[media] media: videobuf2: Replace videobuf2-core with videobuf2-v4l2
[deliverable/linux.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 struct vm_fault *vmf)
36 {
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
41 int err;
42
43 f2fs_balance_fs(sbi);
44
45 sb_start_pagefault(inode->i_sb);
46
47 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
48
49 /* block allocation */
50 f2fs_lock_op(sbi);
51 set_new_dnode(&dn, inode, NULL, NULL, 0);
52 err = f2fs_reserve_block(&dn, page->index);
53 if (err) {
54 f2fs_unlock_op(sbi);
55 goto out;
56 }
57 f2fs_put_dnode(&dn);
58 f2fs_unlock_op(sbi);
59
60 file_update_time(vma->vm_file);
61 lock_page(page);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
65 unlock_page(page);
66 err = -EFAULT;
67 goto out;
68 }
69
70 /*
71 * check to see if the page is mapped already (no holes)
72 */
73 if (PageMappedToDisk(page))
74 goto mapped;
75
76 /* page is wholly or partially inside EOF */
77 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
78 unsigned offset;
79 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
80 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
81 }
82 set_page_dirty(page);
83 SetPageUptodate(page);
84
85 trace_f2fs_vm_page_mkwrite(page, DATA);
86 mapped:
87 /* fill the page */
88 f2fs_wait_on_page_writeback(page, DATA);
89 /* if gced page is attached, don't write to cold segment */
90 clear_cold_data(page);
91 out:
92 sb_end_pagefault(inode->i_sb);
93 return block_page_mkwrite_return(err);
94 }
95
96 static const struct vm_operations_struct f2fs_file_vm_ops = {
97 .fault = filemap_fault,
98 .map_pages = filemap_map_pages,
99 .page_mkwrite = f2fs_vm_page_mkwrite,
100 };
101
102 static int get_parent_ino(struct inode *inode, nid_t *pino)
103 {
104 struct dentry *dentry;
105
106 inode = igrab(inode);
107 dentry = d_find_any_alias(inode);
108 iput(inode);
109 if (!dentry)
110 return 0;
111
112 if (update_dent_inode(inode, inode, &dentry->d_name)) {
113 dput(dentry);
114 return 0;
115 }
116
117 *pino = parent_ino(dentry);
118 dput(dentry);
119 return 1;
120 }
121
122 static inline bool need_do_checkpoint(struct inode *inode)
123 {
124 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
125 bool need_cp = false;
126
127 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
128 need_cp = true;
129 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
130 need_cp = true;
131 else if (file_wrong_pino(inode))
132 need_cp = true;
133 else if (!space_for_roll_forward(sbi))
134 need_cp = true;
135 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
136 need_cp = true;
137 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
138 need_cp = true;
139 else if (test_opt(sbi, FASTBOOT))
140 need_cp = true;
141 else if (sbi->active_logs == 2)
142 need_cp = true;
143
144 return need_cp;
145 }
146
147 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
148 {
149 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
150 bool ret = false;
151 /* But we need to avoid that there are some inode updates */
152 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
153 ret = true;
154 f2fs_put_page(i, 0);
155 return ret;
156 }
157
158 static void try_to_fix_pino(struct inode *inode)
159 {
160 struct f2fs_inode_info *fi = F2FS_I(inode);
161 nid_t pino;
162
163 down_write(&fi->i_sem);
164 fi->xattr_ver = 0;
165 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
166 get_parent_ino(inode, &pino)) {
167 fi->i_pino = pino;
168 file_got_pino(inode);
169 up_write(&fi->i_sem);
170
171 mark_inode_dirty_sync(inode);
172 f2fs_write_inode(inode, NULL);
173 } else {
174 up_write(&fi->i_sem);
175 }
176 }
177
178 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
179 {
180 struct inode *inode = file->f_mapping->host;
181 struct f2fs_inode_info *fi = F2FS_I(inode);
182 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
183 nid_t ino = inode->i_ino;
184 int ret = 0;
185 bool need_cp = false;
186 struct writeback_control wbc = {
187 .sync_mode = WB_SYNC_ALL,
188 .nr_to_write = LONG_MAX,
189 .for_reclaim = 0,
190 };
191
192 if (unlikely(f2fs_readonly(inode->i_sb)))
193 return 0;
194
195 trace_f2fs_sync_file_enter(inode);
196
197 /* if fdatasync is triggered, let's do in-place-update */
198 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
199 set_inode_flag(fi, FI_NEED_IPU);
200 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
201 clear_inode_flag(fi, FI_NEED_IPU);
202
203 if (ret) {
204 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
205 return ret;
206 }
207
208 /* if the inode is dirty, let's recover all the time */
209 if (!datasync) {
210 f2fs_write_inode(inode, NULL);
211 goto go_write;
212 }
213
214 /*
215 * if there is no written data, don't waste time to write recovery info.
216 */
217 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
218 !exist_written_data(sbi, ino, APPEND_INO)) {
219
220 /* it may call write_inode just prior to fsync */
221 if (need_inode_page_update(sbi, ino))
222 goto go_write;
223
224 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
225 exist_written_data(sbi, ino, UPDATE_INO))
226 goto flush_out;
227 goto out;
228 }
229 go_write:
230 /* guarantee free sections for fsync */
231 f2fs_balance_fs(sbi);
232
233 /*
234 * Both of fdatasync() and fsync() are able to be recovered from
235 * sudden-power-off.
236 */
237 down_read(&fi->i_sem);
238 need_cp = need_do_checkpoint(inode);
239 up_read(&fi->i_sem);
240
241 if (need_cp) {
242 /* all the dirty node pages should be flushed for POR */
243 ret = f2fs_sync_fs(inode->i_sb, 1);
244
245 /*
246 * We've secured consistency through sync_fs. Following pino
247 * will be used only for fsynced inodes after checkpoint.
248 */
249 try_to_fix_pino(inode);
250 clear_inode_flag(fi, FI_APPEND_WRITE);
251 clear_inode_flag(fi, FI_UPDATE_WRITE);
252 goto out;
253 }
254 sync_nodes:
255 sync_node_pages(sbi, ino, &wbc);
256
257 /* if cp_error was enabled, we should avoid infinite loop */
258 if (unlikely(f2fs_cp_error(sbi)))
259 goto out;
260
261 if (need_inode_block_update(sbi, ino)) {
262 mark_inode_dirty_sync(inode);
263 f2fs_write_inode(inode, NULL);
264 goto sync_nodes;
265 }
266
267 ret = wait_on_node_pages_writeback(sbi, ino);
268 if (ret)
269 goto out;
270
271 /* once recovery info is written, don't need to tack this */
272 remove_dirty_inode(sbi, ino, APPEND_INO);
273 clear_inode_flag(fi, FI_APPEND_WRITE);
274 flush_out:
275 remove_dirty_inode(sbi, ino, UPDATE_INO);
276 clear_inode_flag(fi, FI_UPDATE_WRITE);
277 ret = f2fs_issue_flush(sbi);
278 out:
279 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
280 f2fs_trace_ios(NULL, 1);
281 return ret;
282 }
283
284 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
285 pgoff_t pgofs, int whence)
286 {
287 struct pagevec pvec;
288 int nr_pages;
289
290 if (whence != SEEK_DATA)
291 return 0;
292
293 /* find first dirty page index */
294 pagevec_init(&pvec, 0);
295 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
296 PAGECACHE_TAG_DIRTY, 1);
297 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
298 pagevec_release(&pvec);
299 return pgofs;
300 }
301
302 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
303 int whence)
304 {
305 switch (whence) {
306 case SEEK_DATA:
307 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
308 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
309 return true;
310 break;
311 case SEEK_HOLE:
312 if (blkaddr == NULL_ADDR)
313 return true;
314 break;
315 }
316 return false;
317 }
318
319 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
320 {
321 struct inode *inode = file->f_mapping->host;
322 loff_t maxbytes = inode->i_sb->s_maxbytes;
323 struct dnode_of_data dn;
324 pgoff_t pgofs, end_offset, dirty;
325 loff_t data_ofs = offset;
326 loff_t isize;
327 int err = 0;
328
329 mutex_lock(&inode->i_mutex);
330
331 isize = i_size_read(inode);
332 if (offset >= isize)
333 goto fail;
334
335 /* handle inline data case */
336 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
337 if (whence == SEEK_HOLE)
338 data_ofs = isize;
339 goto found;
340 }
341
342 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
343
344 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
345
346 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
347 set_new_dnode(&dn, inode, NULL, NULL, 0);
348 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
349 if (err && err != -ENOENT) {
350 goto fail;
351 } else if (err == -ENOENT) {
352 /* direct node does not exists */
353 if (whence == SEEK_DATA) {
354 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
355 F2FS_I(inode));
356 continue;
357 } else {
358 goto found;
359 }
360 }
361
362 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
363
364 /* find data/hole in dnode block */
365 for (; dn.ofs_in_node < end_offset;
366 dn.ofs_in_node++, pgofs++,
367 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
368 block_t blkaddr;
369 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
370
371 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
372 f2fs_put_dnode(&dn);
373 goto found;
374 }
375 }
376 f2fs_put_dnode(&dn);
377 }
378
379 if (whence == SEEK_DATA)
380 goto fail;
381 found:
382 if (whence == SEEK_HOLE && data_ofs > isize)
383 data_ofs = isize;
384 mutex_unlock(&inode->i_mutex);
385 return vfs_setpos(file, data_ofs, maxbytes);
386 fail:
387 mutex_unlock(&inode->i_mutex);
388 return -ENXIO;
389 }
390
391 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
392 {
393 struct inode *inode = file->f_mapping->host;
394 loff_t maxbytes = inode->i_sb->s_maxbytes;
395
396 switch (whence) {
397 case SEEK_SET:
398 case SEEK_CUR:
399 case SEEK_END:
400 return generic_file_llseek_size(file, offset, whence,
401 maxbytes, i_size_read(inode));
402 case SEEK_DATA:
403 case SEEK_HOLE:
404 if (offset < 0)
405 return -ENXIO;
406 return f2fs_seek_block(file, offset, whence);
407 }
408
409 return -EINVAL;
410 }
411
412 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
413 {
414 struct inode *inode = file_inode(file);
415
416 if (f2fs_encrypted_inode(inode)) {
417 int err = f2fs_get_encryption_info(inode);
418 if (err)
419 return 0;
420 }
421
422 /* we don't need to use inline_data strictly */
423 if (f2fs_has_inline_data(inode)) {
424 int err = f2fs_convert_inline_inode(inode);
425 if (err)
426 return err;
427 }
428
429 file_accessed(file);
430 vma->vm_ops = &f2fs_file_vm_ops;
431 return 0;
432 }
433
434 static int f2fs_file_open(struct inode *inode, struct file *filp)
435 {
436 int ret = generic_file_open(inode, filp);
437
438 if (!ret && f2fs_encrypted_inode(inode)) {
439 ret = f2fs_get_encryption_info(inode);
440 if (ret)
441 ret = -EACCES;
442 }
443 return ret;
444 }
445
446 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
447 {
448 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
449 struct f2fs_node *raw_node;
450 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
451 __le32 *addr;
452
453 raw_node = F2FS_NODE(dn->node_page);
454 addr = blkaddr_in_node(raw_node) + ofs;
455
456 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
457 block_t blkaddr = le32_to_cpu(*addr);
458 if (blkaddr == NULL_ADDR)
459 continue;
460
461 dn->data_blkaddr = NULL_ADDR;
462 set_data_blkaddr(dn);
463 invalidate_blocks(sbi, blkaddr);
464 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
465 clear_inode_flag(F2FS_I(dn->inode),
466 FI_FIRST_BLOCK_WRITTEN);
467 nr_free++;
468 }
469
470 if (nr_free) {
471 pgoff_t fofs;
472 /*
473 * once we invalidate valid blkaddr in range [ofs, ofs + count],
474 * we will invalidate all blkaddr in the whole range.
475 */
476 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
477 F2FS_I(dn->inode)) + ofs;
478 f2fs_update_extent_cache_range(dn, fofs, 0, len);
479 dec_valid_block_count(sbi, dn->inode, nr_free);
480 set_page_dirty(dn->node_page);
481 sync_inode_page(dn);
482 }
483 dn->ofs_in_node = ofs;
484
485 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
486 dn->ofs_in_node, nr_free);
487 return nr_free;
488 }
489
490 void truncate_data_blocks(struct dnode_of_data *dn)
491 {
492 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
493 }
494
495 static int truncate_partial_data_page(struct inode *inode, u64 from,
496 bool cache_only)
497 {
498 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
499 pgoff_t index = from >> PAGE_CACHE_SHIFT;
500 struct address_space *mapping = inode->i_mapping;
501 struct page *page;
502
503 if (!offset && !cache_only)
504 return 0;
505
506 if (cache_only) {
507 page = grab_cache_page(mapping, index);
508 if (page && PageUptodate(page))
509 goto truncate_out;
510 f2fs_put_page(page, 1);
511 return 0;
512 }
513
514 page = get_lock_data_page(inode, index);
515 if (IS_ERR(page))
516 return 0;
517 truncate_out:
518 f2fs_wait_on_page_writeback(page, DATA);
519 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
520 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
521 set_page_dirty(page);
522 f2fs_put_page(page, 1);
523 return 0;
524 }
525
526 int truncate_blocks(struct inode *inode, u64 from, bool lock)
527 {
528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
529 unsigned int blocksize = inode->i_sb->s_blocksize;
530 struct dnode_of_data dn;
531 pgoff_t free_from;
532 int count = 0, err = 0;
533 struct page *ipage;
534 bool truncate_page = false;
535
536 trace_f2fs_truncate_blocks_enter(inode, from);
537
538 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
539
540 if (lock)
541 f2fs_lock_op(sbi);
542
543 ipage = get_node_page(sbi, inode->i_ino);
544 if (IS_ERR(ipage)) {
545 err = PTR_ERR(ipage);
546 goto out;
547 }
548
549 if (f2fs_has_inline_data(inode)) {
550 if (truncate_inline_inode(ipage, from))
551 set_page_dirty(ipage);
552 f2fs_put_page(ipage, 1);
553 truncate_page = true;
554 goto out;
555 }
556
557 set_new_dnode(&dn, inode, ipage, NULL, 0);
558 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
559 if (err) {
560 if (err == -ENOENT)
561 goto free_next;
562 goto out;
563 }
564
565 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
566
567 count -= dn.ofs_in_node;
568 f2fs_bug_on(sbi, count < 0);
569
570 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
571 truncate_data_blocks_range(&dn, count);
572 free_from += count;
573 }
574
575 f2fs_put_dnode(&dn);
576 free_next:
577 err = truncate_inode_blocks(inode, free_from);
578 out:
579 if (lock)
580 f2fs_unlock_op(sbi);
581
582 /* lastly zero out the first data page */
583 if (!err)
584 err = truncate_partial_data_page(inode, from, truncate_page);
585
586 trace_f2fs_truncate_blocks_exit(inode, err);
587 return err;
588 }
589
590 int f2fs_truncate(struct inode *inode, bool lock)
591 {
592 int err;
593
594 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
595 S_ISLNK(inode->i_mode)))
596 return 0;
597
598 trace_f2fs_truncate(inode);
599
600 /* we should check inline_data size */
601 if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
602 err = f2fs_convert_inline_inode(inode);
603 if (err)
604 return err;
605 }
606
607 err = truncate_blocks(inode, i_size_read(inode), lock);
608 if (err)
609 return err;
610
611 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
612 mark_inode_dirty(inode);
613 return 0;
614 }
615
616 int f2fs_getattr(struct vfsmount *mnt,
617 struct dentry *dentry, struct kstat *stat)
618 {
619 struct inode *inode = d_inode(dentry);
620 generic_fillattr(inode, stat);
621 stat->blocks <<= 3;
622 return 0;
623 }
624
625 #ifdef CONFIG_F2FS_FS_POSIX_ACL
626 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
627 {
628 struct f2fs_inode_info *fi = F2FS_I(inode);
629 unsigned int ia_valid = attr->ia_valid;
630
631 if (ia_valid & ATTR_UID)
632 inode->i_uid = attr->ia_uid;
633 if (ia_valid & ATTR_GID)
634 inode->i_gid = attr->ia_gid;
635 if (ia_valid & ATTR_ATIME)
636 inode->i_atime = timespec_trunc(attr->ia_atime,
637 inode->i_sb->s_time_gran);
638 if (ia_valid & ATTR_MTIME)
639 inode->i_mtime = timespec_trunc(attr->ia_mtime,
640 inode->i_sb->s_time_gran);
641 if (ia_valid & ATTR_CTIME)
642 inode->i_ctime = timespec_trunc(attr->ia_ctime,
643 inode->i_sb->s_time_gran);
644 if (ia_valid & ATTR_MODE) {
645 umode_t mode = attr->ia_mode;
646
647 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
648 mode &= ~S_ISGID;
649 set_acl_inode(fi, mode);
650 }
651 }
652 #else
653 #define __setattr_copy setattr_copy
654 #endif
655
656 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
657 {
658 struct inode *inode = d_inode(dentry);
659 struct f2fs_inode_info *fi = F2FS_I(inode);
660 int err;
661
662 err = inode_change_ok(inode, attr);
663 if (err)
664 return err;
665
666 if (attr->ia_valid & ATTR_SIZE) {
667 if (f2fs_encrypted_inode(inode) &&
668 f2fs_get_encryption_info(inode))
669 return -EACCES;
670
671 if (attr->ia_size <= i_size_read(inode)) {
672 truncate_setsize(inode, attr->ia_size);
673 err = f2fs_truncate(inode, true);
674 if (err)
675 return err;
676 f2fs_balance_fs(F2FS_I_SB(inode));
677 } else {
678 /*
679 * do not trim all blocks after i_size if target size is
680 * larger than i_size.
681 */
682 truncate_setsize(inode, attr->ia_size);
683 }
684 }
685
686 __setattr_copy(inode, attr);
687
688 if (attr->ia_valid & ATTR_MODE) {
689 err = posix_acl_chmod(inode, get_inode_mode(inode));
690 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
691 inode->i_mode = fi->i_acl_mode;
692 clear_inode_flag(fi, FI_ACL_MODE);
693 }
694 }
695
696 mark_inode_dirty(inode);
697 return err;
698 }
699
700 const struct inode_operations f2fs_file_inode_operations = {
701 .getattr = f2fs_getattr,
702 .setattr = f2fs_setattr,
703 .get_acl = f2fs_get_acl,
704 .set_acl = f2fs_set_acl,
705 #ifdef CONFIG_F2FS_FS_XATTR
706 .setxattr = generic_setxattr,
707 .getxattr = generic_getxattr,
708 .listxattr = f2fs_listxattr,
709 .removexattr = generic_removexattr,
710 #endif
711 .fiemap = f2fs_fiemap,
712 };
713
714 static int fill_zero(struct inode *inode, pgoff_t index,
715 loff_t start, loff_t len)
716 {
717 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
718 struct page *page;
719
720 if (!len)
721 return 0;
722
723 f2fs_balance_fs(sbi);
724
725 f2fs_lock_op(sbi);
726 page = get_new_data_page(inode, NULL, index, false);
727 f2fs_unlock_op(sbi);
728
729 if (IS_ERR(page))
730 return PTR_ERR(page);
731
732 f2fs_wait_on_page_writeback(page, DATA);
733 zero_user(page, start, len);
734 set_page_dirty(page);
735 f2fs_put_page(page, 1);
736 return 0;
737 }
738
739 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
740 {
741 pgoff_t index;
742 int err;
743
744 for (index = pg_start; index < pg_end; index++) {
745 struct dnode_of_data dn;
746
747 set_new_dnode(&dn, inode, NULL, NULL, 0);
748 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
749 if (err) {
750 if (err == -ENOENT)
751 continue;
752 return err;
753 }
754
755 if (dn.data_blkaddr != NULL_ADDR)
756 truncate_data_blocks_range(&dn, 1);
757 f2fs_put_dnode(&dn);
758 }
759 return 0;
760 }
761
762 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
763 {
764 pgoff_t pg_start, pg_end;
765 loff_t off_start, off_end;
766 int ret = 0;
767
768 if (!S_ISREG(inode->i_mode))
769 return -EOPNOTSUPP;
770
771 if (f2fs_has_inline_data(inode)) {
772 ret = f2fs_convert_inline_inode(inode);
773 if (ret)
774 return ret;
775 }
776
777 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
778 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
779
780 off_start = offset & (PAGE_CACHE_SIZE - 1);
781 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
782
783 if (pg_start == pg_end) {
784 ret = fill_zero(inode, pg_start, off_start,
785 off_end - off_start);
786 if (ret)
787 return ret;
788 } else {
789 if (off_start) {
790 ret = fill_zero(inode, pg_start++, off_start,
791 PAGE_CACHE_SIZE - off_start);
792 if (ret)
793 return ret;
794 }
795 if (off_end) {
796 ret = fill_zero(inode, pg_end, 0, off_end);
797 if (ret)
798 return ret;
799 }
800
801 if (pg_start < pg_end) {
802 struct address_space *mapping = inode->i_mapping;
803 loff_t blk_start, blk_end;
804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
805
806 f2fs_balance_fs(sbi);
807
808 blk_start = pg_start << PAGE_CACHE_SHIFT;
809 blk_end = pg_end << PAGE_CACHE_SHIFT;
810 truncate_inode_pages_range(mapping, blk_start,
811 blk_end - 1);
812
813 f2fs_lock_op(sbi);
814 ret = truncate_hole(inode, pg_start, pg_end);
815 f2fs_unlock_op(sbi);
816 }
817 }
818
819 return ret;
820 }
821
822 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
823 {
824 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
825 struct dnode_of_data dn;
826 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
827 int ret = 0;
828
829 for (; end < nrpages; start++, end++) {
830 block_t new_addr, old_addr;
831
832 f2fs_lock_op(sbi);
833
834 set_new_dnode(&dn, inode, NULL, NULL, 0);
835 ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
836 if (ret && ret != -ENOENT) {
837 goto out;
838 } else if (ret == -ENOENT) {
839 new_addr = NULL_ADDR;
840 } else {
841 new_addr = dn.data_blkaddr;
842 truncate_data_blocks_range(&dn, 1);
843 f2fs_put_dnode(&dn);
844 }
845
846 if (new_addr == NULL_ADDR) {
847 set_new_dnode(&dn, inode, NULL, NULL, 0);
848 ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
849 if (ret && ret != -ENOENT) {
850 goto out;
851 } else if (ret == -ENOENT) {
852 f2fs_unlock_op(sbi);
853 continue;
854 }
855
856 if (dn.data_blkaddr == NULL_ADDR) {
857 f2fs_put_dnode(&dn);
858 f2fs_unlock_op(sbi);
859 continue;
860 } else {
861 truncate_data_blocks_range(&dn, 1);
862 }
863
864 f2fs_put_dnode(&dn);
865 } else {
866 struct page *ipage;
867
868 ipage = get_node_page(sbi, inode->i_ino);
869 if (IS_ERR(ipage)) {
870 ret = PTR_ERR(ipage);
871 goto out;
872 }
873
874 set_new_dnode(&dn, inode, ipage, NULL, 0);
875 ret = f2fs_reserve_block(&dn, start);
876 if (ret)
877 goto out;
878
879 old_addr = dn.data_blkaddr;
880 if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
881 dn.data_blkaddr = NULL_ADDR;
882 f2fs_update_extent_cache(&dn);
883 invalidate_blocks(sbi, old_addr);
884
885 dn.data_blkaddr = new_addr;
886 set_data_blkaddr(&dn);
887 } else if (new_addr != NEW_ADDR) {
888 struct node_info ni;
889
890 get_node_info(sbi, dn.nid, &ni);
891 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
892 ni.version, true);
893 }
894
895 f2fs_put_dnode(&dn);
896 }
897 f2fs_unlock_op(sbi);
898 }
899 return 0;
900 out:
901 f2fs_unlock_op(sbi);
902 return ret;
903 }
904
905 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
906 {
907 pgoff_t pg_start, pg_end;
908 loff_t new_size;
909 int ret;
910
911 if (!S_ISREG(inode->i_mode))
912 return -EINVAL;
913
914 if (offset + len >= i_size_read(inode))
915 return -EINVAL;
916
917 /* collapse range should be aligned to block size of f2fs. */
918 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
919 return -EINVAL;
920
921 f2fs_balance_fs(F2FS_I_SB(inode));
922
923 if (f2fs_has_inline_data(inode)) {
924 ret = f2fs_convert_inline_inode(inode);
925 if (ret)
926 return ret;
927 }
928
929 pg_start = offset >> PAGE_CACHE_SHIFT;
930 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
931
932 /* write out all dirty pages from offset */
933 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
934 if (ret)
935 return ret;
936
937 truncate_pagecache(inode, offset);
938
939 ret = f2fs_do_collapse(inode, pg_start, pg_end);
940 if (ret)
941 return ret;
942
943 new_size = i_size_read(inode) - len;
944
945 ret = truncate_blocks(inode, new_size, true);
946 if (!ret)
947 i_size_write(inode, new_size);
948
949 return ret;
950 }
951
952 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
953 int mode)
954 {
955 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
956 struct address_space *mapping = inode->i_mapping;
957 pgoff_t index, pg_start, pg_end;
958 loff_t new_size = i_size_read(inode);
959 loff_t off_start, off_end;
960 int ret = 0;
961
962 if (!S_ISREG(inode->i_mode))
963 return -EINVAL;
964
965 ret = inode_newsize_ok(inode, (len + offset));
966 if (ret)
967 return ret;
968
969 f2fs_balance_fs(sbi);
970
971 if (f2fs_has_inline_data(inode)) {
972 ret = f2fs_convert_inline_inode(inode);
973 if (ret)
974 return ret;
975 }
976
977 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
978 if (ret)
979 return ret;
980
981 truncate_pagecache_range(inode, offset, offset + len - 1);
982
983 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
984 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
985
986 off_start = offset & (PAGE_CACHE_SIZE - 1);
987 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
988
989 if (pg_start == pg_end) {
990 ret = fill_zero(inode, pg_start, off_start,
991 off_end - off_start);
992 if (ret)
993 return ret;
994
995 if (offset + len > new_size)
996 new_size = offset + len;
997 new_size = max_t(loff_t, new_size, offset + len);
998 } else {
999 if (off_start) {
1000 ret = fill_zero(inode, pg_start++, off_start,
1001 PAGE_CACHE_SIZE - off_start);
1002 if (ret)
1003 return ret;
1004
1005 new_size = max_t(loff_t, new_size,
1006 pg_start << PAGE_CACHE_SHIFT);
1007 }
1008
1009 for (index = pg_start; index < pg_end; index++) {
1010 struct dnode_of_data dn;
1011 struct page *ipage;
1012
1013 f2fs_lock_op(sbi);
1014
1015 ipage = get_node_page(sbi, inode->i_ino);
1016 if (IS_ERR(ipage)) {
1017 ret = PTR_ERR(ipage);
1018 f2fs_unlock_op(sbi);
1019 goto out;
1020 }
1021
1022 set_new_dnode(&dn, inode, ipage, NULL, 0);
1023 ret = f2fs_reserve_block(&dn, index);
1024 if (ret) {
1025 f2fs_unlock_op(sbi);
1026 goto out;
1027 }
1028
1029 if (dn.data_blkaddr != NEW_ADDR) {
1030 invalidate_blocks(sbi, dn.data_blkaddr);
1031
1032 dn.data_blkaddr = NEW_ADDR;
1033 set_data_blkaddr(&dn);
1034
1035 dn.data_blkaddr = NULL_ADDR;
1036 f2fs_update_extent_cache(&dn);
1037 }
1038 f2fs_put_dnode(&dn);
1039 f2fs_unlock_op(sbi);
1040
1041 new_size = max_t(loff_t, new_size,
1042 (index + 1) << PAGE_CACHE_SHIFT);
1043 }
1044
1045 if (off_end) {
1046 ret = fill_zero(inode, pg_end, 0, off_end);
1047 if (ret)
1048 goto out;
1049
1050 new_size = max_t(loff_t, new_size, offset + len);
1051 }
1052 }
1053
1054 out:
1055 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1056 i_size_write(inode, new_size);
1057 mark_inode_dirty(inode);
1058 update_inode_page(inode);
1059 }
1060
1061 return ret;
1062 }
1063
1064 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1065 {
1066 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1067 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1068 loff_t new_size;
1069 int ret;
1070
1071 if (!S_ISREG(inode->i_mode))
1072 return -EINVAL;
1073
1074 new_size = i_size_read(inode) + len;
1075 if (new_size > inode->i_sb->s_maxbytes)
1076 return -EFBIG;
1077
1078 if (offset >= i_size_read(inode))
1079 return -EINVAL;
1080
1081 /* insert range should be aligned to block size of f2fs. */
1082 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1083 return -EINVAL;
1084
1085 f2fs_balance_fs(sbi);
1086
1087 if (f2fs_has_inline_data(inode)) {
1088 ret = f2fs_convert_inline_inode(inode);
1089 if (ret)
1090 return ret;
1091 }
1092
1093 ret = truncate_blocks(inode, i_size_read(inode), true);
1094 if (ret)
1095 return ret;
1096
1097 /* write out all dirty pages from offset */
1098 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1099 if (ret)
1100 return ret;
1101
1102 truncate_pagecache(inode, offset);
1103
1104 pg_start = offset >> PAGE_CACHE_SHIFT;
1105 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1106 delta = pg_end - pg_start;
1107 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1108
1109 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1110 struct dnode_of_data dn;
1111 struct page *ipage;
1112 block_t new_addr, old_addr;
1113
1114 f2fs_lock_op(sbi);
1115
1116 set_new_dnode(&dn, inode, NULL, NULL, 0);
1117 ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
1118 if (ret && ret != -ENOENT) {
1119 goto out;
1120 } else if (ret == -ENOENT) {
1121 goto next;
1122 } else if (dn.data_blkaddr == NULL_ADDR) {
1123 f2fs_put_dnode(&dn);
1124 goto next;
1125 } else {
1126 new_addr = dn.data_blkaddr;
1127 truncate_data_blocks_range(&dn, 1);
1128 f2fs_put_dnode(&dn);
1129 }
1130
1131 ipage = get_node_page(sbi, inode->i_ino);
1132 if (IS_ERR(ipage)) {
1133 ret = PTR_ERR(ipage);
1134 goto out;
1135 }
1136
1137 set_new_dnode(&dn, inode, ipage, NULL, 0);
1138 ret = f2fs_reserve_block(&dn, idx + delta);
1139 if (ret)
1140 goto out;
1141
1142 old_addr = dn.data_blkaddr;
1143 f2fs_bug_on(sbi, old_addr != NEW_ADDR);
1144
1145 if (new_addr != NEW_ADDR) {
1146 struct node_info ni;
1147
1148 get_node_info(sbi, dn.nid, &ni);
1149 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
1150 ni.version, true);
1151 }
1152 f2fs_put_dnode(&dn);
1153 next:
1154 f2fs_unlock_op(sbi);
1155 }
1156
1157 i_size_write(inode, new_size);
1158 return 0;
1159 out:
1160 f2fs_unlock_op(sbi);
1161 return ret;
1162 }
1163
1164 static int expand_inode_data(struct inode *inode, loff_t offset,
1165 loff_t len, int mode)
1166 {
1167 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1168 pgoff_t index, pg_start, pg_end;
1169 loff_t new_size = i_size_read(inode);
1170 loff_t off_start, off_end;
1171 int ret = 0;
1172
1173 f2fs_balance_fs(sbi);
1174
1175 ret = inode_newsize_ok(inode, (len + offset));
1176 if (ret)
1177 return ret;
1178
1179 if (f2fs_has_inline_data(inode)) {
1180 ret = f2fs_convert_inline_inode(inode);
1181 if (ret)
1182 return ret;
1183 }
1184
1185 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1186 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1187
1188 off_start = offset & (PAGE_CACHE_SIZE - 1);
1189 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1190
1191 f2fs_lock_op(sbi);
1192
1193 for (index = pg_start; index <= pg_end; index++) {
1194 struct dnode_of_data dn;
1195
1196 if (index == pg_end && !off_end)
1197 goto noalloc;
1198
1199 set_new_dnode(&dn, inode, NULL, NULL, 0);
1200 ret = f2fs_reserve_block(&dn, index);
1201 if (ret)
1202 break;
1203 noalloc:
1204 if (pg_start == pg_end)
1205 new_size = offset + len;
1206 else if (index == pg_start && off_start)
1207 new_size = (index + 1) << PAGE_CACHE_SHIFT;
1208 else if (index == pg_end)
1209 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
1210 else
1211 new_size += PAGE_CACHE_SIZE;
1212 }
1213
1214 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1215 i_size_read(inode) < new_size) {
1216 i_size_write(inode, new_size);
1217 mark_inode_dirty(inode);
1218 update_inode_page(inode);
1219 }
1220 f2fs_unlock_op(sbi);
1221
1222 return ret;
1223 }
1224
1225 static long f2fs_fallocate(struct file *file, int mode,
1226 loff_t offset, loff_t len)
1227 {
1228 struct inode *inode = file_inode(file);
1229 long ret = 0;
1230
1231 if (f2fs_encrypted_inode(inode) &&
1232 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1233 return -EOPNOTSUPP;
1234
1235 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1236 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1237 FALLOC_FL_INSERT_RANGE))
1238 return -EOPNOTSUPP;
1239
1240 mutex_lock(&inode->i_mutex);
1241
1242 if (mode & FALLOC_FL_PUNCH_HOLE) {
1243 if (offset >= inode->i_size)
1244 goto out;
1245
1246 ret = punch_hole(inode, offset, len);
1247 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1248 ret = f2fs_collapse_range(inode, offset, len);
1249 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1250 ret = f2fs_zero_range(inode, offset, len, mode);
1251 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1252 ret = f2fs_insert_range(inode, offset, len);
1253 } else {
1254 ret = expand_inode_data(inode, offset, len, mode);
1255 }
1256
1257 if (!ret) {
1258 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1259 mark_inode_dirty(inode);
1260 }
1261
1262 out:
1263 mutex_unlock(&inode->i_mutex);
1264
1265 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1266 return ret;
1267 }
1268
1269 static int f2fs_release_file(struct inode *inode, struct file *filp)
1270 {
1271 /* some remained atomic pages should discarded */
1272 if (f2fs_is_atomic_file(inode))
1273 commit_inmem_pages(inode, true);
1274 if (f2fs_is_volatile_file(inode)) {
1275 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1276 filemap_fdatawrite(inode->i_mapping);
1277 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1278 }
1279 return 0;
1280 }
1281
1282 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1283 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1284
1285 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1286 {
1287 if (S_ISDIR(mode))
1288 return flags;
1289 else if (S_ISREG(mode))
1290 return flags & F2FS_REG_FLMASK;
1291 else
1292 return flags & F2FS_OTHER_FLMASK;
1293 }
1294
1295 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1296 {
1297 struct inode *inode = file_inode(filp);
1298 struct f2fs_inode_info *fi = F2FS_I(inode);
1299 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1300 return put_user(flags, (int __user *)arg);
1301 }
1302
1303 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1304 {
1305 struct inode *inode = file_inode(filp);
1306 struct f2fs_inode_info *fi = F2FS_I(inode);
1307 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1308 unsigned int oldflags;
1309 int ret;
1310
1311 ret = mnt_want_write_file(filp);
1312 if (ret)
1313 return ret;
1314
1315 if (!inode_owner_or_capable(inode)) {
1316 ret = -EACCES;
1317 goto out;
1318 }
1319
1320 if (get_user(flags, (int __user *)arg)) {
1321 ret = -EFAULT;
1322 goto out;
1323 }
1324
1325 flags = f2fs_mask_flags(inode->i_mode, flags);
1326
1327 mutex_lock(&inode->i_mutex);
1328
1329 oldflags = fi->i_flags;
1330
1331 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1332 if (!capable(CAP_LINUX_IMMUTABLE)) {
1333 mutex_unlock(&inode->i_mutex);
1334 ret = -EPERM;
1335 goto out;
1336 }
1337 }
1338
1339 flags = flags & FS_FL_USER_MODIFIABLE;
1340 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1341 fi->i_flags = flags;
1342 mutex_unlock(&inode->i_mutex);
1343
1344 f2fs_set_inode_flags(inode);
1345 inode->i_ctime = CURRENT_TIME;
1346 mark_inode_dirty(inode);
1347 out:
1348 mnt_drop_write_file(filp);
1349 return ret;
1350 }
1351
1352 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1353 {
1354 struct inode *inode = file_inode(filp);
1355
1356 return put_user(inode->i_generation, (int __user *)arg);
1357 }
1358
1359 static int f2fs_ioc_start_atomic_write(struct file *filp)
1360 {
1361 struct inode *inode = file_inode(filp);
1362 int ret;
1363
1364 if (!inode_owner_or_capable(inode))
1365 return -EACCES;
1366
1367 f2fs_balance_fs(F2FS_I_SB(inode));
1368
1369 if (f2fs_is_atomic_file(inode))
1370 return 0;
1371
1372 ret = f2fs_convert_inline_inode(inode);
1373 if (ret)
1374 return ret;
1375
1376 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1377 return 0;
1378 }
1379
1380 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1381 {
1382 struct inode *inode = file_inode(filp);
1383 int ret;
1384
1385 if (!inode_owner_or_capable(inode))
1386 return -EACCES;
1387
1388 if (f2fs_is_volatile_file(inode))
1389 return 0;
1390
1391 ret = mnt_want_write_file(filp);
1392 if (ret)
1393 return ret;
1394
1395 if (f2fs_is_atomic_file(inode)) {
1396 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1397 ret = commit_inmem_pages(inode, false);
1398 if (ret)
1399 goto err_out;
1400 }
1401
1402 ret = f2fs_sync_file(filp, 0, LLONG_MAX, 0);
1403 err_out:
1404 mnt_drop_write_file(filp);
1405 return ret;
1406 }
1407
1408 static int f2fs_ioc_start_volatile_write(struct file *filp)
1409 {
1410 struct inode *inode = file_inode(filp);
1411 int ret;
1412
1413 if (!inode_owner_or_capable(inode))
1414 return -EACCES;
1415
1416 if (f2fs_is_volatile_file(inode))
1417 return 0;
1418
1419 ret = f2fs_convert_inline_inode(inode);
1420 if (ret)
1421 return ret;
1422
1423 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1424 return 0;
1425 }
1426
1427 static int f2fs_ioc_release_volatile_write(struct file *filp)
1428 {
1429 struct inode *inode = file_inode(filp);
1430
1431 if (!inode_owner_or_capable(inode))
1432 return -EACCES;
1433
1434 if (!f2fs_is_volatile_file(inode))
1435 return 0;
1436
1437 if (!f2fs_is_first_block_written(inode))
1438 return truncate_partial_data_page(inode, 0, true);
1439
1440 punch_hole(inode, 0, F2FS_BLKSIZE);
1441 return 0;
1442 }
1443
1444 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1445 {
1446 struct inode *inode = file_inode(filp);
1447 int ret;
1448
1449 if (!inode_owner_or_capable(inode))
1450 return -EACCES;
1451
1452 ret = mnt_want_write_file(filp);
1453 if (ret)
1454 return ret;
1455
1456 f2fs_balance_fs(F2FS_I_SB(inode));
1457
1458 if (f2fs_is_atomic_file(inode)) {
1459 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1460 commit_inmem_pages(inode, true);
1461 }
1462
1463 if (f2fs_is_volatile_file(inode))
1464 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1465
1466 mnt_drop_write_file(filp);
1467 return ret;
1468 }
1469
1470 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1471 {
1472 struct inode *inode = file_inode(filp);
1473 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1474 struct super_block *sb = sbi->sb;
1475 __u32 in;
1476
1477 if (!capable(CAP_SYS_ADMIN))
1478 return -EPERM;
1479
1480 if (get_user(in, (__u32 __user *)arg))
1481 return -EFAULT;
1482
1483 switch (in) {
1484 case F2FS_GOING_DOWN_FULLSYNC:
1485 sb = freeze_bdev(sb->s_bdev);
1486 if (sb && !IS_ERR(sb)) {
1487 f2fs_stop_checkpoint(sbi);
1488 thaw_bdev(sb->s_bdev, sb);
1489 }
1490 break;
1491 case F2FS_GOING_DOWN_METASYNC:
1492 /* do checkpoint only */
1493 f2fs_sync_fs(sb, 1);
1494 f2fs_stop_checkpoint(sbi);
1495 break;
1496 case F2FS_GOING_DOWN_NOSYNC:
1497 f2fs_stop_checkpoint(sbi);
1498 break;
1499 default:
1500 return -EINVAL;
1501 }
1502 return 0;
1503 }
1504
1505 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1506 {
1507 struct inode *inode = file_inode(filp);
1508 struct super_block *sb = inode->i_sb;
1509 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1510 struct fstrim_range range;
1511 int ret;
1512
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1515
1516 if (!blk_queue_discard(q))
1517 return -EOPNOTSUPP;
1518
1519 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1520 sizeof(range)))
1521 return -EFAULT;
1522
1523 range.minlen = max((unsigned int)range.minlen,
1524 q->limits.discard_granularity);
1525 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1526 if (ret < 0)
1527 return ret;
1528
1529 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1530 sizeof(range)))
1531 return -EFAULT;
1532 return 0;
1533 }
1534
1535 static bool uuid_is_nonzero(__u8 u[16])
1536 {
1537 int i;
1538
1539 for (i = 0; i < 16; i++)
1540 if (u[i])
1541 return true;
1542 return false;
1543 }
1544
1545 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1546 {
1547 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1548 struct f2fs_encryption_policy policy;
1549 struct inode *inode = file_inode(filp);
1550
1551 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1552 sizeof(policy)))
1553 return -EFAULT;
1554
1555 return f2fs_process_policy(&policy, inode);
1556 #else
1557 return -EOPNOTSUPP;
1558 #endif
1559 }
1560
1561 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1562 {
1563 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1564 struct f2fs_encryption_policy policy;
1565 struct inode *inode = file_inode(filp);
1566 int err;
1567
1568 err = f2fs_get_policy(inode, &policy);
1569 if (err)
1570 return err;
1571
1572 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1573 sizeof(policy)))
1574 return -EFAULT;
1575 return 0;
1576 #else
1577 return -EOPNOTSUPP;
1578 #endif
1579 }
1580
1581 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1582 {
1583 struct inode *inode = file_inode(filp);
1584 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1585 int err;
1586
1587 if (!f2fs_sb_has_crypto(inode->i_sb))
1588 return -EOPNOTSUPP;
1589
1590 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1591 goto got_it;
1592
1593 err = mnt_want_write_file(filp);
1594 if (err)
1595 return err;
1596
1597 /* update superblock with uuid */
1598 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1599
1600 err = f2fs_commit_super(sbi, false);
1601
1602 mnt_drop_write_file(filp);
1603 if (err) {
1604 /* undo new data */
1605 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1606 return err;
1607 }
1608 got_it:
1609 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1610 16))
1611 return -EFAULT;
1612 return 0;
1613 }
1614
1615 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1616 {
1617 struct inode *inode = file_inode(filp);
1618 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1619 __u32 i, count;
1620
1621 if (!capable(CAP_SYS_ADMIN))
1622 return -EPERM;
1623
1624 if (get_user(count, (__u32 __user *)arg))
1625 return -EFAULT;
1626
1627 if (!count || count > F2FS_BATCH_GC_MAX_NUM)
1628 return -EINVAL;
1629
1630 for (i = 0; i < count; i++) {
1631 if (!mutex_trylock(&sbi->gc_mutex))
1632 break;
1633
1634 if (f2fs_gc(sbi))
1635 break;
1636 }
1637
1638 if (put_user(i, (__u32 __user *)arg))
1639 return -EFAULT;
1640
1641 return 0;
1642 }
1643
1644 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1645 {
1646 switch (cmd) {
1647 case F2FS_IOC_GETFLAGS:
1648 return f2fs_ioc_getflags(filp, arg);
1649 case F2FS_IOC_SETFLAGS:
1650 return f2fs_ioc_setflags(filp, arg);
1651 case F2FS_IOC_GETVERSION:
1652 return f2fs_ioc_getversion(filp, arg);
1653 case F2FS_IOC_START_ATOMIC_WRITE:
1654 return f2fs_ioc_start_atomic_write(filp);
1655 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1656 return f2fs_ioc_commit_atomic_write(filp);
1657 case F2FS_IOC_START_VOLATILE_WRITE:
1658 return f2fs_ioc_start_volatile_write(filp);
1659 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1660 return f2fs_ioc_release_volatile_write(filp);
1661 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1662 return f2fs_ioc_abort_volatile_write(filp);
1663 case F2FS_IOC_SHUTDOWN:
1664 return f2fs_ioc_shutdown(filp, arg);
1665 case FITRIM:
1666 return f2fs_ioc_fitrim(filp, arg);
1667 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1668 return f2fs_ioc_set_encryption_policy(filp, arg);
1669 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1670 return f2fs_ioc_get_encryption_policy(filp, arg);
1671 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1672 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1673 case F2FS_IOC_GARBAGE_COLLECT:
1674 return f2fs_ioc_gc(filp, arg);
1675 default:
1676 return -ENOTTY;
1677 }
1678 }
1679
1680 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1681 {
1682 struct inode *inode = file_inode(iocb->ki_filp);
1683
1684 if (f2fs_encrypted_inode(inode) &&
1685 !f2fs_has_encryption_key(inode) &&
1686 f2fs_get_encryption_info(inode))
1687 return -EACCES;
1688
1689 return generic_file_write_iter(iocb, from);
1690 }
1691
1692 #ifdef CONFIG_COMPAT
1693 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1694 {
1695 switch (cmd) {
1696 case F2FS_IOC32_GETFLAGS:
1697 cmd = F2FS_IOC_GETFLAGS;
1698 break;
1699 case F2FS_IOC32_SETFLAGS:
1700 cmd = F2FS_IOC_SETFLAGS;
1701 break;
1702 default:
1703 return -ENOIOCTLCMD;
1704 }
1705 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1706 }
1707 #endif
1708
1709 const struct file_operations f2fs_file_operations = {
1710 .llseek = f2fs_llseek,
1711 .read_iter = generic_file_read_iter,
1712 .write_iter = f2fs_file_write_iter,
1713 .open = f2fs_file_open,
1714 .release = f2fs_release_file,
1715 .mmap = f2fs_file_mmap,
1716 .fsync = f2fs_sync_file,
1717 .fallocate = f2fs_fallocate,
1718 .unlocked_ioctl = f2fs_ioctl,
1719 #ifdef CONFIG_COMPAT
1720 .compat_ioctl = f2fs_compat_ioctl,
1721 #endif
1722 .splice_read = generic_file_splice_read,
1723 .splice_write = iter_file_splice_write,
1724 };
This page took 0.064951 seconds and 5 git commands to generate.