f2fs: disable extent_cache for fcollapse/finsert inodes
[deliverable/linux.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "xattr.h"
29 #include "acl.h"
30 #include "gc.h"
31 #include "trace.h"
32 #include <trace/events/f2fs.h>
33
34 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
35 struct vm_fault *vmf)
36 {
37 struct page *page = vmf->page;
38 struct inode *inode = file_inode(vma->vm_file);
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 struct dnode_of_data dn;
41 int err;
42
43 sb_start_pagefault(inode->i_sb);
44
45 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
46
47 /* block allocation */
48 f2fs_lock_op(sbi);
49 set_new_dnode(&dn, inode, NULL, NULL, 0);
50 err = f2fs_reserve_block(&dn, page->index);
51 if (err) {
52 f2fs_unlock_op(sbi);
53 goto out;
54 }
55 f2fs_put_dnode(&dn);
56 f2fs_unlock_op(sbi);
57
58 f2fs_balance_fs(sbi, dn.node_changed);
59
60 file_update_time(vma->vm_file);
61 lock_page(page);
62 if (unlikely(page->mapping != inode->i_mapping ||
63 page_offset(page) > i_size_read(inode) ||
64 !PageUptodate(page))) {
65 unlock_page(page);
66 err = -EFAULT;
67 goto out;
68 }
69
70 /*
71 * check to see if the page is mapped already (no holes)
72 */
73 if (PageMappedToDisk(page))
74 goto mapped;
75
76 /* page is wholly or partially inside EOF */
77 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
78 i_size_read(inode)) {
79 unsigned offset;
80 offset = i_size_read(inode) & ~PAGE_MASK;
81 zero_user_segment(page, offset, PAGE_SIZE);
82 }
83 set_page_dirty(page);
84 if (!PageUptodate(page))
85 SetPageUptodate(page);
86
87 trace_f2fs_vm_page_mkwrite(page, DATA);
88 mapped:
89 /* fill the page */
90 f2fs_wait_on_page_writeback(page, DATA, false);
91
92 /* wait for GCed encrypted page writeback */
93 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
94 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
95
96 /* if gced page is attached, don't write to cold segment */
97 clear_cold_data(page);
98 out:
99 sb_end_pagefault(inode->i_sb);
100 f2fs_update_time(sbi, REQ_TIME);
101 return block_page_mkwrite_return(err);
102 }
103
104 static const struct vm_operations_struct f2fs_file_vm_ops = {
105 .fault = filemap_fault,
106 .map_pages = filemap_map_pages,
107 .page_mkwrite = f2fs_vm_page_mkwrite,
108 };
109
110 static int get_parent_ino(struct inode *inode, nid_t *pino)
111 {
112 struct dentry *dentry;
113
114 inode = igrab(inode);
115 dentry = d_find_any_alias(inode);
116 iput(inode);
117 if (!dentry)
118 return 0;
119
120 if (update_dent_inode(inode, inode, &dentry->d_name)) {
121 dput(dentry);
122 return 0;
123 }
124
125 *pino = parent_ino(dentry);
126 dput(dentry);
127 return 1;
128 }
129
130 static inline bool need_do_checkpoint(struct inode *inode)
131 {
132 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
133 bool need_cp = false;
134
135 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
136 need_cp = true;
137 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
138 need_cp = true;
139 else if (file_wrong_pino(inode))
140 need_cp = true;
141 else if (!space_for_roll_forward(sbi))
142 need_cp = true;
143 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
144 need_cp = true;
145 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
146 need_cp = true;
147 else if (test_opt(sbi, FASTBOOT))
148 need_cp = true;
149 else if (sbi->active_logs == 2)
150 need_cp = true;
151
152 return need_cp;
153 }
154
155 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
156 {
157 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
158 bool ret = false;
159 /* But we need to avoid that there are some inode updates */
160 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
161 ret = true;
162 f2fs_put_page(i, 0);
163 return ret;
164 }
165
166 static void try_to_fix_pino(struct inode *inode)
167 {
168 struct f2fs_inode_info *fi = F2FS_I(inode);
169 nid_t pino;
170
171 down_write(&fi->i_sem);
172 fi->xattr_ver = 0;
173 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
174 get_parent_ino(inode, &pino)) {
175 f2fs_i_pino_write(inode, pino);
176 file_got_pino(inode);
177 }
178 up_write(&fi->i_sem);
179 }
180
181 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
182 int datasync, bool atomic)
183 {
184 struct inode *inode = file->f_mapping->host;
185 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
186 nid_t ino = inode->i_ino;
187 int ret = 0;
188 bool need_cp = false;
189 struct writeback_control wbc = {
190 .sync_mode = WB_SYNC_ALL,
191 .nr_to_write = LONG_MAX,
192 .for_reclaim = 0,
193 };
194
195 if (unlikely(f2fs_readonly(inode->i_sb)))
196 return 0;
197
198 trace_f2fs_sync_file_enter(inode);
199
200 /* if fdatasync is triggered, let's do in-place-update */
201 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
202 set_inode_flag(inode, FI_NEED_IPU);
203 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
204 clear_inode_flag(inode, FI_NEED_IPU);
205
206 if (ret) {
207 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
208 return ret;
209 }
210
211 /* if the inode is dirty, let's recover all the time */
212 if (!datasync && !f2fs_skip_inode_update(inode)) {
213 f2fs_write_inode(inode, NULL);
214 goto go_write;
215 }
216
217 /*
218 * if there is no written data, don't waste time to write recovery info.
219 */
220 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
221 !exist_written_data(sbi, ino, APPEND_INO)) {
222
223 /* it may call write_inode just prior to fsync */
224 if (need_inode_page_update(sbi, ino))
225 goto go_write;
226
227 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
228 exist_written_data(sbi, ino, UPDATE_INO))
229 goto flush_out;
230 goto out;
231 }
232 go_write:
233 /*
234 * Both of fdatasync() and fsync() are able to be recovered from
235 * sudden-power-off.
236 */
237 down_read(&F2FS_I(inode)->i_sem);
238 need_cp = need_do_checkpoint(inode);
239 up_read(&F2FS_I(inode)->i_sem);
240
241 if (need_cp) {
242 /* all the dirty node pages should be flushed for POR */
243 ret = f2fs_sync_fs(inode->i_sb, 1);
244
245 /*
246 * We've secured consistency through sync_fs. Following pino
247 * will be used only for fsynced inodes after checkpoint.
248 */
249 try_to_fix_pino(inode);
250 clear_inode_flag(inode, FI_APPEND_WRITE);
251 clear_inode_flag(inode, FI_UPDATE_WRITE);
252 goto out;
253 }
254 sync_nodes:
255 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
256 if (ret)
257 goto out;
258
259 /* if cp_error was enabled, we should avoid infinite loop */
260 if (unlikely(f2fs_cp_error(sbi))) {
261 ret = -EIO;
262 goto out;
263 }
264
265 if (need_inode_block_update(sbi, ino)) {
266 f2fs_mark_inode_dirty_sync(inode);
267 f2fs_write_inode(inode, NULL);
268 goto sync_nodes;
269 }
270
271 ret = wait_on_node_pages_writeback(sbi, ino);
272 if (ret)
273 goto out;
274
275 /* once recovery info is written, don't need to tack this */
276 remove_ino_entry(sbi, ino, APPEND_INO);
277 clear_inode_flag(inode, FI_APPEND_WRITE);
278 flush_out:
279 remove_ino_entry(sbi, ino, UPDATE_INO);
280 clear_inode_flag(inode, FI_UPDATE_WRITE);
281 ret = f2fs_issue_flush(sbi);
282 f2fs_update_time(sbi, REQ_TIME);
283 out:
284 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
285 f2fs_trace_ios(NULL, 1);
286 return ret;
287 }
288
289 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
290 {
291 return f2fs_do_sync_file(file, start, end, datasync, false);
292 }
293
294 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
295 pgoff_t pgofs, int whence)
296 {
297 struct pagevec pvec;
298 int nr_pages;
299
300 if (whence != SEEK_DATA)
301 return 0;
302
303 /* find first dirty page index */
304 pagevec_init(&pvec, 0);
305 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
306 PAGECACHE_TAG_DIRTY, 1);
307 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
308 pagevec_release(&pvec);
309 return pgofs;
310 }
311
312 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
313 int whence)
314 {
315 switch (whence) {
316 case SEEK_DATA:
317 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
318 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
319 return true;
320 break;
321 case SEEK_HOLE:
322 if (blkaddr == NULL_ADDR)
323 return true;
324 break;
325 }
326 return false;
327 }
328
329 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
330 {
331 struct inode *inode = file->f_mapping->host;
332 loff_t maxbytes = inode->i_sb->s_maxbytes;
333 struct dnode_of_data dn;
334 pgoff_t pgofs, end_offset, dirty;
335 loff_t data_ofs = offset;
336 loff_t isize;
337 int err = 0;
338
339 inode_lock(inode);
340
341 isize = i_size_read(inode);
342 if (offset >= isize)
343 goto fail;
344
345 /* handle inline data case */
346 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
347 if (whence == SEEK_HOLE)
348 data_ofs = isize;
349 goto found;
350 }
351
352 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
353
354 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
355
356 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
357 set_new_dnode(&dn, inode, NULL, NULL, 0);
358 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
359 if (err && err != -ENOENT) {
360 goto fail;
361 } else if (err == -ENOENT) {
362 /* direct node does not exists */
363 if (whence == SEEK_DATA) {
364 pgofs = get_next_page_offset(&dn, pgofs);
365 continue;
366 } else {
367 goto found;
368 }
369 }
370
371 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
372
373 /* find data/hole in dnode block */
374 for (; dn.ofs_in_node < end_offset;
375 dn.ofs_in_node++, pgofs++,
376 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
377 block_t blkaddr;
378 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
379
380 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
381 f2fs_put_dnode(&dn);
382 goto found;
383 }
384 }
385 f2fs_put_dnode(&dn);
386 }
387
388 if (whence == SEEK_DATA)
389 goto fail;
390 found:
391 if (whence == SEEK_HOLE && data_ofs > isize)
392 data_ofs = isize;
393 inode_unlock(inode);
394 return vfs_setpos(file, data_ofs, maxbytes);
395 fail:
396 inode_unlock(inode);
397 return -ENXIO;
398 }
399
400 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
401 {
402 struct inode *inode = file->f_mapping->host;
403 loff_t maxbytes = inode->i_sb->s_maxbytes;
404
405 switch (whence) {
406 case SEEK_SET:
407 case SEEK_CUR:
408 case SEEK_END:
409 return generic_file_llseek_size(file, offset, whence,
410 maxbytes, i_size_read(inode));
411 case SEEK_DATA:
412 case SEEK_HOLE:
413 if (offset < 0)
414 return -ENXIO;
415 return f2fs_seek_block(file, offset, whence);
416 }
417
418 return -EINVAL;
419 }
420
421 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
422 {
423 struct inode *inode = file_inode(file);
424 int err;
425
426 if (f2fs_encrypted_inode(inode)) {
427 err = fscrypt_get_encryption_info(inode);
428 if (err)
429 return 0;
430 if (!f2fs_encrypted_inode(inode))
431 return -ENOKEY;
432 }
433
434 /* we don't need to use inline_data strictly */
435 err = f2fs_convert_inline_inode(inode);
436 if (err)
437 return err;
438
439 file_accessed(file);
440 vma->vm_ops = &f2fs_file_vm_ops;
441 return 0;
442 }
443
444 static int f2fs_file_open(struct inode *inode, struct file *filp)
445 {
446 int ret = generic_file_open(inode, filp);
447 struct dentry *dir;
448
449 if (!ret && f2fs_encrypted_inode(inode)) {
450 ret = fscrypt_get_encryption_info(inode);
451 if (ret)
452 return -EACCES;
453 if (!fscrypt_has_encryption_key(inode))
454 return -ENOKEY;
455 }
456 dir = dget_parent(file_dentry(filp));
457 if (f2fs_encrypted_inode(d_inode(dir)) &&
458 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
459 dput(dir);
460 return -EPERM;
461 }
462 dput(dir);
463 return ret;
464 }
465
466 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
467 {
468 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
469 struct f2fs_node *raw_node;
470 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
471 __le32 *addr;
472
473 raw_node = F2FS_NODE(dn->node_page);
474 addr = blkaddr_in_node(raw_node) + ofs;
475
476 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
477 block_t blkaddr = le32_to_cpu(*addr);
478 if (blkaddr == NULL_ADDR)
479 continue;
480
481 dn->data_blkaddr = NULL_ADDR;
482 set_data_blkaddr(dn);
483 invalidate_blocks(sbi, blkaddr);
484 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
485 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
486 nr_free++;
487 }
488
489 if (nr_free) {
490 pgoff_t fofs;
491 /*
492 * once we invalidate valid blkaddr in range [ofs, ofs + count],
493 * we will invalidate all blkaddr in the whole range.
494 */
495 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
496 dn->inode) + ofs;
497 f2fs_update_extent_cache_range(dn, fofs, 0, len);
498 dec_valid_block_count(sbi, dn->inode, nr_free);
499 }
500 dn->ofs_in_node = ofs;
501
502 f2fs_update_time(sbi, REQ_TIME);
503 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
504 dn->ofs_in_node, nr_free);
505 return nr_free;
506 }
507
508 void truncate_data_blocks(struct dnode_of_data *dn)
509 {
510 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
511 }
512
513 static int truncate_partial_data_page(struct inode *inode, u64 from,
514 bool cache_only)
515 {
516 unsigned offset = from & (PAGE_SIZE - 1);
517 pgoff_t index = from >> PAGE_SHIFT;
518 struct address_space *mapping = inode->i_mapping;
519 struct page *page;
520
521 if (!offset && !cache_only)
522 return 0;
523
524 if (cache_only) {
525 page = f2fs_grab_cache_page(mapping, index, false);
526 if (page && PageUptodate(page))
527 goto truncate_out;
528 f2fs_put_page(page, 1);
529 return 0;
530 }
531
532 page = get_lock_data_page(inode, index, true);
533 if (IS_ERR(page))
534 return 0;
535 truncate_out:
536 f2fs_wait_on_page_writeback(page, DATA, true);
537 zero_user(page, offset, PAGE_SIZE - offset);
538 if (!cache_only || !f2fs_encrypted_inode(inode) ||
539 !S_ISREG(inode->i_mode))
540 set_page_dirty(page);
541 f2fs_put_page(page, 1);
542 return 0;
543 }
544
545 int truncate_blocks(struct inode *inode, u64 from, bool lock)
546 {
547 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
548 unsigned int blocksize = inode->i_sb->s_blocksize;
549 struct dnode_of_data dn;
550 pgoff_t free_from;
551 int count = 0, err = 0;
552 struct page *ipage;
553 bool truncate_page = false;
554
555 trace_f2fs_truncate_blocks_enter(inode, from);
556
557 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
558
559 if (free_from >= sbi->max_file_blocks)
560 goto free_partial;
561
562 if (lock)
563 f2fs_lock_op(sbi);
564
565 ipage = get_node_page(sbi, inode->i_ino);
566 if (IS_ERR(ipage)) {
567 err = PTR_ERR(ipage);
568 goto out;
569 }
570
571 if (f2fs_has_inline_data(inode)) {
572 if (truncate_inline_inode(ipage, from))
573 set_page_dirty(ipage);
574 f2fs_put_page(ipage, 1);
575 truncate_page = true;
576 goto out;
577 }
578
579 set_new_dnode(&dn, inode, ipage, NULL, 0);
580 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
581 if (err) {
582 if (err == -ENOENT)
583 goto free_next;
584 goto out;
585 }
586
587 count = ADDRS_PER_PAGE(dn.node_page, inode);
588
589 count -= dn.ofs_in_node;
590 f2fs_bug_on(sbi, count < 0);
591
592 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
593 truncate_data_blocks_range(&dn, count);
594 free_from += count;
595 }
596
597 f2fs_put_dnode(&dn);
598 free_next:
599 err = truncate_inode_blocks(inode, free_from);
600 out:
601 if (lock)
602 f2fs_unlock_op(sbi);
603 free_partial:
604 /* lastly zero out the first data page */
605 if (!err)
606 err = truncate_partial_data_page(inode, from, truncate_page);
607
608 trace_f2fs_truncate_blocks_exit(inode, err);
609 return err;
610 }
611
612 int f2fs_truncate(struct inode *inode)
613 {
614 int err;
615
616 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
617 S_ISLNK(inode->i_mode)))
618 return 0;
619
620 trace_f2fs_truncate(inode);
621
622 /* we should check inline_data size */
623 if (!f2fs_may_inline_data(inode)) {
624 err = f2fs_convert_inline_inode(inode);
625 if (err)
626 return err;
627 }
628
629 err = truncate_blocks(inode, i_size_read(inode), true);
630 if (err)
631 return err;
632
633 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
634 f2fs_mark_inode_dirty_sync(inode);
635 return 0;
636 }
637
638 int f2fs_getattr(struct vfsmount *mnt,
639 struct dentry *dentry, struct kstat *stat)
640 {
641 struct inode *inode = d_inode(dentry);
642 generic_fillattr(inode, stat);
643 stat->blocks <<= 3;
644 return 0;
645 }
646
647 #ifdef CONFIG_F2FS_FS_POSIX_ACL
648 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
649 {
650 unsigned int ia_valid = attr->ia_valid;
651
652 if (ia_valid & ATTR_UID)
653 inode->i_uid = attr->ia_uid;
654 if (ia_valid & ATTR_GID)
655 inode->i_gid = attr->ia_gid;
656 if (ia_valid & ATTR_ATIME)
657 inode->i_atime = timespec_trunc(attr->ia_atime,
658 inode->i_sb->s_time_gran);
659 if (ia_valid & ATTR_MTIME)
660 inode->i_mtime = timespec_trunc(attr->ia_mtime,
661 inode->i_sb->s_time_gran);
662 if (ia_valid & ATTR_CTIME)
663 inode->i_ctime = timespec_trunc(attr->ia_ctime,
664 inode->i_sb->s_time_gran);
665 if (ia_valid & ATTR_MODE) {
666 umode_t mode = attr->ia_mode;
667
668 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
669 mode &= ~S_ISGID;
670 set_acl_inode(inode, mode);
671 }
672 }
673 #else
674 #define __setattr_copy setattr_copy
675 #endif
676
677 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
678 {
679 struct inode *inode = d_inode(dentry);
680 int err;
681
682 err = inode_change_ok(inode, attr);
683 if (err)
684 return err;
685
686 if (attr->ia_valid & ATTR_SIZE) {
687 if (f2fs_encrypted_inode(inode) &&
688 fscrypt_get_encryption_info(inode))
689 return -EACCES;
690
691 if (attr->ia_size <= i_size_read(inode)) {
692 truncate_setsize(inode, attr->ia_size);
693 err = f2fs_truncate(inode);
694 if (err)
695 return err;
696 f2fs_balance_fs(F2FS_I_SB(inode), true);
697 } else {
698 /*
699 * do not trim all blocks after i_size if target size is
700 * larger than i_size.
701 */
702 truncate_setsize(inode, attr->ia_size);
703
704 /* should convert inline inode here */
705 if (!f2fs_may_inline_data(inode)) {
706 err = f2fs_convert_inline_inode(inode);
707 if (err)
708 return err;
709 }
710 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
711 }
712 }
713
714 __setattr_copy(inode, attr);
715
716 if (attr->ia_valid & ATTR_MODE) {
717 err = posix_acl_chmod(inode, get_inode_mode(inode));
718 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
719 inode->i_mode = F2FS_I(inode)->i_acl_mode;
720 clear_inode_flag(inode, FI_ACL_MODE);
721 }
722 }
723
724 f2fs_mark_inode_dirty_sync(inode);
725 return err;
726 }
727
728 const struct inode_operations f2fs_file_inode_operations = {
729 .getattr = f2fs_getattr,
730 .setattr = f2fs_setattr,
731 .get_acl = f2fs_get_acl,
732 .set_acl = f2fs_set_acl,
733 #ifdef CONFIG_F2FS_FS_XATTR
734 .setxattr = generic_setxattr,
735 .getxattr = generic_getxattr,
736 .listxattr = f2fs_listxattr,
737 .removexattr = generic_removexattr,
738 #endif
739 .fiemap = f2fs_fiemap,
740 };
741
742 static int fill_zero(struct inode *inode, pgoff_t index,
743 loff_t start, loff_t len)
744 {
745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
746 struct page *page;
747
748 if (!len)
749 return 0;
750
751 f2fs_balance_fs(sbi, true);
752
753 f2fs_lock_op(sbi);
754 page = get_new_data_page(inode, NULL, index, false);
755 f2fs_unlock_op(sbi);
756
757 if (IS_ERR(page))
758 return PTR_ERR(page);
759
760 f2fs_wait_on_page_writeback(page, DATA, true);
761 zero_user(page, start, len);
762 set_page_dirty(page);
763 f2fs_put_page(page, 1);
764 return 0;
765 }
766
767 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
768 {
769 int err;
770
771 while (pg_start < pg_end) {
772 struct dnode_of_data dn;
773 pgoff_t end_offset, count;
774
775 set_new_dnode(&dn, inode, NULL, NULL, 0);
776 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
777 if (err) {
778 if (err == -ENOENT) {
779 pg_start++;
780 continue;
781 }
782 return err;
783 }
784
785 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
786 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
787
788 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
789
790 truncate_data_blocks_range(&dn, count);
791 f2fs_put_dnode(&dn);
792
793 pg_start += count;
794 }
795 return 0;
796 }
797
798 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
799 {
800 pgoff_t pg_start, pg_end;
801 loff_t off_start, off_end;
802 int ret;
803
804 ret = f2fs_convert_inline_inode(inode);
805 if (ret)
806 return ret;
807
808 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
809 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
810
811 off_start = offset & (PAGE_SIZE - 1);
812 off_end = (offset + len) & (PAGE_SIZE - 1);
813
814 if (pg_start == pg_end) {
815 ret = fill_zero(inode, pg_start, off_start,
816 off_end - off_start);
817 if (ret)
818 return ret;
819 } else {
820 if (off_start) {
821 ret = fill_zero(inode, pg_start++, off_start,
822 PAGE_SIZE - off_start);
823 if (ret)
824 return ret;
825 }
826 if (off_end) {
827 ret = fill_zero(inode, pg_end, 0, off_end);
828 if (ret)
829 return ret;
830 }
831
832 if (pg_start < pg_end) {
833 struct address_space *mapping = inode->i_mapping;
834 loff_t blk_start, blk_end;
835 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
836
837 f2fs_balance_fs(sbi, true);
838
839 blk_start = (loff_t)pg_start << PAGE_SHIFT;
840 blk_end = (loff_t)pg_end << PAGE_SHIFT;
841 truncate_inode_pages_range(mapping, blk_start,
842 blk_end - 1);
843
844 f2fs_lock_op(sbi);
845 ret = truncate_hole(inode, pg_start, pg_end);
846 f2fs_unlock_op(sbi);
847 }
848 }
849
850 return ret;
851 }
852
853 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
854 int *do_replace, pgoff_t off, pgoff_t len)
855 {
856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857 struct dnode_of_data dn;
858 int ret, done, i;
859
860 next_dnode:
861 set_new_dnode(&dn, inode, NULL, NULL, 0);
862 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
863 if (ret && ret != -ENOENT) {
864 return ret;
865 } else if (ret == -ENOENT) {
866 if (dn.max_level == 0)
867 return -ENOENT;
868 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
869 blkaddr += done;
870 do_replace += done;
871 goto next;
872 }
873
874 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
875 dn.ofs_in_node, len);
876 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
877 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
878 if (!is_checkpointed_data(sbi, *blkaddr)) {
879
880 if (test_opt(sbi, LFS)) {
881 f2fs_put_dnode(&dn);
882 return -ENOTSUPP;
883 }
884
885 /* do not invalidate this block address */
886 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
887 *do_replace = 1;
888 }
889 }
890 f2fs_put_dnode(&dn);
891 next:
892 len -= done;
893 off += done;
894 if (len)
895 goto next_dnode;
896 return 0;
897 }
898
899 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
900 int *do_replace, pgoff_t off, int len)
901 {
902 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
903 struct dnode_of_data dn;
904 int ret, i;
905
906 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
907 if (*do_replace == 0)
908 continue;
909
910 set_new_dnode(&dn, inode, NULL, NULL, 0);
911 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
912 if (ret) {
913 dec_valid_block_count(sbi, inode, 1);
914 invalidate_blocks(sbi, *blkaddr);
915 } else {
916 f2fs_update_data_blkaddr(&dn, *blkaddr);
917 }
918 f2fs_put_dnode(&dn);
919 }
920 return 0;
921 }
922
923 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
924 block_t *blkaddr, int *do_replace,
925 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
926 {
927 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
928 pgoff_t i = 0;
929 int ret;
930
931 while (i < len) {
932 if (blkaddr[i] == NULL_ADDR && !full) {
933 i++;
934 continue;
935 }
936
937 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
938 struct dnode_of_data dn;
939 struct node_info ni;
940 size_t new_size;
941 pgoff_t ilen;
942
943 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
944 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
945 if (ret)
946 return ret;
947
948 get_node_info(sbi, dn.nid, &ni);
949 ilen = min((pgoff_t)
950 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
951 dn.ofs_in_node, len - i);
952 do {
953 dn.data_blkaddr = datablock_addr(dn.node_page,
954 dn.ofs_in_node);
955 truncate_data_blocks_range(&dn, 1);
956
957 if (do_replace[i]) {
958 f2fs_i_blocks_write(src_inode,
959 1, false);
960 f2fs_i_blocks_write(dst_inode,
961 1, true);
962 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
963 blkaddr[i], ni.version, true, false);
964
965 do_replace[i] = 0;
966 }
967 dn.ofs_in_node++;
968 i++;
969 new_size = (dst + i) << PAGE_SHIFT;
970 if (dst_inode->i_size < new_size)
971 f2fs_i_size_write(dst_inode, new_size);
972 } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
973
974 f2fs_put_dnode(&dn);
975 } else {
976 struct page *psrc, *pdst;
977
978 psrc = get_lock_data_page(src_inode, src + i, true);
979 if (IS_ERR(psrc))
980 return PTR_ERR(psrc);
981 pdst = get_new_data_page(dst_inode, NULL, dst + i,
982 true);
983 if (IS_ERR(pdst)) {
984 f2fs_put_page(psrc, 1);
985 return PTR_ERR(pdst);
986 }
987 f2fs_copy_page(psrc, pdst);
988 set_page_dirty(pdst);
989 f2fs_put_page(pdst, 1);
990 f2fs_put_page(psrc, 1);
991
992 ret = truncate_hole(src_inode, src + i, src + i + 1);
993 if (ret)
994 return ret;
995 i++;
996 }
997 }
998 return 0;
999 }
1000
1001 static int __exchange_data_block(struct inode *src_inode,
1002 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1003 int len, bool full)
1004 {
1005 block_t *src_blkaddr;
1006 int *do_replace;
1007 int ret;
1008
1009 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * len, GFP_KERNEL);
1010 if (!src_blkaddr)
1011 return -ENOMEM;
1012
1013 do_replace = f2fs_kvzalloc(sizeof(int) * len, GFP_KERNEL);
1014 if (!do_replace) {
1015 kvfree(src_blkaddr);
1016 return -ENOMEM;
1017 }
1018
1019 ret = __read_out_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1020 if (ret)
1021 goto roll_back;
1022
1023 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1024 do_replace, src, dst, len, full);
1025 if (ret)
1026 goto roll_back;
1027
1028 kvfree(src_blkaddr);
1029 kvfree(do_replace);
1030 return 0;
1031
1032 roll_back:
1033 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1034 kvfree(src_blkaddr);
1035 kvfree(do_replace);
1036 return ret;
1037 }
1038
1039 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1040 {
1041 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1042 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1043 int ret;
1044
1045 f2fs_balance_fs(sbi, true);
1046 f2fs_lock_op(sbi);
1047
1048 f2fs_drop_extent_tree(inode);
1049
1050 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1051 f2fs_unlock_op(sbi);
1052 return ret;
1053 }
1054
1055 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1056 {
1057 pgoff_t pg_start, pg_end;
1058 loff_t new_size;
1059 int ret;
1060
1061 if (offset + len >= i_size_read(inode))
1062 return -EINVAL;
1063
1064 /* collapse range should be aligned to block size of f2fs. */
1065 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1066 return -EINVAL;
1067
1068 ret = f2fs_convert_inline_inode(inode);
1069 if (ret)
1070 return ret;
1071
1072 pg_start = offset >> PAGE_SHIFT;
1073 pg_end = (offset + len) >> PAGE_SHIFT;
1074
1075 /* write out all dirty pages from offset */
1076 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1077 if (ret)
1078 return ret;
1079
1080 truncate_pagecache(inode, offset);
1081
1082 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1083 if (ret)
1084 return ret;
1085
1086 /* write out all moved pages, if possible */
1087 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1088 truncate_pagecache(inode, offset);
1089
1090 new_size = i_size_read(inode) - len;
1091 truncate_pagecache(inode, new_size);
1092
1093 ret = truncate_blocks(inode, new_size, true);
1094 if (!ret)
1095 f2fs_i_size_write(inode, new_size);
1096
1097 return ret;
1098 }
1099
1100 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1101 pgoff_t end)
1102 {
1103 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1104 pgoff_t index = start;
1105 unsigned int ofs_in_node = dn->ofs_in_node;
1106 blkcnt_t count = 0;
1107 int ret;
1108
1109 for (; index < end; index++, dn->ofs_in_node++) {
1110 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1111 count++;
1112 }
1113
1114 dn->ofs_in_node = ofs_in_node;
1115 ret = reserve_new_blocks(dn, count);
1116 if (ret)
1117 return ret;
1118
1119 dn->ofs_in_node = ofs_in_node;
1120 for (index = start; index < end; index++, dn->ofs_in_node++) {
1121 dn->data_blkaddr =
1122 datablock_addr(dn->node_page, dn->ofs_in_node);
1123 /*
1124 * reserve_new_blocks will not guarantee entire block
1125 * allocation.
1126 */
1127 if (dn->data_blkaddr == NULL_ADDR) {
1128 ret = -ENOSPC;
1129 break;
1130 }
1131 if (dn->data_blkaddr != NEW_ADDR) {
1132 invalidate_blocks(sbi, dn->data_blkaddr);
1133 dn->data_blkaddr = NEW_ADDR;
1134 set_data_blkaddr(dn);
1135 }
1136 }
1137
1138 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1139
1140 return ret;
1141 }
1142
1143 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1144 int mode)
1145 {
1146 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147 struct address_space *mapping = inode->i_mapping;
1148 pgoff_t index, pg_start, pg_end;
1149 loff_t new_size = i_size_read(inode);
1150 loff_t off_start, off_end;
1151 int ret = 0;
1152
1153 ret = inode_newsize_ok(inode, (len + offset));
1154 if (ret)
1155 return ret;
1156
1157 ret = f2fs_convert_inline_inode(inode);
1158 if (ret)
1159 return ret;
1160
1161 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1162 if (ret)
1163 return ret;
1164
1165 truncate_pagecache_range(inode, offset, offset + len - 1);
1166
1167 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1168 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1169
1170 off_start = offset & (PAGE_SIZE - 1);
1171 off_end = (offset + len) & (PAGE_SIZE - 1);
1172
1173 if (pg_start == pg_end) {
1174 ret = fill_zero(inode, pg_start, off_start,
1175 off_end - off_start);
1176 if (ret)
1177 return ret;
1178
1179 if (offset + len > new_size)
1180 new_size = offset + len;
1181 new_size = max_t(loff_t, new_size, offset + len);
1182 } else {
1183 if (off_start) {
1184 ret = fill_zero(inode, pg_start++, off_start,
1185 PAGE_SIZE - off_start);
1186 if (ret)
1187 return ret;
1188
1189 new_size = max_t(loff_t, new_size,
1190 (loff_t)pg_start << PAGE_SHIFT);
1191 }
1192
1193 for (index = pg_start; index < pg_end;) {
1194 struct dnode_of_data dn;
1195 unsigned int end_offset;
1196 pgoff_t end;
1197
1198 f2fs_lock_op(sbi);
1199
1200 set_new_dnode(&dn, inode, NULL, NULL, 0);
1201 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1202 if (ret) {
1203 f2fs_unlock_op(sbi);
1204 goto out;
1205 }
1206
1207 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1208 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1209
1210 ret = f2fs_do_zero_range(&dn, index, end);
1211 f2fs_put_dnode(&dn);
1212 f2fs_unlock_op(sbi);
1213 if (ret)
1214 goto out;
1215
1216 index = end;
1217 new_size = max_t(loff_t, new_size,
1218 (loff_t)index << PAGE_SHIFT);
1219 }
1220
1221 if (off_end) {
1222 ret = fill_zero(inode, pg_end, 0, off_end);
1223 if (ret)
1224 goto out;
1225
1226 new_size = max_t(loff_t, new_size, offset + len);
1227 }
1228 }
1229
1230 out:
1231 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1232 f2fs_i_size_write(inode, new_size);
1233
1234 return ret;
1235 }
1236
1237 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1238 {
1239 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1240 pgoff_t nr, pg_start, pg_end, delta, idx;
1241 loff_t new_size;
1242 int ret = 0;
1243
1244 new_size = i_size_read(inode) + len;
1245 if (new_size > inode->i_sb->s_maxbytes)
1246 return -EFBIG;
1247
1248 if (offset >= i_size_read(inode))
1249 return -EINVAL;
1250
1251 /* insert range should be aligned to block size of f2fs. */
1252 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1253 return -EINVAL;
1254
1255 ret = f2fs_convert_inline_inode(inode);
1256 if (ret)
1257 return ret;
1258
1259 f2fs_balance_fs(sbi, true);
1260
1261 ret = truncate_blocks(inode, i_size_read(inode), true);
1262 if (ret)
1263 return ret;
1264
1265 /* write out all dirty pages from offset */
1266 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1267 if (ret)
1268 return ret;
1269
1270 truncate_pagecache(inode, offset);
1271
1272 pg_start = offset >> PAGE_SHIFT;
1273 pg_end = (offset + len) >> PAGE_SHIFT;
1274 delta = pg_end - pg_start;
1275 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1276
1277 while (!ret && idx > pg_start) {
1278 nr = idx - pg_start;
1279 if (nr > delta)
1280 nr = delta;
1281 idx -= nr;
1282
1283 f2fs_lock_op(sbi);
1284 f2fs_drop_extent_tree(inode);
1285
1286 ret = __exchange_data_block(inode, inode, idx,
1287 idx + delta, nr, false);
1288 f2fs_unlock_op(sbi);
1289 }
1290
1291 /* write out all moved pages, if possible */
1292 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1293 truncate_pagecache(inode, offset);
1294
1295 if (!ret)
1296 f2fs_i_size_write(inode, new_size);
1297 return ret;
1298 }
1299
1300 static int expand_inode_data(struct inode *inode, loff_t offset,
1301 loff_t len, int mode)
1302 {
1303 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1304 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1305 pgoff_t pg_end;
1306 loff_t new_size = i_size_read(inode);
1307 loff_t off_end;
1308 int ret;
1309
1310 ret = inode_newsize_ok(inode, (len + offset));
1311 if (ret)
1312 return ret;
1313
1314 ret = f2fs_convert_inline_inode(inode);
1315 if (ret)
1316 return ret;
1317
1318 f2fs_balance_fs(sbi, true);
1319
1320 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1321 off_end = (offset + len) & (PAGE_SIZE - 1);
1322
1323 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1324 map.m_len = pg_end - map.m_lblk;
1325 if (off_end)
1326 map.m_len++;
1327
1328 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1329 if (ret) {
1330 pgoff_t last_off;
1331
1332 if (!map.m_len)
1333 return ret;
1334
1335 last_off = map.m_lblk + map.m_len - 1;
1336
1337 /* update new size to the failed position */
1338 new_size = (last_off == pg_end) ? offset + len:
1339 (loff_t)(last_off + 1) << PAGE_SHIFT;
1340 } else {
1341 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1342 }
1343
1344 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1345 f2fs_i_size_write(inode, new_size);
1346
1347 return ret;
1348 }
1349
1350 static long f2fs_fallocate(struct file *file, int mode,
1351 loff_t offset, loff_t len)
1352 {
1353 struct inode *inode = file_inode(file);
1354 long ret = 0;
1355
1356 /* f2fs only support ->fallocate for regular file */
1357 if (!S_ISREG(inode->i_mode))
1358 return -EINVAL;
1359
1360 if (f2fs_encrypted_inode(inode) &&
1361 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1362 return -EOPNOTSUPP;
1363
1364 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1365 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1366 FALLOC_FL_INSERT_RANGE))
1367 return -EOPNOTSUPP;
1368
1369 inode_lock(inode);
1370
1371 if (mode & FALLOC_FL_PUNCH_HOLE) {
1372 if (offset >= inode->i_size)
1373 goto out;
1374
1375 ret = punch_hole(inode, offset, len);
1376 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1377 ret = f2fs_collapse_range(inode, offset, len);
1378 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1379 ret = f2fs_zero_range(inode, offset, len, mode);
1380 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1381 ret = f2fs_insert_range(inode, offset, len);
1382 } else {
1383 ret = expand_inode_data(inode, offset, len, mode);
1384 }
1385
1386 if (!ret) {
1387 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1388 f2fs_mark_inode_dirty_sync(inode);
1389 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1390 }
1391
1392 out:
1393 inode_unlock(inode);
1394
1395 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1396 return ret;
1397 }
1398
1399 static int f2fs_release_file(struct inode *inode, struct file *filp)
1400 {
1401 /*
1402 * f2fs_relase_file is called at every close calls. So we should
1403 * not drop any inmemory pages by close called by other process.
1404 */
1405 if (!(filp->f_mode & FMODE_WRITE) ||
1406 atomic_read(&inode->i_writecount) != 1)
1407 return 0;
1408
1409 /* some remained atomic pages should discarded */
1410 if (f2fs_is_atomic_file(inode))
1411 drop_inmem_pages(inode);
1412 if (f2fs_is_volatile_file(inode)) {
1413 clear_inode_flag(inode, FI_VOLATILE_FILE);
1414 set_inode_flag(inode, FI_DROP_CACHE);
1415 filemap_fdatawrite(inode->i_mapping);
1416 clear_inode_flag(inode, FI_DROP_CACHE);
1417 }
1418 return 0;
1419 }
1420
1421 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1422 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1423
1424 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1425 {
1426 if (S_ISDIR(mode))
1427 return flags;
1428 else if (S_ISREG(mode))
1429 return flags & F2FS_REG_FLMASK;
1430 else
1431 return flags & F2FS_OTHER_FLMASK;
1432 }
1433
1434 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1435 {
1436 struct inode *inode = file_inode(filp);
1437 struct f2fs_inode_info *fi = F2FS_I(inode);
1438 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1439 return put_user(flags, (int __user *)arg);
1440 }
1441
1442 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1443 {
1444 struct inode *inode = file_inode(filp);
1445 struct f2fs_inode_info *fi = F2FS_I(inode);
1446 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1447 unsigned int oldflags;
1448 int ret;
1449
1450 if (!inode_owner_or_capable(inode))
1451 return -EACCES;
1452
1453 if (get_user(flags, (int __user *)arg))
1454 return -EFAULT;
1455
1456 ret = mnt_want_write_file(filp);
1457 if (ret)
1458 return ret;
1459
1460 flags = f2fs_mask_flags(inode->i_mode, flags);
1461
1462 inode_lock(inode);
1463
1464 oldflags = fi->i_flags;
1465
1466 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1467 if (!capable(CAP_LINUX_IMMUTABLE)) {
1468 inode_unlock(inode);
1469 ret = -EPERM;
1470 goto out;
1471 }
1472 }
1473
1474 flags = flags & FS_FL_USER_MODIFIABLE;
1475 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1476 fi->i_flags = flags;
1477 inode_unlock(inode);
1478
1479 inode->i_ctime = CURRENT_TIME;
1480 f2fs_set_inode_flags(inode);
1481 out:
1482 mnt_drop_write_file(filp);
1483 return ret;
1484 }
1485
1486 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1487 {
1488 struct inode *inode = file_inode(filp);
1489
1490 return put_user(inode->i_generation, (int __user *)arg);
1491 }
1492
1493 static int f2fs_ioc_start_atomic_write(struct file *filp)
1494 {
1495 struct inode *inode = file_inode(filp);
1496 int ret;
1497
1498 if (!inode_owner_or_capable(inode))
1499 return -EACCES;
1500
1501 ret = mnt_want_write_file(filp);
1502 if (ret)
1503 return ret;
1504
1505 inode_lock(inode);
1506
1507 if (f2fs_is_atomic_file(inode))
1508 goto out;
1509
1510 ret = f2fs_convert_inline_inode(inode);
1511 if (ret)
1512 goto out;
1513
1514 set_inode_flag(inode, FI_ATOMIC_FILE);
1515 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1516
1517 if (!get_dirty_pages(inode))
1518 goto out;
1519
1520 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1521 "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1522 inode->i_ino, get_dirty_pages(inode));
1523 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1524 if (ret)
1525 clear_inode_flag(inode, FI_ATOMIC_FILE);
1526 out:
1527 inode_unlock(inode);
1528 mnt_drop_write_file(filp);
1529 return ret;
1530 }
1531
1532 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1533 {
1534 struct inode *inode = file_inode(filp);
1535 int ret;
1536
1537 if (!inode_owner_or_capable(inode))
1538 return -EACCES;
1539
1540 ret = mnt_want_write_file(filp);
1541 if (ret)
1542 return ret;
1543
1544 inode_lock(inode);
1545
1546 if (f2fs_is_volatile_file(inode))
1547 goto err_out;
1548
1549 if (f2fs_is_atomic_file(inode)) {
1550 clear_inode_flag(inode, FI_ATOMIC_FILE);
1551 ret = commit_inmem_pages(inode);
1552 if (ret) {
1553 set_inode_flag(inode, FI_ATOMIC_FILE);
1554 goto err_out;
1555 }
1556 }
1557
1558 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1559 err_out:
1560 inode_unlock(inode);
1561 mnt_drop_write_file(filp);
1562 return ret;
1563 }
1564
1565 static int f2fs_ioc_start_volatile_write(struct file *filp)
1566 {
1567 struct inode *inode = file_inode(filp);
1568 int ret;
1569
1570 if (!inode_owner_or_capable(inode))
1571 return -EACCES;
1572
1573 ret = mnt_want_write_file(filp);
1574 if (ret)
1575 return ret;
1576
1577 inode_lock(inode);
1578
1579 if (f2fs_is_volatile_file(inode))
1580 goto out;
1581
1582 ret = f2fs_convert_inline_inode(inode);
1583 if (ret)
1584 goto out;
1585
1586 set_inode_flag(inode, FI_VOLATILE_FILE);
1587 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1588 out:
1589 inode_unlock(inode);
1590 mnt_drop_write_file(filp);
1591 return ret;
1592 }
1593
1594 static int f2fs_ioc_release_volatile_write(struct file *filp)
1595 {
1596 struct inode *inode = file_inode(filp);
1597 int ret;
1598
1599 if (!inode_owner_or_capable(inode))
1600 return -EACCES;
1601
1602 ret = mnt_want_write_file(filp);
1603 if (ret)
1604 return ret;
1605
1606 inode_lock(inode);
1607
1608 if (!f2fs_is_volatile_file(inode))
1609 goto out;
1610
1611 if (!f2fs_is_first_block_written(inode)) {
1612 ret = truncate_partial_data_page(inode, 0, true);
1613 goto out;
1614 }
1615
1616 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1617 out:
1618 inode_unlock(inode);
1619 mnt_drop_write_file(filp);
1620 return ret;
1621 }
1622
1623 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1624 {
1625 struct inode *inode = file_inode(filp);
1626 int ret;
1627
1628 if (!inode_owner_or_capable(inode))
1629 return -EACCES;
1630
1631 ret = mnt_want_write_file(filp);
1632 if (ret)
1633 return ret;
1634
1635 inode_lock(inode);
1636
1637 if (f2fs_is_atomic_file(inode))
1638 drop_inmem_pages(inode);
1639 if (f2fs_is_volatile_file(inode)) {
1640 clear_inode_flag(inode, FI_VOLATILE_FILE);
1641 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1642 }
1643
1644 inode_unlock(inode);
1645
1646 mnt_drop_write_file(filp);
1647 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1648 return ret;
1649 }
1650
1651 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1652 {
1653 struct inode *inode = file_inode(filp);
1654 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1655 struct super_block *sb = sbi->sb;
1656 __u32 in;
1657 int ret;
1658
1659 if (!capable(CAP_SYS_ADMIN))
1660 return -EPERM;
1661
1662 if (get_user(in, (__u32 __user *)arg))
1663 return -EFAULT;
1664
1665 ret = mnt_want_write_file(filp);
1666 if (ret)
1667 return ret;
1668
1669 switch (in) {
1670 case F2FS_GOING_DOWN_FULLSYNC:
1671 sb = freeze_bdev(sb->s_bdev);
1672 if (sb && !IS_ERR(sb)) {
1673 f2fs_stop_checkpoint(sbi, false);
1674 thaw_bdev(sb->s_bdev, sb);
1675 }
1676 break;
1677 case F2FS_GOING_DOWN_METASYNC:
1678 /* do checkpoint only */
1679 f2fs_sync_fs(sb, 1);
1680 f2fs_stop_checkpoint(sbi, false);
1681 break;
1682 case F2FS_GOING_DOWN_NOSYNC:
1683 f2fs_stop_checkpoint(sbi, false);
1684 break;
1685 case F2FS_GOING_DOWN_METAFLUSH:
1686 sync_meta_pages(sbi, META, LONG_MAX);
1687 f2fs_stop_checkpoint(sbi, false);
1688 break;
1689 default:
1690 ret = -EINVAL;
1691 goto out;
1692 }
1693 f2fs_update_time(sbi, REQ_TIME);
1694 out:
1695 mnt_drop_write_file(filp);
1696 return ret;
1697 }
1698
1699 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1700 {
1701 struct inode *inode = file_inode(filp);
1702 struct super_block *sb = inode->i_sb;
1703 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1704 struct fstrim_range range;
1705 int ret;
1706
1707 if (!capable(CAP_SYS_ADMIN))
1708 return -EPERM;
1709
1710 if (!blk_queue_discard(q))
1711 return -EOPNOTSUPP;
1712
1713 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1714 sizeof(range)))
1715 return -EFAULT;
1716
1717 ret = mnt_want_write_file(filp);
1718 if (ret)
1719 return ret;
1720
1721 range.minlen = max((unsigned int)range.minlen,
1722 q->limits.discard_granularity);
1723 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1724 mnt_drop_write_file(filp);
1725 if (ret < 0)
1726 return ret;
1727
1728 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1729 sizeof(range)))
1730 return -EFAULT;
1731 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1732 return 0;
1733 }
1734
1735 static bool uuid_is_nonzero(__u8 u[16])
1736 {
1737 int i;
1738
1739 for (i = 0; i < 16; i++)
1740 if (u[i])
1741 return true;
1742 return false;
1743 }
1744
1745 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1746 {
1747 struct fscrypt_policy policy;
1748 struct inode *inode = file_inode(filp);
1749 int ret;
1750
1751 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1752 sizeof(policy)))
1753 return -EFAULT;
1754
1755 ret = mnt_want_write_file(filp);
1756 if (ret)
1757 return ret;
1758
1759 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1760 ret = fscrypt_process_policy(inode, &policy);
1761
1762 mnt_drop_write_file(filp);
1763 return ret;
1764 }
1765
1766 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1767 {
1768 struct fscrypt_policy policy;
1769 struct inode *inode = file_inode(filp);
1770 int err;
1771
1772 err = fscrypt_get_policy(inode, &policy);
1773 if (err)
1774 return err;
1775
1776 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1777 return -EFAULT;
1778 return 0;
1779 }
1780
1781 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1782 {
1783 struct inode *inode = file_inode(filp);
1784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1785 int err;
1786
1787 if (!f2fs_sb_has_crypto(inode->i_sb))
1788 return -EOPNOTSUPP;
1789
1790 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1791 goto got_it;
1792
1793 err = mnt_want_write_file(filp);
1794 if (err)
1795 return err;
1796
1797 /* update superblock with uuid */
1798 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1799
1800 err = f2fs_commit_super(sbi, false);
1801 if (err) {
1802 /* undo new data */
1803 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1804 mnt_drop_write_file(filp);
1805 return err;
1806 }
1807 mnt_drop_write_file(filp);
1808 got_it:
1809 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1810 16))
1811 return -EFAULT;
1812 return 0;
1813 }
1814
1815 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1816 {
1817 struct inode *inode = file_inode(filp);
1818 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1819 __u32 sync;
1820 int ret;
1821
1822 if (!capable(CAP_SYS_ADMIN))
1823 return -EPERM;
1824
1825 if (get_user(sync, (__u32 __user *)arg))
1826 return -EFAULT;
1827
1828 if (f2fs_readonly(sbi->sb))
1829 return -EROFS;
1830
1831 ret = mnt_want_write_file(filp);
1832 if (ret)
1833 return ret;
1834
1835 if (!sync) {
1836 if (!mutex_trylock(&sbi->gc_mutex)) {
1837 ret = -EBUSY;
1838 goto out;
1839 }
1840 } else {
1841 mutex_lock(&sbi->gc_mutex);
1842 }
1843
1844 ret = f2fs_gc(sbi, sync);
1845 out:
1846 mnt_drop_write_file(filp);
1847 return ret;
1848 }
1849
1850 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1851 {
1852 struct inode *inode = file_inode(filp);
1853 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1854 int ret;
1855
1856 if (!capable(CAP_SYS_ADMIN))
1857 return -EPERM;
1858
1859 if (f2fs_readonly(sbi->sb))
1860 return -EROFS;
1861
1862 ret = mnt_want_write_file(filp);
1863 if (ret)
1864 return ret;
1865
1866 ret = f2fs_sync_fs(sbi->sb, 1);
1867
1868 mnt_drop_write_file(filp);
1869 return ret;
1870 }
1871
1872 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1873 struct file *filp,
1874 struct f2fs_defragment *range)
1875 {
1876 struct inode *inode = file_inode(filp);
1877 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1878 struct extent_info ei;
1879 pgoff_t pg_start, pg_end;
1880 unsigned int blk_per_seg = sbi->blocks_per_seg;
1881 unsigned int total = 0, sec_num;
1882 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1883 block_t blk_end = 0;
1884 bool fragmented = false;
1885 int err;
1886
1887 /* if in-place-update policy is enabled, don't waste time here */
1888 if (need_inplace_update(inode))
1889 return -EINVAL;
1890
1891 pg_start = range->start >> PAGE_SHIFT;
1892 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1893
1894 f2fs_balance_fs(sbi, true);
1895
1896 inode_lock(inode);
1897
1898 /* writeback all dirty pages in the range */
1899 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1900 range->start + range->len - 1);
1901 if (err)
1902 goto out;
1903
1904 /*
1905 * lookup mapping info in extent cache, skip defragmenting if physical
1906 * block addresses are continuous.
1907 */
1908 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1909 if (ei.fofs + ei.len >= pg_end)
1910 goto out;
1911 }
1912
1913 map.m_lblk = pg_start;
1914
1915 /*
1916 * lookup mapping info in dnode page cache, skip defragmenting if all
1917 * physical block addresses are continuous even if there are hole(s)
1918 * in logical blocks.
1919 */
1920 while (map.m_lblk < pg_end) {
1921 map.m_len = pg_end - map.m_lblk;
1922 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1923 if (err)
1924 goto out;
1925
1926 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1927 map.m_lblk++;
1928 continue;
1929 }
1930
1931 if (blk_end && blk_end != map.m_pblk) {
1932 fragmented = true;
1933 break;
1934 }
1935 blk_end = map.m_pblk + map.m_len;
1936
1937 map.m_lblk += map.m_len;
1938 }
1939
1940 if (!fragmented)
1941 goto out;
1942
1943 map.m_lblk = pg_start;
1944 map.m_len = pg_end - pg_start;
1945
1946 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1947
1948 /*
1949 * make sure there are enough free section for LFS allocation, this can
1950 * avoid defragment running in SSR mode when free section are allocated
1951 * intensively
1952 */
1953 if (has_not_enough_free_secs(sbi, sec_num)) {
1954 err = -EAGAIN;
1955 goto out;
1956 }
1957
1958 while (map.m_lblk < pg_end) {
1959 pgoff_t idx;
1960 int cnt = 0;
1961
1962 do_map:
1963 map.m_len = pg_end - map.m_lblk;
1964 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1965 if (err)
1966 goto clear_out;
1967
1968 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1969 map.m_lblk++;
1970 continue;
1971 }
1972
1973 set_inode_flag(inode, FI_DO_DEFRAG);
1974
1975 idx = map.m_lblk;
1976 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1977 struct page *page;
1978
1979 page = get_lock_data_page(inode, idx, true);
1980 if (IS_ERR(page)) {
1981 err = PTR_ERR(page);
1982 goto clear_out;
1983 }
1984
1985 set_page_dirty(page);
1986 f2fs_put_page(page, 1);
1987
1988 idx++;
1989 cnt++;
1990 total++;
1991 }
1992
1993 map.m_lblk = idx;
1994
1995 if (idx < pg_end && cnt < blk_per_seg)
1996 goto do_map;
1997
1998 clear_inode_flag(inode, FI_DO_DEFRAG);
1999
2000 err = filemap_fdatawrite(inode->i_mapping);
2001 if (err)
2002 goto out;
2003 }
2004 clear_out:
2005 clear_inode_flag(inode, FI_DO_DEFRAG);
2006 out:
2007 inode_unlock(inode);
2008 if (!err)
2009 range->len = (u64)total << PAGE_SHIFT;
2010 return err;
2011 }
2012
2013 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2014 {
2015 struct inode *inode = file_inode(filp);
2016 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2017 struct f2fs_defragment range;
2018 int err;
2019
2020 if (!capable(CAP_SYS_ADMIN))
2021 return -EPERM;
2022
2023 if (!S_ISREG(inode->i_mode))
2024 return -EINVAL;
2025
2026 err = mnt_want_write_file(filp);
2027 if (err)
2028 return err;
2029
2030 if (f2fs_readonly(sbi->sb)) {
2031 err = -EROFS;
2032 goto out;
2033 }
2034
2035 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2036 sizeof(range))) {
2037 err = -EFAULT;
2038 goto out;
2039 }
2040
2041 /* verify alignment of offset & size */
2042 if (range.start & (F2FS_BLKSIZE - 1) ||
2043 range.len & (F2FS_BLKSIZE - 1)) {
2044 err = -EINVAL;
2045 goto out;
2046 }
2047
2048 err = f2fs_defragment_range(sbi, filp, &range);
2049 f2fs_update_time(sbi, REQ_TIME);
2050 if (err < 0)
2051 goto out;
2052
2053 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2054 sizeof(range)))
2055 err = -EFAULT;
2056 out:
2057 mnt_drop_write_file(filp);
2058 return err;
2059 }
2060
2061 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2062 {
2063 switch (cmd) {
2064 case F2FS_IOC_GETFLAGS:
2065 return f2fs_ioc_getflags(filp, arg);
2066 case F2FS_IOC_SETFLAGS:
2067 return f2fs_ioc_setflags(filp, arg);
2068 case F2FS_IOC_GETVERSION:
2069 return f2fs_ioc_getversion(filp, arg);
2070 case F2FS_IOC_START_ATOMIC_WRITE:
2071 return f2fs_ioc_start_atomic_write(filp);
2072 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2073 return f2fs_ioc_commit_atomic_write(filp);
2074 case F2FS_IOC_START_VOLATILE_WRITE:
2075 return f2fs_ioc_start_volatile_write(filp);
2076 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2077 return f2fs_ioc_release_volatile_write(filp);
2078 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2079 return f2fs_ioc_abort_volatile_write(filp);
2080 case F2FS_IOC_SHUTDOWN:
2081 return f2fs_ioc_shutdown(filp, arg);
2082 case FITRIM:
2083 return f2fs_ioc_fitrim(filp, arg);
2084 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2085 return f2fs_ioc_set_encryption_policy(filp, arg);
2086 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2087 return f2fs_ioc_get_encryption_policy(filp, arg);
2088 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2089 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2090 case F2FS_IOC_GARBAGE_COLLECT:
2091 return f2fs_ioc_gc(filp, arg);
2092 case F2FS_IOC_WRITE_CHECKPOINT:
2093 return f2fs_ioc_write_checkpoint(filp, arg);
2094 case F2FS_IOC_DEFRAGMENT:
2095 return f2fs_ioc_defragment(filp, arg);
2096 default:
2097 return -ENOTTY;
2098 }
2099 }
2100
2101 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2102 {
2103 struct file *file = iocb->ki_filp;
2104 struct inode *inode = file_inode(file);
2105 ssize_t ret;
2106
2107 if (f2fs_encrypted_inode(inode) &&
2108 !fscrypt_has_encryption_key(inode) &&
2109 fscrypt_get_encryption_info(inode))
2110 return -EACCES;
2111
2112 inode_lock(inode);
2113 ret = generic_write_checks(iocb, from);
2114 if (ret > 0) {
2115 ret = f2fs_preallocate_blocks(iocb, from);
2116 if (!ret)
2117 ret = __generic_file_write_iter(iocb, from);
2118 }
2119 inode_unlock(inode);
2120
2121 if (ret > 0)
2122 ret = generic_write_sync(iocb, ret);
2123 return ret;
2124 }
2125
2126 #ifdef CONFIG_COMPAT
2127 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2128 {
2129 switch (cmd) {
2130 case F2FS_IOC32_GETFLAGS:
2131 cmd = F2FS_IOC_GETFLAGS;
2132 break;
2133 case F2FS_IOC32_SETFLAGS:
2134 cmd = F2FS_IOC_SETFLAGS;
2135 break;
2136 case F2FS_IOC32_GETVERSION:
2137 cmd = F2FS_IOC_GETVERSION;
2138 break;
2139 case F2FS_IOC_START_ATOMIC_WRITE:
2140 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2141 case F2FS_IOC_START_VOLATILE_WRITE:
2142 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2143 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2144 case F2FS_IOC_SHUTDOWN:
2145 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2146 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2147 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2148 case F2FS_IOC_GARBAGE_COLLECT:
2149 case F2FS_IOC_WRITE_CHECKPOINT:
2150 case F2FS_IOC_DEFRAGMENT:
2151 break;
2152 default:
2153 return -ENOIOCTLCMD;
2154 }
2155 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2156 }
2157 #endif
2158
2159 const struct file_operations f2fs_file_operations = {
2160 .llseek = f2fs_llseek,
2161 .read_iter = generic_file_read_iter,
2162 .write_iter = f2fs_file_write_iter,
2163 .open = f2fs_file_open,
2164 .release = f2fs_release_file,
2165 .mmap = f2fs_file_mmap,
2166 .fsync = f2fs_sync_file,
2167 .fallocate = f2fs_fallocate,
2168 .unlocked_ioctl = f2fs_ioctl,
2169 #ifdef CONFIG_COMPAT
2170 .compat_ioctl = f2fs_compat_ioctl,
2171 #endif
2172 .splice_read = generic_file_splice_read,
2173 .splice_write = iter_file_splice_write,
2174 };
This page took 0.071087 seconds and 6 git commands to generate.