f2fs: fix lost xattrs of directories
[deliverable/linux.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uuid.h>
24 #include <linux/file.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "xattr.h"
30 #include "acl.h"
31 #include "gc.h"
32 #include "trace.h"
33 #include <trace/events/f2fs.h>
34
35 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
36 struct vm_fault *vmf)
37 {
38 struct page *page = vmf->page;
39 struct inode *inode = file_inode(vma->vm_file);
40 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
41 struct dnode_of_data dn;
42 int err;
43
44 sb_start_pagefault(inode->i_sb);
45
46 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
47
48 /* block allocation */
49 f2fs_lock_op(sbi);
50 set_new_dnode(&dn, inode, NULL, NULL, 0);
51 err = f2fs_reserve_block(&dn, page->index);
52 if (err) {
53 f2fs_unlock_op(sbi);
54 goto out;
55 }
56 f2fs_put_dnode(&dn);
57 f2fs_unlock_op(sbi);
58
59 f2fs_balance_fs(sbi, dn.node_changed);
60
61 file_update_time(vma->vm_file);
62 lock_page(page);
63 if (unlikely(page->mapping != inode->i_mapping ||
64 page_offset(page) > i_size_read(inode) ||
65 !PageUptodate(page))) {
66 unlock_page(page);
67 err = -EFAULT;
68 goto out;
69 }
70
71 /*
72 * check to see if the page is mapped already (no holes)
73 */
74 if (PageMappedToDisk(page))
75 goto mapped;
76
77 /* page is wholly or partially inside EOF */
78 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
79 i_size_read(inode)) {
80 unsigned offset;
81 offset = i_size_read(inode) & ~PAGE_MASK;
82 zero_user_segment(page, offset, PAGE_SIZE);
83 }
84 set_page_dirty(page);
85 if (!PageUptodate(page))
86 SetPageUptodate(page);
87
88 trace_f2fs_vm_page_mkwrite(page, DATA);
89 mapped:
90 /* fill the page */
91 f2fs_wait_on_page_writeback(page, DATA, false);
92
93 /* wait for GCed encrypted page writeback */
94 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
95 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
96
97 /* if gced page is attached, don't write to cold segment */
98 clear_cold_data(page);
99 out:
100 sb_end_pagefault(inode->i_sb);
101 f2fs_update_time(sbi, REQ_TIME);
102 return block_page_mkwrite_return(err);
103 }
104
105 static const struct vm_operations_struct f2fs_file_vm_ops = {
106 .fault = filemap_fault,
107 .map_pages = filemap_map_pages,
108 .page_mkwrite = f2fs_vm_page_mkwrite,
109 };
110
111 static int get_parent_ino(struct inode *inode, nid_t *pino)
112 {
113 struct dentry *dentry;
114
115 inode = igrab(inode);
116 dentry = d_find_any_alias(inode);
117 iput(inode);
118 if (!dentry)
119 return 0;
120
121 if (update_dent_inode(inode, inode, &dentry->d_name)) {
122 dput(dentry);
123 return 0;
124 }
125
126 *pino = parent_ino(dentry);
127 dput(dentry);
128 return 1;
129 }
130
131 static inline bool need_do_checkpoint(struct inode *inode)
132 {
133 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
134 bool need_cp = false;
135
136 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
137 need_cp = true;
138 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
139 need_cp = true;
140 else if (file_enc_name(inode) && need_dentry_mark(sbi, inode->i_ino))
141 need_cp = true;
142 else if (file_wrong_pino(inode))
143 need_cp = true;
144 else if (!space_for_roll_forward(sbi))
145 need_cp = true;
146 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
147 need_cp = true;
148 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
149 need_cp = true;
150 else if (test_opt(sbi, FASTBOOT))
151 need_cp = true;
152 else if (sbi->active_logs == 2)
153 need_cp = true;
154
155 return need_cp;
156 }
157
158 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
159 {
160 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
161 bool ret = false;
162 /* But we need to avoid that there are some inode updates */
163 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
164 ret = true;
165 f2fs_put_page(i, 0);
166 return ret;
167 }
168
169 static void try_to_fix_pino(struct inode *inode)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 nid_t pino;
173
174 down_write(&fi->i_sem);
175 fi->xattr_ver = 0;
176 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
177 get_parent_ino(inode, &pino)) {
178 f2fs_i_pino_write(inode, pino);
179 file_got_pino(inode);
180 }
181 up_write(&fi->i_sem);
182 }
183
184 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
185 int datasync, bool atomic)
186 {
187 struct inode *inode = file->f_mapping->host;
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 nid_t ino = inode->i_ino;
190 int ret = 0;
191 bool need_cp = false;
192 struct writeback_control wbc = {
193 .sync_mode = WB_SYNC_ALL,
194 .nr_to_write = LONG_MAX,
195 .for_reclaim = 0,
196 };
197
198 if (unlikely(f2fs_readonly(inode->i_sb)))
199 return 0;
200
201 trace_f2fs_sync_file_enter(inode);
202
203 /* if fdatasync is triggered, let's do in-place-update */
204 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
205 set_inode_flag(inode, FI_NEED_IPU);
206 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
207 clear_inode_flag(inode, FI_NEED_IPU);
208
209 if (ret) {
210 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
211 return ret;
212 }
213
214 /* if the inode is dirty, let's recover all the time */
215 if (!datasync && !f2fs_skip_inode_update(inode)) {
216 f2fs_write_inode(inode, NULL);
217 goto go_write;
218 }
219
220 /*
221 * if there is no written data, don't waste time to write recovery info.
222 */
223 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
224 !exist_written_data(sbi, ino, APPEND_INO)) {
225
226 /* it may call write_inode just prior to fsync */
227 if (need_inode_page_update(sbi, ino))
228 goto go_write;
229
230 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
231 exist_written_data(sbi, ino, UPDATE_INO))
232 goto flush_out;
233 goto out;
234 }
235 go_write:
236 /*
237 * Both of fdatasync() and fsync() are able to be recovered from
238 * sudden-power-off.
239 */
240 down_read(&F2FS_I(inode)->i_sem);
241 need_cp = need_do_checkpoint(inode);
242 up_read(&F2FS_I(inode)->i_sem);
243
244 if (need_cp) {
245 /* all the dirty node pages should be flushed for POR */
246 ret = f2fs_sync_fs(inode->i_sb, 1);
247
248 /*
249 * We've secured consistency through sync_fs. Following pino
250 * will be used only for fsynced inodes after checkpoint.
251 */
252 try_to_fix_pino(inode);
253 clear_inode_flag(inode, FI_APPEND_WRITE);
254 clear_inode_flag(inode, FI_UPDATE_WRITE);
255 goto out;
256 }
257 sync_nodes:
258 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
259 if (ret)
260 goto out;
261
262 /* if cp_error was enabled, we should avoid infinite loop */
263 if (unlikely(f2fs_cp_error(sbi))) {
264 ret = -EIO;
265 goto out;
266 }
267
268 if (need_inode_block_update(sbi, ino)) {
269 f2fs_mark_inode_dirty_sync(inode);
270 f2fs_write_inode(inode, NULL);
271 goto sync_nodes;
272 }
273
274 ret = wait_on_node_pages_writeback(sbi, ino);
275 if (ret)
276 goto out;
277
278 /* once recovery info is written, don't need to tack this */
279 remove_ino_entry(sbi, ino, APPEND_INO);
280 clear_inode_flag(inode, FI_APPEND_WRITE);
281 flush_out:
282 remove_ino_entry(sbi, ino, UPDATE_INO);
283 clear_inode_flag(inode, FI_UPDATE_WRITE);
284 ret = f2fs_issue_flush(sbi);
285 f2fs_update_time(sbi, REQ_TIME);
286 out:
287 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
288 f2fs_trace_ios(NULL, 1);
289 return ret;
290 }
291
292 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
293 {
294 return f2fs_do_sync_file(file, start, end, datasync, false);
295 }
296
297 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
298 pgoff_t pgofs, int whence)
299 {
300 struct pagevec pvec;
301 int nr_pages;
302
303 if (whence != SEEK_DATA)
304 return 0;
305
306 /* find first dirty page index */
307 pagevec_init(&pvec, 0);
308 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
309 PAGECACHE_TAG_DIRTY, 1);
310 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
311 pagevec_release(&pvec);
312 return pgofs;
313 }
314
315 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
316 int whence)
317 {
318 switch (whence) {
319 case SEEK_DATA:
320 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
321 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
322 return true;
323 break;
324 case SEEK_HOLE:
325 if (blkaddr == NULL_ADDR)
326 return true;
327 break;
328 }
329 return false;
330 }
331
332 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
333 {
334 struct inode *inode = file->f_mapping->host;
335 loff_t maxbytes = inode->i_sb->s_maxbytes;
336 struct dnode_of_data dn;
337 pgoff_t pgofs, end_offset, dirty;
338 loff_t data_ofs = offset;
339 loff_t isize;
340 int err = 0;
341
342 inode_lock(inode);
343
344 isize = i_size_read(inode);
345 if (offset >= isize)
346 goto fail;
347
348 /* handle inline data case */
349 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
350 if (whence == SEEK_HOLE)
351 data_ofs = isize;
352 goto found;
353 }
354
355 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
356
357 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
358
359 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
360 set_new_dnode(&dn, inode, NULL, NULL, 0);
361 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
362 if (err && err != -ENOENT) {
363 goto fail;
364 } else if (err == -ENOENT) {
365 /* direct node does not exists */
366 if (whence == SEEK_DATA) {
367 pgofs = get_next_page_offset(&dn, pgofs);
368 continue;
369 } else {
370 goto found;
371 }
372 }
373
374 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
375
376 /* find data/hole in dnode block */
377 for (; dn.ofs_in_node < end_offset;
378 dn.ofs_in_node++, pgofs++,
379 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
380 block_t blkaddr;
381 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
382
383 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
384 f2fs_put_dnode(&dn);
385 goto found;
386 }
387 }
388 f2fs_put_dnode(&dn);
389 }
390
391 if (whence == SEEK_DATA)
392 goto fail;
393 found:
394 if (whence == SEEK_HOLE && data_ofs > isize)
395 data_ofs = isize;
396 inode_unlock(inode);
397 return vfs_setpos(file, data_ofs, maxbytes);
398 fail:
399 inode_unlock(inode);
400 return -ENXIO;
401 }
402
403 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
404 {
405 struct inode *inode = file->f_mapping->host;
406 loff_t maxbytes = inode->i_sb->s_maxbytes;
407
408 switch (whence) {
409 case SEEK_SET:
410 case SEEK_CUR:
411 case SEEK_END:
412 return generic_file_llseek_size(file, offset, whence,
413 maxbytes, i_size_read(inode));
414 case SEEK_DATA:
415 case SEEK_HOLE:
416 if (offset < 0)
417 return -ENXIO;
418 return f2fs_seek_block(file, offset, whence);
419 }
420
421 return -EINVAL;
422 }
423
424 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
425 {
426 struct inode *inode = file_inode(file);
427 int err;
428
429 if (f2fs_encrypted_inode(inode)) {
430 err = fscrypt_get_encryption_info(inode);
431 if (err)
432 return 0;
433 if (!f2fs_encrypted_inode(inode))
434 return -ENOKEY;
435 }
436
437 /* we don't need to use inline_data strictly */
438 err = f2fs_convert_inline_inode(inode);
439 if (err)
440 return err;
441
442 file_accessed(file);
443 vma->vm_ops = &f2fs_file_vm_ops;
444 return 0;
445 }
446
447 static int f2fs_file_open(struct inode *inode, struct file *filp)
448 {
449 int ret = generic_file_open(inode, filp);
450 struct dentry *dir;
451
452 if (!ret && f2fs_encrypted_inode(inode)) {
453 ret = fscrypt_get_encryption_info(inode);
454 if (ret)
455 return -EACCES;
456 if (!fscrypt_has_encryption_key(inode))
457 return -ENOKEY;
458 }
459 dir = dget_parent(file_dentry(filp));
460 if (f2fs_encrypted_inode(d_inode(dir)) &&
461 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
462 dput(dir);
463 return -EPERM;
464 }
465 dput(dir);
466 return ret;
467 }
468
469 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
470 {
471 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
472 struct f2fs_node *raw_node;
473 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
474 __le32 *addr;
475
476 raw_node = F2FS_NODE(dn->node_page);
477 addr = blkaddr_in_node(raw_node) + ofs;
478
479 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
480 block_t blkaddr = le32_to_cpu(*addr);
481 if (blkaddr == NULL_ADDR)
482 continue;
483
484 dn->data_blkaddr = NULL_ADDR;
485 set_data_blkaddr(dn);
486 invalidate_blocks(sbi, blkaddr);
487 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
488 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
489 nr_free++;
490 }
491
492 if (nr_free) {
493 pgoff_t fofs;
494 /*
495 * once we invalidate valid blkaddr in range [ofs, ofs + count],
496 * we will invalidate all blkaddr in the whole range.
497 */
498 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
499 dn->inode) + ofs;
500 f2fs_update_extent_cache_range(dn, fofs, 0, len);
501 dec_valid_block_count(sbi, dn->inode, nr_free);
502 }
503 dn->ofs_in_node = ofs;
504
505 f2fs_update_time(sbi, REQ_TIME);
506 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
507 dn->ofs_in_node, nr_free);
508 return nr_free;
509 }
510
511 void truncate_data_blocks(struct dnode_of_data *dn)
512 {
513 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
514 }
515
516 static int truncate_partial_data_page(struct inode *inode, u64 from,
517 bool cache_only)
518 {
519 unsigned offset = from & (PAGE_SIZE - 1);
520 pgoff_t index = from >> PAGE_SHIFT;
521 struct address_space *mapping = inode->i_mapping;
522 struct page *page;
523
524 if (!offset && !cache_only)
525 return 0;
526
527 if (cache_only) {
528 page = f2fs_grab_cache_page(mapping, index, false);
529 if (page && PageUptodate(page))
530 goto truncate_out;
531 f2fs_put_page(page, 1);
532 return 0;
533 }
534
535 page = get_lock_data_page(inode, index, true);
536 if (IS_ERR(page))
537 return 0;
538 truncate_out:
539 f2fs_wait_on_page_writeback(page, DATA, true);
540 zero_user(page, offset, PAGE_SIZE - offset);
541 if (!cache_only || !f2fs_encrypted_inode(inode) ||
542 !S_ISREG(inode->i_mode))
543 set_page_dirty(page);
544 f2fs_put_page(page, 1);
545 return 0;
546 }
547
548 int truncate_blocks(struct inode *inode, u64 from, bool lock)
549 {
550 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
551 unsigned int blocksize = inode->i_sb->s_blocksize;
552 struct dnode_of_data dn;
553 pgoff_t free_from;
554 int count = 0, err = 0;
555 struct page *ipage;
556 bool truncate_page = false;
557
558 trace_f2fs_truncate_blocks_enter(inode, from);
559
560 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
561
562 if (free_from >= sbi->max_file_blocks)
563 goto free_partial;
564
565 if (lock)
566 f2fs_lock_op(sbi);
567
568 ipage = get_node_page(sbi, inode->i_ino);
569 if (IS_ERR(ipage)) {
570 err = PTR_ERR(ipage);
571 goto out;
572 }
573
574 if (f2fs_has_inline_data(inode)) {
575 if (truncate_inline_inode(ipage, from))
576 set_page_dirty(ipage);
577 f2fs_put_page(ipage, 1);
578 truncate_page = true;
579 goto out;
580 }
581
582 set_new_dnode(&dn, inode, ipage, NULL, 0);
583 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
584 if (err) {
585 if (err == -ENOENT)
586 goto free_next;
587 goto out;
588 }
589
590 count = ADDRS_PER_PAGE(dn.node_page, inode);
591
592 count -= dn.ofs_in_node;
593 f2fs_bug_on(sbi, count < 0);
594
595 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
596 truncate_data_blocks_range(&dn, count);
597 free_from += count;
598 }
599
600 f2fs_put_dnode(&dn);
601 free_next:
602 err = truncate_inode_blocks(inode, free_from);
603 out:
604 if (lock)
605 f2fs_unlock_op(sbi);
606 free_partial:
607 /* lastly zero out the first data page */
608 if (!err)
609 err = truncate_partial_data_page(inode, from, truncate_page);
610
611 trace_f2fs_truncate_blocks_exit(inode, err);
612 return err;
613 }
614
615 int f2fs_truncate(struct inode *inode)
616 {
617 int err;
618
619 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
620 S_ISLNK(inode->i_mode)))
621 return 0;
622
623 trace_f2fs_truncate(inode);
624
625 /* we should check inline_data size */
626 if (!f2fs_may_inline_data(inode)) {
627 err = f2fs_convert_inline_inode(inode);
628 if (err)
629 return err;
630 }
631
632 err = truncate_blocks(inode, i_size_read(inode), true);
633 if (err)
634 return err;
635
636 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
637 f2fs_mark_inode_dirty_sync(inode);
638 return 0;
639 }
640
641 int f2fs_getattr(struct vfsmount *mnt,
642 struct dentry *dentry, struct kstat *stat)
643 {
644 struct inode *inode = d_inode(dentry);
645 generic_fillattr(inode, stat);
646 stat->blocks <<= 3;
647 return 0;
648 }
649
650 #ifdef CONFIG_F2FS_FS_POSIX_ACL
651 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
652 {
653 unsigned int ia_valid = attr->ia_valid;
654
655 if (ia_valid & ATTR_UID)
656 inode->i_uid = attr->ia_uid;
657 if (ia_valid & ATTR_GID)
658 inode->i_gid = attr->ia_gid;
659 if (ia_valid & ATTR_ATIME)
660 inode->i_atime = timespec_trunc(attr->ia_atime,
661 inode->i_sb->s_time_gran);
662 if (ia_valid & ATTR_MTIME)
663 inode->i_mtime = timespec_trunc(attr->ia_mtime,
664 inode->i_sb->s_time_gran);
665 if (ia_valid & ATTR_CTIME)
666 inode->i_ctime = timespec_trunc(attr->ia_ctime,
667 inode->i_sb->s_time_gran);
668 if (ia_valid & ATTR_MODE) {
669 umode_t mode = attr->ia_mode;
670
671 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
672 mode &= ~S_ISGID;
673 set_acl_inode(inode, mode);
674 }
675 }
676 #else
677 #define __setattr_copy setattr_copy
678 #endif
679
680 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
681 {
682 struct inode *inode = d_inode(dentry);
683 int err;
684
685 err = inode_change_ok(inode, attr);
686 if (err)
687 return err;
688
689 if (attr->ia_valid & ATTR_SIZE) {
690 if (f2fs_encrypted_inode(inode) &&
691 fscrypt_get_encryption_info(inode))
692 return -EACCES;
693
694 if (attr->ia_size <= i_size_read(inode)) {
695 truncate_setsize(inode, attr->ia_size);
696 err = f2fs_truncate(inode);
697 if (err)
698 return err;
699 f2fs_balance_fs(F2FS_I_SB(inode), true);
700 } else {
701 /*
702 * do not trim all blocks after i_size if target size is
703 * larger than i_size.
704 */
705 truncate_setsize(inode, attr->ia_size);
706
707 /* should convert inline inode here */
708 if (!f2fs_may_inline_data(inode)) {
709 err = f2fs_convert_inline_inode(inode);
710 if (err)
711 return err;
712 }
713 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
714 }
715 }
716
717 __setattr_copy(inode, attr);
718
719 if (attr->ia_valid & ATTR_MODE) {
720 err = posix_acl_chmod(inode, get_inode_mode(inode));
721 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
722 inode->i_mode = F2FS_I(inode)->i_acl_mode;
723 clear_inode_flag(inode, FI_ACL_MODE);
724 }
725 }
726
727 f2fs_mark_inode_dirty_sync(inode);
728 return err;
729 }
730
731 const struct inode_operations f2fs_file_inode_operations = {
732 .getattr = f2fs_getattr,
733 .setattr = f2fs_setattr,
734 .get_acl = f2fs_get_acl,
735 .set_acl = f2fs_set_acl,
736 #ifdef CONFIG_F2FS_FS_XATTR
737 .setxattr = generic_setxattr,
738 .getxattr = generic_getxattr,
739 .listxattr = f2fs_listxattr,
740 .removexattr = generic_removexattr,
741 #endif
742 .fiemap = f2fs_fiemap,
743 };
744
745 static int fill_zero(struct inode *inode, pgoff_t index,
746 loff_t start, loff_t len)
747 {
748 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
749 struct page *page;
750
751 if (!len)
752 return 0;
753
754 f2fs_balance_fs(sbi, true);
755
756 f2fs_lock_op(sbi);
757 page = get_new_data_page(inode, NULL, index, false);
758 f2fs_unlock_op(sbi);
759
760 if (IS_ERR(page))
761 return PTR_ERR(page);
762
763 f2fs_wait_on_page_writeback(page, DATA, true);
764 zero_user(page, start, len);
765 set_page_dirty(page);
766 f2fs_put_page(page, 1);
767 return 0;
768 }
769
770 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
771 {
772 int err;
773
774 while (pg_start < pg_end) {
775 struct dnode_of_data dn;
776 pgoff_t end_offset, count;
777
778 set_new_dnode(&dn, inode, NULL, NULL, 0);
779 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
780 if (err) {
781 if (err == -ENOENT) {
782 pg_start++;
783 continue;
784 }
785 return err;
786 }
787
788 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
789 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
790
791 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
792
793 truncate_data_blocks_range(&dn, count);
794 f2fs_put_dnode(&dn);
795
796 pg_start += count;
797 }
798 return 0;
799 }
800
801 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
802 {
803 pgoff_t pg_start, pg_end;
804 loff_t off_start, off_end;
805 int ret;
806
807 ret = f2fs_convert_inline_inode(inode);
808 if (ret)
809 return ret;
810
811 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
812 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
813
814 off_start = offset & (PAGE_SIZE - 1);
815 off_end = (offset + len) & (PAGE_SIZE - 1);
816
817 if (pg_start == pg_end) {
818 ret = fill_zero(inode, pg_start, off_start,
819 off_end - off_start);
820 if (ret)
821 return ret;
822 } else {
823 if (off_start) {
824 ret = fill_zero(inode, pg_start++, off_start,
825 PAGE_SIZE - off_start);
826 if (ret)
827 return ret;
828 }
829 if (off_end) {
830 ret = fill_zero(inode, pg_end, 0, off_end);
831 if (ret)
832 return ret;
833 }
834
835 if (pg_start < pg_end) {
836 struct address_space *mapping = inode->i_mapping;
837 loff_t blk_start, blk_end;
838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
839
840 f2fs_balance_fs(sbi, true);
841
842 blk_start = (loff_t)pg_start << PAGE_SHIFT;
843 blk_end = (loff_t)pg_end << PAGE_SHIFT;
844 truncate_inode_pages_range(mapping, blk_start,
845 blk_end - 1);
846
847 f2fs_lock_op(sbi);
848 ret = truncate_hole(inode, pg_start, pg_end);
849 f2fs_unlock_op(sbi);
850 }
851 }
852
853 return ret;
854 }
855
856 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
857 int *do_replace, pgoff_t off, pgoff_t len)
858 {
859 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
860 struct dnode_of_data dn;
861 int ret, done, i;
862
863 next_dnode:
864 set_new_dnode(&dn, inode, NULL, NULL, 0);
865 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
866 if (ret && ret != -ENOENT) {
867 return ret;
868 } else if (ret == -ENOENT) {
869 if (dn.max_level == 0)
870 return -ENOENT;
871 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
872 blkaddr += done;
873 do_replace += done;
874 goto next;
875 }
876
877 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
878 dn.ofs_in_node, len);
879 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
880 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
881 if (!is_checkpointed_data(sbi, *blkaddr)) {
882
883 if (test_opt(sbi, LFS)) {
884 f2fs_put_dnode(&dn);
885 return -ENOTSUPP;
886 }
887
888 /* do not invalidate this block address */
889 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
890 *do_replace = 1;
891 }
892 }
893 f2fs_put_dnode(&dn);
894 next:
895 len -= done;
896 off += done;
897 if (len)
898 goto next_dnode;
899 return 0;
900 }
901
902 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
903 int *do_replace, pgoff_t off, int len)
904 {
905 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
906 struct dnode_of_data dn;
907 int ret, i;
908
909 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
910 if (*do_replace == 0)
911 continue;
912
913 set_new_dnode(&dn, inode, NULL, NULL, 0);
914 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
915 if (ret) {
916 dec_valid_block_count(sbi, inode, 1);
917 invalidate_blocks(sbi, *blkaddr);
918 } else {
919 f2fs_update_data_blkaddr(&dn, *blkaddr);
920 }
921 f2fs_put_dnode(&dn);
922 }
923 return 0;
924 }
925
926 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
927 block_t *blkaddr, int *do_replace,
928 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
929 {
930 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
931 pgoff_t i = 0;
932 int ret;
933
934 while (i < len) {
935 if (blkaddr[i] == NULL_ADDR && !full) {
936 i++;
937 continue;
938 }
939
940 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
941 struct dnode_of_data dn;
942 struct node_info ni;
943 size_t new_size;
944 pgoff_t ilen;
945
946 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
947 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
948 if (ret)
949 return ret;
950
951 get_node_info(sbi, dn.nid, &ni);
952 ilen = min((pgoff_t)
953 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
954 dn.ofs_in_node, len - i);
955 do {
956 dn.data_blkaddr = datablock_addr(dn.node_page,
957 dn.ofs_in_node);
958 truncate_data_blocks_range(&dn, 1);
959
960 if (do_replace[i]) {
961 f2fs_i_blocks_write(src_inode,
962 1, false);
963 f2fs_i_blocks_write(dst_inode,
964 1, true);
965 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
966 blkaddr[i], ni.version, true, false);
967
968 do_replace[i] = 0;
969 }
970 dn.ofs_in_node++;
971 i++;
972 new_size = (dst + i) << PAGE_SHIFT;
973 if (dst_inode->i_size < new_size)
974 f2fs_i_size_write(dst_inode, new_size);
975 } while ((do_replace[i] || blkaddr[i] == NULL_ADDR) && --ilen);
976
977 f2fs_put_dnode(&dn);
978 } else {
979 struct page *psrc, *pdst;
980
981 psrc = get_lock_data_page(src_inode, src + i, true);
982 if (IS_ERR(psrc))
983 return PTR_ERR(psrc);
984 pdst = get_new_data_page(dst_inode, NULL, dst + i,
985 true);
986 if (IS_ERR(pdst)) {
987 f2fs_put_page(psrc, 1);
988 return PTR_ERR(pdst);
989 }
990 f2fs_copy_page(psrc, pdst);
991 set_page_dirty(pdst);
992 f2fs_put_page(pdst, 1);
993 f2fs_put_page(psrc, 1);
994
995 ret = truncate_hole(src_inode, src + i, src + i + 1);
996 if (ret)
997 return ret;
998 i++;
999 }
1000 }
1001 return 0;
1002 }
1003
1004 static int __exchange_data_block(struct inode *src_inode,
1005 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1006 pgoff_t len, bool full)
1007 {
1008 block_t *src_blkaddr;
1009 int *do_replace;
1010 pgoff_t olen;
1011 int ret;
1012
1013 while (len) {
1014 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1015
1016 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1017 if (!src_blkaddr)
1018 return -ENOMEM;
1019
1020 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1021 if (!do_replace) {
1022 kvfree(src_blkaddr);
1023 return -ENOMEM;
1024 }
1025
1026 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1027 do_replace, src, olen);
1028 if (ret)
1029 goto roll_back;
1030
1031 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1032 do_replace, src, dst, olen, full);
1033 if (ret)
1034 goto roll_back;
1035
1036 src += olen;
1037 dst += olen;
1038 len -= olen;
1039
1040 kvfree(src_blkaddr);
1041 kvfree(do_replace);
1042 }
1043 return 0;
1044
1045 roll_back:
1046 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1047 kvfree(src_blkaddr);
1048 kvfree(do_replace);
1049 return ret;
1050 }
1051
1052 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1053 {
1054 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1055 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1056 int ret;
1057
1058 f2fs_balance_fs(sbi, true);
1059 f2fs_lock_op(sbi);
1060
1061 f2fs_drop_extent_tree(inode);
1062
1063 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1064 f2fs_unlock_op(sbi);
1065 return ret;
1066 }
1067
1068 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1069 {
1070 pgoff_t pg_start, pg_end;
1071 loff_t new_size;
1072 int ret;
1073
1074 if (offset + len >= i_size_read(inode))
1075 return -EINVAL;
1076
1077 /* collapse range should be aligned to block size of f2fs. */
1078 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1079 return -EINVAL;
1080
1081 ret = f2fs_convert_inline_inode(inode);
1082 if (ret)
1083 return ret;
1084
1085 pg_start = offset >> PAGE_SHIFT;
1086 pg_end = (offset + len) >> PAGE_SHIFT;
1087
1088 /* write out all dirty pages from offset */
1089 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1090 if (ret)
1091 return ret;
1092
1093 truncate_pagecache(inode, offset);
1094
1095 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1096 if (ret)
1097 return ret;
1098
1099 /* write out all moved pages, if possible */
1100 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1101 truncate_pagecache(inode, offset);
1102
1103 new_size = i_size_read(inode) - len;
1104 truncate_pagecache(inode, new_size);
1105
1106 ret = truncate_blocks(inode, new_size, true);
1107 if (!ret)
1108 f2fs_i_size_write(inode, new_size);
1109
1110 return ret;
1111 }
1112
1113 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1114 pgoff_t end)
1115 {
1116 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1117 pgoff_t index = start;
1118 unsigned int ofs_in_node = dn->ofs_in_node;
1119 blkcnt_t count = 0;
1120 int ret;
1121
1122 for (; index < end; index++, dn->ofs_in_node++) {
1123 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1124 count++;
1125 }
1126
1127 dn->ofs_in_node = ofs_in_node;
1128 ret = reserve_new_blocks(dn, count);
1129 if (ret)
1130 return ret;
1131
1132 dn->ofs_in_node = ofs_in_node;
1133 for (index = start; index < end; index++, dn->ofs_in_node++) {
1134 dn->data_blkaddr =
1135 datablock_addr(dn->node_page, dn->ofs_in_node);
1136 /*
1137 * reserve_new_blocks will not guarantee entire block
1138 * allocation.
1139 */
1140 if (dn->data_blkaddr == NULL_ADDR) {
1141 ret = -ENOSPC;
1142 break;
1143 }
1144 if (dn->data_blkaddr != NEW_ADDR) {
1145 invalidate_blocks(sbi, dn->data_blkaddr);
1146 dn->data_blkaddr = NEW_ADDR;
1147 set_data_blkaddr(dn);
1148 }
1149 }
1150
1151 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1152
1153 return ret;
1154 }
1155
1156 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1157 int mode)
1158 {
1159 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1160 struct address_space *mapping = inode->i_mapping;
1161 pgoff_t index, pg_start, pg_end;
1162 loff_t new_size = i_size_read(inode);
1163 loff_t off_start, off_end;
1164 int ret = 0;
1165
1166 ret = inode_newsize_ok(inode, (len + offset));
1167 if (ret)
1168 return ret;
1169
1170 ret = f2fs_convert_inline_inode(inode);
1171 if (ret)
1172 return ret;
1173
1174 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1175 if (ret)
1176 return ret;
1177
1178 truncate_pagecache_range(inode, offset, offset + len - 1);
1179
1180 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1181 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1182
1183 off_start = offset & (PAGE_SIZE - 1);
1184 off_end = (offset + len) & (PAGE_SIZE - 1);
1185
1186 if (pg_start == pg_end) {
1187 ret = fill_zero(inode, pg_start, off_start,
1188 off_end - off_start);
1189 if (ret)
1190 return ret;
1191
1192 if (offset + len > new_size)
1193 new_size = offset + len;
1194 new_size = max_t(loff_t, new_size, offset + len);
1195 } else {
1196 if (off_start) {
1197 ret = fill_zero(inode, pg_start++, off_start,
1198 PAGE_SIZE - off_start);
1199 if (ret)
1200 return ret;
1201
1202 new_size = max_t(loff_t, new_size,
1203 (loff_t)pg_start << PAGE_SHIFT);
1204 }
1205
1206 for (index = pg_start; index < pg_end;) {
1207 struct dnode_of_data dn;
1208 unsigned int end_offset;
1209 pgoff_t end;
1210
1211 f2fs_lock_op(sbi);
1212
1213 set_new_dnode(&dn, inode, NULL, NULL, 0);
1214 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1215 if (ret) {
1216 f2fs_unlock_op(sbi);
1217 goto out;
1218 }
1219
1220 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1221 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1222
1223 ret = f2fs_do_zero_range(&dn, index, end);
1224 f2fs_put_dnode(&dn);
1225 f2fs_unlock_op(sbi);
1226 if (ret)
1227 goto out;
1228
1229 index = end;
1230 new_size = max_t(loff_t, new_size,
1231 (loff_t)index << PAGE_SHIFT);
1232 }
1233
1234 if (off_end) {
1235 ret = fill_zero(inode, pg_end, 0, off_end);
1236 if (ret)
1237 goto out;
1238
1239 new_size = max_t(loff_t, new_size, offset + len);
1240 }
1241 }
1242
1243 out:
1244 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1245 f2fs_i_size_write(inode, new_size);
1246
1247 return ret;
1248 }
1249
1250 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1251 {
1252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1253 pgoff_t nr, pg_start, pg_end, delta, idx;
1254 loff_t new_size;
1255 int ret = 0;
1256
1257 new_size = i_size_read(inode) + len;
1258 if (new_size > inode->i_sb->s_maxbytes)
1259 return -EFBIG;
1260
1261 if (offset >= i_size_read(inode))
1262 return -EINVAL;
1263
1264 /* insert range should be aligned to block size of f2fs. */
1265 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1266 return -EINVAL;
1267
1268 ret = f2fs_convert_inline_inode(inode);
1269 if (ret)
1270 return ret;
1271
1272 f2fs_balance_fs(sbi, true);
1273
1274 ret = truncate_blocks(inode, i_size_read(inode), true);
1275 if (ret)
1276 return ret;
1277
1278 /* write out all dirty pages from offset */
1279 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1280 if (ret)
1281 return ret;
1282
1283 truncate_pagecache(inode, offset);
1284
1285 pg_start = offset >> PAGE_SHIFT;
1286 pg_end = (offset + len) >> PAGE_SHIFT;
1287 delta = pg_end - pg_start;
1288 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1289
1290 while (!ret && idx > pg_start) {
1291 nr = idx - pg_start;
1292 if (nr > delta)
1293 nr = delta;
1294 idx -= nr;
1295
1296 f2fs_lock_op(sbi);
1297 f2fs_drop_extent_tree(inode);
1298
1299 ret = __exchange_data_block(inode, inode, idx,
1300 idx + delta, nr, false);
1301 f2fs_unlock_op(sbi);
1302 }
1303
1304 /* write out all moved pages, if possible */
1305 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1306 truncate_pagecache(inode, offset);
1307
1308 if (!ret)
1309 f2fs_i_size_write(inode, new_size);
1310 return ret;
1311 }
1312
1313 static int expand_inode_data(struct inode *inode, loff_t offset,
1314 loff_t len, int mode)
1315 {
1316 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1317 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1318 pgoff_t pg_end;
1319 loff_t new_size = i_size_read(inode);
1320 loff_t off_end;
1321 int ret;
1322
1323 ret = inode_newsize_ok(inode, (len + offset));
1324 if (ret)
1325 return ret;
1326
1327 ret = f2fs_convert_inline_inode(inode);
1328 if (ret)
1329 return ret;
1330
1331 f2fs_balance_fs(sbi, true);
1332
1333 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1334 off_end = (offset + len) & (PAGE_SIZE - 1);
1335
1336 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1337 map.m_len = pg_end - map.m_lblk;
1338 if (off_end)
1339 map.m_len++;
1340
1341 ret = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1342 if (ret) {
1343 pgoff_t last_off;
1344
1345 if (!map.m_len)
1346 return ret;
1347
1348 last_off = map.m_lblk + map.m_len - 1;
1349
1350 /* update new size to the failed position */
1351 new_size = (last_off == pg_end) ? offset + len:
1352 (loff_t)(last_off + 1) << PAGE_SHIFT;
1353 } else {
1354 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1355 }
1356
1357 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1358 f2fs_i_size_write(inode, new_size);
1359
1360 return ret;
1361 }
1362
1363 static long f2fs_fallocate(struct file *file, int mode,
1364 loff_t offset, loff_t len)
1365 {
1366 struct inode *inode = file_inode(file);
1367 long ret = 0;
1368
1369 /* f2fs only support ->fallocate for regular file */
1370 if (!S_ISREG(inode->i_mode))
1371 return -EINVAL;
1372
1373 if (f2fs_encrypted_inode(inode) &&
1374 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1375 return -EOPNOTSUPP;
1376
1377 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1378 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1379 FALLOC_FL_INSERT_RANGE))
1380 return -EOPNOTSUPP;
1381
1382 inode_lock(inode);
1383
1384 if (mode & FALLOC_FL_PUNCH_HOLE) {
1385 if (offset >= inode->i_size)
1386 goto out;
1387
1388 ret = punch_hole(inode, offset, len);
1389 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1390 ret = f2fs_collapse_range(inode, offset, len);
1391 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1392 ret = f2fs_zero_range(inode, offset, len, mode);
1393 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1394 ret = f2fs_insert_range(inode, offset, len);
1395 } else {
1396 ret = expand_inode_data(inode, offset, len, mode);
1397 }
1398
1399 if (!ret) {
1400 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1401 f2fs_mark_inode_dirty_sync(inode);
1402 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1403 }
1404
1405 out:
1406 inode_unlock(inode);
1407
1408 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1409 return ret;
1410 }
1411
1412 static int f2fs_release_file(struct inode *inode, struct file *filp)
1413 {
1414 /*
1415 * f2fs_relase_file is called at every close calls. So we should
1416 * not drop any inmemory pages by close called by other process.
1417 */
1418 if (!(filp->f_mode & FMODE_WRITE) ||
1419 atomic_read(&inode->i_writecount) != 1)
1420 return 0;
1421
1422 /* some remained atomic pages should discarded */
1423 if (f2fs_is_atomic_file(inode))
1424 drop_inmem_pages(inode);
1425 if (f2fs_is_volatile_file(inode)) {
1426 clear_inode_flag(inode, FI_VOLATILE_FILE);
1427 set_inode_flag(inode, FI_DROP_CACHE);
1428 filemap_fdatawrite(inode->i_mapping);
1429 clear_inode_flag(inode, FI_DROP_CACHE);
1430 }
1431 return 0;
1432 }
1433
1434 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1435 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1436
1437 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1438 {
1439 if (S_ISDIR(mode))
1440 return flags;
1441 else if (S_ISREG(mode))
1442 return flags & F2FS_REG_FLMASK;
1443 else
1444 return flags & F2FS_OTHER_FLMASK;
1445 }
1446
1447 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1448 {
1449 struct inode *inode = file_inode(filp);
1450 struct f2fs_inode_info *fi = F2FS_I(inode);
1451 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1452 return put_user(flags, (int __user *)arg);
1453 }
1454
1455 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1456 {
1457 struct inode *inode = file_inode(filp);
1458 struct f2fs_inode_info *fi = F2FS_I(inode);
1459 unsigned int flags;
1460 unsigned int oldflags;
1461 int ret;
1462
1463 if (!inode_owner_or_capable(inode))
1464 return -EACCES;
1465
1466 if (get_user(flags, (int __user *)arg))
1467 return -EFAULT;
1468
1469 ret = mnt_want_write_file(filp);
1470 if (ret)
1471 return ret;
1472
1473 flags = f2fs_mask_flags(inode->i_mode, flags);
1474
1475 inode_lock(inode);
1476
1477 oldflags = fi->i_flags;
1478
1479 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1480 if (!capable(CAP_LINUX_IMMUTABLE)) {
1481 inode_unlock(inode);
1482 ret = -EPERM;
1483 goto out;
1484 }
1485 }
1486
1487 flags = flags & FS_FL_USER_MODIFIABLE;
1488 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1489 fi->i_flags = flags;
1490 inode_unlock(inode);
1491
1492 inode->i_ctime = CURRENT_TIME;
1493 f2fs_set_inode_flags(inode);
1494 out:
1495 mnt_drop_write_file(filp);
1496 return ret;
1497 }
1498
1499 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1500 {
1501 struct inode *inode = file_inode(filp);
1502
1503 return put_user(inode->i_generation, (int __user *)arg);
1504 }
1505
1506 static int f2fs_ioc_start_atomic_write(struct file *filp)
1507 {
1508 struct inode *inode = file_inode(filp);
1509 int ret;
1510
1511 if (!inode_owner_or_capable(inode))
1512 return -EACCES;
1513
1514 ret = mnt_want_write_file(filp);
1515 if (ret)
1516 return ret;
1517
1518 inode_lock(inode);
1519
1520 if (f2fs_is_atomic_file(inode))
1521 goto out;
1522
1523 ret = f2fs_convert_inline_inode(inode);
1524 if (ret)
1525 goto out;
1526
1527 set_inode_flag(inode, FI_ATOMIC_FILE);
1528 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1529
1530 if (!get_dirty_pages(inode))
1531 goto out;
1532
1533 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1534 "Unexpected flush for atomic writes: ino=%lu, npages=%lld",
1535 inode->i_ino, get_dirty_pages(inode));
1536 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1537 if (ret)
1538 clear_inode_flag(inode, FI_ATOMIC_FILE);
1539 out:
1540 inode_unlock(inode);
1541 mnt_drop_write_file(filp);
1542 return ret;
1543 }
1544
1545 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1546 {
1547 struct inode *inode = file_inode(filp);
1548 int ret;
1549
1550 if (!inode_owner_or_capable(inode))
1551 return -EACCES;
1552
1553 ret = mnt_want_write_file(filp);
1554 if (ret)
1555 return ret;
1556
1557 inode_lock(inode);
1558
1559 if (f2fs_is_volatile_file(inode))
1560 goto err_out;
1561
1562 if (f2fs_is_atomic_file(inode)) {
1563 clear_inode_flag(inode, FI_ATOMIC_FILE);
1564 ret = commit_inmem_pages(inode);
1565 if (ret) {
1566 set_inode_flag(inode, FI_ATOMIC_FILE);
1567 goto err_out;
1568 }
1569 }
1570
1571 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1572 err_out:
1573 inode_unlock(inode);
1574 mnt_drop_write_file(filp);
1575 return ret;
1576 }
1577
1578 static int f2fs_ioc_start_volatile_write(struct file *filp)
1579 {
1580 struct inode *inode = file_inode(filp);
1581 int ret;
1582
1583 if (!inode_owner_or_capable(inode))
1584 return -EACCES;
1585
1586 ret = mnt_want_write_file(filp);
1587 if (ret)
1588 return ret;
1589
1590 inode_lock(inode);
1591
1592 if (f2fs_is_volatile_file(inode))
1593 goto out;
1594
1595 ret = f2fs_convert_inline_inode(inode);
1596 if (ret)
1597 goto out;
1598
1599 set_inode_flag(inode, FI_VOLATILE_FILE);
1600 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1601 out:
1602 inode_unlock(inode);
1603 mnt_drop_write_file(filp);
1604 return ret;
1605 }
1606
1607 static int f2fs_ioc_release_volatile_write(struct file *filp)
1608 {
1609 struct inode *inode = file_inode(filp);
1610 int ret;
1611
1612 if (!inode_owner_or_capable(inode))
1613 return -EACCES;
1614
1615 ret = mnt_want_write_file(filp);
1616 if (ret)
1617 return ret;
1618
1619 inode_lock(inode);
1620
1621 if (!f2fs_is_volatile_file(inode))
1622 goto out;
1623
1624 if (!f2fs_is_first_block_written(inode)) {
1625 ret = truncate_partial_data_page(inode, 0, true);
1626 goto out;
1627 }
1628
1629 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1630 out:
1631 inode_unlock(inode);
1632 mnt_drop_write_file(filp);
1633 return ret;
1634 }
1635
1636 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1637 {
1638 struct inode *inode = file_inode(filp);
1639 int ret;
1640
1641 if (!inode_owner_or_capable(inode))
1642 return -EACCES;
1643
1644 ret = mnt_want_write_file(filp);
1645 if (ret)
1646 return ret;
1647
1648 inode_lock(inode);
1649
1650 if (f2fs_is_atomic_file(inode))
1651 drop_inmem_pages(inode);
1652 if (f2fs_is_volatile_file(inode)) {
1653 clear_inode_flag(inode, FI_VOLATILE_FILE);
1654 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1655 }
1656
1657 inode_unlock(inode);
1658
1659 mnt_drop_write_file(filp);
1660 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1661 return ret;
1662 }
1663
1664 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1665 {
1666 struct inode *inode = file_inode(filp);
1667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1668 struct super_block *sb = sbi->sb;
1669 __u32 in;
1670 int ret;
1671
1672 if (!capable(CAP_SYS_ADMIN))
1673 return -EPERM;
1674
1675 if (get_user(in, (__u32 __user *)arg))
1676 return -EFAULT;
1677
1678 ret = mnt_want_write_file(filp);
1679 if (ret)
1680 return ret;
1681
1682 switch (in) {
1683 case F2FS_GOING_DOWN_FULLSYNC:
1684 sb = freeze_bdev(sb->s_bdev);
1685 if (sb && !IS_ERR(sb)) {
1686 f2fs_stop_checkpoint(sbi, false);
1687 thaw_bdev(sb->s_bdev, sb);
1688 }
1689 break;
1690 case F2FS_GOING_DOWN_METASYNC:
1691 /* do checkpoint only */
1692 f2fs_sync_fs(sb, 1);
1693 f2fs_stop_checkpoint(sbi, false);
1694 break;
1695 case F2FS_GOING_DOWN_NOSYNC:
1696 f2fs_stop_checkpoint(sbi, false);
1697 break;
1698 case F2FS_GOING_DOWN_METAFLUSH:
1699 sync_meta_pages(sbi, META, LONG_MAX);
1700 f2fs_stop_checkpoint(sbi, false);
1701 break;
1702 default:
1703 ret = -EINVAL;
1704 goto out;
1705 }
1706 f2fs_update_time(sbi, REQ_TIME);
1707 out:
1708 mnt_drop_write_file(filp);
1709 return ret;
1710 }
1711
1712 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1713 {
1714 struct inode *inode = file_inode(filp);
1715 struct super_block *sb = inode->i_sb;
1716 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1717 struct fstrim_range range;
1718 int ret;
1719
1720 if (!capable(CAP_SYS_ADMIN))
1721 return -EPERM;
1722
1723 if (!blk_queue_discard(q))
1724 return -EOPNOTSUPP;
1725
1726 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1727 sizeof(range)))
1728 return -EFAULT;
1729
1730 ret = mnt_want_write_file(filp);
1731 if (ret)
1732 return ret;
1733
1734 range.minlen = max((unsigned int)range.minlen,
1735 q->limits.discard_granularity);
1736 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1737 mnt_drop_write_file(filp);
1738 if (ret < 0)
1739 return ret;
1740
1741 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1742 sizeof(range)))
1743 return -EFAULT;
1744 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1745 return 0;
1746 }
1747
1748 static bool uuid_is_nonzero(__u8 u[16])
1749 {
1750 int i;
1751
1752 for (i = 0; i < 16; i++)
1753 if (u[i])
1754 return true;
1755 return false;
1756 }
1757
1758 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1759 {
1760 struct fscrypt_policy policy;
1761 struct inode *inode = file_inode(filp);
1762 int ret;
1763
1764 if (copy_from_user(&policy, (struct fscrypt_policy __user *)arg,
1765 sizeof(policy)))
1766 return -EFAULT;
1767
1768 ret = mnt_want_write_file(filp);
1769 if (ret)
1770 return ret;
1771
1772 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1773 ret = fscrypt_process_policy(inode, &policy);
1774
1775 mnt_drop_write_file(filp);
1776 return ret;
1777 }
1778
1779 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1780 {
1781 struct fscrypt_policy policy;
1782 struct inode *inode = file_inode(filp);
1783 int err;
1784
1785 err = fscrypt_get_policy(inode, &policy);
1786 if (err)
1787 return err;
1788
1789 if (copy_to_user((struct fscrypt_policy __user *)arg, &policy, sizeof(policy)))
1790 return -EFAULT;
1791 return 0;
1792 }
1793
1794 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1795 {
1796 struct inode *inode = file_inode(filp);
1797 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1798 int err;
1799
1800 if (!f2fs_sb_has_crypto(inode->i_sb))
1801 return -EOPNOTSUPP;
1802
1803 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1804 goto got_it;
1805
1806 err = mnt_want_write_file(filp);
1807 if (err)
1808 return err;
1809
1810 /* update superblock with uuid */
1811 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1812
1813 err = f2fs_commit_super(sbi, false);
1814 if (err) {
1815 /* undo new data */
1816 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1817 mnt_drop_write_file(filp);
1818 return err;
1819 }
1820 mnt_drop_write_file(filp);
1821 got_it:
1822 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1823 16))
1824 return -EFAULT;
1825 return 0;
1826 }
1827
1828 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1829 {
1830 struct inode *inode = file_inode(filp);
1831 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1832 __u32 sync;
1833 int ret;
1834
1835 if (!capable(CAP_SYS_ADMIN))
1836 return -EPERM;
1837
1838 if (get_user(sync, (__u32 __user *)arg))
1839 return -EFAULT;
1840
1841 if (f2fs_readonly(sbi->sb))
1842 return -EROFS;
1843
1844 ret = mnt_want_write_file(filp);
1845 if (ret)
1846 return ret;
1847
1848 if (!sync) {
1849 if (!mutex_trylock(&sbi->gc_mutex)) {
1850 ret = -EBUSY;
1851 goto out;
1852 }
1853 } else {
1854 mutex_lock(&sbi->gc_mutex);
1855 }
1856
1857 ret = f2fs_gc(sbi, sync);
1858 out:
1859 mnt_drop_write_file(filp);
1860 return ret;
1861 }
1862
1863 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1864 {
1865 struct inode *inode = file_inode(filp);
1866 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1867 int ret;
1868
1869 if (!capable(CAP_SYS_ADMIN))
1870 return -EPERM;
1871
1872 if (f2fs_readonly(sbi->sb))
1873 return -EROFS;
1874
1875 ret = mnt_want_write_file(filp);
1876 if (ret)
1877 return ret;
1878
1879 ret = f2fs_sync_fs(sbi->sb, 1);
1880
1881 mnt_drop_write_file(filp);
1882 return ret;
1883 }
1884
1885 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1886 struct file *filp,
1887 struct f2fs_defragment *range)
1888 {
1889 struct inode *inode = file_inode(filp);
1890 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1891 struct extent_info ei;
1892 pgoff_t pg_start, pg_end;
1893 unsigned int blk_per_seg = sbi->blocks_per_seg;
1894 unsigned int total = 0, sec_num;
1895 unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1896 block_t blk_end = 0;
1897 bool fragmented = false;
1898 int err;
1899
1900 /* if in-place-update policy is enabled, don't waste time here */
1901 if (need_inplace_update(inode))
1902 return -EINVAL;
1903
1904 pg_start = range->start >> PAGE_SHIFT;
1905 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1906
1907 f2fs_balance_fs(sbi, true);
1908
1909 inode_lock(inode);
1910
1911 /* writeback all dirty pages in the range */
1912 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1913 range->start + range->len - 1);
1914 if (err)
1915 goto out;
1916
1917 /*
1918 * lookup mapping info in extent cache, skip defragmenting if physical
1919 * block addresses are continuous.
1920 */
1921 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1922 if (ei.fofs + ei.len >= pg_end)
1923 goto out;
1924 }
1925
1926 map.m_lblk = pg_start;
1927
1928 /*
1929 * lookup mapping info in dnode page cache, skip defragmenting if all
1930 * physical block addresses are continuous even if there are hole(s)
1931 * in logical blocks.
1932 */
1933 while (map.m_lblk < pg_end) {
1934 map.m_len = pg_end - map.m_lblk;
1935 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1936 if (err)
1937 goto out;
1938
1939 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1940 map.m_lblk++;
1941 continue;
1942 }
1943
1944 if (blk_end && blk_end != map.m_pblk) {
1945 fragmented = true;
1946 break;
1947 }
1948 blk_end = map.m_pblk + map.m_len;
1949
1950 map.m_lblk += map.m_len;
1951 }
1952
1953 if (!fragmented)
1954 goto out;
1955
1956 map.m_lblk = pg_start;
1957 map.m_len = pg_end - pg_start;
1958
1959 sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1960
1961 /*
1962 * make sure there are enough free section for LFS allocation, this can
1963 * avoid defragment running in SSR mode when free section are allocated
1964 * intensively
1965 */
1966 if (has_not_enough_free_secs(sbi, sec_num)) {
1967 err = -EAGAIN;
1968 goto out;
1969 }
1970
1971 while (map.m_lblk < pg_end) {
1972 pgoff_t idx;
1973 int cnt = 0;
1974
1975 do_map:
1976 map.m_len = pg_end - map.m_lblk;
1977 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1978 if (err)
1979 goto clear_out;
1980
1981 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1982 map.m_lblk++;
1983 continue;
1984 }
1985
1986 set_inode_flag(inode, FI_DO_DEFRAG);
1987
1988 idx = map.m_lblk;
1989 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1990 struct page *page;
1991
1992 page = get_lock_data_page(inode, idx, true);
1993 if (IS_ERR(page)) {
1994 err = PTR_ERR(page);
1995 goto clear_out;
1996 }
1997
1998 set_page_dirty(page);
1999 f2fs_put_page(page, 1);
2000
2001 idx++;
2002 cnt++;
2003 total++;
2004 }
2005
2006 map.m_lblk = idx;
2007
2008 if (idx < pg_end && cnt < blk_per_seg)
2009 goto do_map;
2010
2011 clear_inode_flag(inode, FI_DO_DEFRAG);
2012
2013 err = filemap_fdatawrite(inode->i_mapping);
2014 if (err)
2015 goto out;
2016 }
2017 clear_out:
2018 clear_inode_flag(inode, FI_DO_DEFRAG);
2019 out:
2020 inode_unlock(inode);
2021 if (!err)
2022 range->len = (u64)total << PAGE_SHIFT;
2023 return err;
2024 }
2025
2026 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2027 {
2028 struct inode *inode = file_inode(filp);
2029 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2030 struct f2fs_defragment range;
2031 int err;
2032
2033 if (!capable(CAP_SYS_ADMIN))
2034 return -EPERM;
2035
2036 if (!S_ISREG(inode->i_mode))
2037 return -EINVAL;
2038
2039 err = mnt_want_write_file(filp);
2040 if (err)
2041 return err;
2042
2043 if (f2fs_readonly(sbi->sb)) {
2044 err = -EROFS;
2045 goto out;
2046 }
2047
2048 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2049 sizeof(range))) {
2050 err = -EFAULT;
2051 goto out;
2052 }
2053
2054 /* verify alignment of offset & size */
2055 if (range.start & (F2FS_BLKSIZE - 1) ||
2056 range.len & (F2FS_BLKSIZE - 1)) {
2057 err = -EINVAL;
2058 goto out;
2059 }
2060
2061 err = f2fs_defragment_range(sbi, filp, &range);
2062 f2fs_update_time(sbi, REQ_TIME);
2063 if (err < 0)
2064 goto out;
2065
2066 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2067 sizeof(range)))
2068 err = -EFAULT;
2069 out:
2070 mnt_drop_write_file(filp);
2071 return err;
2072 }
2073
2074 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2075 struct file *file_out, loff_t pos_out, size_t len)
2076 {
2077 struct inode *src = file_inode(file_in);
2078 struct inode *dst = file_inode(file_out);
2079 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2080 size_t olen = len, dst_max_i_size = 0;
2081 size_t dst_osize;
2082 int ret;
2083
2084 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2085 src->i_sb != dst->i_sb)
2086 return -EXDEV;
2087
2088 if (unlikely(f2fs_readonly(src->i_sb)))
2089 return -EROFS;
2090
2091 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2092 return -EINVAL;
2093
2094 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2095 return -EOPNOTSUPP;
2096
2097 inode_lock(src);
2098 if (src != dst) {
2099 if (!inode_trylock(dst)) {
2100 ret = -EBUSY;
2101 goto out;
2102 }
2103 }
2104
2105 ret = -EINVAL;
2106 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2107 goto out_unlock;
2108 if (len == 0)
2109 olen = len = src->i_size - pos_in;
2110 if (pos_in + len == src->i_size)
2111 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2112 if (len == 0) {
2113 ret = 0;
2114 goto out_unlock;
2115 }
2116
2117 dst_osize = dst->i_size;
2118 if (pos_out + olen > dst->i_size)
2119 dst_max_i_size = pos_out + olen;
2120
2121 /* verify the end result is block aligned */
2122 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2123 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2124 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2125 goto out_unlock;
2126
2127 ret = f2fs_convert_inline_inode(src);
2128 if (ret)
2129 goto out_unlock;
2130
2131 ret = f2fs_convert_inline_inode(dst);
2132 if (ret)
2133 goto out_unlock;
2134
2135 /* write out all dirty pages from offset */
2136 ret = filemap_write_and_wait_range(src->i_mapping,
2137 pos_in, pos_in + len);
2138 if (ret)
2139 goto out_unlock;
2140
2141 ret = filemap_write_and_wait_range(dst->i_mapping,
2142 pos_out, pos_out + len);
2143 if (ret)
2144 goto out_unlock;
2145
2146 f2fs_balance_fs(sbi, true);
2147 f2fs_lock_op(sbi);
2148 ret = __exchange_data_block(src, dst, pos_in,
2149 pos_out, len >> F2FS_BLKSIZE_BITS, false);
2150
2151 if (!ret) {
2152 if (dst_max_i_size)
2153 f2fs_i_size_write(dst, dst_max_i_size);
2154 else if (dst_osize != dst->i_size)
2155 f2fs_i_size_write(dst, dst_osize);
2156 }
2157 f2fs_unlock_op(sbi);
2158 out_unlock:
2159 if (src != dst)
2160 inode_unlock(dst);
2161 out:
2162 inode_unlock(src);
2163 return ret;
2164 }
2165
2166 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2167 {
2168 struct f2fs_move_range range;
2169 struct fd dst;
2170 int err;
2171
2172 if (!(filp->f_mode & FMODE_READ) ||
2173 !(filp->f_mode & FMODE_WRITE))
2174 return -EBADF;
2175
2176 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2177 sizeof(range)))
2178 return -EFAULT;
2179
2180 dst = fdget(range.dst_fd);
2181 if (!dst.file)
2182 return -EBADF;
2183
2184 if (!(dst.file->f_mode & FMODE_WRITE)) {
2185 err = -EBADF;
2186 goto err_out;
2187 }
2188
2189 err = mnt_want_write_file(filp);
2190 if (err)
2191 goto err_out;
2192
2193 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2194 range.pos_out, range.len);
2195
2196 mnt_drop_write_file(filp);
2197
2198 if (copy_to_user((struct f2fs_move_range __user *)arg,
2199 &range, sizeof(range)))
2200 err = -EFAULT;
2201 err_out:
2202 fdput(dst);
2203 return err;
2204 }
2205
2206 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2207 {
2208 switch (cmd) {
2209 case F2FS_IOC_GETFLAGS:
2210 return f2fs_ioc_getflags(filp, arg);
2211 case F2FS_IOC_SETFLAGS:
2212 return f2fs_ioc_setflags(filp, arg);
2213 case F2FS_IOC_GETVERSION:
2214 return f2fs_ioc_getversion(filp, arg);
2215 case F2FS_IOC_START_ATOMIC_WRITE:
2216 return f2fs_ioc_start_atomic_write(filp);
2217 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2218 return f2fs_ioc_commit_atomic_write(filp);
2219 case F2FS_IOC_START_VOLATILE_WRITE:
2220 return f2fs_ioc_start_volatile_write(filp);
2221 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2222 return f2fs_ioc_release_volatile_write(filp);
2223 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2224 return f2fs_ioc_abort_volatile_write(filp);
2225 case F2FS_IOC_SHUTDOWN:
2226 return f2fs_ioc_shutdown(filp, arg);
2227 case FITRIM:
2228 return f2fs_ioc_fitrim(filp, arg);
2229 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2230 return f2fs_ioc_set_encryption_policy(filp, arg);
2231 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2232 return f2fs_ioc_get_encryption_policy(filp, arg);
2233 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2234 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2235 case F2FS_IOC_GARBAGE_COLLECT:
2236 return f2fs_ioc_gc(filp, arg);
2237 case F2FS_IOC_WRITE_CHECKPOINT:
2238 return f2fs_ioc_write_checkpoint(filp, arg);
2239 case F2FS_IOC_DEFRAGMENT:
2240 return f2fs_ioc_defragment(filp, arg);
2241 case F2FS_IOC_MOVE_RANGE:
2242 return f2fs_ioc_move_range(filp, arg);
2243 default:
2244 return -ENOTTY;
2245 }
2246 }
2247
2248 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2249 {
2250 struct file *file = iocb->ki_filp;
2251 struct inode *inode = file_inode(file);
2252 struct blk_plug plug;
2253 ssize_t ret;
2254
2255 if (f2fs_encrypted_inode(inode) &&
2256 !fscrypt_has_encryption_key(inode) &&
2257 fscrypt_get_encryption_info(inode))
2258 return -EACCES;
2259
2260 inode_lock(inode);
2261 ret = generic_write_checks(iocb, from);
2262 if (ret > 0) {
2263 ret = f2fs_preallocate_blocks(iocb, from);
2264 if (!ret) {
2265 blk_start_plug(&plug);
2266 ret = __generic_file_write_iter(iocb, from);
2267 blk_finish_plug(&plug);
2268 }
2269 }
2270 inode_unlock(inode);
2271
2272 if (ret > 0)
2273 ret = generic_write_sync(iocb, ret);
2274 return ret;
2275 }
2276
2277 #ifdef CONFIG_COMPAT
2278 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2279 {
2280 switch (cmd) {
2281 case F2FS_IOC32_GETFLAGS:
2282 cmd = F2FS_IOC_GETFLAGS;
2283 break;
2284 case F2FS_IOC32_SETFLAGS:
2285 cmd = F2FS_IOC_SETFLAGS;
2286 break;
2287 case F2FS_IOC32_GETVERSION:
2288 cmd = F2FS_IOC_GETVERSION;
2289 break;
2290 case F2FS_IOC_START_ATOMIC_WRITE:
2291 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2292 case F2FS_IOC_START_VOLATILE_WRITE:
2293 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2294 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2295 case F2FS_IOC_SHUTDOWN:
2296 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2297 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2298 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2299 case F2FS_IOC_GARBAGE_COLLECT:
2300 case F2FS_IOC_WRITE_CHECKPOINT:
2301 case F2FS_IOC_DEFRAGMENT:
2302 break;
2303 case F2FS_IOC_MOVE_RANGE:
2304 break;
2305 default:
2306 return -ENOIOCTLCMD;
2307 }
2308 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2309 }
2310 #endif
2311
2312 const struct file_operations f2fs_file_operations = {
2313 .llseek = f2fs_llseek,
2314 .read_iter = generic_file_read_iter,
2315 .write_iter = f2fs_file_write_iter,
2316 .open = f2fs_file_open,
2317 .release = f2fs_release_file,
2318 .mmap = f2fs_file_mmap,
2319 .fsync = f2fs_sync_file,
2320 .fallocate = f2fs_fallocate,
2321 .unlocked_ioctl = f2fs_ioctl,
2322 #ifdef CONFIG_COMPAT
2323 .compat_ioctl = f2fs_compat_ioctl,
2324 #endif
2325 .splice_read = generic_file_splice_read,
2326 .splice_write = iter_file_splice_write,
2327 };
This page took 0.07829 seconds and 6 git commands to generate.