f2fs crypto: add filename encryption for roll-forward recovery
[deliverable/linux.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/random.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
34 struct vm_fault *vmf)
35 {
36 struct page *page = vmf->page;
37 struct inode *inode = file_inode(vma->vm_file);
38 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
39 struct dnode_of_data dn;
40 int err;
41
42 f2fs_balance_fs(sbi);
43
44 sb_start_pagefault(inode->i_sb);
45
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
55 }
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
58
59 file_update_time(vma->vm_file);
60 lock_page(page);
61 if (unlikely(page->mapping != inode->i_mapping ||
62 page_offset(page) > i_size_read(inode) ||
63 !PageUptodate(page))) {
64 unlock_page(page);
65 err = -EFAULT;
66 goto out;
67 }
68
69 /*
70 * check to see if the page is mapped already (no holes)
71 */
72 if (PageMappedToDisk(page))
73 goto mapped;
74
75 /* page is wholly or partially inside EOF */
76 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
77 unsigned offset;
78 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
79 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
80 }
81 set_page_dirty(page);
82 SetPageUptodate(page);
83
84 trace_f2fs_vm_page_mkwrite(page, DATA);
85 mapped:
86 /* fill the page */
87 f2fs_wait_on_page_writeback(page, DATA);
88 out:
89 sb_end_pagefault(inode->i_sb);
90 return block_page_mkwrite_return(err);
91 }
92
93 static const struct vm_operations_struct f2fs_file_vm_ops = {
94 .fault = filemap_fault,
95 .map_pages = filemap_map_pages,
96 .page_mkwrite = f2fs_vm_page_mkwrite,
97 };
98
99 static int get_parent_ino(struct inode *inode, nid_t *pino)
100 {
101 struct dentry *dentry;
102
103 inode = igrab(inode);
104 dentry = d_find_any_alias(inode);
105 iput(inode);
106 if (!dentry)
107 return 0;
108
109 if (update_dent_inode(inode, inode, &dentry->d_name)) {
110 dput(dentry);
111 return 0;
112 }
113
114 *pino = parent_ino(dentry);
115 dput(dentry);
116 return 1;
117 }
118
119 static inline bool need_do_checkpoint(struct inode *inode)
120 {
121 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
122 bool need_cp = false;
123
124 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
125 need_cp = true;
126 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
127 need_cp = true;
128 else if (file_wrong_pino(inode))
129 need_cp = true;
130 else if (!space_for_roll_forward(sbi))
131 need_cp = true;
132 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
133 need_cp = true;
134 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
135 need_cp = true;
136 else if (test_opt(sbi, FASTBOOT))
137 need_cp = true;
138 else if (sbi->active_logs == 2)
139 need_cp = true;
140
141 return need_cp;
142 }
143
144 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
145 {
146 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
147 bool ret = false;
148 /* But we need to avoid that there are some inode updates */
149 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
150 ret = true;
151 f2fs_put_page(i, 0);
152 return ret;
153 }
154
155 static void try_to_fix_pino(struct inode *inode)
156 {
157 struct f2fs_inode_info *fi = F2FS_I(inode);
158 nid_t pino;
159
160 down_write(&fi->i_sem);
161 fi->xattr_ver = 0;
162 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
163 get_parent_ino(inode, &pino)) {
164 fi->i_pino = pino;
165 file_got_pino(inode);
166 up_write(&fi->i_sem);
167
168 mark_inode_dirty_sync(inode);
169 f2fs_write_inode(inode, NULL);
170 } else {
171 up_write(&fi->i_sem);
172 }
173 }
174
175 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
176 {
177 struct inode *inode = file->f_mapping->host;
178 struct f2fs_inode_info *fi = F2FS_I(inode);
179 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
180 nid_t ino = inode->i_ino;
181 int ret = 0;
182 bool need_cp = false;
183 struct writeback_control wbc = {
184 .sync_mode = WB_SYNC_ALL,
185 .nr_to_write = LONG_MAX,
186 .for_reclaim = 0,
187 };
188
189 if (unlikely(f2fs_readonly(inode->i_sb)))
190 return 0;
191
192 trace_f2fs_sync_file_enter(inode);
193
194 /* if fdatasync is triggered, let's do in-place-update */
195 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
196 set_inode_flag(fi, FI_NEED_IPU);
197 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
198 clear_inode_flag(fi, FI_NEED_IPU);
199
200 if (ret) {
201 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
202 return ret;
203 }
204
205 /* if the inode is dirty, let's recover all the time */
206 if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
207 update_inode_page(inode);
208 goto go_write;
209 }
210
211 /*
212 * if there is no written data, don't waste time to write recovery info.
213 */
214 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
215 !exist_written_data(sbi, ino, APPEND_INO)) {
216
217 /* it may call write_inode just prior to fsync */
218 if (need_inode_page_update(sbi, ino))
219 goto go_write;
220
221 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
222 exist_written_data(sbi, ino, UPDATE_INO))
223 goto flush_out;
224 goto out;
225 }
226 go_write:
227 /* guarantee free sections for fsync */
228 f2fs_balance_fs(sbi);
229
230 /*
231 * Both of fdatasync() and fsync() are able to be recovered from
232 * sudden-power-off.
233 */
234 down_read(&fi->i_sem);
235 need_cp = need_do_checkpoint(inode);
236 up_read(&fi->i_sem);
237
238 if (need_cp) {
239 /* all the dirty node pages should be flushed for POR */
240 ret = f2fs_sync_fs(inode->i_sb, 1);
241
242 /*
243 * We've secured consistency through sync_fs. Following pino
244 * will be used only for fsynced inodes after checkpoint.
245 */
246 try_to_fix_pino(inode);
247 clear_inode_flag(fi, FI_APPEND_WRITE);
248 clear_inode_flag(fi, FI_UPDATE_WRITE);
249 goto out;
250 }
251 sync_nodes:
252 sync_node_pages(sbi, ino, &wbc);
253
254 /* if cp_error was enabled, we should avoid infinite loop */
255 if (unlikely(f2fs_cp_error(sbi)))
256 goto out;
257
258 if (need_inode_block_update(sbi, ino)) {
259 mark_inode_dirty_sync(inode);
260 f2fs_write_inode(inode, NULL);
261 goto sync_nodes;
262 }
263
264 ret = wait_on_node_pages_writeback(sbi, ino);
265 if (ret)
266 goto out;
267
268 /* once recovery info is written, don't need to tack this */
269 remove_dirty_inode(sbi, ino, APPEND_INO);
270 clear_inode_flag(fi, FI_APPEND_WRITE);
271 flush_out:
272 remove_dirty_inode(sbi, ino, UPDATE_INO);
273 clear_inode_flag(fi, FI_UPDATE_WRITE);
274 ret = f2fs_issue_flush(sbi);
275 out:
276 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
277 f2fs_trace_ios(NULL, 1);
278 return ret;
279 }
280
281 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
282 pgoff_t pgofs, int whence)
283 {
284 struct pagevec pvec;
285 int nr_pages;
286
287 if (whence != SEEK_DATA)
288 return 0;
289
290 /* find first dirty page index */
291 pagevec_init(&pvec, 0);
292 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
293 PAGECACHE_TAG_DIRTY, 1);
294 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
295 pagevec_release(&pvec);
296 return pgofs;
297 }
298
299 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
300 int whence)
301 {
302 switch (whence) {
303 case SEEK_DATA:
304 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
305 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
306 return true;
307 break;
308 case SEEK_HOLE:
309 if (blkaddr == NULL_ADDR)
310 return true;
311 break;
312 }
313 return false;
314 }
315
316 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
317 {
318 struct inode *inode = file->f_mapping->host;
319 loff_t maxbytes = inode->i_sb->s_maxbytes;
320 struct dnode_of_data dn;
321 pgoff_t pgofs, end_offset, dirty;
322 loff_t data_ofs = offset;
323 loff_t isize;
324 int err = 0;
325
326 mutex_lock(&inode->i_mutex);
327
328 isize = i_size_read(inode);
329 if (offset >= isize)
330 goto fail;
331
332 /* handle inline data case */
333 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
334 if (whence == SEEK_HOLE)
335 data_ofs = isize;
336 goto found;
337 }
338
339 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
340
341 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
342
343 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
344 set_new_dnode(&dn, inode, NULL, NULL, 0);
345 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
346 if (err && err != -ENOENT) {
347 goto fail;
348 } else if (err == -ENOENT) {
349 /* direct node does not exists */
350 if (whence == SEEK_DATA) {
351 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
352 F2FS_I(inode));
353 continue;
354 } else {
355 goto found;
356 }
357 }
358
359 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
360
361 /* find data/hole in dnode block */
362 for (; dn.ofs_in_node < end_offset;
363 dn.ofs_in_node++, pgofs++,
364 data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
365 block_t blkaddr;
366 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
367
368 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
369 f2fs_put_dnode(&dn);
370 goto found;
371 }
372 }
373 f2fs_put_dnode(&dn);
374 }
375
376 if (whence == SEEK_DATA)
377 goto fail;
378 found:
379 if (whence == SEEK_HOLE && data_ofs > isize)
380 data_ofs = isize;
381 mutex_unlock(&inode->i_mutex);
382 return vfs_setpos(file, data_ofs, maxbytes);
383 fail:
384 mutex_unlock(&inode->i_mutex);
385 return -ENXIO;
386 }
387
388 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
389 {
390 struct inode *inode = file->f_mapping->host;
391 loff_t maxbytes = inode->i_sb->s_maxbytes;
392
393 switch (whence) {
394 case SEEK_SET:
395 case SEEK_CUR:
396 case SEEK_END:
397 return generic_file_llseek_size(file, offset, whence,
398 maxbytes, i_size_read(inode));
399 case SEEK_DATA:
400 case SEEK_HOLE:
401 if (offset < 0)
402 return -ENXIO;
403 return f2fs_seek_block(file, offset, whence);
404 }
405
406 return -EINVAL;
407 }
408
409 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
410 {
411 struct inode *inode = file_inode(file);
412
413 if (f2fs_encrypted_inode(inode)) {
414 int err = f2fs_get_encryption_info(inode);
415 if (err)
416 return 0;
417 }
418
419 /* we don't need to use inline_data strictly */
420 if (f2fs_has_inline_data(inode)) {
421 int err = f2fs_convert_inline_inode(inode);
422 if (err)
423 return err;
424 }
425
426 file_accessed(file);
427 vma->vm_ops = &f2fs_file_vm_ops;
428 return 0;
429 }
430
431 static int f2fs_file_open(struct inode *inode, struct file *filp)
432 {
433 int ret = generic_file_open(inode, filp);
434
435 if (!ret && f2fs_encrypted_inode(inode)) {
436 ret = f2fs_get_encryption_info(inode);
437 if (ret)
438 ret = -EACCES;
439 }
440 return ret;
441 }
442
443 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
444 {
445 int nr_free = 0, ofs = dn->ofs_in_node;
446 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
447 struct f2fs_node *raw_node;
448 __le32 *addr;
449
450 raw_node = F2FS_NODE(dn->node_page);
451 addr = blkaddr_in_node(raw_node) + ofs;
452
453 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
454 block_t blkaddr = le32_to_cpu(*addr);
455 if (blkaddr == NULL_ADDR)
456 continue;
457
458 dn->data_blkaddr = NULL_ADDR;
459 set_data_blkaddr(dn);
460 f2fs_update_extent_cache(dn);
461 invalidate_blocks(sbi, blkaddr);
462 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
463 clear_inode_flag(F2FS_I(dn->inode),
464 FI_FIRST_BLOCK_WRITTEN);
465 nr_free++;
466 }
467 if (nr_free) {
468 dec_valid_block_count(sbi, dn->inode, nr_free);
469 set_page_dirty(dn->node_page);
470 sync_inode_page(dn);
471 }
472 dn->ofs_in_node = ofs;
473
474 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
475 dn->ofs_in_node, nr_free);
476 return nr_free;
477 }
478
479 void truncate_data_blocks(struct dnode_of_data *dn)
480 {
481 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
482 }
483
484 static int truncate_partial_data_page(struct inode *inode, u64 from,
485 bool cache_only)
486 {
487 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
488 pgoff_t index = from >> PAGE_CACHE_SHIFT;
489 struct address_space *mapping = inode->i_mapping;
490 struct page *page;
491
492 if (!offset && !cache_only)
493 return 0;
494
495 if (cache_only) {
496 page = grab_cache_page(mapping, index);
497 if (page && PageUptodate(page))
498 goto truncate_out;
499 f2fs_put_page(page, 1);
500 return 0;
501 }
502
503 page = get_lock_data_page(inode, index);
504 if (IS_ERR(page))
505 return 0;
506 truncate_out:
507 f2fs_wait_on_page_writeback(page, DATA);
508 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
509 if (!cache_only || !f2fs_encrypted_inode(inode) || !S_ISREG(inode->i_mode))
510 set_page_dirty(page);
511 f2fs_put_page(page, 1);
512 return 0;
513 }
514
515 int truncate_blocks(struct inode *inode, u64 from, bool lock)
516 {
517 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
518 unsigned int blocksize = inode->i_sb->s_blocksize;
519 struct dnode_of_data dn;
520 pgoff_t free_from;
521 int count = 0, err = 0;
522 struct page *ipage;
523 bool truncate_page = false;
524
525 trace_f2fs_truncate_blocks_enter(inode, from);
526
527 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
528
529 if (lock)
530 f2fs_lock_op(sbi);
531
532 ipage = get_node_page(sbi, inode->i_ino);
533 if (IS_ERR(ipage)) {
534 err = PTR_ERR(ipage);
535 goto out;
536 }
537
538 if (f2fs_has_inline_data(inode)) {
539 if (truncate_inline_inode(ipage, from))
540 set_page_dirty(ipage);
541 f2fs_put_page(ipage, 1);
542 truncate_page = true;
543 goto out;
544 }
545
546 set_new_dnode(&dn, inode, ipage, NULL, 0);
547 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
548 if (err) {
549 if (err == -ENOENT)
550 goto free_next;
551 goto out;
552 }
553
554 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
555
556 count -= dn.ofs_in_node;
557 f2fs_bug_on(sbi, count < 0);
558
559 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
560 truncate_data_blocks_range(&dn, count);
561 free_from += count;
562 }
563
564 f2fs_put_dnode(&dn);
565 free_next:
566 err = truncate_inode_blocks(inode, free_from);
567 out:
568 if (lock)
569 f2fs_unlock_op(sbi);
570
571 /* lastly zero out the first data page */
572 if (!err)
573 err = truncate_partial_data_page(inode, from, truncate_page);
574
575 trace_f2fs_truncate_blocks_exit(inode, err);
576 return err;
577 }
578
579 void f2fs_truncate(struct inode *inode)
580 {
581 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
582 S_ISLNK(inode->i_mode)))
583 return;
584
585 trace_f2fs_truncate(inode);
586
587 /* we should check inline_data size */
588 if (f2fs_has_inline_data(inode) && !f2fs_may_inline_data(inode)) {
589 if (f2fs_convert_inline_inode(inode))
590 return;
591 }
592
593 if (!truncate_blocks(inode, i_size_read(inode), true)) {
594 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
595 mark_inode_dirty(inode);
596 }
597 }
598
599 int f2fs_getattr(struct vfsmount *mnt,
600 struct dentry *dentry, struct kstat *stat)
601 {
602 struct inode *inode = d_inode(dentry);
603 generic_fillattr(inode, stat);
604 stat->blocks <<= 3;
605 return 0;
606 }
607
608 #ifdef CONFIG_F2FS_FS_POSIX_ACL
609 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
610 {
611 struct f2fs_inode_info *fi = F2FS_I(inode);
612 unsigned int ia_valid = attr->ia_valid;
613
614 if (ia_valid & ATTR_UID)
615 inode->i_uid = attr->ia_uid;
616 if (ia_valid & ATTR_GID)
617 inode->i_gid = attr->ia_gid;
618 if (ia_valid & ATTR_ATIME)
619 inode->i_atime = timespec_trunc(attr->ia_atime,
620 inode->i_sb->s_time_gran);
621 if (ia_valid & ATTR_MTIME)
622 inode->i_mtime = timespec_trunc(attr->ia_mtime,
623 inode->i_sb->s_time_gran);
624 if (ia_valid & ATTR_CTIME)
625 inode->i_ctime = timespec_trunc(attr->ia_ctime,
626 inode->i_sb->s_time_gran);
627 if (ia_valid & ATTR_MODE) {
628 umode_t mode = attr->ia_mode;
629
630 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
631 mode &= ~S_ISGID;
632 set_acl_inode(fi, mode);
633 }
634 }
635 #else
636 #define __setattr_copy setattr_copy
637 #endif
638
639 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
640 {
641 struct inode *inode = d_inode(dentry);
642 struct f2fs_inode_info *fi = F2FS_I(inode);
643 int err;
644
645 err = inode_change_ok(inode, attr);
646 if (err)
647 return err;
648
649 if (attr->ia_valid & ATTR_SIZE) {
650 if (f2fs_encrypted_inode(inode) &&
651 f2fs_get_encryption_info(inode))
652 return -EACCES;
653
654 if (attr->ia_size != i_size_read(inode)) {
655 truncate_setsize(inode, attr->ia_size);
656 f2fs_truncate(inode);
657 f2fs_balance_fs(F2FS_I_SB(inode));
658 } else {
659 /*
660 * giving a chance to truncate blocks past EOF which
661 * are fallocated with FALLOC_FL_KEEP_SIZE.
662 */
663 f2fs_truncate(inode);
664 }
665 }
666
667 __setattr_copy(inode, attr);
668
669 if (attr->ia_valid & ATTR_MODE) {
670 err = posix_acl_chmod(inode, get_inode_mode(inode));
671 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
672 inode->i_mode = fi->i_acl_mode;
673 clear_inode_flag(fi, FI_ACL_MODE);
674 }
675 }
676
677 mark_inode_dirty(inode);
678 return err;
679 }
680
681 const struct inode_operations f2fs_file_inode_operations = {
682 .getattr = f2fs_getattr,
683 .setattr = f2fs_setattr,
684 .get_acl = f2fs_get_acl,
685 .set_acl = f2fs_set_acl,
686 #ifdef CONFIG_F2FS_FS_XATTR
687 .setxattr = generic_setxattr,
688 .getxattr = generic_getxattr,
689 .listxattr = f2fs_listxattr,
690 .removexattr = generic_removexattr,
691 #endif
692 .fiemap = f2fs_fiemap,
693 };
694
695 static void fill_zero(struct inode *inode, pgoff_t index,
696 loff_t start, loff_t len)
697 {
698 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
699 struct page *page;
700
701 if (!len)
702 return;
703
704 f2fs_balance_fs(sbi);
705
706 f2fs_lock_op(sbi);
707 page = get_new_data_page(inode, NULL, index, false);
708 f2fs_unlock_op(sbi);
709
710 if (!IS_ERR(page)) {
711 f2fs_wait_on_page_writeback(page, DATA);
712 zero_user(page, start, len);
713 set_page_dirty(page);
714 f2fs_put_page(page, 1);
715 }
716 }
717
718 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
719 {
720 pgoff_t index;
721 int err;
722
723 for (index = pg_start; index < pg_end; index++) {
724 struct dnode_of_data dn;
725
726 set_new_dnode(&dn, inode, NULL, NULL, 0);
727 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
728 if (err) {
729 if (err == -ENOENT)
730 continue;
731 return err;
732 }
733
734 if (dn.data_blkaddr != NULL_ADDR)
735 truncate_data_blocks_range(&dn, 1);
736 f2fs_put_dnode(&dn);
737 }
738 return 0;
739 }
740
741 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
742 {
743 pgoff_t pg_start, pg_end;
744 loff_t off_start, off_end;
745 int ret = 0;
746
747 if (!S_ISREG(inode->i_mode))
748 return -EOPNOTSUPP;
749
750 if (f2fs_has_inline_data(inode)) {
751 ret = f2fs_convert_inline_inode(inode);
752 if (ret)
753 return ret;
754 }
755
756 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
757 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
758
759 off_start = offset & (PAGE_CACHE_SIZE - 1);
760 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
761
762 if (pg_start == pg_end) {
763 fill_zero(inode, pg_start, off_start,
764 off_end - off_start);
765 } else {
766 if (off_start)
767 fill_zero(inode, pg_start++, off_start,
768 PAGE_CACHE_SIZE - off_start);
769 if (off_end)
770 fill_zero(inode, pg_end, 0, off_end);
771
772 if (pg_start < pg_end) {
773 struct address_space *mapping = inode->i_mapping;
774 loff_t blk_start, blk_end;
775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
776
777 f2fs_balance_fs(sbi);
778
779 blk_start = pg_start << PAGE_CACHE_SHIFT;
780 blk_end = pg_end << PAGE_CACHE_SHIFT;
781 truncate_inode_pages_range(mapping, blk_start,
782 blk_end - 1);
783
784 f2fs_lock_op(sbi);
785 ret = truncate_hole(inode, pg_start, pg_end);
786 f2fs_unlock_op(sbi);
787 }
788 }
789
790 return ret;
791 }
792
793 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
794 {
795 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
796 struct dnode_of_data dn;
797 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
798 int ret = 0;
799
800 f2fs_lock_op(sbi);
801
802 for (; end < nrpages; start++, end++) {
803 block_t new_addr, old_addr;
804
805 set_new_dnode(&dn, inode, NULL, NULL, 0);
806 ret = get_dnode_of_data(&dn, end, LOOKUP_NODE_RA);
807 if (ret && ret != -ENOENT) {
808 goto out;
809 } else if (ret == -ENOENT) {
810 new_addr = NULL_ADDR;
811 } else {
812 new_addr = dn.data_blkaddr;
813 truncate_data_blocks_range(&dn, 1);
814 f2fs_put_dnode(&dn);
815 }
816
817 if (new_addr == NULL_ADDR) {
818 set_new_dnode(&dn, inode, NULL, NULL, 0);
819 ret = get_dnode_of_data(&dn, start, LOOKUP_NODE_RA);
820 if (ret && ret != -ENOENT)
821 goto out;
822 else if (ret == -ENOENT)
823 continue;
824
825 if (dn.data_blkaddr == NULL_ADDR) {
826 f2fs_put_dnode(&dn);
827 continue;
828 } else {
829 truncate_data_blocks_range(&dn, 1);
830 }
831
832 f2fs_put_dnode(&dn);
833 } else {
834 struct page *ipage;
835
836 ipage = get_node_page(sbi, inode->i_ino);
837 if (IS_ERR(ipage)) {
838 ret = PTR_ERR(ipage);
839 goto out;
840 }
841
842 set_new_dnode(&dn, inode, ipage, NULL, 0);
843 ret = f2fs_reserve_block(&dn, start);
844 if (ret)
845 goto out;
846
847 old_addr = dn.data_blkaddr;
848 if (old_addr != NEW_ADDR && new_addr == NEW_ADDR) {
849 dn.data_blkaddr = NULL_ADDR;
850 f2fs_update_extent_cache(&dn);
851 invalidate_blocks(sbi, old_addr);
852
853 dn.data_blkaddr = new_addr;
854 set_data_blkaddr(&dn);
855 } else if (new_addr != NEW_ADDR) {
856 struct node_info ni;
857 struct f2fs_summary sum;
858
859 get_node_info(sbi, dn.nid, &ni);
860 set_summary(&sum, dn.nid, dn.ofs_in_node,
861 ni.version);
862
863 f2fs_replace_block(sbi, &sum, old_addr,
864 new_addr, true);
865
866 dn.data_blkaddr = new_addr;
867 set_data_blkaddr(&dn);
868 f2fs_update_extent_cache(&dn);
869 }
870
871 f2fs_put_dnode(&dn);
872 }
873 }
874 ret = 0;
875 out:
876 f2fs_unlock_op(sbi);
877 return ret;
878 }
879
880 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
881 {
882 pgoff_t pg_start, pg_end;
883 loff_t new_size;
884 int ret;
885
886 if (!S_ISREG(inode->i_mode))
887 return -EINVAL;
888
889 if (offset + len >= i_size_read(inode))
890 return -EINVAL;
891
892 /* collapse range should be aligned to block size of f2fs. */
893 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
894 return -EINVAL;
895
896 pg_start = offset >> PAGE_CACHE_SHIFT;
897 pg_end = (offset + len) >> PAGE_CACHE_SHIFT;
898
899 /* write out all dirty pages from offset */
900 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
901 if (ret)
902 return ret;
903
904 truncate_pagecache(inode, offset);
905
906 ret = f2fs_do_collapse(inode, pg_start, pg_end);
907 if (ret)
908 return ret;
909
910 new_size = i_size_read(inode) - len;
911
912 ret = truncate_blocks(inode, new_size, true);
913 if (!ret)
914 i_size_write(inode, new_size);
915
916 return ret;
917 }
918
919 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
920 int mode)
921 {
922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923 struct address_space *mapping = inode->i_mapping;
924 pgoff_t index, pg_start, pg_end;
925 loff_t new_size = i_size_read(inode);
926 loff_t off_start, off_end;
927 int ret = 0;
928
929 if (!S_ISREG(inode->i_mode))
930 return -EINVAL;
931
932 ret = inode_newsize_ok(inode, (len + offset));
933 if (ret)
934 return ret;
935
936 f2fs_balance_fs(sbi);
937
938 if (f2fs_has_inline_data(inode)) {
939 ret = f2fs_convert_inline_inode(inode);
940 if (ret)
941 return ret;
942 }
943
944 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
945 if (ret)
946 return ret;
947
948 truncate_pagecache_range(inode, offset, offset + len - 1);
949
950 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
951 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
952
953 off_start = offset & (PAGE_CACHE_SIZE - 1);
954 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
955
956 if (pg_start == pg_end) {
957 fill_zero(inode, pg_start, off_start, off_end - off_start);
958 if (offset + len > new_size)
959 new_size = offset + len;
960 new_size = max_t(loff_t, new_size, offset + len);
961 } else {
962 if (off_start) {
963 fill_zero(inode, pg_start++, off_start,
964 PAGE_CACHE_SIZE - off_start);
965 new_size = max_t(loff_t, new_size,
966 pg_start << PAGE_CACHE_SHIFT);
967 }
968
969 for (index = pg_start; index < pg_end; index++) {
970 struct dnode_of_data dn;
971 struct page *ipage;
972
973 f2fs_lock_op(sbi);
974
975 ipage = get_node_page(sbi, inode->i_ino);
976 if (IS_ERR(ipage)) {
977 ret = PTR_ERR(ipage);
978 f2fs_unlock_op(sbi);
979 goto out;
980 }
981
982 set_new_dnode(&dn, inode, ipage, NULL, 0);
983 ret = f2fs_reserve_block(&dn, index);
984 if (ret) {
985 f2fs_unlock_op(sbi);
986 goto out;
987 }
988
989 if (dn.data_blkaddr != NEW_ADDR) {
990 invalidate_blocks(sbi, dn.data_blkaddr);
991
992 dn.data_blkaddr = NEW_ADDR;
993 set_data_blkaddr(&dn);
994
995 dn.data_blkaddr = NULL_ADDR;
996 f2fs_update_extent_cache(&dn);
997 }
998 f2fs_put_dnode(&dn);
999 f2fs_unlock_op(sbi);
1000
1001 new_size = max_t(loff_t, new_size,
1002 (index + 1) << PAGE_CACHE_SHIFT);
1003 }
1004
1005 if (off_end) {
1006 fill_zero(inode, pg_end, 0, off_end);
1007 new_size = max_t(loff_t, new_size, offset + len);
1008 }
1009 }
1010
1011 out:
1012 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size) {
1013 i_size_write(inode, new_size);
1014 mark_inode_dirty(inode);
1015 update_inode_page(inode);
1016 }
1017
1018 return ret;
1019 }
1020
1021 static int expand_inode_data(struct inode *inode, loff_t offset,
1022 loff_t len, int mode)
1023 {
1024 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1025 pgoff_t index, pg_start, pg_end;
1026 loff_t new_size = i_size_read(inode);
1027 loff_t off_start, off_end;
1028 int ret = 0;
1029
1030 f2fs_balance_fs(sbi);
1031
1032 ret = inode_newsize_ok(inode, (len + offset));
1033 if (ret)
1034 return ret;
1035
1036 if (f2fs_has_inline_data(inode)) {
1037 ret = f2fs_convert_inline_inode(inode);
1038 if (ret)
1039 return ret;
1040 }
1041
1042 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
1043 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
1044
1045 off_start = offset & (PAGE_CACHE_SIZE - 1);
1046 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
1047
1048 f2fs_lock_op(sbi);
1049
1050 for (index = pg_start; index <= pg_end; index++) {
1051 struct dnode_of_data dn;
1052
1053 if (index == pg_end && !off_end)
1054 goto noalloc;
1055
1056 set_new_dnode(&dn, inode, NULL, NULL, 0);
1057 ret = f2fs_reserve_block(&dn, index);
1058 if (ret)
1059 break;
1060 noalloc:
1061 if (pg_start == pg_end)
1062 new_size = offset + len;
1063 else if (index == pg_start && off_start)
1064 new_size = (index + 1) << PAGE_CACHE_SHIFT;
1065 else if (index == pg_end)
1066 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
1067 else
1068 new_size += PAGE_CACHE_SIZE;
1069 }
1070
1071 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1072 i_size_read(inode) < new_size) {
1073 i_size_write(inode, new_size);
1074 mark_inode_dirty(inode);
1075 update_inode_page(inode);
1076 }
1077 f2fs_unlock_op(sbi);
1078
1079 return ret;
1080 }
1081
1082 static long f2fs_fallocate(struct file *file, int mode,
1083 loff_t offset, loff_t len)
1084 {
1085 struct inode *inode = file_inode(file);
1086 long ret = 0;
1087
1088 if (f2fs_encrypted_inode(inode) && (mode & FALLOC_FL_COLLAPSE_RANGE))
1089 return -EOPNOTSUPP;
1090
1091 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1092 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
1093 return -EOPNOTSUPP;
1094
1095 mutex_lock(&inode->i_mutex);
1096
1097 if (mode & FALLOC_FL_PUNCH_HOLE) {
1098 if (offset >= inode->i_size)
1099 goto out;
1100
1101 ret = punch_hole(inode, offset, len);
1102 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1103 ret = f2fs_collapse_range(inode, offset, len);
1104 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1105 ret = f2fs_zero_range(inode, offset, len, mode);
1106 } else {
1107 ret = expand_inode_data(inode, offset, len, mode);
1108 }
1109
1110 if (!ret) {
1111 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1112 mark_inode_dirty(inode);
1113 }
1114
1115 out:
1116 mutex_unlock(&inode->i_mutex);
1117
1118 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1119 return ret;
1120 }
1121
1122 static int f2fs_release_file(struct inode *inode, struct file *filp)
1123 {
1124 /* some remained atomic pages should discarded */
1125 if (f2fs_is_atomic_file(inode))
1126 commit_inmem_pages(inode, true);
1127 if (f2fs_is_volatile_file(inode)) {
1128 set_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1129 filemap_fdatawrite(inode->i_mapping);
1130 clear_inode_flag(F2FS_I(inode), FI_DROP_CACHE);
1131 }
1132 return 0;
1133 }
1134
1135 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1136 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1137
1138 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1139 {
1140 if (S_ISDIR(mode))
1141 return flags;
1142 else if (S_ISREG(mode))
1143 return flags & F2FS_REG_FLMASK;
1144 else
1145 return flags & F2FS_OTHER_FLMASK;
1146 }
1147
1148 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1149 {
1150 struct inode *inode = file_inode(filp);
1151 struct f2fs_inode_info *fi = F2FS_I(inode);
1152 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1153 return put_user(flags, (int __user *)arg);
1154 }
1155
1156 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1157 {
1158 struct inode *inode = file_inode(filp);
1159 struct f2fs_inode_info *fi = F2FS_I(inode);
1160 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1161 unsigned int oldflags;
1162 int ret;
1163
1164 ret = mnt_want_write_file(filp);
1165 if (ret)
1166 return ret;
1167
1168 if (!inode_owner_or_capable(inode)) {
1169 ret = -EACCES;
1170 goto out;
1171 }
1172
1173 if (get_user(flags, (int __user *)arg)) {
1174 ret = -EFAULT;
1175 goto out;
1176 }
1177
1178 flags = f2fs_mask_flags(inode->i_mode, flags);
1179
1180 mutex_lock(&inode->i_mutex);
1181
1182 oldflags = fi->i_flags;
1183
1184 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1185 if (!capable(CAP_LINUX_IMMUTABLE)) {
1186 mutex_unlock(&inode->i_mutex);
1187 ret = -EPERM;
1188 goto out;
1189 }
1190 }
1191
1192 flags = flags & FS_FL_USER_MODIFIABLE;
1193 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1194 fi->i_flags = flags;
1195 mutex_unlock(&inode->i_mutex);
1196
1197 f2fs_set_inode_flags(inode);
1198 inode->i_ctime = CURRENT_TIME;
1199 mark_inode_dirty(inode);
1200 out:
1201 mnt_drop_write_file(filp);
1202 return ret;
1203 }
1204
1205 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1206 {
1207 struct inode *inode = file_inode(filp);
1208
1209 return put_user(inode->i_generation, (int __user *)arg);
1210 }
1211
1212 static int f2fs_ioc_start_atomic_write(struct file *filp)
1213 {
1214 struct inode *inode = file_inode(filp);
1215
1216 if (!inode_owner_or_capable(inode))
1217 return -EACCES;
1218
1219 f2fs_balance_fs(F2FS_I_SB(inode));
1220
1221 if (f2fs_is_atomic_file(inode))
1222 return 0;
1223
1224 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1225
1226 return f2fs_convert_inline_inode(inode);
1227 }
1228
1229 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1230 {
1231 struct inode *inode = file_inode(filp);
1232 int ret;
1233
1234 if (!inode_owner_or_capable(inode))
1235 return -EACCES;
1236
1237 if (f2fs_is_volatile_file(inode))
1238 return 0;
1239
1240 ret = mnt_want_write_file(filp);
1241 if (ret)
1242 return ret;
1243
1244 if (f2fs_is_atomic_file(inode))
1245 commit_inmem_pages(inode, false);
1246
1247 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
1248 mnt_drop_write_file(filp);
1249 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1250 return ret;
1251 }
1252
1253 static int f2fs_ioc_start_volatile_write(struct file *filp)
1254 {
1255 struct inode *inode = file_inode(filp);
1256
1257 if (!inode_owner_or_capable(inode))
1258 return -EACCES;
1259
1260 if (f2fs_is_volatile_file(inode))
1261 return 0;
1262
1263 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1264
1265 return f2fs_convert_inline_inode(inode);
1266 }
1267
1268 static int f2fs_ioc_release_volatile_write(struct file *filp)
1269 {
1270 struct inode *inode = file_inode(filp);
1271
1272 if (!inode_owner_or_capable(inode))
1273 return -EACCES;
1274
1275 if (!f2fs_is_volatile_file(inode))
1276 return 0;
1277
1278 if (!f2fs_is_first_block_written(inode))
1279 return truncate_partial_data_page(inode, 0, true);
1280
1281 punch_hole(inode, 0, F2FS_BLKSIZE);
1282 return 0;
1283 }
1284
1285 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1286 {
1287 struct inode *inode = file_inode(filp);
1288 int ret;
1289
1290 if (!inode_owner_or_capable(inode))
1291 return -EACCES;
1292
1293 ret = mnt_want_write_file(filp);
1294 if (ret)
1295 return ret;
1296
1297 f2fs_balance_fs(F2FS_I_SB(inode));
1298
1299 if (f2fs_is_atomic_file(inode)) {
1300 commit_inmem_pages(inode, false);
1301 clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
1302 }
1303
1304 if (f2fs_is_volatile_file(inode)) {
1305 clear_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1306 filemap_fdatawrite(inode->i_mapping);
1307 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
1308 }
1309 mnt_drop_write_file(filp);
1310 return ret;
1311 }
1312
1313 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1314 {
1315 struct inode *inode = file_inode(filp);
1316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1317 struct super_block *sb = sbi->sb;
1318 __u32 in;
1319
1320 if (!capable(CAP_SYS_ADMIN))
1321 return -EPERM;
1322
1323 if (get_user(in, (__u32 __user *)arg))
1324 return -EFAULT;
1325
1326 switch (in) {
1327 case F2FS_GOING_DOWN_FULLSYNC:
1328 sb = freeze_bdev(sb->s_bdev);
1329 if (sb && !IS_ERR(sb)) {
1330 f2fs_stop_checkpoint(sbi);
1331 thaw_bdev(sb->s_bdev, sb);
1332 }
1333 break;
1334 case F2FS_GOING_DOWN_METASYNC:
1335 /* do checkpoint only */
1336 f2fs_sync_fs(sb, 1);
1337 f2fs_stop_checkpoint(sbi);
1338 break;
1339 case F2FS_GOING_DOWN_NOSYNC:
1340 f2fs_stop_checkpoint(sbi);
1341 break;
1342 default:
1343 return -EINVAL;
1344 }
1345 return 0;
1346 }
1347
1348 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1349 {
1350 struct inode *inode = file_inode(filp);
1351 struct super_block *sb = inode->i_sb;
1352 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1353 struct fstrim_range range;
1354 int ret;
1355
1356 if (!capable(CAP_SYS_ADMIN))
1357 return -EPERM;
1358
1359 if (!blk_queue_discard(q))
1360 return -EOPNOTSUPP;
1361
1362 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1363 sizeof(range)))
1364 return -EFAULT;
1365
1366 range.minlen = max((unsigned int)range.minlen,
1367 q->limits.discard_granularity);
1368 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1369 if (ret < 0)
1370 return ret;
1371
1372 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1373 sizeof(range)))
1374 return -EFAULT;
1375 return 0;
1376 }
1377
1378 static bool uuid_is_nonzero(__u8 u[16])
1379 {
1380 int i;
1381
1382 for (i = 0; i < 16; i++)
1383 if (u[i])
1384 return true;
1385 return false;
1386 }
1387
1388 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1389 {
1390 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1391 struct f2fs_encryption_policy policy;
1392 struct inode *inode = file_inode(filp);
1393
1394 if (copy_from_user(&policy, (struct f2fs_encryption_policy __user *)arg,
1395 sizeof(policy)))
1396 return -EFAULT;
1397
1398 if (f2fs_has_inline_data(inode)) {
1399 int ret = f2fs_convert_inline_inode(inode);
1400 if (ret)
1401 return ret;
1402 }
1403
1404 return f2fs_process_policy(&policy, inode);
1405 #else
1406 return -EOPNOTSUPP;
1407 #endif
1408 }
1409
1410 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1411 {
1412 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1413 struct f2fs_encryption_policy policy;
1414 struct inode *inode = file_inode(filp);
1415 int err;
1416
1417 err = f2fs_get_policy(inode, &policy);
1418 if (err)
1419 return err;
1420
1421 if (copy_to_user((struct f2fs_encryption_policy __user *)arg, &policy,
1422 sizeof(policy)))
1423 return -EFAULT;
1424 return 0;
1425 #else
1426 return -EOPNOTSUPP;
1427 #endif
1428 }
1429
1430 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1431 {
1432 struct inode *inode = file_inode(filp);
1433 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1434 int err;
1435
1436 if (!f2fs_sb_has_crypto(inode->i_sb))
1437 return -EOPNOTSUPP;
1438
1439 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1440 goto got_it;
1441
1442 err = mnt_want_write_file(filp);
1443 if (err)
1444 return err;
1445
1446 /* update superblock with uuid */
1447 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1448
1449 err = f2fs_commit_super(sbi);
1450
1451 mnt_drop_write_file(filp);
1452 if (err) {
1453 /* undo new data */
1454 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1455 return err;
1456 }
1457 got_it:
1458 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1459 16))
1460 return -EFAULT;
1461 return 0;
1462 }
1463
1464 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1465 {
1466 switch (cmd) {
1467 case F2FS_IOC_GETFLAGS:
1468 return f2fs_ioc_getflags(filp, arg);
1469 case F2FS_IOC_SETFLAGS:
1470 return f2fs_ioc_setflags(filp, arg);
1471 case F2FS_IOC_GETVERSION:
1472 return f2fs_ioc_getversion(filp, arg);
1473 case F2FS_IOC_START_ATOMIC_WRITE:
1474 return f2fs_ioc_start_atomic_write(filp);
1475 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
1476 return f2fs_ioc_commit_atomic_write(filp);
1477 case F2FS_IOC_START_VOLATILE_WRITE:
1478 return f2fs_ioc_start_volatile_write(filp);
1479 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
1480 return f2fs_ioc_release_volatile_write(filp);
1481 case F2FS_IOC_ABORT_VOLATILE_WRITE:
1482 return f2fs_ioc_abort_volatile_write(filp);
1483 case F2FS_IOC_SHUTDOWN:
1484 return f2fs_ioc_shutdown(filp, arg);
1485 case FITRIM:
1486 return f2fs_ioc_fitrim(filp, arg);
1487 case F2FS_IOC_SET_ENCRYPTION_POLICY:
1488 return f2fs_ioc_set_encryption_policy(filp, arg);
1489 case F2FS_IOC_GET_ENCRYPTION_POLICY:
1490 return f2fs_ioc_get_encryption_policy(filp, arg);
1491 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
1492 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
1493 default:
1494 return -ENOTTY;
1495 }
1496 }
1497
1498 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1499 {
1500 struct inode *inode = file_inode(iocb->ki_filp);
1501
1502 if (f2fs_encrypted_inode(inode) &&
1503 !f2fs_has_encryption_key(inode) &&
1504 f2fs_get_encryption_info(inode))
1505 return -EACCES;
1506
1507 return generic_file_write_iter(iocb, from);
1508 }
1509
1510 #ifdef CONFIG_COMPAT
1511 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1512 {
1513 switch (cmd) {
1514 case F2FS_IOC32_GETFLAGS:
1515 cmd = F2FS_IOC_GETFLAGS;
1516 break;
1517 case F2FS_IOC32_SETFLAGS:
1518 cmd = F2FS_IOC_SETFLAGS;
1519 break;
1520 default:
1521 return -ENOIOCTLCMD;
1522 }
1523 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1524 }
1525 #endif
1526
1527 const struct file_operations f2fs_file_operations = {
1528 .llseek = f2fs_llseek,
1529 .read_iter = generic_file_read_iter,
1530 .write_iter = f2fs_file_write_iter,
1531 .open = f2fs_file_open,
1532 .release = f2fs_release_file,
1533 .mmap = f2fs_file_mmap,
1534 .fsync = f2fs_sync_file,
1535 .fallocate = f2fs_fallocate,
1536 .unlocked_ioctl = f2fs_ioctl,
1537 #ifdef CONFIG_COMPAT
1538 .compat_ioctl = f2fs_compat_ioctl,
1539 #endif
1540 .splice_read = generic_file_splice_read,
1541 .splice_write = iter_file_splice_write,
1542 };
This page took 0.062415 seconds and 5 git commands to generate.