);
930
931 valid_block_count = sbi->total_valid_block_count + 1;
932 if (unlikely(valid_block_count > sbi->user_block_count)) {
933 spin_unlock(&sbi->stat_lock);
934 return false;
935 }
936
937 valid_node_count = sbi->total_valid_node_count + 1;
938 if (unlikely(valid_node_count > sbi->total_node_count)) {
939 spin_unlock(&sbi->stat_lock);
940 return false;
941 }
942
943 if (inode)
944 inode->i_blocks++;
945
946 sbi->alloc_valid_block_count++;
947 sbi->total_valid_node_count++;
948 sbi->total_valid_block_count++;
949 spin_unlock(&sbi->stat_lock);
950
951 return true;
952 }
953
954 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
955 struct inode *inode)
956 {
957 spin_lock(&sbi->stat_lock);
958
959 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
960 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
961 f2fs_bug_on(sbi, !inode->i_blocks);
962
963 inode->i_blocks--;
964 sbi->total_valid_node_count--;
965 sbi->total_valid_block_count--;
966
967 spin_unlock(&sbi->stat_lock);
968 }
969
970 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
971 {
972 return sbi->total_valid_node_count;
973 }
974
975 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
976 {
977 spin_lock(&sbi->stat_lock);
978 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
979 sbi->total_valid_inode_count++;
980 spin_unlock(&sbi->stat_lock);
981 }
982
983 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
984 {
985 spin_lock(&sbi->stat_lock);
986 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
987 sbi->total_valid_inode_count--;
988 spin_unlock(&sbi->stat_lock);
989 }
990
991 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
992 {
993 return sbi->total_valid_inode_count;
994 }
995
996 static inline void f2fs_put_page(struct page *page, int unlock)
997 {
998 if (!page)
999 return;
1000
1001 if (unlock) {
1002 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1003 unlock_page(page);
1004 }
1005 page_cache_release(page);
1006 }
1007
1008 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1009 {
1010 if (dn->node_page)
1011 f2fs_put_page(dn->node_page, 1);
1012 if (dn->inode_page && dn->node_page != dn->inode_page)
1013 f2fs_put_page(dn->inode_page, 0);
1014 dn->node_page = NULL;
1015 dn->inode_page = NULL;
1016 }
1017
1018 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1019 size_t size)
1020 {
1021 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1022 }
1023
1024 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1025 gfp_t flags)
1026 {
1027 void *entry;
1028 retry:
1029 entry = kmem_cache_alloc(cachep, flags);
1030 if (!entry) {
1031 cond_resched();
1032 goto retry;
1033 }
1034
1035 return entry;
1036 }
1037
1038 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1039 unsigned long index, void *item)
1040 {
1041 while (radix_tree_insert(root, index, item))
1042 cond_resched();
1043 }
1044
1045 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1046
1047 static inline bool IS_INODE(struct page *page)
1048 {
1049 struct f2fs_node *p = F2FS_NODE(page);
1050 return RAW_IS_INODE(p);
1051 }
1052
1053 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1054 {
1055 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1056 }
1057
1058 static inline block_t datablock_addr(struct page *node_page,
1059 unsigned int offset)
1060 {
1061 struct f2fs_node *raw_node;
1062 __le32 *addr_array;
1063 raw_node = F2FS_NODE(node_page);
1064 addr_array = blkaddr_in_node(raw_node);
1065 return le32_to_cpu(addr_array[offset]);
1066 }
1067
1068 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1069 {
1070 int mask;
1071
1072 addr += (nr >> 3);
1073 mask = 1 << (7 - (nr & 0x07));
1074 return mask & *addr;
1075 }
1076
1077 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1078 {
1079 int mask;
1080 int ret;
1081
1082 addr += (nr >> 3);
1083 mask = 1 << (7 - (nr & 0x07));
1084 ret = mask & *addr;
1085 *addr |= mask;
1086 return ret;
1087 }
1088
1089 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1090 {
1091 int mask;
1092 int ret;
1093
1094 addr += (nr >> 3);
1095 mask = 1 << (7 - (nr & 0x07));
1096 ret = mask & *addr;
1097 *addr &= ~mask;
1098 return ret;
1099 }
1100
1101 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1102 {
1103 int mask;
1104
1105 addr += (nr >> 3);
1106 mask = 1 << (7 - (nr & 0x07));
1107 *addr ^= mask;
1108 }
1109
1110 /* used for f2fs_inode_info->flags */
1111 enum {
1112 FI_NEW_INODE, /* indicate newly allocated inode */
1113 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1114 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1115 FI_INC_LINK, /* need to increment i_nlink */
1116 FI_ACL_MODE, /* indicate acl mode */
1117 FI_NO_ALLOC, /* should not allocate any blocks */
1118 FI_UPDATE_DIR, /* should update inode block for consistency */
1119 FI_DELAY_IPUT, /* used for the recovery */
1120 FI_NO_EXTENT, /* not to use the extent cache */
1121 FI_INLINE_XATTR, /* used for inline xattr */
1122 FI_INLINE_DATA, /* used for inline data*/
1123 FI_INLINE_DENTRY, /* used for inline dentry */
1124 FI_APPEND_WRITE, /* inode has appended data */
1125 FI_UPDATE_WRITE, /* inode has in-place-update data */
1126 FI_NEED_IPU, /* used for ipu per file */
1127 FI_ATOMIC_FILE, /* indicate atomic file */
1128 FI_VOLATILE_FILE, /* indicate volatile file */
1129 FI_DROP_CACHE, /* drop dirty page cache */
1130 FI_DATA_EXIST, /* indicate data exists */
1131 };
1132
1133 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1134 {
1135 if (!test_bit(flag, &fi->flags))
1136 set_bit(flag, &fi->flags);
1137 }
1138
1139 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1140 {
1141 return test_bit(flag, &fi->flags);
1142 }
1143
1144 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1145 {
1146 if (test_bit(flag, &fi->flags))
1147 clear_bit(flag, &fi->flags);
1148 }
1149
1150 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1151 {
1152 fi->i_acl_mode = mode;
1153 set_inode_flag(fi, FI_ACL_MODE);
1154 }
1155
1156 static inline void get_inline_info(struct f2fs_inode_info *fi,
1157 struct f2fs_inode *ri)
1158 {
1159 if (ri->i_inline & F2FS_INLINE_XATTR)
1160 set_inode_flag(fi, FI_INLINE_XATTR);
1161 if (ri->i_inline & F2FS_INLINE_DATA)
1162 set_inode_flag(fi, FI_INLINE_DATA);
1163 if (ri->i_inline & F2FS_INLINE_DENTRY)
1164 set_inode_flag(fi, FI_INLINE_DENTRY);
1165 if (ri->i_inline & F2FS_DATA_EXIST)
1166 set_inode_flag(fi, FI_DATA_EXIST);
1167 }
1168
1169 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1170 struct f2fs_inode *ri)
1171 {
1172 ri->i_inline = 0;
1173
1174 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1175 ri->i_inline |= F2FS_INLINE_XATTR;
1176 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1177 ri->i_inline |= F2FS_INLINE_DATA;
1178 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1179 ri->i_inline |= F2FS_INLINE_DENTRY;
1180 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1181 ri->i_inline |= F2FS_DATA_EXIST;
1182 }
1183
1184 static inline int f2fs_has_inline_xattr(struct inode *inode)
1185 {
1186 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1187 }
1188
1189 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1190 {
1191 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1192 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1193 return DEF_ADDRS_PER_INODE;
1194 }
1195
1196 static inline void *inline_xattr_addr(struct page *page)
1197 {
1198 struct f2fs_inode *ri = F2FS_INODE(page);
1199 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1200 F2FS_INLINE_XATTR_ADDRS]);
1201 }
1202
1203 static inline int inline_xattr_size(struct inode *inode)
1204 {
1205 if (f2fs_has_inline_xattr(inode))
1206 return F2FS_INLINE_XATTR_ADDRS << 2;
1207 else
1208 return 0;
1209 }
1210
1211 static inline int f2fs_has_inline_data(struct inode *inode)
1212 {
1213 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1214 }
1215
1216 static inline void f2fs_clear_inline_inode(struct inode *inode)
1217 {
1218 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1219 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1220 }
1221
1222 static inline int f2fs_exist_data(struct inode *inode)
1223 {
1224 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1225 }
1226
1227 static inline bool f2fs_is_atomic_file(struct inode *inode)
1228 {
1229 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1230 }
1231
1232 static inline bool f2fs_is_volatile_file(struct inode *inode)
1233 {
1234 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1235 }
1236
1237 static inline bool f2fs_is_drop_cache(struct inode *inode)
1238 {
1239 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1240 }
1241
1242 static inline void *inline_data_addr(struct page *page)
1243 {
1244 struct f2fs_inode *ri = F2FS_INODE(page);
1245 return (void *)&(ri->i_addr[1]);
1246 }
1247
1248 static inline int f2fs_has_inline_dentry(struct inode *inode)
1249 {
1250 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1251 }
1252
1253 static inline void *inline_dentry_addr(struct page *page)
1254 {
1255 struct f2fs_inode *ri = F2FS_INODE(page);
1256 return (void *)&(ri->i_addr[1]);
1257 }
1258
1259 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1260 {
1261 if (!f2fs_has_inline_dentry(dir))
1262 kunmap(page);
1263 }
1264
1265 static inline int f2fs_readonly(struct super_block *sb)
1266 {
1267 return sb->s_flags & MS_RDONLY;
1268 }
1269
1270 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1271 {
1272 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1273 }
1274
1275 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1276 {
1277 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1278 sbi->sb->s_flags |= MS_RDONLY;
1279 }
1280
1281 #define get_inode_mode(i) \
1282 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1283 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1284
1285 /* get offset of first page in next direct node */
1286 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1287 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1288 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1289 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1290
1291 /*
1292 * file.c
1293 */
1294 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1295 void truncate_data_blocks(struct dnode_of_data *);
1296 int truncate_blocks(struct inode *, u64, bool);
1297 void f2fs_truncate(struct inode *);
1298 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1299 int f2fs_setattr(struct dentry *, struct iattr *);
1300 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1301 int truncate_data_blocks_range(struct dnode_of_data *, int);
1302 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1303 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1304
1305 /*
1306 * inode.c
1307 */
1308 void f2fs_set_inode_flags(struct inode *);
1309 struct inode *f2fs_iget(struct super_block *, unsigned long);
1310 int try_to_free_nats(struct f2fs_sb_info *, int);
1311 void update_inode(struct inode *, struct page *);
1312 void update_inode_page(struct inode *);
1313 int f2fs_write_inode(struct inode *, struct writeback_control *);
1314 void f2fs_evict_inode(struct inode *);
1315 void handle_failed_inode(struct inode *);
1316
1317 /*
1318 * namei.c
1319 */
1320 struct dentry *f2fs_get_parent(struct dentry *child);
1321
1322 /*
1323 * dir.c
1324 */
1325 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1326 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1327 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1328 struct f2fs_dentry_ptr *);
1329 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1330 unsigned int);
1331 void do_make_empty_dir(struct inode *, struct inode *,
1332 struct f2fs_dentry_ptr *);
1333 struct page *init_inode_metadata(struct inode *, struct inode *,
1334 const struct qstr *, struct page *);
1335 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1336 int room_for_filename(const void *, int, int);
1337 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1338 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1339 struct page **);
1340 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1341 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1342 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1343 struct page *, struct inode *);
1344 int update_dent_inode(struct inode *, const struct qstr *);
1345 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1346 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1347 struct inode *);
1348 int f2fs_do_tmpfile(struct inode *, struct inode *);
1349 int f2fs_make_empty(struct inode *, struct inode *);
1350 bool f2fs_empty_dir(struct inode *);
1351
1352 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1353 {
1354 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1355 inode);
1356 }
1357
1358 /*
1359 * super.c
1360 */
1361 int f2fs_sync_fs(struct super_block *, int);
1362 extern __printf(3, 4)
1363 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1364
1365 /*
1366 * hash.c
1367 */
1368 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1369
1370 /*
1371 * node.c
1372 */
1373 struct dnode_of_data;
1374 struct node_info;
1375
1376 bool available_free_memory(struct f2fs_sb_info *, int);
1377 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1378 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1379 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1380 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1381 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1382 int truncate_inode_blocks(struct inode *, pgoff_t);
1383 int truncate_xattr_node(struct inode *, struct page *);
1384 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1385 void remove_inode_page(struct inode *);
1386 struct page *new_inode_page(struct inode *);
1387 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1388 void ra_node_page(struct f2fs_sb_info *, nid_t);
1389 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1390 struct page *get_node_page_ra(struct page *, int);
1391 void sync_inode_page(struct dnode_of_data *);
1392 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1393 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1394 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1395 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1396 void recover_inline_xattr(struct inode *, struct page *);
1397 void recover_xattr_data(struct inode *, struct page *, block_t);
1398 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1399 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1400 struct f2fs_summary_block *);
1401 void flush_nat_entries(struct f2fs_sb_info *);
1402 int build_node_manager(struct f2fs_sb_info *);
1403 void destroy_node_manager(struct f2fs_sb_info *);
1404 int __init create_node_manager_caches(void);
1405 void destroy_node_manager_caches(void);
1406
1407 /*
1408 * segment.c
1409 */
1410 void register_inmem_page(struct inode *, struct page *);
1411 void commit_inmem_pages(struct inode *, bool);
1412 void f2fs_balance_fs(struct f2fs_sb_info *);
1413 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1414 int f2fs_issue_flush(struct f2fs_sb_info *);
1415 int create_flush_cmd_control(struct f2fs_sb_info *);
1416 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1417 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1418 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1419 void clear_prefree_segments(struct f2fs_sb_info *);
1420 void release_discard_addrs(struct f2fs_sb_info *);
1421 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1422 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1423 void allocate_new_segments(struct f2fs_sb_info *);
1424 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1425 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1426 void write_meta_page(struct f2fs_sb_info *, struct page *);
1427 void write_node_page(struct f2fs_sb_info *, struct page *,
1428 unsigned int, struct f2fs_io_info *);
1429 void write_data_page(struct page *, struct dnode_of_data *,
1430 struct f2fs_io_info *);
1431 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1432 void recover_data_page(struct f2fs_sb_info *, struct page *,
1433 struct f2fs_summary *, block_t, block_t);
1434 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1435 block_t, block_t *, struct f2fs_summary *, int);
1436 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1437 void write_data_summaries(struct f2fs_sb_info *, block_t);
1438 void write_node_summaries(struct f2fs_sb_info *, block_t);
1439 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1440 int, unsigned int, int);
1441 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1442 int build_segment_manager(struct f2fs_sb_info *);
1443 void destroy_segment_manager(struct f2fs_sb_info *);
1444 int __init create_segment_manager_caches(void);
1445 void destroy_segment_manager_caches(void);
1446
1447 /*
1448 * checkpoint.c
1449 */
1450 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1451 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1452 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1453 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1454 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1455 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1456 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1457 void release_dirty_inode(struct f2fs_sb_info *);
1458 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1459 int acquire_orphan_inode(struct f2fs_sb_info *);
1460 void release_orphan_inode(struct f2fs_sb_info *);
1461 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1462 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1463 void recover_orphan_inodes(struct f2fs_sb_info *);
1464 int get_valid_checkpoint(struct f2fs_sb_info *);
1465 void update_dirty_page(struct inode *, struct page *);
1466 void add_dirty_dir_inode(struct inode *);
1467 void remove_dirty_dir_inode(struct inode *);
1468 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1469 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1470 void init_ino_entry_info(struct f2fs_sb_info *);
1471 int __init create_checkpoint_caches(void);
1472 void destroy_checkpoint_caches(void);
1473
1474 /*
1475 * data.c
1476 */
1477 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1478 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1479 struct f2fs_io_info *);
1480 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1481 struct f2fs_io_info *);
1482 int reserve_new_block(struct dnode_of_data *);
1483 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1484 void update_extent_cache(struct dnode_of_data *);
1485 struct page *find_data_page(struct inode *, pgoff_t, bool);
1486 struct page *get_lock_data_page(struct inode *, pgoff_t);
1487 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1488 int do_write_data_page(struct page *, struct f2fs_io_info *);
1489 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1490
1491 /*
1492 * gc.c
1493 */
1494 int start_gc_thread(struct f2fs_sb_info *);
1495 void stop_gc_thread(struct f2fs_sb_info *);
1496 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1497 int f2fs_gc(struct f2fs_sb_info *);
1498 void build_gc_manager(struct f2fs_sb_info *);
1499
1500 /*
1501 * recovery.c
1502 */
1503 int recover_fsync_data(struct f2fs_sb_info *);
1504 bool space_for_roll_forward(struct f2fs_sb_info *);
1505
1506 /*
1507 * debug.c
1508 */
1509 #ifdef CONFIG_F2FS_STAT_FS
1510 struct f2fs_stat_info {
1511 struct list_head stat_list;
1512 struct f2fs_sb_info *sbi;
1513 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1514 int main_area_segs, main_area_sections, main_area_zones;
1515 int hit_ext, total_ext;
1516 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1517 int nats, dirty_nats, sits, dirty_sits, fnids;
1518 int total_count, utilization;
1519 int bg_gc, inline_inode, inline_dir, inmem_pages;
1520 unsigned int valid_count, valid_node_count, valid_inode_count;
1521 unsigned int bimodal, avg_vblocks;
1522 int util_free, util_valid, util_invalid;
1523 int rsvd_segs, overp_segs;
1524 int dirty_count, node_pages, meta_pages;
1525 int prefree_count, call_count, cp_count;
1526 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1527 int tot_blks, data_blks, node_blks;
1528 int curseg[NR_CURSEG_TYPE];
1529 int cursec[NR_CURSEG_TYPE];
1530 int curzone[NR_CURSEG_TYPE];
1531
1532 unsigned int segment_count[2];
1533 unsigned int block_count[2];
1534 unsigned int inplace_count;
1535 unsigned base_mem, cache_mem, page_mem;
1536 };
1537
1538 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1539 {
1540 return (struct f2fs_stat_info *)sbi->stat_info;
1541 }
1542
1543 #define stat_inc_cp_count(si) ((si)->cp_count++)
1544 #define stat_inc_call_count(si) ((si)->call_count++)
1545 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1546 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1547 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1548 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1549 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1550 #define stat_inc_inline_inode(inode) \
1551 do { \
1552 if (f2fs_has_inline_data(inode)) \
1553 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1554 } while (0)
1555 #define stat_dec_inline_inode(inode) \
1556 do { \
1557 if (f2fs_has_inline_data(inode)) \
1558 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1559 } while (0)
1560 #define stat_inc_inline_dir(inode) \
1561 do { \
1562 if (f2fs_has_inline_dentry(inode)) \
1563 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1564 } while (0)
1565 #define stat_dec_inline_dir(inode) \
1566 do { \
1567 if (f2fs_has_inline_dentry(inode)) \
1568 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1569 } while (0)
1570 #define stat_inc_seg_type(sbi, curseg) \
1571 ((sbi)->segment_count[(curseg)->alloc_type]++)
1572 #define stat_inc_block_count(sbi, curseg) \
1573 ((sbi)->block_count[(curseg)->alloc_type]++)
1574 #define stat_inc_inplace_blocks(sbi) \
1575 (atomic_inc(&(sbi)->inplace_count))
1576 #define stat_inc_seg_count(sbi, type) \
1577 do { \
1578 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1579 (si)->tot_segs++; \
1580 if (type == SUM_TYPE_DATA) \
1581 si->data_segs++; \
1582 else \
1583 si->node_segs++; \
1584 } while (0)
1585
1586 #define stat_inc_tot_blk_count(si, blks) \
1587 (si->tot_blks += (blks))
1588
1589 #define stat_inc_data_blk_count(sbi, blks) \
1590 do { \
1591 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1592 stat_inc_tot_blk_count(si, blks); \
1593 si->data_blks += (blks); \
1594 } while (0)
1595
1596 #define stat_inc_node_blk_count(sbi, blks) \
1597 do { \
1598 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1599 stat_inc_tot_blk_count(si, blks); \
1600 si->node_blks += (blks); \
1601 } while (0)
1602
1603 int f2fs_build_stats(struct f2fs_sb_info *);
1604 void f2fs_destroy_stats(struct f2fs_sb_info *);
1605 void __init f2fs_create_root_stats(void);
1606 void f2fs_destroy_root_stats(void);
1607 #else
1608 #define stat_inc_cp_count(si)
1609 #define stat_inc_call_count(si)
1610 #define stat_inc_bggc_count(si)
1611 #define stat_inc_dirty_dir(sbi)
1612 #define stat_dec_dirty_dir(sbi)
1613 #define stat_inc_total_hit(sb)
1614 #define stat_inc_read_hit(sb)
1615 #define stat_inc_inline_inode(inode)
1616 #define stat_dec_inline_inode(inode)
1617 #define stat_inc_inline_dir(inode)
1618 #define stat_dec_inline_dir(inode)
1619 #define stat_inc_seg_type(sbi, curseg)
1620 #define stat_inc_block_count(sbi, curseg)
1621 #define stat_inc_inplace_blocks(sbi)
1622 #define stat_inc_seg_count(si, type)
1623 #define stat_inc_tot_blk_count(si, blks)
1624 #define stat_inc_data_blk_count(si, blks)
1625 #define stat_inc_node_blk_count(sbi, blks)
1626
1627 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1628 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1629 static inline void __init f2fs_create_root_stats(void) { }
1630 static inline void f2fs_destroy_root_stats(void) { }
1631 #endif
1632
1633 extern const struct file_operations f2fs_dir_operations;
1634 extern const struct file_operations f2fs_file_operations;
1635 extern const struct inode_operations f2fs_file_inode_operations;
1636 extern const struct address_space_operations f2fs_dblock_aops;
1637 extern const struct address_space_operations f2fs_node_aops;
1638 extern const struct address_space_operations f2fs_meta_aops;
1639 extern const struct inode_operations f2fs_dir_inode_operations;
1640 extern const struct inode_operations f2fs_symlink_inode_operations;
1641 extern const struct inode_operations f2fs_special_inode_operations;
1642
1643 /*
1644 * inline.c
1645 */
1646 bool f2fs_may_inline(struct inode *);
1647 void read_inline_data(struct page *, struct page *);
1648 int f2fs_read_inline_data(struct inode *, struct page *);
1649 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1650 int f2fs_convert_inline_inode(struct inode *);
1651 int f2fs_write_inline_data(struct inode *, struct page *);
1652 bool recover_inline_data(struct inode *, struct page *);
1653 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1654 struct page **);
1655 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1656 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1657 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1658 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1659 struct inode *, struct inode *);
1660 bool f2fs_empty_inline_dir(struct inode *);
1661 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1662 #endif
This page took 0.063893 seconds and 6 git commands to generate.