Merge tag 'cpuinit-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg...
[deliverable/linux.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
34 struct vm_fault *vmf)
35 {
36 struct page *page = vmf->page;
37 struct inode *inode = file_inode(vma->vm_file);
38 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 struct dnode_of_data dn;
40 int err;
41
42 f2fs_balance_fs(sbi);
43
44 sb_start_pagefault(inode->i_sb);
45
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
55 }
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
58
59 file_update_time(vma->vm_file);
60 lock_page(page);
61 if (unlikely(page->mapping != inode->i_mapping ||
62 page_offset(page) > i_size_read(inode) ||
63 !PageUptodate(page))) {
64 unlock_page(page);
65 err = -EFAULT;
66 goto out;
67 }
68
69 /*
70 * check to see if the page is mapped already (no holes)
71 */
72 if (PageMappedToDisk(page))
73 goto mapped;
74
75 /* page is wholly or partially inside EOF */
76 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
77 unsigned offset;
78 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
79 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
80 }
81 set_page_dirty(page);
82 SetPageUptodate(page);
83
84 trace_f2fs_vm_page_mkwrite(page, DATA);
85 mapped:
86 /* fill the page */
87 f2fs_wait_on_page_writeback(page, DATA);
88 out:
89 sb_end_pagefault(inode->i_sb);
90 return block_page_mkwrite_return(err);
91 }
92
93 static const struct vm_operations_struct f2fs_file_vm_ops = {
94 .fault = filemap_fault,
95 .map_pages = filemap_map_pages,
96 .page_mkwrite = f2fs_vm_page_mkwrite,
97 };
98
99 static int get_parent_ino(struct inode *inode, nid_t *pino)
100 {
101 struct dentry *dentry;
102
103 inode = igrab(inode);
104 dentry = d_find_any_alias(inode);
105 iput(inode);
106 if (!dentry)
107 return 0;
108
109 if (update_dent_inode(inode, inode, &dentry->d_name)) {
110 dput(dentry);
111 return 0;
112 }
113
114 *pino = parent_ino(dentry);
115 dput(dentry);
116 return 1;
117 }
118
119 static inline bool need_do_checkpoint(struct inode *inode)
120 {
121 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
122 bool need_cp = false;
123
124 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
125 need_cp = true;
126 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
127 need_cp = true;
128 else if (file_wrong_pino(inode))
129 need_cp = true;
130 else if (!space_for_roll_forward(sbi))
131 need_cp = true;
132 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
133 need_cp = true;
134 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
135 need_cp = true;
136 else if (test_opt(sbi, FASTBOOT))
137 need_cp = true;
138 else if (sbi->active_logs == 2)
139 need_cp = true;
140
141 return need_cp;
142 }
143
144 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
145 {
146 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
147 bool ret = false;
148 /* But we need to avoid that there are some inode updates */
149 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
150 ret = true;
151 f2fs_put_page(i, 0);
152 return ret;
153 }
154
155 static void try_to_fix_pino(struct inode *inode)
156 {
157 struct f2fs_inode_info *fi = F2FS_I(inode);
158 nid_t pino;
159
160 down_write(&fi->i_sem);
161 fi->xattr_ver = 0;
162 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
163 get_parent_ino(inode, &pino)) {
164 fi->i_pino = pino;
165 file_got_pino(inode);
166 up_write(&fi->i_sem);
167
168 mark_inode_dirty_sync(inode);
169 f2fs_write_inode(inode, NULL);
170 } else {
171 up_write(&fi->i_sem);
172 }
173 }
174
175 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
176 {
177 struct inode *inode = file->f_mapping->host;
178 struct f2fs_inode_info *fi = F2FS_I(inode);
179 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
180 nid_t ino = inode->i_ino;
181 int ret = 0;
182 bool need_cp = false;
183 struct writeback_control wbc = {
184 .sync_mode = WB_SYNC_ALL,
185 .nr_to_write = LONG_MAX,
186 .for_reclaim = 0,
187 };
188
189 if (unlikely(f2fs_readonly(inode->i_sb)))
190 return 0;
191
192 trace_f2fs_sync_file_enter(inode);
193
194 /* if fdatasync is triggered, let's do in-place-update */
195 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
196 set_inode_flag(fi, FI_NEED_IPU);
197 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
198 clear_inode_flag(fi, FI_NEED_IPU);
199
200 if (ret) {
201 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
202 return ret;
203 }
204
205 /* if the inode is dirty, let's recover all the time */
206 if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
207 update_inode_page(inode);
208 goto go_write;
209 }
210
211 /*
212 * if there is no written data, don't waste time to write recovery info.
213 */
214 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
215 !exist_written_data(sbi, ino, APPEND_INO)) {
216
217 /* it may call write_inode just prior to fsync */
218 if (need_inode_page_update(sbi, ino))
219 goto go_write;
220
221 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
222 exist_written_data(sbi, ino, UPDATE_INO))
223 goto flush_out;
224 goto out;
225 }
226 go_write:
227 /* guarantee free sections for fsync */
228 f2fs_balance_fs(sbi);
229
230 /*
231 * Both of fdatasync() and fsync() are able to be recovered from
232 * sudden-power-off.
233 */
234 down_read(&fi->i_sem);
235 need_cp = need_do_checkpoint(inode);
236 up_read(&fi->i_sem);
237
238 if (need_cp) {
239 /* all the dirty node pages should be flushed for POR */
240 ret = f2fs_sync_fs(inode->i_sb, 1);
241
242 /*
243 * We've secured consistency through sync_fs. Following pino
244 * will be used only for fsynced inodes after checkpoint.
245 */
246 try_to_fix_pino(inode);
247 clear_inode_flag(fi, FI_APPEND_WRITE);
248 clear_inode_flag(fi, FI_UPDATE_WRITE);
249 goto out;
250 }
251 sync_nodes:
252 sync_node_pages(sbi, ino, &wbc);
253
254 /* if cp_error was enabled, we should avoid infinite loop */
255 if (unlikely(f2fs_cp_error(sbi)))
256 goto out;
257
258 if (need_inode_block_update(sbi, ino)) {
259 mark_inode_dirty_sync(inode);
260 f2fs_write_inode(inode, NULL);
261 goto sync_nodes;
262 }
263
264 ret = wait_on_node_pages_writeback(sbi, ino);
265 if (ret)
266 goto out;
267
268 /* once recovery info is written, don't need to tack this */
269 remove_dirty_inode(sbi, ino, APPEND_INO);
270 clear_inode_flag(fi, FI_APPEND_WRITE);
271 flush_out:
272 remove_dirty_inode(sbi, ino, UPDATE_INO);
273 clear_inode_flag(fi, FI_UPDATE_WRITE);
274 ret = f2fs_issue_flush(sbi);
275 out:
276 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
277 f2fs_trace_ios(NULL, 1);
278 return ret;
279 }
280
281 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
282 pgoff_t pgofs, int whence)
283 {
284 struct pagevec pvec;
285 int nr_pages;
286
287 if (whence != SEEK_DATA)
288 return 0;
289
290 /* find first dirty page index */
291 pagevec_init(&pvec, 0);
292 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
293 PAGECACHE_TAG_DIRTY, 1);
294 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
295 pagevec_release(&pvec);
296 return pgofs;
297 }
298
299 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
300 int whence)
301 {
302 switch (whence) {
303 case SEEK_DATA:
304 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
305 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
306 return true;
307 break;
308 case SEEK_HOLE:
309 if (blkaddr == NULL_ADDR)
310 return true;
311 break;
312 }
313 return false;
314 }
315
316 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
317 {
318 struct inode *inode = file->f_mapping->host;
319 loff_t maxbytes = inode->i_sb->s_maxbytes;
320 struct dnode_of_data dn;
321 pgoff_t pgofs, end_offset, dirty;
322 loff_t data_ofs = offset;
323 loff_t isize;
324 int err = 0;
325
326 mutex_lock(&inode->i_mutex);
327
328 isize = i_size_read(inode);
329 if (offset >= isize)
330 goto fail;
331
332 /* handle inline data case */
333 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
334 if (whence == SEEK_HOLE)
335 data_ofs = isize;
336 goto found;
337 }
338
339 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
340
341 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
342
343 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
344 set_new_dnode(&dn, inode, NULL, NULL, 0);
345 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
346 if (err && err != -ENOENT) {
347 goto fail;
348 } else if (err == -ENOENT) {
349 /* direct node does not exists */
350 if (whence == SEEK_DATA) {
351 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
352 F2FS_I(inode));
353 continue;
354 } else {
355 goto found;
356 }
357 }
358
359 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
360
361 /* find data/hole in dnode block */
362 for (; dn.ofs_in_node < end_offset;
363 dn.ofs_in_node++, pgofs++,
364 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
365 block_t blkaddr;
366 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
367
368 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
369 f2fs_put_dnode(&dn);
370 goto found;
371 }
372 }
373 f2fs_put_dnode(&dn);
374 }
375
376 if (whence == SEEK_DATA)
377 goto fail;
378 found:
379 if (whence == SEEK_HOLE && data_ofs > isize)
380 data_ofs = isize;
381 mutex_unlock(&inode->i_mutex);
382 return vfs_setpos(file, data_ofs, maxbytes);
383 fail:
384 mutex_unlock(&inode->i_mutex);
385 return -ENXIO;
386 }
387
388 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
389 {
390 struct inode *inode = file->f_mapping->host;
391 loff_t maxbytes = inode->i_sb->s_maxbytes;
392
393 switch (whence) {
394 case SEEK_SET:
395 case SEEK_CUR:
396 case SEEK_END:
397 return generic_file_llseek_size(file, offset, whence,
398 maxbytes, i_size_read(inode));
399 case SEEK_DATA:
400 case SEEK_HOLE:
401 if (offset < 0)
402 return -ENXIO;
403 return f2fs_seek_block(file, offset, whence);
404 }
405
406 return -EINVAL;
407 }
408
409 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
410 {
411 struct inode *inode = file_inode(file);
412
413 if (f2fs_encrypted_inode(inode)) {
414 int err = f2fs_get_encryption_info(inode);
415 if (err)
416 return 0;
417 }
418
419 /* we don't need to use inline_data strictly */
420 if (f2fs_has_inline_data(inode)) {
421 int err = f2fs_convert_inline_inode(inode);
422 if (err)
423 return err;
424 }
425
426 file_accessed(file);
427 vma->vm_ops = &f2fs_file_vm_ops;
428 return 0;
429 }
430
431 static int f2fs_file_open(struct inode *inode, struct file *filp)
432 {
433 int ret = generic_file_open(inode, filp);
434
435 if (!ret && f2fs_encrypted_inode(inode)) {
436 ret = f2fs_get_encryption_info(inode);
437 if (ret)
438 ret = -EACCES;
439 }
440 return ret;
441 }
442
443 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
444 {
445 int nr_free = 0, ofs = dn->ofs_in_node;
446 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
447 struct f2fs_node *raw_node;
448 __le32 *addr;
449
450 raw_node = F2FS_NODE(dn->node_page);
451 addr = blkaddr_in_node(raw_node) + ofs;
452
453 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
454 block_t blkaddr = le32_to_cpu(*addr);
455 if (blkaddr == NULL_ADDR)
456 continue;
457
458 dn->data_blkaddr = NULL_ADDR;
459 set_data_blkaddr(dn);
460 f2fs_update_extent_cache(dn);
461 invalidate_blocks(sbi, blkaddr);
462 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
463 clear_inode_flag(F2FS_I(dn->inode),
464 FI_FIRST_BLOCK_WRITTEN);
465 nr_free++;
466 }
467 if (nr_free) {
468 dec_valid_block_count(sbi, dn->inode, nr_free);
469 set_page_dirty(dn->node_page);
470 sync_inode_page(dn);
471 }
472 dn->ofs_in_node = ofs;
473
474 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
475 dn->ofs_in_node, nr_free);
476 return nr_free;
477 }
478
479 void truncate_data_blocks(struct dnode_of_data *dn)
480 {
481 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
482 }
483
484 static int truncate_partial_data_page(struct inode *inode, u64 from,
485 bool cache_only)
486 {
487 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
488 pgoff_t index = from >> PAGE_CACHE_SHIFT;
489 struct address_space *mapping = inode->i_mapping;
490 struct page *page;
491
492 if (!offset && !cache_only)
493 return 0;
494
495 if (cache_only) {
496 page = grab_cache_page(mapping, index);
497 if (page && PageUptodate(page))
498 goto truncate_out;
499 f2fs_put_page(page, 1);
500 return 0;
501 }
502
503 page = get_lock_data_page(inode, index);
504 if (IS_ERR(page))
505 return 0;
506 truncate_out:
507 f2fs_wait_on_page_writeback(page, DATA);
508 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
509 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
510 set_page_dirty(page);
511 f2fs_put_page(page, 1);
512 return 0;
513 }
514
515 int truncate_blocks(struct inode *inode, u64 from, bool lock)
516 {
517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
518 unsigned int blocksize = inode->i_sb->s_blocksize;
519 struct dnode_of_data dn;
520 pgoff_t free_from;
521 int count = 0, err = 0;
522 struct page *ipage;
523 bool truncate_page = false;
524
525 trace_f2fs_truncate_blocks_enter(inode, from);
526
527 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
528
529 if (lock)
530 f2fs_lock_op(sbi);
531
532 ipage = get_node_page(sbi, inode->i_ino);
533 if (IS_ERR(ipage)) {
534 err = PTR_ERR(ipage);
535 goto out;
536 }
537
538 if (f2fs_has_inline_data(inode)) {
539 if (truncate_inline_inode(ipage, from))
540 set_page_dirty(ipage);
541 f2fs_put_page(ipage, 1);
542 truncate_page = true;
543 goto out;
544 }
545
546 set_new_dnode(&dn, inode, ipage, NULL, 0);
547 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
548 if (err) {
549 if (err == -ENOENT)
550 goto free_next;
551 goto out;
552 }
553
554 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
555
556 count -= dn.ofs_in_node;
557 f2fs_bug_on(sbi, count < 0);
558
559 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
560 truncate_data_blocks_range(&dn, count);
561 free_from += count;
562 }
563
564 f2fs_put_dnode(&dn);
565 free_next:
566 err = truncate_inode_blocks(inode, free_from);
567 out:
568 if (lock)
569 f2fs_unlock_op(sbi);
570
571 /* lastly zero out the first data page */
572 if (!err)
573 err = truncate_partial_data_page(inode, from, truncate_page);
574
575 trace_f2fs_truncate_blocks_exit(inode, err);
576 return err;
577 }
578
579 void f2fs_truncate(struct inode *inode)
580 {
581 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
582 S_ISLNK(inode->i_mode)))
583 return;
584
585 trace_f2fs_truncate(inode);
586
587 /* we should check inline_data size */
588 if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
589 if (f2fs_convert_inline_inode(inode))
590 return;
591 }
592
593 if (!truncate_blocks(inode, i_size_read(inode), true)) {
594 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
595 mark_inode_dirty(inode);
596 }
597 }
598
599 int f2fs_getattr(struct vfsmount *mnt,
600 struct dentry *dentry, struct kstat *stat)
601 {
602 struct inode *inode = d_inode(dentry);
603 generic_fillattr(inode, stat);
604 stat->blocks <<= 3;
605 return 0;
606 }
607
608 #ifdef CONFIG_F2FS_FS_POSIX_ACL
609 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
610 {
611 struct f2fs_inode_info *fi = F2FS_I(inode);
612 unsigned int ia_valid = attr->ia_valid;
613
614 if (ia_valid & ATTR_UID)
615 inode->i_uid = attr->ia_uid;
616 if (ia_valid & ATTR_GID)
617 inode->i_gid = attr->ia_gid;
618 if (ia_valid & ATTR_ATIME)
619 inode->i_atime = timespec_trunc(attr->ia_atime,
620 inode->i_sb->s_time_gran);
621 if (ia_valid & ATTR_MTIME)
622 inode->i_mtime = timespec_trunc(attr->ia_mtime,
623 inode->i_sb->s_time_gran);
624 if (ia_valid & ATTR_CTIME)
625 inode->i_ctime = timespec_trunc(attr->ia_ctime,
626 inode->i_sb->s_time_gran);
627 if (ia_valid & ATTR_MODE) {
628 umode_t mode = attr->ia_mode;
629
630 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
631 mode &= ~S_ISGID;
632 set_acl_inode(fi, mode);
633 }
634 }
635 #else
636 #define __setattr_copy setattr_copy
637 #endif
638
639 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
640 {
641 struct inode *inode = d_inode(dentry);
642 struct f2fs_inode_info *fi = F2FS_I(inode);
643 int err;
644
645 err = inode_change_ok(inode, attr);
646 if (err)
647 return err;
648
649 if (attr->ia_valid & ATTR_SIZE) {
650 if (f2fs_encrypted_inode(inode) &&
651 f2fs_get_encryption_info(inode))
652 return -EACCES;
653
654 if (attr->ia_size <= i_size_read(inode)) {
655 truncate_setsize(inode, attr->ia_size);
656 f2fs_truncate(inode);
657 f2fs_balance_fs(F2FS_I_SB(inode));
658 } else {
659 /*
660 * do not trim all blocks after i_size if target size is
661 * larger than i_size.
662 */
663 truncate_setsize(inode, attr->ia_size);
664 }
665 }
666
667 __setattr_copy(inode, attr);
668
669 if (attr->ia_valid & ATTR_MODE) {
670 err = posix_acl_chmod(inode, get_inode_mode(inode));
671 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
672 inode->i_mode = fi->i_acl_mode;
673 clear_inode_flag(fi, FI_ACL_MODE);
674 }
675 }
676
677 mark_inode_dirty(inode);
678 return err;
679 }
680
681 const struct inode_operations f2fs_file_inode_operations = {
682 .getattr = f2fs_getattr,
683 .setattr = f2fs_setattr,
684 .get_acl = f2fs_get_acl,
685 .set_acl = f2fs_set_acl,
686 #ifdef CONFIG_F2FS_FS_XATTR
687 .setxattr = generic_setxattr,
688 .getxattr = generic_getxattr,
689 .listxattr = f2fs_listxattr,
690 .removexattr = generic_removexattr,
691 #endif
692 .fiemap = f2fs_fiemap,
693 };
694
695 static void fill_zero(struct inode *inode, pgoff_t index,
696 loff_t start, loff_t len)
697 {
698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
699 struct page *page;
700
701 if (!len)
702 return;
703
704 f2fs_balance_fs(sbi);
705
706 f2fs_lock_op(sbi);
707 page = get_new_data_page(inode, NULL, index, false);
708 f2fs_unlock_op(sbi);
709
710 if (!IS_ERR(page)) {
711 f2fs_wait_on_page_writeback(page, DATA);
712 zero_user(page, start, len);
713 set_page_dirty(page);
714 f2fs_put_page(page, 1);
715 }
716 }
717
718 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
719 {
720 pgoff_t index;
721 int err;
722
723 for (index = pg_start; index < pg_end; index++) {
724 struct dnode_of_data dn;
725
726 set_new_dnode(&dn, inode, NULL, NULL, 0);
727 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
728 if (err) {
729 if (err == -ENOENT)
730 continue;
731 return err;
732 }
733
734 if (dn.data_blkaddr != NULL_ADDR)
735 truncate_data_blocks_range(&dn, 1);
736 f2fs_put_dnode(&dn);
737 }
738 return 0;
739 }
740
741 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
742 {
743 pgoff_t pg_start, pg_end;
744 loff_t off_start, off_end;
745 int ret = 0;
746
747 if (!S_ISREG(inode->i_mode))
748 return -EOPNOTSUPP;
749
750 if (f2fs_has_inline_data(inode)) {
751 ret = f2fs_convert_inline_inode(inode);
752 if (ret)
753 return ret;
754 }
755
756 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
757 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
758
759 off_start = offset & (PAGE_CACHE_SIZE - 1);
760 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
761
762 if (pg_start == pg_end) {
763 fill_zero(inode, pg_start, off_start,
764 off_end - off_start);
765 } else {
766 if (off_start)
767 fill_zero(inode, pg_start++, off_start,
768 PAGE_CACHE_SIZE - off_start);
769 if (off_end)
770 fill_zero(inode, pg_end, 0, off_end);
771
772 if (pg_start < pg_end) {
773 struct address_space *mapping = inode->i_mapping;
774 loff_t blk_start, blk_end;
775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
776
777 f2fs_balance_fs(sbi);
778
779 blk_start = pg_start << PAGE_CACHE_SHIFT;
780 blk_end = pg_end << PAGE_CACHE_SHIFT;
781 truncate_inode_pages_range(mapping, blk_start,
782 blk_end - 1);
783
784 f2fs_lock_op(sbi);
785 ret = truncate_hole(inode, pg_start, pg_end);
786 f2fs_unlock_op(sbi);
787 }
788 }
789
790 return ret;
791 }
792
793 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
794 {
795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
796 struct dnode_of_data dn;
797 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
798 int ret = 0;
799
800 f2fs_lock_op(sbi);
801
802 for (; end < nrpages; start++, end++) {
803 block_t new_addr, old_addr;
804
805 set_new_dnode(&dn, inode, NULL, NULL, 0);
806 ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
807 if (ret && ret != -ENOENT) {
808 goto out;
809 } else if (ret == -ENOENT) {
810 new_addr = NULL_ADDR;
811 } else {
812 new_addr = dn.data_blkaddr;
813 truncate_data_blocks_range(&dn, 1);
814 f2fs_put_dnode(&dn);
815 }
816
817 if (new_addr == NULL_ADDR) {
818 set_new_dnode(&dn, inode, NULL, NULL, 0);
819 ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
820 if (ret && ret != -ENOENT)
821 goto out;
822 else if (ret == -ENOENT)
823 continue;
824
825 if (dn.data_blkaddr == NULL_ADDR) {
826 f2fs_put_dnode(&dn);
827 continue;
828 } else {
829 truncate_data_blocks_range(&dn, 1);
830 }
831
832 f2fs_put_dnode(&dn);
833 } else {
834 struct page *ipage;
835
836 ipage = get_node_page(sbi, inode->i_ino);
837 if (IS_ERR(ipage)) {
838 ret = PTR_ERR(ipage);
839 goto out;
840 }
841
842 set_new_dnode(&dn, inode, ipage, NULL, 0);
843 ret = f2fs_reserve_block(&dn, start);
844 if (ret)
845 goto out;
846
847 old_addr = dn.data_blkaddr;
848 if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
849 dn.data_blkaddr = NULL_ADDR;
850 f2fs_update_extent_cache(&dn);
851 invalidate_blocks(sbi, old_addr);
852
853 dn.data_blkaddr = new_addr;
854 set_data_blkaddr(&dn);
855 } else if (new_addr != NEW_ADDR) {
856 struct node_info ni;
857
858 get_node_info(sbi, dn.nid, &ni);
859 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
860 ni.version, true);
861 }
862
863 f2fs_put_dnode(&dn);
864 }
865 }
866 ret = 0;
867 out:
868 f2fs_unlock_op(sbi);
869 return ret;
870 }
871
872 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
873 {
874 pgoff_t pg_start, pg_end;
875 loff_t new_size;
876 int ret;
877
878 if (!S_ISREG(inode->i_mode))
879 return -EINVAL;
880
881 if (offset + len >= i_size_read(inode))
882 return -EINVAL;
883
884 /* collapse range should be aligned to block size of f2fs. */
885 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
886 return -EINVAL;
887
888 pg_start = offset >> PAGE_CACHE_SHIFT;
889 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
890
891 /* write out all dirty pages from offset */
892 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
893 if (ret)
894 return ret;
895
896 truncate_pagecache(inode, offset);
897
898 ret = f2fs_do_collapse(inode, pg_start, pg_end);
899 if (ret)
900 return ret;
901
902 new_size = i_size_read(inode) - len;
903
904 ret = truncate_blocks(inode, new_size, true);
905 if (!ret)
906 i_size_write(inode, new_size);
907
908 return ret;
909 }
910
911 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
912 int mode)
913 {
914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
915 struct address_space *mapping = inode->i_mapping;
916 pgoff_t index, pg_start, pg_end;
917 loff_t new_size = i_size_read(inode);
918 loff_t off_start, off_end;
919 int ret = 0;
920
921 if (!S_ISREG(inode->i_mode))
922 return -EINVAL;
923
924 ret = inode_newsize_ok(inode, (len + offset));
925 if (ret)
926 return ret;
927
928 f2fs_balance_fs(sbi);
929
930 if (f2fs_has_inline_data(inode)) {
931 ret = f2fs_convert_inline_inode(inode);
932 if (ret)
933 return ret;
934 }
935
936 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
937 if (ret)
938 return ret;
939
940 truncate_pagecache_range(inode, offset, offset + len - 1);
941
942 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
943 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
944
945 off_start = offset & (PAGE_CACHE_SIZE - 1);
946 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
947
948 if (pg_start == pg_end) {
949 fill_zero(inode, pg_start, off_start, off_end - off_start);
950 if (offset + len > new_size)
951 new_size = offset + len;
952 new_size = max_t(loff_t, new_size, offset + len);
953 } else {
954 if (off_start) {
955 fill_zero(inode, pg_start++, off_start,
956 PAGE_CACHE_SIZE - off_start);
957 new_size = max_t(loff_t, new_size,
958 pg_start << PAGE_CACHE_SHIFT);
959 }
960
961 for (index = pg_start; index < pg_end; index++) {
962 struct dnode_of_data dn;
963 struct page *ipage;
964
965 f2fs_lock_op(sbi);
966
967 ipage = get_node_page(sbi, inode->i_ino);
968 if (IS_ERR(ipage)) {
969 ret = PTR_ERR(ipage);
970 f2fs_unlock_op(sbi);
971 goto out;
972 }
973
974 set_new_dnode(&dn, inode, ipage, NULL, 0);
975 ret = f2fs_reserve_block(&dn, index);
976 if (ret) {
977 f2fs_unlock_op(sbi);
978 goto out;
979 }
980
981 if (dn.data_blkaddr != NEW_ADDR) {
982 invalidate_blocks(sbi, dn.data_blkaddr);
983
984 dn.data_blkaddr = NEW_ADDR;
985 set_data_blkaddr(&dn);
986
987 dn.data_blkaddr = NULL_ADDR;
988 f2fs_update_extent_cache(&dn);
989 }
990 f2fs_put_dnode(&dn);
991 f2fs_unlock_op(sbi);
992
993 new_size = max_t(loff_t, new_size,
994 (index + 1) << PAGE_CACHE_SHIFT);
995 }
996
997 if (off_end) {
998 fill_zero(inode, pg_end, 0, off_end);
999 new_size = max_t(loff_t, new_size, offset + len);
1000 }
1001 }
1002
1003 out:
1004 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1005 i_size_write(inode, new_size);
1006 mark_inode_dirty(inode);
1007 update_inode_page(inode);
1008 }
1009
1010 return ret;
1011 }
1012
1013 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1014 {
1015 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1016 pgoff_t pg_start, pg_end, delta, nrpages, idx;
1017 loff_t new_size;
1018 int ret;
1019
1020 if (!S_ISREG(inode->i_mode))
1021 return -EINVAL;
1022
1023 new_size = i_size_read(inode) + len;
1024 if (new_size > inode->i_sb->s_maxbytes)
1025 return -EFBIG;
1026
1027 if (offset >= i_size_read(inode))
1028 return -EINVAL;
1029
1030 /* insert range should be aligned to block size of f2fs. */
1031 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1032 return -EINVAL;
1033
1034 f2fs_balance_fs(sbi);
1035
1036 ret = truncate_blocks(inode, i_size_read(inode), true);
1037 if (ret)
1038 return ret;
1039
1040 /* write out all dirty pages from offset */
1041 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1042 if (ret)
1043 return ret;
1044
1045 truncate_pagecache(inode, offset);
1046
1047 pg_start = offset >> PAGE_CACHE_SHIFT;
1048 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
1049 delta = pg_end - pg_start;
1050 nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1051
1052 for (idx = nrpages - 1; idx >= pg_start && idx != -1; idx--) {
1053 struct dnode_of_data dn;
1054 struct page *ipage;
1055 block_t new_addr, old_addr;
1056
1057 f2fs_lock_op(sbi);
1058
1059 set_new_dnode(&dn, inode, NULL, NULL, 0);
1060 ret = get_dnode_of_data(&dn, idx, LOOKUP_NODE_RA);
1061 if (ret && ret != -ENOENT) {
1062 goto out;
1063 } else if (ret == -ENOENT) {
1064 goto next;
1065 } else if (dn.data_blkaddr == NULL_ADDR) {
1066 f2fs_put_dnode(&dn);
1067 goto next;
1068 } else {
1069 new_addr = dn.data_blkaddr;
1070 truncate_data_blocks_range(&dn, 1);
1071 f2fs_put_dnode(&dn);
1072 }
1073
1074 ipage = get_node_page(sbi, inode->i_ino);
1075 if (IS_ERR(ipage)) {
1076 ret = PTR_ERR(ipage);
1077 goto out;
1078 }
1079
1080 set_new_dnode(&dn, inode, ipage, NULL, 0);
1081 ret = f2fs_reserve_block(&dn, idx + delta);
1082 if (ret)
1083 goto out;
1084
1085 old_addr = dn.data_blkaddr;
1086 f2fs_bug_on(sbi, old_addr != NEW_ADDR);
1087
1088 if (new_addr != NEW_ADDR) {
1089 struct node_info ni;
1090
1091 get_node_info(sbi, dn.nid, &ni);
1092 f2fs_replace_block(sbi, &dn, old_addr, new_addr,
1093 ni.version, true);
1094 }
1095 f2fs_put_dnode(&dn);
1096 next:
1097 f2fs_unlock_op(sbi);
1098 }
1099
1100 i_size_write(inode, new_size);
1101 return 0;
1102 out:
1103 f2fs_unlock_op(sbi);
1104 return ret;
1105 }
1106
1107 static int expand_inode_data(struct inode *inode, loff_t offset,
1108 loff_t len, int mode)
1109 {
1110 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1111 pgoff_t index, pg_start, pg_end;
1112 loff_t new_size = i_size_read(inode);
1113 loff_t off_start, off_end;
1114 int ret = 0;
1115
1116 f2fs_balance_fs(sbi);
1117
1118 ret = inode_newsize_ok(inode, (len + offset));
1119 if (ret)
1120 return ret;
1121
1122 if (f2fs_has_inline_data(inode)) {
1123 ret = f2fs_convert_inline_inode(inode);
1124 if (ret)
1125 return ret;
1126 }
1127
1128 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1129 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1130
1131 off_start = offset & (PAGE_CACHE_SIZE - 1);
1132 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1133
1134 f2fs_lock_op(sbi);
1135
1136 for (index = pg_start; index <= pg_end; index++) {
1137 struct dnode_of_data dn;
1138
1139 if (index == pg_end && !off_end)
1140 goto noalloc;
1141
1142 set_new_dnode(&dn, inode, NULL, NULL, 0);
1143 ret = f2fs_reserve_block(&dn, index);
1144 if (ret)
1145 break;
1146 noalloc:
1147 if (pg_start == pg_end)
1148 new_size = offset + len;
1149 else if (index == pg_start && off_start)
1150 new_size = (index + 1) << PAGE_CACHE_SHIFT;
1151 else if (index == pg_end)
1152 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
1153 else
1154 new_size += PAGE_CACHE_SIZE;
1155 }
1156
1157 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1158 i_size_read(inode) < new_size) {
1159 i_size_write(inode, new_size);
1160 mark_inode_dirty(inode);
1161 update_inode_page(inode);
1162 }
1163 f2fs_unlock_op(sbi);
1164
1165 return ret;
1166 }
1167
1168 static long f2fs_fallocate(struct file *file, int mode,
1169 loff_t offset, loff_t len)
1170 {
1171 struct inode *inode = file_inode(file);
1172 long ret = 0;
1173
1174 if (f2fs_encrypted_inode(inode) &&
1175 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1176 return -EOPNOTSUPP;
1177
1178 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1179 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1180 FALLOC_FL_INSERT_RANGE))
1181 return -EOPNOTSUPP;
1182
1183 mutex_lock(&inode->i_mutex);
1184
1185 if (mode & FALLOC_FL_PUNCH_HOLE) {
1186 if (offset >= inode->i_size)
1187 goto out;
1188
1189 ret = punch_hole(inode, offset, len);
1190 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1191 ret = f2fs_collapse_range(inode, offset, len);
1192 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1193 ret = f2fs_zero_range(inode, offset, len, mode);
1194 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1195 ret = f2fs_insert_range(inode, offset, len);
1196 } else {
1197 ret = expand_inode_data(inode, offset, len, mode);
1198 }
1199
1200 if (!ret) {
1201 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1202 mark_inode_dirty(inode);
1203 }
1204
1205 out:
1206 mutex_unlock(&inode->i_mutex);
1207
1208 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1209 return ret;
1210 }
1211
1212 static int f2fs_release_file(struct inode *inode, struct file *filp)
1213 {
1214 /* some remained atomic pages should discarded */
1215 if (f2fs_is_atomic_file(inode))
1216 commit_inmem_pages(inode, true);
1217 if (f2fs_is_volatile_file(inode)) {
1218 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1219 filemap_fdatawrite(inode->i_mapping);
1220 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1221 }
1222 return 0;
1223 }
1224
1225 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1226 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1227
1228 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1229 {
1230 if (S_ISDIR(mode))
1231 return flags;
1232 else if (S_ISREG(mode))
1233 return flags & F2FS_REG_FLMASK;
1234 else
1235 return flags & F2FS_OTHER_FLMASK;
1236 }
1237
1238 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1239 {
1240 struct inode *inode = file_inode(filp);
1241 struct f2fs_inode_info *fi = F2FS_I(inode);
1242 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1243 return put_user(flags, (int __user *)arg);
1244 }
1245
1246 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1247 {
1248 struct inode *inode = file_inode(filp);
1249 struct f2fs_inode_info *fi = F2FS_I(inode);
1250 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1251 unsigned int oldflags;
1252 int ret;
1253
1254 ret = mnt_want_write_file(filp);
1255 if (ret)
1256 return ret;
1257
1258 if (!inode_owner_or_capable(inode)) {
1259 ret = -EACCES;
1260 goto out;
1261 }
1262
1263 if (get_user(flags, (int __user *)arg)) {
1264 ret = -EFAULT;
1265 goto out;
1266 }
1267
1268 flags = f2fs_mask_flags(inode->i_mode, flags);
1269
1270 mutex_lock(&inode->i_mutex);
1271
1272 oldflags = fi->i_flags;
1273
1274 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1275 if (!capable(CAP_LINUX_IMMUTABLE)) {
1276 mutex_unlock(&inode->i_mutex);
1277 ret = -EPERM;
1278 goto out;
1279 }
1280 }
1281
1282 flags = flags & FS_FL_USER_MODIFIABLE;
1283 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1284 fi->i_flags = flags;
1285 mutex_unlock(&inode->i_mutex);
1286
1287 f2fs_set_inode_flags(inode);
1288 inode->i_ctime = CURRENT_TIME;
1289 mark_inode_dirty(inode);
1290 out:
1291 mnt_drop_write_file(filp);
1292 return ret;
1293 }
1294
1295 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1296 {
1297 struct inode *inode = file_inode(filp);
1298
1299 return put_user(inode->i_generation, (int __user *)arg);
1300 }
1301
1302 static int f2fs_ioc_start_atomic_write(struct file *filp)
1303 {
1304 struct inode *inode = file_inode(filp);
1305
1306 if (!inode_owner_or_capable(inode))
1307 return -EACCES;
1308
1309 f2fs_balance_fs(F2FS_I_SB(inode));
1310
1311 if (f2fs_is_atomic_file(inode))
1312 return 0;
1313
1314 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1315
1316 return f2fs_convert_inline_inode(inode);
1317 }
1318
1319 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1320 {
1321 struct inode *inode = file_inode(filp);
1322 int ret;
1323
1324 if (!inode_owner_or_capable(inode))
1325 return -EACCES;
1326
1327 if (f2fs_is_volatile_file(inode))
1328 return 0;
1329
1330 ret = mnt_want_write_file(filp);
1331 if (ret)
1332 return ret;
1333
1334 if (f2fs_is_atomic_file(inode))
1335 commit_inmem_pages(inode, false);
1336
1337 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
1338 mnt_drop_write_file(filp);
1339 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1340 return ret;
1341 }
1342
1343 static int f2fs_ioc_start_volatile_write(struct file *filp)
1344 {
1345 struct inode *inode = file_inode(filp);
1346
1347 if (!inode_owner_or_capable(inode))
1348 return -EACCES;
1349
1350 if (f2fs_is_volatile_file(inode))
1351 return 0;
1352
1353 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1354
1355 return f2fs_convert_inline_inode(inode);
1356 }
1357
1358 static int f2fs_ioc_release_volatile_write(struct file *filp)
1359 {
1360 struct inode *inode = file_inode(filp);
1361
1362 if (!inode_owner_or_capable(inode))
1363 return -EACCES;
1364
1365 if (!f2fs_is_volatile_file(inode))
1366 return 0;
1367
1368 if (!f2fs_is_first_block_written(inode))
1369 return truncate_partial_data_page(inode, 0, true);
1370
1371 punch_hole(inode, 0, F2FS_BLKSIZE);
1372 return 0;
1373 }
1374
1375 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1376 {
1377 struct inode *inode = file_inode(filp);
1378 int ret;
1379
1380 if (!inode_owner_or_capable(inode))
1381 return -EACCES;
1382
1383 ret = mnt_want_write_file(filp);
1384 if (ret)
1385 return ret;
1386
1387 f2fs_balance_fs(F2FS_I_SB(inode));
1388
1389 if (f2fs_is_atomic_file(inode)) {
1390 commit_inmem_pages(inode, false);
1391 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1392 }
1393
1394 if (f2fs_is_volatile_file(inode))
1395 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1396
1397 mnt_drop_write_file(filp);
1398 return ret;
1399 }
1400
1401 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1402 {
1403 struct inode *inode = file_inode(filp);
1404 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1405 struct super_block *sb = sbi->sb;
1406 __u32 in;
1407
1408 if (!capable(CAP_SYS_ADMIN))
1409 return -EPERM;
1410
1411 if (get_user(in, (__u32 __user *)arg))
1412 return -EFAULT;
1413
1414 switch (in) {
1415 case F2FS_GOING_DOWN_FULLSYNC:
1416 sb = freeze_bdev(sb->s_bdev);
1417 if (sb && !IS_ERR(sb)) {
1418 f2fs_stop_checkpoint(sbi);
1419 thaw_bdev(sb->s_bdev, sb);
1420 }
1421 break;
1422 case F2FS_GOING_DOWN_METASYNC:
1423 /* do checkpoint only */
1424 f2fs_sync_fs(sb, 1);
1425 f2fs_stop_checkpoint(sbi);
1426 break;
1427 case F2FS_GOING_DOWN_NOSYNC:
1428 f2fs_stop_checkpoint(sbi);
1429 break;
1430 default:
1431 return -EINVAL;
1432 }
1433 return 0;
1434 }
1435
1436 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1437 {
1438 struct inode *inode = file_inode(filp);
1439 struct super_block *sb = inode->i_sb;
1440 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1441 struct fstrim_range range;
1442 int ret;
1443
1444 if (!capable(CAP_SYS_ADMIN))
1445 return -EPERM;
1446
1447 if (!blk_queue_discard(q))
1448 return -EOPNOTSUPP;
1449
1450 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1451 sizeof(range)))
1452 return -EFAULT;
1453
1454 range.minlen = max((unsigned int)range.minlen,
1455 q->limits.discard_granularity);
1456 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1457 if (ret < 0)
1458 return ret;
1459
1460 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1461 sizeof(range)))
1462 return -EFAULT;
1463 return 0;
1464 }
1465
1466 static bool uuid_is_nonzero(__u8 u[16])
1467 {
1468 int i;
1469
1470 for (i = 0; i < 16; i++)
1471 if (u[i])
1472 return true;
1473 return false;
1474 }
1475
1476 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1477 {
1478 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1479 struct f2fs_encryption_policy policy;
1480 struct inode *inode = file_inode(filp);
1481
1482 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1483 sizeof(policy)))
1484 return -EFAULT;
1485
1486 return f2fs_process_policy(&policy, inode);
1487 #else
1488 return -EOPNOTSUPP;
1489 #endif
1490 }
1491
1492 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1493 {
1494 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1495 struct f2fs_encryption_policy policy;
1496 struct inode *inode = file_inode(filp);
1497 int err;
1498
1499 err = f2fs_get_policy(inode, &policy);
1500 if (err)
1501 return err;
1502
1503 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1504 sizeof(policy)))
1505 return -EFAULT;
1506 return 0;
1507 #else
1508 return -EOPNOTSUPP;
1509 #endif
1510 }
1511
1512 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1513 {
1514 struct inode *inode = file_inode(filp);
1515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1516 int err;
1517
1518 if (!f2fs_sb_has_crypto(inode->i_sb))
1519 return -EOPNOTSUPP;
1520
1521 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1522 goto got_it;
1523
1524 err = mnt_want_write_file(filp);
1525 if (err)
1526 return err;
1527
1528 /* update superblock with uuid */
1529 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1530
1531 err = f2fs_commit_super(sbi, false);
1532
1533 mnt_drop_write_file(filp);
1534 if (err) {
1535 /* undo new data */
1536 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1537 return err;
1538 }
1539 got_it:
1540 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1541 16))
1542 return -EFAULT;
1543 return 0;
1544 }
1545
1546 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1547 {
1548 switch (cmd) {
1549 case F2FS_IOC_GETFLAGS:
1550 return f2fs_ioc_getflags(filp, arg);
1551 case F2FS_IOC_SETFLAGS:
1552 return f2fs_ioc_setflags(filp, arg);
1553 case F2FS_IOC_GETVERSION:
1554 return f2fs_ioc_getversion(filp, arg);
1555 case F2FS_IOC_START_ATOMIC_WRITE:
1556 return f2fs_ioc_start_atomic_write(filp);
1557 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1558 return f2fs_ioc_commit_atomic_write(filp);
1559 case F2FS_IOC_START_VOLATILE_WRITE:
1560 return f2fs_ioc_start_volatile_write(filp);
1561 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1562 return f2fs_ioc_release_volatile_write(filp);
1563 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1564 return f2fs_ioc_abort_volatile_write(filp);
1565 case F2FS_IOC_SHUTDOWN:
1566 return f2fs_ioc_shutdown(filp, arg);
1567 case FITRIM:
1568 return f2fs_ioc_fitrim(filp, arg);
1569 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1570 return f2fs_ioc_set_encryption_policy(filp, arg);
1571 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1572 return f2fs_ioc_get_encryption_policy(filp, arg);
1573 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1574 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1575 default:
1576 return -ENOTTY;
1577 }
1578 }
1579
1580 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1581 {
1582 struct inode *inode = file_inode(iocb->ki_filp);
1583
1584 if (f2fs_encrypted_inode(inode) &&
1585 !f2fs_has_encryption_key(inode) &&
1586 f2fs_get_encryption_info(inode))
1587 return -EACCES;
1588
1589 return generic_file_write_iter(iocb, from);
1590 }
1591
1592 #ifdef CONFIG_COMPAT
1593 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1594 {
1595 switch (cmd) {
1596 case F2FS_IOC32_GETFLAGS:
1597 cmd = F2FS_IOC_GETFLAGS;
1598 break;
1599 case F2FS_IOC32_SETFLAGS:
1600 cmd = F2FS_IOC_SETFLAGS;
1601 break;
1602 default:
1603 return -ENOIOCTLCMD;
1604 }
1605 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1606 }
1607 #endif
1608
1609 const struct file_operations f2fs_file_operations = {
1610 .llseek = f2fs_llseek,
1611 .read_iter = generic_file_read_iter,
1612 .write_iter = f2fs_file_write_iter,
1613 .open = f2fs_file_open,
1614 .release = f2fs_release_file,
1615 .mmap = f2fs_file_mmap,
1616 .fsync = f2fs_sync_file,
1617 .fallocate = f2fs_fallocate,
1618 .unlocked_ioctl = f2fs_ioctl,
1619 #ifdef CONFIG_COMPAT
1620 .compat_ioctl = f2fs_compat_ioctl,
1621 #endif
1622 .splice_read = generic_file_splice_read,
1623 .splice_write = iter_file_splice_write,
1624 };
This page took 0.069675 seconds and 5 git commands to generate.